National Library of Energy BETA

Sample records for muon tomography muon

  1. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  2. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Imaging and sensing based on muon tomography Citation Details In-Document Search Title: Imaging and sensing based on muon tomography Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data. Authors: Morris, Christopher L ; Saunders, Alexander ; Sossong, Michael James ; Schultz, Larry Joe ; Green, J. Andrew ; Borozdin, Konstantin N ; Hengartner, Nicolas W ;

  3. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  4. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  5. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  6. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. ,

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of how to shield the detector and reduce the background are addressed in the Detector Chapter. Polarization of the muons allows many very interesting measurements which are discussed in the Physics Chapter. Unlike the electron collider in which the electron beam is highly polarized and the positron beam unpolarized, both muon beams may be partially polarized. It is necessary to select forward moving muons from the pion's decay and thus reduce the available number of muons and hence the luminosity. The necessary machine technology needed to achieve such a collider is discussed in the Option Chapter; at the moment it is not part of our point design, although such capability would almost certainly be incorporated into an actual device.

  7. Muon Applications at the RIKEN-RAL Muon Facility

    SciTech Connect (OSTI)

    Ishida, K.

    2008-02-21

    Status of the muon beam at the RIKEN-RAL Muon Facility is presented as well as muon's applications for various kinds of scientific research such as muon catalyzed fusion, nuclear physics, condensed matter physics and surface and nano science.

  8. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  9. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  10. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  11. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  12. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A.

    2010-02-10

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  13. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  14. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  15. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  16. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muons photo Two planned Fermilab experiments, Mu2e and Muon g-2, will use particles called muons to search for rare and hidden phenomena in the quantum realm. In recent years, particle physicists have increasingly turned their attention to finding evidence for physics beyond the already known building blocks of matter and subatomic forces that determine their interactions. Discoveries beyond the well-established Standard Model will help scientists answer some of the most puzzling and pressing

  17. Muon Physics in the 21st Century

    SciTech Connect (OSTI)

    Marciano, Bill

    2005-05-11

    Intense muon sources have great potential in fundamental physics and applied science. An overview of future possibilities ranging from muon-electron conversion to muon catalyzed fusion and medical diagnostics will be given.

  18. Muon Acceleration R and D

    SciTech Connect (OSTI)

    Torun, Yagmur

    2009-12-17

    An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

  19. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  20. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect (OSTI)

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  1. Analysis of the multigroup model for muon tomography based threat detection

    SciTech Connect (OSTI)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-14

    We compare different algorithms for detecting a 5?cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5?cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  2. Research and Development of Future Muon Collider

    SciTech Connect (OSTI)

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  3. The Gran Sasso muon puzzle

    SciTech Connect (OSTI)

    Fernandez-Martinez, Enrique; Mahbubani, Rakhi E-mail: rakhi@cern.ch

    2012-07-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2?. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We do not see this same period in the stratospheric temperature data.

  4. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  5. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  6. Quasi-isochronous muon collection channels

    SciTech Connect (OSTI)

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.

  7. Neutrino Factory and Muon Collider Fellow

    SciTech Connect (OSTI)

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  8. Cosmic muons, as messengers from the Universe

    SciTech Connect (OSTI)

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the penetrating component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  9. Progress on muon{sup +}muon{sup {minus}} colliders

    SciTech Connect (OSTI)

    Palmer, R.B.

    1997-05-01

    Advantages and disadvantages of muon colliders are discussed. Recent results of calculations of the radiation hazard from muon decay neutrinos are presented. This is a significant problem for machines with center of mass energy of 4 TeV, but of no consequence for lower energies. Plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 4 TeV collider, studies are now starting on a machine near 100 GeV that could be a factory for the s-channel production of Higgs particles. Proposals are also presented for a demonstration of ionization cooling and of the required targeting, pion capture, and phase rotation rf.

  10. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  11. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.

    2011-10-06

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R and D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  12. Muon g-2 Superconducting Magnet Commissioning Preparation

    SciTech Connect (OSTI)

    2015-06-26

    A time-lapse of the Fermilab muon g-2 ring being installed and prepped, from June 27, 2014 to June 5, 2015.

  13. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  14. The Muon Accelerator Program (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Muon Accelerator Program Citation Details In-Document Search Title: The Muon Accelerator Program Multi-TeV Muon Colliders and high intensity Neutrino Factories have captured the imagination of the particle physics community. These new types of facility both require an advanced muon source capable of producing O(10{sup 21}) muons per year. The muons must be captured within bunches, and their phase space manipulated so that they fit within the acceptance of an accelerator. In

  15. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  16. Systematic muon capture rates in PQRPA

    SciTech Connect (OSTI)

    Samana, A. R.; Sande, D.; Krmpoti?, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  17. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  18. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    High-energy Neutrino Beams; Review of Modern Physics, Vol. 61, Issue 3: 533 - 545; July 1989 Top Additional Web Pages: Discovery of the Muon-Neutrino, 1988 The 1988 Nobel Prize in...

  19. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect (OSTI)

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  20. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  1. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  2. Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons

    SciTech Connect (OSTI)

    Schwellenbach, D.

    2012-07-17

    Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

  3. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  4. Higgs boson and Z physics at the first muon collider

    SciTech Connect (OSTI)

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

  5. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  6. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect (OSTI)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  7. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  8. FFAG Designs for Muon Collider Acceleration

    SciTech Connect (OSTI)

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  9. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  10. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-15

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  11. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect (OSTI)

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  12. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultt fr Physik and Astronomie, Theoretische Physik I, Ruhr-Universitt Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  13. Jack Steinberger and the Muon-Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles

  14. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  15. Muon Cooling R and D Progress in the US

    SciTech Connect (OSTI)

    Li Derun

    2008-02-21

    Muon ionization cooling R and D is important for a neutrino factory and future muon collider. In addition to theoretical studies, much progress has been made in muon cooling channel hardware R and D since NuFact-2006. This paper reports the progress on hardware R and D that includes experimental RF test programs using 805-MHz RF cavity, superconducting (SC) solenoids (coupling coils), 201-MHz RF cavity, liquid hydrogen absorber and MUCOOL Test Area (MTA) experiment preparation for beam tests.

  16. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    Double Differential Cross Section (Conference) | SciTech Connect First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup

  17. Muon Application to Advanced Bio- and Nano-Sciences

    SciTech Connect (OSTI)

    Nagamine, Kanetada

    2008-02-21

    Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

  18. Melvin Schwartz and the Discovery of the Muon Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  19. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation. Authors: Luu, T ;...

  20. Chiral effective field theory predictions for muon capture on...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chiral effective field theory predictions for muon capture on deuteron and 3He Citation Details In-Document Search Title: Chiral effective field theory...

  1. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Conference: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of...

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  3. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  4. The performance of the MICE muon beam line

    SciTech Connect (OSTI)

    Rayner, Mark Alastair

    2011-10-06

    The Muon Ionization Cooling Experiment is one lattice cell of a cooling channel suitable for conditioning the muon beam at the front end of a Neutrino Factory or Muon Collider. The beam line designed to transport muons into MICE has been installed, and data was collected in 2010. In this paper the method of reconstructing longitudinal momentum and transverse trace space using two timing detectors is discussed, and a preliminary simulation of the performance of a measured beam in the cooling channel is presented.

  5. Design Concepts for Muon-Based Accelerators (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators You are accessing a document from the...

  6. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  7. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect (OSTI)

    Veselinovi?, N. Dragi?, A. Maleti?, D. Jokovi?, D. Savi?, M. Banjanac, R. Udovi?i?, V. Ani?in, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  8. 6D Muon Ionization Cooling with an Inverse Cyclotron

    SciTech Connect (OSTI)

    Summers, D. J.; Bracker, S. B.; Cremaldi, L. M.; Godang, R.; Palmer, R. B.

    2006-03-20

    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.

  9. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect (OSTI)

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  10. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  11. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  12. Recent progress in neutrino factory and muon collider research within the

    Office of Scientific and Technical Information (OSTI)

    muon collaboration (Journal Article) | SciTech Connect Journal Article: Recent progress in neutrino factory and muon collider research within the muon collaboration Citation Details In-Document Search Title: Recent progress in neutrino factory and muon collider research within the muon collaboration No abstract prepared. Authors: Alsharo'a, Mohammad M. ; Ankenbrandt, Charles M. ; Atac, Muzaffer ; Autin, Bruno R. ; Balbekov, Valeri I. ; Barger, Vernon D. ; Benary, Odette ; Bennett, J. Roger

  13. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  14. Extending theories on muon-specific interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  15. Extending theories on muon-specific interactions

    SciTech Connect (OSTI)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to ?? decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  16. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̄μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν̄μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̄2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ̄) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν̄μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  17. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect (OSTI)

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  18. Fermilab | Newsroom | Press Releases | May 8, 2013: Muon g-2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Res Crews work to attach the red stabilizing apparatus to the Muon g-2 rings at Brookhaven National Laboratory in New York in preparation for moving them over land and sea to...

  19. Fermilab Muon Ring Arrives to a Large Crowd of Fans

    SciTech Connect (OSTI)

    2013-08-15

    A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

  20. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    neutrons and pions from muon spallation. Authors: Luu, T ; Hagmann, C Publication Date: 2006-11-13 OSTI Identifier: 900172 Report Number(s): UCRL-TR-226323 TRN: US0702217 DOE...

  1. Muon Acceleration with RLA and Non-scaling FFAG Arcs

    SciTech Connect (OSTI)

    Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

    2010-05-01

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  2. Muon acceleration with RLA and non-scaling FFAG ARCS

    SciTech Connect (OSTI)

    Morozov, V.S.; Trbojevic, D.; Bogacz, A.

    2010-05-23

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  3. Publisher's Note: Measurement of the Positive Muon Lifetime and

    Office of Scientific and Technical Information (OSTI)

    Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] (Journal Article) | SciTech Connect Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] Citation Details In-Document Search Title: Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev.

  4. First-Principles Computation of Hadronic Contributions to the Muon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anomalous Magnetic Moment | Argonne National Laboratory First-Principles Computation of Hadronic Contributions to the Muon Anomalous Magnetic Moment March 16, 2016 11:00AM to 12:00PM Presenter Christoph Lehner, Brookhaven National Laboratory Location Building 362, Room F108 Type Seminar Series HEP Division Seminar Abstract: In order to match the increased precision of the upcoming Fermilab E989 experiment, a more precise determination of hadronic contributions to the muon anomalous magnetic

  5. The charge ratio of the atmospheric muons at low energy

    SciTech Connect (OSTI)

    Bahmanabadi, M.; Samimi, J.; Sheidaei, F.; Ghomi, M. Khakian

    2006-10-15

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

  6. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmospheres effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmospheres effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  7. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect (OSTI)

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  8. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  9. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER You are accessing a document from the Department of Energy's (DOE)...

  10. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER Authors: Wang, M.-H. ; Nosochkov, Y. ; Cai, Y. ; SLAC ; Palmer, M. ;...

  11. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good but not super conductors at cryogenic temperatures, can be used.

  12. The Muon Collider as a $H/A$ factory

    SciTech Connect (OSTI)

    Eichten, Estia; Martin, Adam

    2014-01-01

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.

  13. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N.; Bom, V. R.; Demin, A. M.; Demin, D. L.; Eijk, C. W. E. van; Filchagin, S. V.; Filchenkov, V. V.; Grafov, N. N. Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Kuryakin, A. V.; Medved', S. V.; Musyaev, R. K.; Rudenko, A. I.; Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A.; Yukhimchuk, S. A.; Zinov, V. G.

    2009-02-15

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  14. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  15. The Muon Collider as a $H/A$ factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual Hmore » and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  16. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect (OSTI)

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  17. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  18. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  19. Charge recombination in the muon collider cooling channel

    SciTech Connect (OSTI)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  20. Muon g-2 ring moving up Illinois river

    SciTech Connect (OSTI)

    2013-07-20

    This clip shows the "Miss Katie" pushing the muon g-2 ring upstream on the Illinois River, and passing through the Peoria Lock and Dam as it travels toward Lemont, where it will be unloaded onto the special Emmert transporter and driven to Fermilab.

  1. Design of the Large Acceptance Muon Beamline at J-PARC

    SciTech Connect (OSTI)

    Nakahara, K.; Miyake, Y.; Shimomura, K.; Strasser, P.; Nishiyama, K.; Kawamura, N.; Fujimori, H.; Makimura, S.; Koda, A.; Nagamine, K.; Ogitsu, T.; Yamamoto, A.; Adachi, T.; Sasaki, K.; Tanaka, K.; Kimura, N.; Makida, Y.; Ajima, Y.; Ishida, K.; Matsuda, Y.

    2008-02-21

    The Materials and Life Science Facility (MLF) is currently under construction at J-PARC in Tokai, Japan. The muon section of the facility will house the muon production target and four secondary beamlines used to transport the muons into two experimental halls. One of the beamlines is a large acceptance beamline (the so called Super Omega Muon beamline) which, when completed, will produce the largest intensity pulse muon beam in the world. The expected rate of surface muons for this beamline is 5x10{sup 8} {mu}{sup +}/s, and a cloud muon rate of 10{sup 7} {mu}{sup -}/s. The extracted muons will be used for projects involving the production of ultra-slow muons as well as for muon-catalyzed fusion. The beamline consists of the normal-conducting capture solenoids, the superconducting curved transport solenoids, and the Dai Omega-type axial focusing magnet. Currently, the capture and transport solenoids are under design, with the former in its final stages and the latter being finalized for construction of test coils. The design of the Dai Omega-type axial focusing magnet is under consideration with particular emphasis on its compatibility with the transport solenoids.

  2. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  3. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  4. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect (OSTI)

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  5. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  6. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; Sadovskiy, Y.; Zlobin, Alexander V; /Fermilab

    2007-08-01

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  7. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory

  8. A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MUON NEUTRINO CHARGED CURRENT QUASIELASTIC INTERACTION AND A TEST OF LORENTZ VIOLATION WITH THE MINIBOONE EXPERIMENT Teppei Katori Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Physics, Indiana University December 2008 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee Rex Tayloe,

  9. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  10. Optimization of the muon stopping target for the MU2E collaboration

    SciTech Connect (OSTI)

    Hodge, Zachary Donovan

    2013-01-01

    The Mu2e Experiment utilizes state of the art accelerators, superconducting magnets, detectors, electronics, and other equipment to maximize the sensitivity to such a rare process. Many of the components of the Mu2e hardware are critical to the overall physics capability of the experiment. The muon stopping target, where muons are stopped and may interact via this very rare process, is one such component where any improvements beyond the base design can have a significant impact on the experiment. This thesis explores possible modifications to the geometry of the muon stopping target. The goal is to determine if any modifications can improve the sensitivity of observing the muon conversion process.

  11. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom...

    Office of Scientific and Technical Information (OSTI)

    the Muon Neutrino, and the Bottom Quark His Honors His Involvement in Science Education His Wisdom and Humor Resources with Additional Information Leon Lederman started...

  12. Measurement of Muon Capture on the Proton (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Measurement of Muon Capture on the Proton Citation Details In-Document Search Title: Measurement of Muon Capture on the Proton The goal of the {mu}Cap experiment is a 1% precision measurement of the muon capture rate on the free proton, which will determine the weak pseudoscalar form factor gP to 7%. At the end of 2004, the {mu}Cap detector was completed and commissioned and first physics data were taken. The analysis of these data is in an advanced stage. The muon capture rate will

  13. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  14. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  15. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect (OSTI)

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  16. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  17. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  18. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    SciTech Connect (OSTI)

    Denisov, Dmitri; Evdokimov, Valery; Luki?, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  19. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  20. nuSTORM and A Path to a Muon Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore » in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  1. nuSTORM and A Path to a Muon Collider

    SciTech Connect (OSTI)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

  2. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    SciTech Connect (OSTI)

    Adamson, P.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  3. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore » peaks in the winter.« less

  4. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    SciTech Connect (OSTI)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  5. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect (OSTI)

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  6. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  7. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  8. Measurement of the Positive Muon Lifetime and Determination of the Fermi

    Office of Scientific and Technical Information (OSTI)

    Constant to Part-per-Million Precision (Journal Article) | SciTech Connect Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision Citation Details In-Document Search Title: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment

  9. Chiral effective field theory predictions for muon capture on deuteron and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $^3$He (Journal Article) | SciTech Connect Journal Article: Chiral effective field theory predictions for muon capture on deuteron and $^3$He Citation Details In-Document Search Title: Chiral effective field theory predictions for muon capture on deuteron and $^3$He The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral

  10. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  11. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  12. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  13. Superconducting solenoids for muon-cooling in the neutrino factory

    SciTech Connect (OSTI)

    Green, M.A.; Miller, J.R.; Prestemon, S.

    2001-05-12

    The cooling channel for a neutrino factory consists of a series of alternating field solenoidal cells. The first section of the bunching cooling channel consists of 41 cells that are 2.75-m long. The second section of the cooling channel consists of 44 cells that are 1.65-m long. Each cell consists of a single large solenoid with an average diameter of 1.5 m and a pair of flux reversal solenoids that have an average diameter of 0.7 to 0.9 meters. The magnetic induction on axis reaches a peak value of about 5 T at the end of the second section of the cooling channel. The peak on axis field gradients in flux reversal section approaches 33 T/m. This report describes the two types of superconducting solenoid magnet sections for the muon-cooling channel of the proposed neutrino factory.

  14. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, K.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  15. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  16. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    SciTech Connect (OSTI)

    Berg, J. S.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  17. R-Axion: A New LHC Physics Signature Involving Muon Pairs (Conference...

    Office of Scientific and Technical Information (OSTI)

    of muons and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. The one main...

  18. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a MuonCollider require large numbers of challenging superconducting magnets,including large aperture solenoids, closely spaced solenoids withopposing fields, shielded solenoids, very high field (~;40-50 T)solenoids, and storage ring magnets with a room-temperature midplanesection. Uses for the various magnets will be outlined, along withR&D plans to develop these and other required components of suchmachines.

  19. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect (OSTI)

    Szafron, Robert; Czarnecki, Andrzej

    2015-05-19

    We determine the ?(?) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  20. A novel precision measurement of muon g - 2 and EDM at J-PARC

    SciTech Connect (OSTI)

    Saito, Naohito; Collaboration: J-PARC g-2 /EDM Collaboration

    2012-07-27

    We propose a new experiment to measure the muon anomalous magnetic moment g - 2 and electric dipole moment with a novel technique called ultra-slow muon beam at J-PARC. Precision measurement of these dipole moments plays an important role in fundamental physics to search for a new physics beynd standard model. The concept of the experiment and its current status is described.

  1. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect (OSTI)

    The Soudan 2 Collaboration

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  3. High-energy electrons from the muon decay in orbit: Radiative corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  4. Muon fluxes and showers from dark matter annihilation in the Galactic

    Office of Scientific and Technical Information (OSTI)

    center (Journal Article) | SciTech Connect and showers from dark matter annihilation in the Galactic center Citation Details In-Document Search Title: Muon fluxes and showers from dark matter annihilation in the Galactic center We calculate contained and upward muon flux and contained shower event rates from neutrino interactions, when neutrinos are produced from annihilation of the dark matter in the Galactic center. We consider model-independent direct neutrino production and secondary

  5. Muon fluxes from dark matter annihilation (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect from dark matter annihilation Citation Details In-Document Search Title: Muon fluxes from dark matter annihilation We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We illustrate

  6. Design Concepts for Muon-Based Accelerators (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators Authors: Ryne, R.D. ; et al. Publication Date: 2015-05-01 OSTI Identifier: 1223244 Report Number(s): FERMILAB-CONF-15-389-AD-APC DOE Contract Number: AC02-07CH11359 Resource Type: Conference Resource Relation: Conference: 6th International Particle Accelerator Conference. Richmond, Virginia, USA, 3-8 May 2015. pp: WEPWA057

  7. Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation

    Office of Scientific and Technical Information (OSTI)

    measurements (Journal Article) | SciTech Connect Journal Article: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Citation Details In-Document Search Title: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Authors: Storchak, Vyacheslav G. ; Parfenov, Oleg E. ; Eshchenko, Dmitry G. ; Lichti, Roger L. ; Mengyan, Patrick W. ; Isobe, Masahiko ; Ueda, Yutaka Publication Date: 2012-03-05 OSTI Identifier: 1099289 Type: Publisher's

  8. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, andmore » top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.« less

  9. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, and top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.

  10. Testing the Muon g-2 Anomaly at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment, $a_{\\mu} = (g_{\\mu}-2)/2$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $a_{\\mu}$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identifymore »the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  11. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect (OSTI)

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  12. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  13. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N. Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V.; Takibaev, J. S.

    2009-11-15

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  14. Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi Constant

    SciTech Connect (OSTI)

    Chitwood, D. B.; Clayton, S. M.; Crnkovic, J.; Debevec, P. T.; Hertzog, D. W.; Kammel, P.; Kiburg, B.; Kunkle, J.; McNabb, R.; Mulhauser, F.; Oezben, C. S.; Polly, C. C.; Webber, D. M.; Winter, P.; Banks, T. I.; Crowe, K. M.; Lauss, B.; Barnes, M. J.; Wait, G. D.; Battu, S.

    2007-07-20

    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, {tau}{sub {mu}}=2.197 013(24) {mu}s, is in excellent agreement with the previous world average. The new world average {tau}{sub {mu}}=2.197 019(21) {mu}s determines the Fermi constant G{sub F}=1.166 371(6)x10{sup -5} GeV{sup -2} (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g{sub P}.

  15. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  16. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  17. Design of an intense muon source with a carbon and mercury target

    SciTech Connect (OSTI)

    Stratakis, D.; Berg, J. S.; Neuffer, D.; Ding, X.

    2015-05-03

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  18. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  19. Searching for a dilaton decaying to muon pairs at the LHC

    SciTech Connect (OSTI)

    Vignaroli, Natascia

    2009-11-01

    We analyze the decays to muons of a light dilaton produced via vector boson fusion at the LHC. We investigate models in which the electroweak symmetry breaking is triggered by a spontaneously broken, approximately conformal sector. Taking into account the possibility of shifts in the dilaton Yukawa couplings to muons, we find a rather promising scenario for the conformal model search in the channel, with the possibility for a dilaton discovery at a delivered luminosity of 100 fb{sup -1} at the LHC or, alternatively, for an extension of the exclusion zone in the model parameter space, until now fixed by the Tevatron.

  20. High-Pressure Tritium Targets for Research in Muon-Catalyzed Fusion

    SciTech Connect (OSTI)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2005-07-15

    The paper presents designs of a set of high-pressure targets developed by RFNC-VNIIEF and JINR collaboration to study muon-catalyzed fusion at high density of hydrogen isotopes in a wide temperature range. Designs, technical and operating characteristics of the targets and service results are described.In 1997-2002 these targets were used to measure basic characteristics of muon catalysis in pure deuterium, binary D/T mixture and triple H/D/T mixture as a function of density ([variant phi] = 0.2 - 1.2 LHD{sup *}), temperature (T = 20-800 K) and concentration of hydrogen isotopes in a mixture.

  1. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2??1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  2. Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy 23.2010]: Muons at the South Pole and Dr. Nick Holoynak Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak December 23, 2010 - 12:05pm Addthis Illustration of the IceCube neutrino observatory. Source: LBNL Illustration of the IceCube neutrino observatory. Source: LBNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Earlier today, the Energy Blog featured Los Alamos National Lab's system to track Santa. However, while there is

  3. Measurement of Muon Capture on the Proton to 1% Precision and Determination

    Office of Scientific and Technical Information (OSTI)

    of the Pseudoscalar Coupling gP (Journal Article) | SciTech Connect Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Citation Details In-Document Search Title: Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Authors: Andreev, V. A. ; Banks, T. I. ; Carey, R. M. ; Case, T. A. ; Clayton, S. M. ; Crowe, K. M. ; Deutsch, J. ; Egger, J. ; Freedman, S. J. ; Ganzha, V. A. ; Gorringe, T. ; Gray,

  4. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    SciTech Connect (OSTI)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  5. Muon spin relaxation and nonmagnetic Kondo state in PrInAg{sub 2}

    SciTech Connect (OSTI)

    MacLaughlin, D. E.; Department of Physics, University of California, Riverside, California 92521-0413 ; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg{sub 2}. The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at {approx}0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the {sup 141}Pr nuclear moment at low temperatures. This argues against a Pr{sup 3+} ground-state electronic magnetic moment, and is strong evidence for the doublet {gamma}{sub 3} crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr{sup 3+} ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg{sub 2}. (c) 2000 The American Physical Society.

  6. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  7. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect (OSTI)

    Psihas Olmedo, Silvia Fernanda

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  8. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  9. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  10. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect (OSTI)

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  11. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments [OSTI]

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  12. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  13. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  14. Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

  15. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  16. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  17. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

    SciTech Connect (OSTI)

    C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz

    2010-05-01

    Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.

  18. CSC large panel R&D summary for the SSC GEM muon subsystem

    SciTech Connect (OSTI)

    Pratuch, S.M.; Clements, J.W.; Spellman, G.P.

    1994-05-01

    The GEM Detector uses 1,128 Cathode Strip Chamber (CSC) muon detectors requiring a total of approximately 10,000 precision panels in the CSC assemblies. These panels must be fabricated to extreme tolerances in order to meet the physics requirement. A fabrication technique used to produce two large panels, nominally 1 by 3 meters, is described and the resulting panel precision is reported.

  19. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email

  20. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark His Honors * His Involvement in Science Education His Wisdom and Humor * Resources with Additional Information Leon Lederman started his career in Physics at Columbia University, where he earned his Ph.D. in 1952. He 'stayed on at Columbia following his studies, remaining for nearly 30 years, as the Eugene Higgins Professor and, from 1961 until 1979, as director of Nevis Laboratories in Irvington, the Columbia physics department

  1. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect (OSTI)

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  2. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  3. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  4. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    SciTech Connect (OSTI)

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providing the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.

  5. Matched Optics of Muon RLA and Non-Scaling FFAG ARCS

    SciTech Connect (OSTI)

    V.S. Morozov, S.A. Bogacz, Y. Roblin, K.B. Beard, D. Trbojevic

    2011-03-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs.

  6. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  7. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  8. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  9. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  10. Leptophilic dark matter and the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

  11. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect (OSTI)

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  12. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  13. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  14. GUT-inspired supersymmetric model for h → γ γ and the muon g - 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-06

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h→γγ decay channel. In order to accommodate these observations and mh≅125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to Rγγ≥1.1 is 100 GeV≲mτ˜≲200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted tomore » lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg˜≳4.5 TeV and mt˜₁≳3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.« less

  15. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  16. Design and testing of the New Muon Lab cryogenic system at Fermilab

    SciTech Connect (OSTI)

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

    2009-11-01

    Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

  17. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect (OSTI)

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  18. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  19. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    SciTech Connect (OSTI)

    Kozlov, Valentin; Collaboration: EDELWEISS Collaboration

    2013-08-08

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  20. Measurement of muon plus proton final states in ? ? interactions on hydrocarbon at E? = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.?J.; Butkevich, A.; Martinez Caicedo, D.?A.; et al

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70 and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formoreinelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.less

  1. Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR

    DOE R&D Accomplishments [OSTI]

    Richter, B.

    1976-01-01

    The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

  2. Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

    2012-05-01

    In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

  3. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. The final result involving an estimate of the systematic uncertainty a?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

  4. A search for pair production of new light bosons decaying into muons

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-03

    In this study, a search for the pair production of new light bosons, each decaying into a pair of muons, is performed with the CMS experiment at the LHC, using a dataset corresponding to an integrated luminosity of 20.7 fb1 collected in protonproton collisions at center-of-mass energy of ?s = 8 TeV. No excess is observed in the data relative to standard model background expectation and a model independent upper limit on the product of the cross section, branching fraction, and acceptance is derived. The results are compared with two benchmark models, the first one in the context of the next-to-minimal supersymmetric standard model, and the second one in scenarios containing a hidden sector, including those predicting a nonnegligible light boson lifetime.

  5. Search for pair production of the scalar top quark in the electron+muon final state

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Altona, A.; Alverson, G.; Alves, G.A.

    2010-09-01

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ({tilde t}{sub 1}) in p{bar p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb{sup -1}. The scalar top quarks are assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) mass plane.

  6. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect (OSTI)

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  7. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, aμhvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore » μhvp. The final result involving an estimate of the systematic uncertainty aμhvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less

  8. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect (OSTI)

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  9. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect (OSTI)

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  10. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect (OSTI)

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  11. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  12. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

    2012-05-01

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  13. Spin ice: magnetic excitations without monopole signatures using muon spin rotation

    SciTech Connect (OSTI)

    Dunsiger, Sarah [Technical University, Munich, Germany; Aczel, Adam A. [McMaster University; Arguello, Carlos [Columbia University; Dabkowska, H. A. [McMaster University; Dabkowski, A [McMaster University; Du, Mao-Hua [ORNL; Goko, Tatsuo [Columbia University; Javanparast, B [University of Waterloo, Canada; Lin, T [University of Waterloo, Canada; Ning, F. L. [McMaster University; Noad, H. M. [McMaster University; Singh, David J [ORNL; Williams, T.J. [McMaster University; Uemura, Yasutomo J. [Columbia University; Gingras, M.P.J. [University of Waterloo, Canada; Luke, Graeme M. [McMaster University

    2011-01-01

    Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation ({mu}SR) experiment [S.T. Bramwell et al., Nature (London) 461 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of {mu}SR experiments in Dy{sub 2}Ti{sub 2}O{sub 7} that such an effect is not observable in a TF {mu}SR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.

  14. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    SciTech Connect (OSTI)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic {tau} lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp(1)}, is estimated.

  15. A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron

    SciTech Connect (OSTI)

    Anastasoaie, Carmen Miruna; /Nijmegen U.

    2008-02-01

    All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + light jets (W{sup {+-}}jj) (and the corresponding backgrounds with a Z boson), t{bar t}, single top production, and QCD multijet background.

  16. Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years

    SciTech Connect (OSTI)

    Boliev, M.M.; Demidov, S.V.; Mikheyev, S.P.; Suvorova, O.V. E-mail: demidov@ms2.inr.ac.ru E-mail: suvorova@cpc.inr.ac.ru

    2013-09-01

    We present a new dataset analysis of the neutrino experiment at the Baksan Underground Scintillator Telescope with muon energy threshold about 1 GeV for the longest exposure time toward the Sun. In search for a signal from self-annihilations of dark matter particles in the center of the Sun we use an updated sample of upward through-going muons for 24.12 years of live time. No observable excess has been found in measured muons relative to expected background from neutrinos of atmospheric origin. We present an improved data analysis procedure and describe it in detail. We set the 90% C.L. new upper limits on expected neutrino and muon fluxes from dark matter annihilations in the Sun, on the corresponding annihilation rates and cross sections of their elastic scattering off proton.

  17. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  18. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and Υ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲ pT ≲ 100 GeV) the efficiencymore » is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≃ 10 GeV, to 4% at large rapidity and pT ≃ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.« less

  19. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC protonproton collision data

    SciTech Connect (OSTI)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at ?s = 78 TeV in 20112012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/? ? ??, Z ? ?? and ? ? ?? decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |?| < 2.7 and 5 ? pT ? 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ? 10 GeV, to 4% at large rapidity and pT ? 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.

  20. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  1. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  2. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  3. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  4. Nonuniversal gaugino masses and muong-2

    SciTech Connect (OSTI)

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; n, Cem Salih

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125126 GeV Higgs boson mass and the WMAP dark matter bounds.

  5. Preparation of ortho-para ratio controlled D{sub 2} gas for muon-catalyzed fusion

    SciTech Connect (OSTI)

    Imao, H.; Ishida, K.; Matsuzaki, T.; Matsuda, Y.; Iwasaki, M.; Kawamura, N.; Strasser, P.; Toyoda, A.; Nagamine, K.

    2008-05-15

    A negative muon in hydrogen targets, e.g., D{sub 2} or D-T mixture, can catalyze nuclear fusions following a series of atomic processes involving muonic hydrogen molecular formation (muon-catalyzed fusion, {mu}CF). The ortho-para state of D{sub 2} is a crucial parameter not only for enhancing the fusion rate but also to precisely investigate various muonic atom processes. We have developed a system for controlling and measuring the ortho-para ratio of D{sub 2} gas for {mu}CF experiments. We successfully collected para-enriched D{sub 2} without using liquid-hydrogen coolant. Ortho-enriched D{sub 2} was also obtained by using a catalytic conversion method with a mixture of chromium oxide and alumina. The ortho-para ratio of D{sub 2} gas was measured with a compact Raman spectroscopy system. We produced large volume (5-30 l at STP), high-purity (less than ppm high-Z contaminant) D{sub 2} targets with a wide range of ortho-para ratios (ortho 20%-99%). By using the ortho-para controlled D{sub 2} in {mu}CF experiments, we observed the dependence of {mu}CF phenomena on the ortho-para ratio.

  6. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    SciTech Connect (OSTI)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  7. Measurement of muon plus proton final states in ?? interactions on hydrocarbon at < E? > = 4.2 GeV

    SciTech Connect (OSTI)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70 and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  8. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at ν > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  9. Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g{sub P}

    SciTech Connect (OSTI)

    Andreev, V. A.; Ganzha, V. A.; Kravtsov, P. A.; Krivshich, A. G.; Maev, E. M.; Maev, O. E.; Petrov, G. E.; Schapkin, G. N.; Semenchuk, G. G.; Soroka, M. A.; Vasilyev, A. A.; Vorobyov, A. A.; Vznuzdaev, M. E.; Banks, T. I.; Case, T. A.; Crowe, K. M.; Freedman, S. J.; Gray, F. E.; Lauss, B.; Chitwood, D. B.

    2007-07-20

    The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S}=725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2}=-0.88m{sub {mu}}{sup 2})=7.3{+-}1.1, is extracted.

  10. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; lvarez Gonzlez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; dAscenzo, N.; Datta, M.; de Barbaro, P.; DellOrso, M.; Demortier, L.; Deninno, M.; Devoto, F.; dErrico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; DOnofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzlez, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martnez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb? and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  11. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect (OSTI)

    Lancaster, T.; Pratt, F. L.; Blundell, S. J.; Steele, Andrew J.; Baker, Peter J.; Wright, Jack D.; Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  12. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    SciTech Connect (OSTI)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  13. SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Ahlers, M.; Auffenberg, J.; Becker, K.-H.; Bai, X.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.

    2009-08-20

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10{sup -3} erg cm{sup -2} in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

  14. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    SciTech Connect (OSTI)

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.

  15. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  16. Muon g−2 and Galactic Centre γ-ray excess in a scalar extension of the 2HDM type-X

    SciTech Connect (OSTI)

    Hektor, Andi; Kannike, Kristjan; Marzola, Luca

    2015-10-12

    We consider an extension of the lepto-specific 2HDM with an extra singlet S as a dark matter candidate. Taking into account theoretical and experimental constraints, we investigate the possibility to address both the γ-ray excess detected at the Galactic Centre and the discrepancy between the Standard Model prediction and experimental results of the anomalous magnetic moment of the muon. Our analyses reveal that the SS→τ{sup +}τ{sup −} and SS→bb-bar channels reproduce the Galactic Centre excess, with an emerging dark matter candidate which complies with the bounds from direct detection experiments, measurements of the Higgs boson invisible decay width and observations of the dark matter relic abundance. Addressing the anomalous magnetic moment of the muon imposes further strong constraints on the model. Remarkably, under these conditions, the SS→bb-bar channel still allows for the fitting of the Galactic Centre. We also comment on a scenario allowed by the model where the SS→τ{sup +}τ{sup −} and SS→bb-bar channels have comparable branching ratios, which possibly yield an improved fitting of the Galactic Centre excess.

  17. Imaging and sensing based on muon tomography (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to...

  18. Measurement of the ? ? * distribution of muon pairs with masses between 30 and 500GeV in 10.4 fb - 1 of p p collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V.?M.; Abbott, B.; Acharya, B.?S.; Adams, M.; Adams, T.; Agnew, J.?P.; Alexeev, G.?D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2015-04-06

    We present a measurement of the distribution of the variable ?*? for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb? at ?s=1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ?*? probes the same physical effects as the Z/?* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at anymorecollider of the ?*? distributions for dilepton masses away from the Z?l?l? boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.less

  19. Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Porter, Frank C.

    2015-04-29

    The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons

  20. Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-11

    The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearlymore » isotropic.« less

  1. Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at s=8TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; et al

    2015-03-18

    A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6 (20.5)  fb⁻¹ in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at √s = 8  TeV. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presentedmore » as a function of the long-lived particle’s mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125–1000  GeV/c² decays into a pair of long-lived neutral bosons in the mass range 20–350  GeV/c², each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2–10 fb for mean proper decay lengths of the long-lived particles in the range 0.01–100 cm. In the case of the lowest Higgs mass considered (125  GeV/c²), the limits are in the range 2–50 fb. These limits are sensitive to Higgs boson branching fractions as low as 10⁻⁴.« less

  2. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  3. AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE

    SciTech Connect (OSTI)

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others

    2011-12-01

    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  4. Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at $$\\sqrt{s}=7$$ TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-09

    This study presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp → Z/γ * → l +l -, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at \\( \\sqrt{s}=7 \\) TeV, corresponding to an integrated luminosity of 4.8 fb-1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effectivemore » weak mixing angle of sin2 θefflept =0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.« less

  5. Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor

    SciTech Connect (OSTI)

    Edwards, Tamsin L

    2006-04-01

    The first analysis of diffractively produced Z bosons in the muon decay channel is presented, using data taken by the D0 detector at the Tevatron at {radical}s = 1.96 TeV. The data sample corresponds to an integrated luminosity of 109 pb{sup -1}. The diffractive sample is defined using the fractional momentum loss {zeta} of the intact proton or antiproton measured using the calorimeter and muon detector systems. In a sample of 10791 (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} events, 24 diffractive candidate events are found with {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The systematic uncertainties are not yet sufficiently understood to present the cross section result. In addition, the first measurement of the efficiency of the Run II D0 Luminosity Monitor is presented, which is used in all cross section measurements. The efficiency is: {var_epsilon}{sub LM} = (90.9 {+-} 1.8)%.

  6. Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at $\\sqrt{s}=7$ TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-09

    This study presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp → Z/γ * → l +l -, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at \\( \\sqrt{s}=7 \\) TeV, corresponding to an integrated luminosity of 4.8 fb-1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of sin2 θefflept =0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.

  7. Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-03-18

    Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\\sqrt{s}$ = 8 TeV11/25/2014A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charge dleptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of $19.6\\,(20.5)~\\mathrm{fb}^{-1}$ in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at $\\sqrt{s} = 8~\\mathrm{TeV}$. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presented as a function of the long-lived particle's mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range $125-1000~\\mathrm{GeV}/c^2$ decays into a pair of long-lived neutral bosons in the mass range $20-350~\\mathrm{GeV}/c^2$, each of which can then decay to dileptons, the upper limits obtained are typically in the range $0.2-10~\\mathrm{fb}$ for mean proper decay lengths of the long-lived particles in the range $0.01-100~\\mathrm{cm}$. In the case of the lowest Higgs mass considered ($125~\\mathrm{GeV}/c^2$), the limits are in the range $2-50~\\mathrm{fb}$. These limits are sensitive to Higgs boson branching fractions as low as $10^{-4}$.

  8. Measurement of the ?*? distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp collisions

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich

    2015-04-06

    We present a measurement of the distribution of the variable ?*? for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb1 at ?s = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ?*? probes the same physical effects as the Z/?* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the ?*? distributions for dilepton masses away from the Z ? ?+? boson mass peak. As a result, the data are compared to QCD predictions based on the resummation of multiple soft gluons.

  9. Measurement of spin correlations in t-tbar production using the matrix element method in the muon+jets final state in pp collisions at ?(s) = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-20

    The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. We then compare the data with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Furthermore, by using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 0.08 (stat)+0.15 -0.13 (syst), representing the most precise measurement of this quantity in the lepton+jets final state to date.

  10. Measurement of the φ*η distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp¯ collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2015-04-06

    We present a measurement of the distribution of the variable φ*η for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb–1 at √s = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable φ*η probes the same physical effects as the Z/γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurementsmore »at any collider of the φ*η distributions for dilepton masses away from the Z → ℓ+ℓ– boson mass peak. As a result, the data are compared to QCD predictions based on the resummation of multiple soft gluons.« less

  11. GUT-inspired supersymmetric model for h ? ? ? and the muon g - 2

    SciTech Connect (OSTI)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-06

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h??? decay channel. In order to accommodate these observations and mh?125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to R???1.1 is 100 GeV?m??200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted to lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg?4.5 TeV and mt??3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.

  12. Compensatable muon collider calorimeter with manageable backgrounds

    DOE Patents [OSTI]

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  13. Rectlinear cooling scheme for bright muon sources

    SciTech Connect (OSTI)

    Stratakis, Diktys

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  14. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  15. Lab grants Decision Sciences Corporation exclusive commercial license for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    muon tomography Muon tomography license Lab grants Decision Sciences Corporation exclusive commercial license for muon tomography Muon tomography uses naturally occurring cosmic-ray muons to detect and identify concealed nuclear threat materials based on their atomic number and density. October 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from

  16. Lab grants Decision Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Decision Sciences Corporation exclusive commercial license for muon tomography October 7, 2008 LOS ALAMOS, New Mexico, October 7, 2008-Los Alamos National Laboratory has granted Decision Sciences Corporation (DSC) an exclusive worldwide license to commercialize muon tomography, a LANL-developed technology. Muon tomography uses naturally occurring cosmic-ray muons, a type of subatomic particle, to detect and identify concealed nuclear threat materials based on their atomic number and

  17. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  18. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect (OSTI)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  19. Muon-induced backgrounds in the CUORICINO experiment (Journal...

    Office of Scientific and Technical Information (OSTI)

    C. ; Salvioni, C. ; Sangiorgio, S. ; Schaeffer, D. ; Scielzo, N. D. ; Sisti, M. ; Smith, A. R. ; Tomei, C. ; Ventura, G. ; Vignati, M. less Publication Date: 2010-04-15...

  20. Muon fluxes and showers from dark matter annihilation in the...

    Office of Scientific and Technical Information (OSTI)

    Authors: Erkoca, Arif Emre 1 ; Gelmini, Graciela 2 ; Reno, Mary Hall 3 ; Sarcevic, Ina 1 ; Department of Astronomy and Steward Observatory, University of Arizona, Tucson, ...

  1. Publisher's Note: Measurement of the Positive Muon Lifetime and...

    Office of Scientific and Technical Information (OSTI)

    Authors: Webber, D. M. ; Tishchenko, V. ; Peng, Q. ; Battu, S. ; Carey, R. M. ; Chitwood, D. B. ; Crnkovic, J. ; Debevec, P. T. ; Dhamija, S. ; Earle, W. ; Gafarov, A. ; ...

  2. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    on Neutrino-Nucleus Interactions in the Few-GeV Region (NUINT 2009), Sitges, Barcelona, Spain, 18-22 May 2009 Research Org: Fermi National Accelerator Laboratory (FNAL), Batavia,...

  3. Recent progress in neutrino factory and muon collider research...

    Office of Scientific and Technical Information (OSTI)

    ; Hartill, Don ; Hartline Robert E. ; Haseroth, Helmut D. ; Hassanein, Ahmed ; Hoffman, Kara ; Holtkamp, Norbert ; Holzer, E. Barbara ; Johnson, Colin ; Johnson, Rolland P. ...

  4. Measurement of the Positive Muon Lifetime and Determination of...

    Office of Scientific and Technical Information (OSTI)

    were employed in independent data-taking periods. The combined results give tausub musup +(MuLan)2 196 980.3(2.2) ps, more than 15 times as precise as any...

  5. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    ScienceCinema (OSTI)

    Latina, Andrea

    2010-01-08

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  6. Muon-induced backgrounds in the CUORICINO experiment (Journal...

    Office of Scientific and Technical Information (OSTI)

    c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations....

  7. Measurement of Muon Neutrino and Antineutrino Induced Single...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... It ends in a FODO triplet that focuses the beam to a 1 mm spot on the face of the target and a waist of zero dispersion halfway along the target. Split-plate beam position ...

  8. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  9. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect (OSTI)

    Ochoa Ricoux, Juan Pedro; /Caltech

    2009-10-01

    We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  10. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Journal Name: Nuclear Instrumentation and Methods (NIM) A; Conference: Presented at the 13th Pisa Meeting on Advanced Detectors:...

  11. Measurement of Muon Capture on the Proton to 1% Precision and...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-01-03 OSTI Identifier: 1102647 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: ...

  12. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    SciTech Connect (OSTI)

    J. Donald Cossairt

    2000-05-15

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work.

  13. Dual baseline search for muon antineutrino disappearance at 0.1 eV²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; et al

    2012-09-25

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν¯μ at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the νμ background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν¯μ disappearance that dramatically improves upon prior limits inmore »the Δm²=0.1–100 eV² region.« less

  14. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-10-27

    The authors report the results of a search for νe appearance in νμ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (θ23 sin2 (θ13) 2θ23) sin 2 (2θ13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The θ13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  15. Elliptic flow of muons from heavy-flavour hadron decays at forward...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 753; Journal Issue: C; Journal ID: ISSN 0370-2693 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands Language: English Word...

  16. Neutrinos from STORed Muons - nuSTORM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    nuSTORM The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM...

  17. Neutrinos from STORed Muons - nuSTORM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino...

  18. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    SciTech Connect (OSTI)

    Anderson, Colin; ,

    2010-12-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillation - a channel that may yield insight into the vanishingly small mixing parameter {theta}{sub 13}, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single {pi}{sup 0} (NC 1{pi}{sup 0}) production. Unfortunately, the available data concerning NC 1{pi}{sup 0} production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1{pi}{sup 0} production yield substantially differing predictions in the critical E{sub {nu}} {approx} 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data ({approx} 10{sup 6} neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1{pi}{sup 0} production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1{pi}{sup 0} cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the flux-averaged, total cross sections for NC 1{pi}{sup 0} production on CH{sub 2} to be (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 808 MeV for neutrino induced production and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 664 MeV for antineutrino induced production.

  19. Search for pair production of the scalar top quark in muon plus tau final states

    SciTech Connect (OSTI)

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey B. C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De La Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De La Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; Lopes de Sa R.; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

    2012-04-20

    We present a search for the pair production of scalar top quarks ({tilde t}{sub 1}), the lightest supersymmetric partners of the top quarks, in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of 7.3 fb{sup -1} collected with the D0 experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}). We investigate final states arising from {tilde t}{sub 1}{ovr {tilde t}{sub 1}} {yields} b{bar b}{mu}{tau}{tilde {nu}}{tilde {nu}} and {tilde t}{sub 1}{ovr {tilde t}{sub 1}} {yields} b{bar b}{tau}{tau}{tilde {nu}}{tilde {nu}}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) plane.

  20. Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  1. Measurement of the multiple-muon charge ratio in the MINOS Far...

    Office of Scientific and Technical Information (OSTI)

    R. ; Meier, J. R. ; Messier, M. D. ; Miller, W. H. ; Mishra, S. R. ; Moed Sher, S. ; Moore, C. D. ; Mualem, L. ; Musser, J. ; Naples, D. ; Nelson, J. K. ; Newman, H. B. ; Nichol, ...

  2. A search for charge 1/3 third generation leptoquarks in muon channels

    SciTech Connect (OSTI)

    Uzunyan, Sergey A.; /Northern Illinois U.

    2006-08-01

    Leptoquarks are exotic particles that have color, electric charge, and lepton number and appear in extended gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations corresponding to the three quark and lepton generations. We are searching for charge 1/3 third generation leptoquarks produced in p{bar p} collisions at {radical}s = 1.96 TeV using data collected by the D0 detector. Such leptoquarks would decay into either a tau-neutrino plus a b-quark or, if heavy enough, to a tau-lepton plus a t-quark. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-quarks using 367 pb{sup -1} of Run II D0 data taken between August 2002 and September 2004. We place upper limits on {sigma}(p{bar p} {yields} LQ{ovr LQ})B{sup 2} as a function of the leptoquark mass M{sub LQ}. Assuming B = 1, we exclude at the 95% confidence level third generation leptoquarks with M{sub LQ} < 197 GeV/c{sup 2}.

  3. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  4. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)

    1996-01-01

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.

  5. An Investigation of the Neutral Cascade Muon Semileptonic Decay and its Observation at KTeV, Fermilab

    SciTech Connect (OSTI)

    Gomes, Ricardo Avelino

    2005-07-01

    The authors report an investigation of the semileptonic decay {Xi}{sup 0} {yields} {sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}}. This decay was observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the {Xi}{sup 0} beta decay mode and yields a value for the ratio of decay rates {Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}})/{Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +}e{sup -}{bar {nu}}{sub e}) of (1.8{sub -0.5}{sup +0.7}(stat.) {+-} 0.2(syst.)) x 10{sup -2} at the 68.27% confidence level, being the official measurement of KTeV Collaboration. They also used the dominant decay {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) as normalization mode in an independent analysis which corroborated with the main result. In addition, a new measurement of the {Xi}{sup 0} {yields} {Sigma}{sup +} e{sup -}{bar {nu}}{sub e} branching ratio is presented, based on 1139 events and normalized to the {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) decay mode. The results are in agreement with the SU(3) flavor symmetric quark model.

  6. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect (OSTI)

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  7. Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  8. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; et al

    2013-07-11

    We have isolated ν¯μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at highermore » Q² favor this interpretation over an alternative in which the axial mass is increased.« less

  9. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; et al

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons inmore » the final state.« less

  10. Turbocharging Quantum Tomography.

    SciTech Connect (OSTI)

    Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of light in the oil. image of laser light time components Muon Tracker Two hodoscope planes trigger muons that enter the tank. If the muon stops in one of 3 scintillation cubes,...

  12. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect (OSTI)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  13. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema (OSTI)

    Morris, Christopher

    2014-06-25

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  14. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations...

    Office of Scientific and Technical Information (OSTI)

    In order to achieve peak luminosity of a muon collider in the 10sup 34cmsup 2s range ... INHIBITION; INSTABILITY; INTERACTIONS; LUMINOSITY; MEETINGS; MUONS; OSCILLATIONS; ...

  15. Computed Tomography Status

    DOE R&D Accomplishments [OSTI]

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  16. Generalized local emission tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J. (Los Alamos, NM)

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  17. Enhanced local tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)

    1996-01-01

    Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.

  18. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  19. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  20. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2013-11-01

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the ?+?? final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb?1 of protonproton collisions at View the MathML source, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.860.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.253.55 GeV/c2

  1. Dual baseline search for muon neutrino disappearance at 0.5 eV2 < Delta m2 < 40 eV2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δ'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  2. Search for High Mass Resonances Decaying to Muon Pairs in $\\sqrt{s}=1.96$ TeV $p\\bar{p}$ Collisions

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-01-01

    We present a search for a new narrow, spin-1, high mass resonance decaying to {mu}{sup +}{mu}{sup -} + X, using a matrix element based likelihood and a simultaneous measurement of the resonance mass and production rate. In data with 4.6 fb{sup -1} of integrated luminosity collected by the CDF detector in p{bar p} collisions at {radical}s = 1960 GeV, the most likely signal cross section is consistent with zero at 16% confidence level. We therefore do not observe evidence for a high mass resonance, and place limits on models predicting spin-1 resonances, including M > 1071 GeV/c{sup 2} at 95% confidence level for a Z{prime} boson with the same couplings to fermions as the Z boson.

  3. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at E?~3.5 GeV

    SciTech Connect (OSTI)

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Chvojka, J.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Daz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fields, L.; Fitzpatrick, T.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfn, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; OConnor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Pea, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rude, C.; Sassin, K. E.; Schellman, H.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velsquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.

    2013-07-11

    We report a study of ?? charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a ?? and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, d?/dQ, and study the low energy particle content of the final state. Deviations are found between the measured d?/dQ and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

  4. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E?~3.5 GeV

    SciTech Connect (OSTI)

    Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Daz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fitzpatrick, T.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfn, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; OConnor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Pea, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Rude, C.; Sassin, K. E.; Schellman, H.; Schmitz, D. W.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velsquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.

    2013-07-11

    We have isolated ?? charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, d?/dQ, and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q favor this interpretation over an alternative in which the axial mass is increased.

  5. Neutrino Data from IceCube and its Predecessor at the South Pole, the Antarctic Muon and Neutrino Detector Array (AMANDA)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Abbasi, R.

    IceCube is a neutrino observatory for astrophysics with parts buried below the surface of the ice at the South Pole and an air-shower detector array exposed above. The international group of sponsors, led by the National Science Foundation (NSF), that designed and implemented the experiment intends for IceCube to operate and provide data for 20 years. IceCube records the interactions produced by astrophysical neutrinos with energies above 100 GeV, observing the Cherenkov radiation from charged particles produced in neutrino interactions. Its goal is to discover the sources of high-energy cosmic rays. These sources may be active galactic nuclei (AGNs) or massive, collapsed stars where black holes have formed.[Taken from http://www.icecube.wisc.edu/] The data from IceCube's predecessor experiment and detector, AMANDA, IceCubes predecessor detector and experiment is also available at this website. AMANDA pioneered neutrino detection in ice. Over a period of years in the 1990s, detecting strings were buried and activated and by 2000, AMANDA was successfully recording an average of 1,000 neutrino events per year. This site also makes available many images and video from the two experiments.

  6. Search for the Higgs boson in the ZH->nunubb channel: Development of a b-tagging method based on soft muons

    SciTech Connect (OSTI)

    Jamin, David; ,

    2010-10-01

    In the Standard Model of particle physics, the Higgs boson generates elementary particle masses. Current theoretical and experimental constraints lead to a Higgs boson mass between 114.4 and 158 GeV with 95% confidence level. Moreover, Tevatron has recently excluded the mass ranges between 100 and 109 GeV, 158 and 175 GeV with 95% confidence level. These results gives a clear indication to search for a Higgs boson at low mass. The D0 detector is located near Chicago, at the Tevatron, a proton-antiproton collider with an energy in the center of mass of 1.96 TeV. The topic of this thesis is the search for a Higgs boson in association with a Z boson. This channel is sensitive to low mass Higgs boson (<135 GeV) which has a branching ratio H {yields} bb varies between 50% and 90% in this mass range. The decay channel ZH {yields} {nu}{bar {nu}}b{bar b} studied has in the final state 2 heavy-flavor jets and some missing transverse energy due to escaping neutrinos. The heavy-flavor jets identification ('b-tagging') is done with a new algorithm (SLTNN) developped specifically for semi-leptonic decay of b quarks. The Higgs boson search analysis was performed with 3 fb{sup -1} of data. The use of SLTNN increases by 10% the Higgs boson signal efficiency. The global analysis sensitivity improvement, however, is rather low (<1%) after taking into account the backgrounds and systematic uncertainties.

  7. Dual baseline search for muon antineutrino disappearance at 0.1 eV²<Δm²<100 eV²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; et al

    2012-09-25

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν¯μ at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the νμ background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν¯μ disappearance that dramatically improves upon prior limits inmore » the Δm²=0.1–100 eV² region.« less

  8. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice"...

  9. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the...

  10. Spatial resolution of diffraction tomography

    SciTech Connect (OSTI)

    Dickens, T.A.; Winbow, G.A.

    1997-01-01

    Diffraction tomography is an imaging technique applicable to crosshole seismic data and aimed at achieving optimal spatial resolution away from the borehole. In principle the method can form acoustic images equivalent to extending acoustic well logs away from the wellbore and into the formation with a spatial resolution less than one wavelength of the radiation employed to gather the crosshole data. This paper reports on the capability of diffraction tomography to produce high-resolution reconstructions of simple targets from limited-view-angle data. The goal is to quantify the resolution and velocity-reconstruction capability of diffraction tomography with realistic source{endash}receiver geometries. Simple targets (disks and low-contrast sequences of layers) are used for this study. The scattering from these targets can be calculated without approximation, making them ideal test cases for the algorithm. The resolution capability of diffraction tomography is determined to be on the order of one wavelength for several experimental geometries. It is shown that the image-formation characteristics of diffraction tomography, in terms of its ability to determine object boundaries and velocities, are closely related to the experimental geometry. Reflection and vertical seismic profiling (VSP) experiments tend to reproduce boundaries well, while crosshole experiments give the best overall reconstruction of both target boundaries and velocity. The quantitative accuracy of the velocity reconstruction depends upon the match between the spatial-frequency content of the object and the spatial-frequency response of the algorithm. For some targets, the velocity cannot be correctly reproduced from limited-view-angle data. {copyright} {ital 1997 Acoustical Society of America.}

  11. Positron Emission Tomography (PET) and Positron Scanning

    Office of Scientific and Technical Information (OSTI)

    Positron Emission Tomography (PET) and Positron Scanning Resources with Additional Information Positron Emission Tomography (PET) Scanner Courtesy Lawrence Berkeley National Laboratory 'Positron Emission Tomography ... [is a medical imaging technique that] can track chemical reactions in living tissues and merges chemistry with biological imaging. Its strength has been in studies of the brain where there has been significant progress in investigations of drug addiction, aging, mental illness,

  12. A search for pair production of new light bosons decaying into...

    Office of Scientific and Technical Information (OSTI)

    A search for pair production of new light bosons decaying into muons Citation Details In-Document Search Title: A search for pair production of new light bosons decaying into muons...

  13. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting from the interaction with the salt massive. We intent to design and construct a 3D array in the underground of Slanic Prahova salt ore.

  14. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  15. 9Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special States Other Model Calculations Complex Reactions Beta-Decay Pions Muons Photodisintegration Elastic and Inelastic Scattering Electromagnetic Transitions Astrophysical...

  16. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  17. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  18. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  19. Positron emission tomography wrist detector

    DOE Patents [OSTI]

    Schlyer, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY)

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  20. Microsoft Word - DOE-ID-15-047 Mississippi EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Multimodal Nondestructive Dry Cask Basket Structure and Spent Fuel Evaluation - The University of Mississippi SECTION B. Project Description The University of Mississippi proposes to perform non-destructive evaluations of a spent fuel cask. Methods used include 1) emission source tomography, 2) linear and nonlinear active acoustics methods, 3) acousto-ultrasonic techniques, and 4)Muon imaging. The casks will contain no radioactive material. SECTION C. Environmental

  1. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. June 18, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri, right, and undergraduate research assistant Shelby Fellows prepare a lead hemisphere inside a muon tomography machine, which

  2. Dateline Los Alamos: Top science news of 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top science news of 2014 Dateline Los Alamos: Top science news of 2014 Los Alamos National Laboratory today announced its annual top science stories of 2014. December 22, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri, right, and undergraduate research assistant Shelby Fellows prepare a lead hemisphere inside a muon tomography machine, which can peer inside closed containers and provide detailed images of dense objects such as nuclear materials or other items of

  3. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fukushima with cosmic rays should speed cleanup June 18, 2014 Los Alamos to partner with Toshiba to remotely and safely peer inside nuclear reactors LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the

  4. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news New Mexico helps Fukushima; 2014 VAF winners; new scholarship July 1, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri (r) and undergraduate research assistant Shelby Fellows (l) prepare a lead hemisphere inside a muon tomography machine. Los Alamos National Laboratory postdoctoral

  5. Calibration of electrical impedance tomography

    SciTech Connect (OSTI)

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4) Each box formed by 12 adjacent components corresponds to a voxel in the finite difference forward model used in the inverse code and this correspondence makes for easy comparison of inversion results and model physical parameters. Using this network we can study the errors associated with the measurement system (called Zombie) separated from the errors introduced by electrode noise. We can also learn details in the behavior of the inversion software (called CR3D) by comparing images and model.

  6. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  7. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Nutshell BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam into the MiniBooNE detector and looking for electron neutrinos. This experiment is motivated by the oscillation results reported by the LSND experiment at Los Alamos. By changing the muon neutrino beam into a muon anti-neutrino beam, BooNE can explore oscillations from muon anti-neutrinos to electron

  9. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a

    Office of Scientific and Technical Information (OSTI)

    Muon Collider (Conference) | SciTech Connect Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider Citation Details In-Document Search Title: Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per

  10. Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in s = 7     TeV p p collisions at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G; Abbott, B.; Abdallah, J; Abdelalim, A. A.; Abdesselam, A.; Abdinov, B; Abolins, M; Abramowicz, H.; Abreu, E.; Acharya, B. S.; et al

    2011-06-22

    This Letter presents the first search for a heavy particle decaying into an e±μ∓ final state in √s=7  TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35  pb⁻¹. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except λ′311=0.11 and λ312=0.07. In a lepton flavor violating model, a Z′-like vector bosonmore » with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z’s than previous constraints from the Tevatron.« less

  11. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments [OSTI]

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  12. tomoRecon : High-speed tomography reconstruction on workstations...

    Office of Scientific and Technical Information (OSTI)

    tomoRecon : High-speed tomography reconstruction on workstations using multi-threading Citation Details In-Document Search Title: tomoRecon : High-speed tomography reconstruction ...

  13. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments [OSTI]

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  14. Process tomography for unitary quantum channels

    SciTech Connect (OSTI)

    Gutoski, Gus; Johnston, Nathaniel

    2014-03-15

    We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d{sup 2}) interactive observables, as opposed to the O(d{sup 4}) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

  15. AFIP-7 Tomography 2013 Status Report

    SciTech Connect (OSTI)

    Craft, A. E.; Williams, W. J.; Abir, M. I.K.; Wachs, D. M.

    2013-10-01

    This project seeks to assess the geometric stability of the U-Mo monolithic fuel system by evaluating the radiation-induced changes in the AFIP-7 experiment device. Neutron radiography and computed tomography (CT) provide valuable information about the post-irradiation condition of the fuel specimen. Tomographic reconstructions of the AFIP-7 fuel element will be analyzed to assess the geometric condition of the element after irradiation and provide information regarding the condition of the fuel, including gross geometric defects, bowing, twist, plate buckling, cracks, and other defects. The INL, in collaboration with Oregon State University (OSU), Missouri University of Science and Technology (Missouri S&T), and Real Time Tomography, is developing advanced neutron detector systems and tomographic reconstruction techniques to evaluate the AFIP-7 fuel element. Neutron computed tomography using the current neutron radiography technique available at the Neutron Radiography reactor (NRAD) is impractical due to the long time and high cost to produce a set of images for tomographic reconstruction. Advanced neutron radiography systems such as the micro-channel plate (MCP) detector and neutron computed radiography (CR) may reduce the time and cost of acquiring images for neutron CT.

  16. Software-defined Radio Based Wireless Tomography: Experimental

    Office of Scientific and Technical Information (OSTI)

    Demonstration and Verification (Journal Article) | SciTech Connect Journal Article: Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification Citation Details In-Document Search Title: Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral

  17. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    treatment. A recent advance in thermal imaging allows more rapid, yet still non-invasive, detection. The process, called three-dimensional thermal tomography, or 3DTT, is...

  18. Time-Dependent Seismic Tomography of the Coso Geothermal Area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 Abstract...

  19. Time-dependent seismic tomography of the Coso geothermal area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 Abstract...

  20. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial...

  1. Hyperspectral image reconstruction for X-ray fluorescence tomography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groups Imaging Data Science Related People Doga Gursoy Tekin Bicer Next article: Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography...

  2. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast...

  3. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

  4. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation

  5. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect (OSTI)

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  6. Double-Difference Tomography for Sequestration MVA

    SciTech Connect (OSTI)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  7. Three-Dimensional Thermal Tomography Advances Cancer Treatment | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast cancer patients. Lowers medical costs due to lessened side effects Noninvasive, enhances healing and detects other conditions PDF icon thermal_tomography

  8. Hadron production in e+e- annihilation at BABAR, and implication for the

    Office of Scientific and Technical Information (OSTI)

    muon anomalous magnetic moment (Conference) | SciTech Connect Conference: Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment Citation Details In-Document Search Title: Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our

  9. Compact conscious animal positron emission tomography scanner

    DOE Patents [OSTI]

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  10. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  11. John Arrington | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using positron and muon scattering to better map out the proton's internal landscape and to try and understand the "proton radius puzzle" - a difference between electron...

  12. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory The experiment uses device dimensions and parameters and beam...

  13. solenoidal field Richard C. Fernow; Juan C. Gallardo; H. G. Kirk...

    Office of Scientific and Technical Information (OSTI)

    to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory. The experiment uses device dimensions and parameters and beam...

  14. Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al

    2015-05-22

    A search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy is presented.

  15. Exotic Physics with the Top Quark at the LHC. End of grant report

    SciTech Connect (OSTI)

    Black, Kevin

    2013-07-29

    The grant supported two main activities : searching for new physics with the top quark at the LHC and development of the ATLAS muon trigger.

  16. The Mini Boo Mini Boo Mini Boo Mini Boo Mini Boo Mini Boo Mini...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These pions traveled to a copper beam stop where were captured, and were brought to rest and decayed into muons which subsequently also decayed. Ne 2 1 1 +...

  17. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. ...

  19. The EMC Effect Still Puzzles After 30 Years

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Higinbotham, Douglas W.; Miller, Gerald A.; Hen, Or; Rith, Klaus

    2013-05-01

    Thirty years ago, high-energy muons at CERN revealed the first hints of an effect that puzzles experimentalists and theorists alike to this day.

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some neutrino interactions produce the neutrino's namesake lepton (electron, muon, or tau); this allows the type of neutrino to be tagged. Since neutrino oscillation searches...

  1. pp{yields}J/{psi}+{Upsilon}+X as a clean probe to the quarkonium...

    Office of Scientific and Technical Information (OSTI)

    With the integrated luminosity approx100 fbsup -1 at the center-of-momentum energy ... FERMILAB TEVATRON; J PSI-3097 MESONS; LUMINOSITY; MATRIX ELEMENTS; MUON PAIRS; PROBES; ...

  2. Probing mSUGRA with a Search for Chargino-Neutralino Production...

    Office of Scientific and Technical Information (OSTI)

    Electrons and muons are reconstructed directly; isolated tracks are used as a proxy for tau leptons. Several analysis channels with different signal purity are defined and...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (12) design (10) luminosity (10) neutrinos (10) cross sections (9) electrons (9) linear colliders (9) muons (9) neutrino oscillation (9) algorithms (8) calibration (8)...

  4. The MUSIC Project

    SciTech Connect (OSTI)

    Yoshida, Makoto

    2010-03-30

    A new muon channel, MUSIC, is being constructed at the Research Center for Nuclear Physics (RCNP) at Osaka University in Japan. The muon channel utilizes a strong solenoidal magnetic field to collect pions and to transport muons. A large-bore superconducting coil encloses the pion-production target to capture pions with a large solid angle. A long solenoid magnet transports pions and muons with the capability to select the charge and momentum of the particles. The design of the solenoid channel is described in this paper.

  5. Environmental Assessment for Conducting Astrophysics and Other...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000. Neutrino: Detectors & Beams web page, dated August 10, 2000, Muon and Neutrino Detector Array web page, dated March 24, 2000,

  6. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schoolers were working to correct the calibration of the detection of certain particle jets that contain subatomic particles called muons. Lincoln had noted a problem in the...

  7. Deploying

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab hosts the US Tier-1 center for data storage and analysis of the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment. To satisfy operational requirements ...

  8. Cosmic ray radiography of the damaged cores of the Fukushima reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borozdin, Konstantin; Greene, Steven; Lukić, Zarija; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Perry, John

    2012-10-11

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The interaction with the electrons leads to continuous energy loss and stopping of the muons. The interaction with nuclei leads to angle “diffusion.” Two muon-imaging methods that use flux attenuation and multiple Coulomb scattering of cosmic-ray muons are being studied as tools for diagnosing the damaged cores of the Fukushima reactors. Here, we compare these two methods. We conclude that the scattering method can provide detailed information about the core. Lastly, attenuation has low contrast and little sensitivity to the core.

  9. Magnified Weak Lensing Cross Correlation Tomography

    SciTech Connect (OSTI)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60 nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is using the tomography data along with simulations in a thesis expected to be completed in Jun

  10. Applicability of moire deflection tomography for diagnosing arc plasmas

    SciTech Connect (OSTI)

    Chen Yunyun; Song Yang; He Anzhi; Li Zhenhua

    2009-01-20

    The argon arc plasma whose central temperature, 1.90x10{sup 4} K, is used as a practical example for an experiment to research the applicability of moire deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moire deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80x10{sup 3} K. The refractive-index gradient in moire deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moire deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moire deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

  11. University of Wisconsin-Madison - Poroelastic Tomography | Department of

    Energy Savers [EERE]

    Energy University of Wisconsin-Madison - Poroelastic Tomography University of Wisconsin-Madison - Poroelastic Tomography Armed with a wealth of data and new data analysis and integration techniques, images of the subsurface are getting clearer. Image Source: University of Wisconsin-Madison Armed with a wealth of data and new data analysis and integration techniques, images of the subsurface are getting clearer. Image Source: University of Wisconsin-Madison The images and behavior of

  12. A Detector for Proton Computed Tomography

    SciTech Connect (OSTI)

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  13. Dedicated breast computed tomography: Basic aspects

    SciTech Connect (OSTI)

    Sarno, Antonio; Mettivier, Giovanni Russo, Paolo

    2015-06-15

    X-ray mammography of the compressed breast is well recognized as the “gold standard” for early detection of breast cancer, but its performance is not ideal. One limitation of screening mammography is tissue superposition, particularly for dense breasts. Since 2001, several research groups in the USA and in the European Union have developed computed tomography (CT) systems with digital detector technology dedicated to x-ray imaging of the uncompressed breast (breast CT or BCT) for breast cancer screening and diagnosis. This CT technology—tracing back to initial studies in the 1970s—allows some of the limitations of mammography to be overcome, keeping the levels of radiation dose to the radiosensitive breast glandular tissue similar to that of two-view mammography for the same breast size and composition. This paper presents an evaluation of the research efforts carried out in the invention, development, and improvement of BCT with dedicated scanners with state-of-the-art technology, including initial steps toward commercialization, after more than a decade of R and D in the laboratory and/or in the clinic. The intended focus here is on the technological/engineering aspects of BCT and on outlining advantages and limitations as reported in the related literature. Prospects for future research in this field are discussed.

  14. Portable Digital Radiography and Computed Tomography Manual

    SciTech Connect (OSTI)

    Not Available

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  15. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect (OSTI)

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  16. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  17. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  18. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect (OSTI)

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 0.15, 0.74 0.07 and 0.72 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 0.1, P ? 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  19. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect (OSTI)

    Killer, Carsten; Himpel, Michael; Melzer, Andr

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  20. Details and justifications for the MAP concept specification for acceleration above 63 GeV

    SciTech Connect (OSTI)

    Berg, J. Scott

    2014-02-28

    The Muon Accelerator Program (MAP) requires a concept specification for each of the accelerator systems. The Muon accelerators will bring the beam energy from a total energy of 63 GeV to the maximum energy that will fit on the Fermilab site. Justifications and supporting references are included, providing more detail than will appear in the concept specification itself.

  1. CX-010394: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fermilab Muon Campus, including Muon to Electron Conversion Experiment and the MC-1 Building CX(s) Applied: B1.15, B3.10 Date: 06/12/2012 Location(s): Illinois Offices(s): Fermi Site Office

  2. Effects of quadrupole vibration of the fragments on. mu. - final state probabilities

    SciTech Connect (OSTI)

    Zheng Guo-tong; Wang Yan-sen; Yuan Zu-shu; Qiu Zhi-hong

    1988-01-01

    The muon final-state probabilities after muon-induced fission of /sup 238/U are calculated by using the LCAO (Linear Combination of Atomic Orbital) method. The ordinary viscosity of the fissioning nucleus, the deformations and quadrupole vibrations of the two fragments are taken into account. The calculated results are compared with those obtained by neglecting the quadrupole vibration

  3. CX-010391: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project to "Establish a Muon Gyromagnetic Ratio Measurement (g-2) Experiment within the Muon Campus CX(s) Applied: B1.30, B1.31, B3.10 Date: 12/20/2012 Location(s): Illinois Offices(s): Fermi Site Office

  4. Study of requirements and performances of the electromagnetic calorimeter for the Mu2e experiment at Fermilab

    SciTech Connect (OSTI)

    Soleti, S.

    2015-06-15

    In this thesis we discuss the simulation and tests carried out for the optimization and design of the electromagnetic calorimeter for the Mu2e (Muon to electron conversion) experiment, which is a proposed experiment part of the Muon Campus hosted at Fermi National Accelerator Laboratory (FNAL) in Batavia, United States.

  5. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  6. Quantum tomography meets dynamical systems and bifurcations theory

    SciTech Connect (OSTI)

    Goyeneche, D.; Torre, A. C. de la

    2014-06-01

    A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ? 32.

  7. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOE Patents [OSTI]

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  8. tomoRecon : High-speed tomography reconstruction on workstations using

    Office of Scientific and Technical Information (OSTI)

    multi-threading (Conference) | SciTech Connect tomoRecon : High-speed tomography reconstruction on workstations using multi-threading Citation Details In-Document Search Title: tomoRecon : High-speed tomography reconstruction on workstations using multi-threading Authors: Rivers, M. [1] + Show Author Affiliations (UC) [UC Publication Date: 2014-03-11 OSTI Identifier: 1122284 Resource Type: Conference Resource Relation: Conference: Developments in X-Ray Tomography VIII;August 13-15, 2012;San

  9. Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance

    Office of Scientific and Technical Information (OSTI)

    (NMR) Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Computed Tomography (CT) Scanner CT Scanner - Courtesy Stanford University Department of Energy Resources Engineering Computed tomography (CT) and Nuclear Magnetic Resonance (NMR) have been used to resolve industrial problems, for materials characterizations, and to provide non-destructive evaluations for discovering flaws in parts before their use, resulting in

  10. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    SciTech Connect (OSTI)

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang; Luo, Jia

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.

  11. Electron Model Of A Dogbone RLA With Multi-Pass Arcs

    SciTech Connect (OSTI)

    Beard, Kevin B.; Roblin, Yves R.; Morozov, Vasiliy; Bogacz, Slawomir Alex; Krafft, Geoffrey A.

    2012-09-01

    The design of a dogbone Recirculated Linear Accelerator, RLA, with linear-field multi-pass arcs was earlier developed [1] for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to the frequency readily available at CEBAF: 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement

  12. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect (OSTI)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  13. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect (OSTI)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  14. Physically motivated global alignment method for electron tomography

    SciTech Connect (OSTI)

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop a new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable local center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.

  15. Wavelength-encoded tomography based on optical temporal Fourier transform

    SciTech Connect (OSTI)

    Zhang, Chi; Wong, Kenneth K. Y.

    2014-09-01

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150?-?m (ideally 36??m) resolution is achieved based on a 7.5-nm bandwidth swept-pump, using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.

  16. Simultaneous CT and SPECT tomography using CZT detectors

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Lubbock, TX); Simpson, Michael L. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN)

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  17. Physically motivated global alignment method for electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  18. Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1993-08-01

    Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

  19. Summary of Working Group on Accelerator Physics and Machine Design and R and D

    SciTech Connect (OSTI)

    Li, D.; Ohmori, C.

    2008-02-21

    Working Group on Accelerator Physics and Machine Design R and D at Nufact-2007 focuses on topics on accelerator physics and technical issues of hardware components associated with a Neutrino Factory or its subsystems. There were 32 presentations given at the working group. A special session was held to discuss collaboration opportunities with the Muon Collider Task Force (MCTF) at Fermilab in consideration of many overlaps in the machine R and D between a Neutrino Factory and a Muon Collider. Two more sessions were held jointly with Working Group 2 on muon collection schemes and other related subjects.

  20. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Charged Current Quasielastic Double Differential Cross section", arXiv:1002:2680 [hep-ex], Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross section paper is made available to the public: νμ CCQE cross sections: MiniBooNE flux table of predicted MiniBooNE muon neutrino flux (Table V) flux-integrated double differential cross section (Figure 13) 1D array of bin boundaries partitioning the muon kinetic energy (top) and the cosine of the muon

  1. Target and orbit feedback simulations of a muSR beamline at BNL

    SciTech Connect (OSTI)

    MacKay, W. W.; Fischer, W.; Blaskiewicz, M.; Pile, P.

    2015-05-03

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today

  2. Hyperspectral image reconstruction for x-ray fluorescence tomography

    SciTech Connect (OSTI)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.

  3. Electrical impedance tomography of the 1995 OGI perchloroethelyne release

    SciTech Connect (OSTI)

    Dailey, W.; Ramirez, A.

    1996-10-01

    Goal is to determine if electrical impedance tomography (EIT) might be useful to map free product DNAPL (dense nonaqueous phase liquids) contamination. EIT was used to image the plume resulting from a release of 189 liters (50 gallons) of perchloroethylene (PCE) into a saturated aquifer constructed of sand with two layers of bentonite. Images were made in 4 planes, before, during, and after the release, to generate a detailed picture of the spatial and temporal development of the plume. Information of the EI (both in phase and out of phase voltages) was used at several different frequencies to produce images. Some frequency dispersion was observed in the images before and after the PCE release. Laboratory measurements of organic contamination in soil indicate detectable dispersion. A search for this effect in EIT images reveals weak evidence, the signal appearing just above the measurement uncertainty, of a change in the reactance in the soil because of the PCE.

  4. Electrical impedance tomography of the 1995 OGI gasoline release

    SciTech Connect (OSTI)

    Daily, W.; Ramirez, A.

    1996-10-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline.

  5. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Bni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  6. Reconstruction of petrophysical images using cross-well traveltime tomography

    SciTech Connect (OSTI)

    Mendoza-Amuchastegui, J.A.; Ramirez-Cruz, L.C.

    1994-12-31

    In this paper the authors present the results obtained from a cross-well seismic tomography experiment carried out in an oil producing field of the West Permian Basin, Texas. Three fundamental stages can be identified from the tomographic method: field data acquisition, data conditioning, and the actual tomographic process including forward modeling and inversion. For this case, they present a synopsis of each. The resulting V{sub P} and V{sub S} tomograms show a clear separation of high and low velocity zones that are in agreement with sonic logs. From the final tomograms, they computed images of V{sub P}/V{sub S} ratio, Poisson ratio, porosity and density using well known empirical formulas. The results attained from the experiment provide an idea of the potential usefulness of the tomographic method as an alternative for in-field exploration and detailed characterization of hydrocarbon producing reservoirs.

  7. Electrical resistance tomography from measurements inside a steel cased borehole

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Schenkel, Clifford (Walnut Creek, CA); Ramirez, Abelardo L. (Pleasanton, CA)

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  8. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    SciTech Connect (OSTI)

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  9. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmoreapproaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.less

  10. Iterative methods for dose reduction and image enhancement in tomography

    DOE Patents [OSTI]

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  11. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  12. Thermal stability of curved ray tomography for corrosion monitoring

    SciTech Connect (OSTI)

    Willey, C. L.; Simonetti, F.; Nagy, P. B.; Instanes, G.

    2014-02-18

    Guided wave tomography is being developed as an effective tool for continuous monitoring of corrosion and erosion depth in pipelines. A pair of transmit- and receive-ring arrays of ultrasonic transducers encircles the pipe and delimits the section to be monitored. In curved ray tomography (CRT), the depth profile is estimated from the time delay matrix, ??, whose ij-th entry is the phase traveltime difference between the current and baseline signals measured between transducers i and j of the transmit and receive-ring arrays, respectively. Under perfectly stable experimental conditions, the non-zero entries of ?? are only due to the occurrence of damage and provide a reliable input to CRT. However, during field operation, ?? can develop non-zero entries due to a number of environmental changes ranging from temperature variations to degradation of transducer-pipe coupling and transducer intrinsic performance. Here, we demonstrate that these sources of instability can be eliminated by exploiting the spatial diversity of array measurements in conjunction with EMAT transducer technology which is intrinsically stable owing to its non-contact nature. The study is based on a full-scale experiment performed on a schedule 40, 8 diameter, 3 m length steel pipe, monitored with two EMAT ring arrays. It is shown that for an irregularly shaped defect the proposed method yields maximum depth estimations that are as accurate as single point ultrasonic thickness gaging measurements and over a wide temperature range up to 175C. The results indicate that advanced inversion schemes in combination with EMAT transduction offer great potential for continuously monitoring the progression of corrosion or erosion damage in the oil and gas industry.

  13. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments [OSTI]

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  14. Fast, moment-based estimation methods for delay network tomography (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Fast, moment-based estimation methods for delay network tomography Citation Details In-Document Search Title: Fast, moment-based estimation methods for delay network tomography Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also

  15. Multi-spectral Infrared Computed Tomography (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Multi-spectral Infrared Computed Tomography Citation Details In-Document Search Title: Multi-spectral Infrared Computed Tomography Authors: Bingham, Philip R [1] ; Morales Rodriguez, Marissa E [1] ; Datskos, Panos G [1] ; Graham, David E [1] + Show Author Affiliations ORNL Publication Date: 2016-01-01 OSTI Identifier: 1240578 DOE Contract Number: AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: Electronic Imaging, San Francisco, CA, USA, 20160214, 20160214

  16. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Wednesday, 24 February 2010 00:00 Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in

  17. Measurements of cosmic-ray correlated events at the Soudan underground laboratory

    SciTech Connect (OSTI)

    Villano, A. N.; Cushman, P.; Bunker, R.

    2013-08-08

    The ceiling and walls of the Low Background Facility at the Soudan Underground Laboratory are lined proportional tubes which form a 30 m 17 m 12 m muon tracker. The data acquisition records GPS-generated time stamps along with position information. The tracker is a refurbished version of the Soudan 2 proton-decay muon veto shield. It can now be used in conjunction with other experiments housed within its walls. Particularly interesting is the possible measurement of cavern muons coincident with high-energy neutron detections in the Neutron Multiplicity Meter (NMM), a 4-tonne gadolinium-loaded water Cherenkov neutron capture detector atop a 20-kilotonne lead target. Here we cover the ability of the shield and co-located detectors to achieve coincident timing resolutions of about 1 microsecond via GPS-synchronized absolute timing electronics. The usage of such technology for constraining muon-neutron correlations underground is discussed.

  18. Fermilab | Newsroom | Press Releases | June 12, 2013: Massive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pubpresspasspressreleases2013Muon-g-2-201305-images.html Note: Fermilab and Brookhaven Lab staff will be covering the move with photos and video, and will make all...

  19. Fermilab | Newsroom | Press Releases | May 8, 2013: Revolutionary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pubpresspasspressreleases2013Muon-g-2-201305-images.html NOTE: Fermilab and Brookhaven Lab staff will be covering the move with photos and video, and will make all...

  20. Measurement of spin correlations in t-tbar production using the...

    Office of Scientific and Technical Information (OSTI)

    of spin correlations in t-tbar production using the matrix element method in the muon+jets final state in pp collisions at sqrt(s) 8 TeV Citation Details In-Document...

  1. DOE Issues Request for Proposals Seeking a Contractor to Manage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Host Laboratory for U.S. participation in the Large Hadron Collider (LHC) Compact Muon Solenoid detector, construction of certain LHC accelerator components, and the U.S. LHC...

  2. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  3. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  4. VISTAS E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For example, the Spallation Neutron Source in Oak Ridge, Tennessee, operates at 60 hertz, and ISIS, the pulsed neutron and muon source in the United Kingdom, currently operates at ...

  5. Seeing through just about anything

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Working with Los Alamos, the technology company Toshiba plans to put a 24-square-foot muon detector on either side of Japan's highly reactive Fukushima nuclear plant to find melted ...

  6. BABAR-PUB-14/006 Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + followed by D 0 K - + (and the charge-conjugate process). The ratios of the efficien- cies between data and MC samples are used to scale the misidentified muon component...

  7. A=12N (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 12N) GENERAL: See also (1968AJ02) and Table 12.25 Table of Energy Levels (in PDF or PS). Model calculations: (1973HA49, 1973KU1L, 1973SA30). Muon and neutrino interactions:...

  8. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only to particles of light. There are three types of neutrinos: electron, muon and tau. Most neutrinos that make it to Earth come from the sun, but others come from cosmic...

  9. Los Alamos scientists recognized with breakthrough prize for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only to particles of light. There are three types of neutrinos: electron, muon and tau. Most neutrinos that make it to Earth come from the sun, but others come from cosmic...

  10. CX-000580: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Muon Detection (Building 970, Technical Area-IV)CX(s) Applied: B3.6, B3.11Date: 12/07/2009Location(s): Albuquerque, New MexicoOffice(s): Sandia Site Office

  11. Fermilab | Newsroom | Press Releases | July 30, 2014: Giant electromag...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jpeg images. When using these images, please credit each photo as indicated. Med Res | Hi Res The 50-foot-wide Muon g-2 electromagnet at rest inside the Fermilab building that...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of muon neutrinos into electron neutrinos. Pictured here is the NOvA Far Detector in Ash River, Minnesota. Photo: Reidar Hahn The Nobel Prize-winning discovery of neutrino...

  13. Rapid Cycling Synchrotron Option for Project X (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    1 mA CW linac is used, the RCS would still be able to meet the Project X requirements but it would be difficult for it to serve a muon collider due to the very long injection time. ...

  14. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay...

    Office of Scientific and Technical Information (OSTI)

    The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon ...

  15. G4beamline

    Energy Science and Technology Software Center (OSTI)

    2011-05-24

    G4beamline is a single-particle-tracking simulation code based on the Geant4 toolkit. It is specifically optimized for the realistic evaluation of beam lines. It is especially useful for evaluating future muon facilities.

  16. CX-012679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Imagining a Dry Storage Cask with Cosmic Ray Muons Oregon State University CX(s) Applied: B3.6Date: 41863 Location(s): OregonOffices(s): Nuclear Energy

  17. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ...rst oscillation result corresponds to 5:579 10 20 protons on target. The main ux of neutrinos is from pion and kaon decay to muon neutrinos but there is also an...

  18. Mu2e production solenoid cryostat conceptual design

    SciTech Connect (OSTI)

    Nicol, T.H.; Kashikhin, V.V.; Page, T.M.; Peterson, T.J.; /Fermilab

    2011-06-01

    Mu2e is a muon-to-electron conversion experiment being designed by an international collaboration of more than 65 scientists and engineers from more than 20 research institutions for installation at Fermilab. The experiment is comprised of three large superconducting solenoid magnet systems, production solenoid (PS), transport solenoid (TS) and detector solenoid (DS). A 25 kW, 8 GeV proton beam strikes a target located in the PS creating muons from the decay of secondary particles. These muons are then focused in the PS and the resultant muon beam is transported through the TS towards the DS. The production solenoid presents a unique set of design challenges as the result of high radiation doses, stringent magnetic field requirements, and large structural forces. This paper describes the conceptual design of the PS cryostat and will include discussions of the vacuum vessel, thermal shield, multi-layer insulation, cooling system, cryogenic piping, and suspension system.

  19. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    SciTech Connect (OSTI)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  20. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    SciTech Connect (OSTI)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  1. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  2. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, Abelardo L. (Pleasanton, CA); Chesnut, Dwayne A. (San Francisco, CA); Daily, William D. (Livermore, CA)

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  3. Artifact reduction in industrial computed tomography via data fusion

    SciTech Connect (OSTI)

    Schrapp, Michael; Goldammer, Matthias; Stephan, Jrgen

    2014-02-18

    As the most stressed part of a gas turbine the first row of turbine blades is not only a challenge for the materials used. Also the testing of these parts have to meet the highest standards. Computed tomography (CT) as the technique which could reveal the most details also provides the biggest challenges [1]: A full penetration of large sized turbine blades is often only possible at high X-ray voltages causing disproportional high costs. A reduction of the X-ray voltage is able to reduce these arising costs but yields non penetration artifacts in the reconstructed CT image. In most instances, these artifacts manifests itself as blurred and smeared regions at concave edges due to a reduced signal to noise ratio. In order to complement the missing information and to increase the overall image quality of our reconstruction, we use further imaging modalities such as a 3-D Scanner and ultrasonic imaging. A 3-D scanner is easy and cost effective to implement and is able to acquire all relevant data simultaneously with the CT projections. If, however, the interior structure is of supplemental interest, an ultrasonic imaging method is additionally used. We consider this data as a priori knowledge to employ them in an iterative reconstruction. To do so, standard iterative reconstruction methods are modified to incorporate the a priori data in a regularization approach in combination with minimizing the total variation of our image. Applying this procedure on turbine blades, we are able to reduce the apparent artifacts almost completely.

  4. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect (OSTI)

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  5. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect (OSTI)

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  6. Seismic Surface-Wave Tomography of Waste Sites

    SciTech Connect (OSTI)

    Leland Timothy Long

    2002-12-17

    Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities define a dispersion curve, a curve that relates group velocity to frequency. The objective of this study has been to find an accurate and efficient way to find the shear-wave structure from these dispersion curves. The conventional inversion techniques match theoretical and observed dispersion curves to determine the structure. These conventional methods do not always succeed in correctly differentiating the fundamental and higher modes, and for some velocity structures can become unstable. In this research a perturbation technique was developed. The perturbation method allows the pre-computation of a global inversion matrix which improves efficiency in obtaining solutions for the structure. Perturbation methods are stable and mimic the averaging process in wave propagation; hence. leading to more accurate solutions. Finite difference techniques and synthetic trace generation techniques were developed to define the perturbations. A new differential trace technique was developed for slight variations in dispersion. The improvements in analysis speed and the accuracy of the solution could lead to real-time field analysis systems, making it possible to obtain immediate results or to monitor temporal change in structure, such as might develop in using fluids for soil remediation.

  7. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  8. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA)

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  9. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect (OSTI)

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes, mediastinal lymph nodes, and unsuspected sites of distant metastasis. This information is important in the design of radiotherapy treatment fields and, therefore, we recommend that PET/CT be a component of initial staging for IBC.

  10. NON-SCALING FIXED FIELD GRADIENT OPTIMIZATION.

    SciTech Connect (OSTI)

    TRBOJEVIC, D.

    2004-10-13

    Optimization of the non-scaling FFAG lattice for the specific application of the muon acceleration with respect to the minimum orbit offsets, minimum path length and smallest circumference is described. The short muon lifetime requires fast acceleration. The acceleration is in this work assumed to be with super-conducting cavities. This sets up a condition of acceleration at the top of the sinusoidal RF wave.

  11. Magnetic design constraints of helical solenoids

    SciTech Connect (OSTI)

    Lopes, M. L.; Krave, S. T.; Tompkins, J. C.; Yonehara, K.; Flanagan, G.; Kahn, S. A.; Melconian, K.

    2015-01-30

    Helical solenoids have been proposed as an option for a Helical Cooling Channel for muons in a proposed Muon Collider. Helical solenoids can provide the required three main field components: solenoidal, helical dipole, and a helical gradient. In general terms, the last two are a function of many geometric parameters: coil aperture, coil radial and longitudinal dimensions, helix period and orbit radius. In this paper, we present design studies of a Helical Solenoid, addressing the geometric tunability limits and auxiliary correction system.

  12. Magnetic fields and fluctuations in weakly Mn doped ZnGeP{sub 2}

    SciTech Connect (OSTI)

    Mengyan, P. W.; Lichti, R. L.; Baker, B. B.; Celebi, Y. G.; Catak, E.; Carroll, B. R.; Zawilski, K. T.; Schunemann, P. G.

    2014-02-21

    We report on our measurements of local and bulk magnetic features in weakly Mn doped ZnGeP{sub 2}. Utilizing muon spin rotation and relaxation measurements, we identify local ferromagnetic order and fluctuations in the local fields as sampled by an implanted muon (?{sup +}). We also report on field induced ferromagnetism occurring above the claimed paramagnetic to ferromagnetic transition temperature (T{sub c} = 312 K)

  13. Microsoft Word - DOE-ID-14-041 Oregon State University _2 EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Imagining a Dry Storage Cask with Cosmic Ray Muons- Oregon State University SECTION B. Project Description Oregon State University will build a prototype system for monitoring spent nuclear fuel dry storage casks (DSCs) using cosmic ray muon imaging technique. Such a system will have the capability of verifying and measuring the content inside a DSC without opening it. This proposal has six major tasks: i) a literature survey on the current state-of-knowledge related

  14. MCNPX Improvements for Threat Reduction Applications (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: MCNPX Improvements for Threat Reduction Applications Citation Details In-Document Search Title: MCNPX Improvements for Threat Reduction Applications Enhancements contained in the current MCNPX 2.6.0 Radiation Safety Information Computational Center (RSICC) release will be presented, including stopped-muon physics, delayed neutron and photon generation, and automatic generation of source photons. Preliminary benchmarking comparisons with data taken with a muon

  15. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Office of Science (SC) Website

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F:

  16. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Office of Science (SC) Website

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  17. A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search for muon neutrino and antineutrino disappearance with the Booster Neutrino Beam Kendall Brianna McConnel Mahn Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2009 c 2009 Kendall B. M. Mahn All Rights Reserved ABSTRACT A search for muon neutrino and antineutrino disappearance with the Booster Neutrino Beam Kendall B. M. Mahn This dissertation presents a search for ν µ and ν µ

  18. X-ray Computed Tomography of coal: Final report

    SciTech Connect (OSTI)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  19. Emittance and Phase Space Tomography for the Fermilab Linac

    SciTech Connect (OSTI)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the large emittance measured.

  20. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; et al

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore »at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  1. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  2. Status of MICE

    SciTech Connect (OSTI)

    Soler, F. J. P.

    2010-03-30

    The Muon Ionization Cooling Experiment (MICE) is an experiment currently under construction at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the experiment is to demonstrate the concept of ionization cooling for a beam of muons, crucial for the requirements of a Neutrino Factory and a Muon Collider. Muon cooling is achieved by measuring the reduction of the four dimensional transverse emittance for a beam of muons passing through low density absorbers and then accelerating the longitudinal component of the momentum using RF cavities. The absorbers are maintained in a focusing magnetic field to reduce the beta function of the beam and the RF cavities are kept inside coupling coils. The main goal of MICE is to measure a fractional drop in emittance, of order -10% for large emittance beams, with an accuracy of 1%(which imposes a requirement that the absolute emittance be measured with an accuracy of 0.1%). This paper will discuss the status of MICE, including the progress in commissioning the muon beam line at the ISIS accelerator at RAL, the construction of the different detector elements in MICE and the prospects for the future.

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tomography

  4. Compensator models for fluence field modulated computed tomography

    SciTech Connect (OSTI)

    Bartolac, Steven; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-12-15

    Purpose: Fluence field modulated computed tomography (FFMCT) presents a novel approach for acquiring CT images, whereby a patient model guides dynamically changing fluence patterns in an attempt to achieve task-based, user-prescribed, regional variations in image quality, while also controlling dose to the patient. This work aims to compare the relative effectiveness of FFMCT applied to different thoracic imaging tasks (routine diagnostic CT, lung cancer screening, and cardiac CT) when the modulator is subject to limiting constraints, such as might be present in realistic implementations.Methods: An image quality plan was defined for a simulated anthropomorphic chest slice, including regions of high and low image quality, for each of the thoracic imaging tasks. Modulated fluence patterns were generated using a simulated annealing optimization script, which attempts to achieve the image quality plan under a global dosimetric constraint. Optimization was repeated under different types of modulation constraints (e.g., fixed or gantry angle dependent patterns, continuous or comprised of discrete apertures) with the most limiting case being a fixed conventional bowtie filter. For each thoracic imaging task, an image quality map (IQM{sub sd}) representing the regionally varying standard deviation is predicted for each modulation method and compared to the prescribed image quality plan as well as against results from uniform fluence fields. Relative integral dose measures were also compared.Results: Each IQM{sub sd} resulting from FFMCT showed improved agreement with planned objectives compared to those from uniform fluence fields for all cases. Dynamically changing modulation patterns yielded better uniformity, improved image quality, and lower dose compared to fixed filter patterns with optimized tube current. For the latter fixed filter cases, the optimal choice of tube current modulation was found to depend heavily on the task. Average integral dose reduction compared to a uniform fluence field ranged from 10% using a bowtie filter to 40% or greater using an idealized modulator.Conclusions: The results support that FFMCT may achieve regionally varying image quality distributions in good agreement with user-prescribed values, while limiting dose. The imposition of constraints inhibits dose reduction capacity and agreement with image quality plans but still yields significant improvement over what is afforded by conventional dose minimization techniques. These results suggest that FFMCT can be implemented effectively even when the modulator has limited modulation capabilities.

  5. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  6. How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    SciTech Connect (OSTI)

    Kuah, Aik-meng; Modi, Kavan; Rodriguez-Rosario, Cesar A.; Sudarshan, E. C. G. [Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-10-15

    We study the effects of the preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well-known dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures: stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to nonlinear processes and can only be consistently described by a bilinear process map. A process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bilinear processes. We also emphasize that the preparation procedure will have a nontrivial effect for any quantum experiment in which the system of interest interacts with its environment.

  7. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  8. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect (OSTI)

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard [Universite de Grenoble, 3SR Lab, UMR 5521 Grenoble-INP, UJF-Grenoble 1, CNRS, Grenoble, France CEN, CNRM-GAME UMR 3589, Meteo France - CNRS, Grenoble (France)

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  9. Application of reconstructive tomography to the measurement of density distribution in two-phase flow

    SciTech Connect (OSTI)

    Fincke, J.R.; Berggren, M.J.; Johnson, S.A.

    1980-01-01

    The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data.

  10. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  11. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  12. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  13. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  14. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  15. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  16. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  17. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  18. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  19. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; et al

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  20. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  1. Design and Simulation of the nuSTORM Pion Beamline

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, A.; Neuffer, D.; Bross, A.

    2015-08-15

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pionsmore » that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.« less

  2. Design and Simulation of the nuSTORM Pion Beamline

    SciTech Connect (OSTI)

    Liu, A.; Neuffer, D.; Bross, A.

    2015-08-15

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses stochastic injection, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.

  3. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect (OSTI)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (1035 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 837 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.30.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  4. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array

    SciTech Connect (OSTI)

    Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan

    2007-04-23

    Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.

  5. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  6. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect (OSTI)

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  7. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOE Patents [OSTI]

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  8. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect (OSTI)

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  9. High-performance computational and geostatistical experiments for testing the capabilities of 3-d electrical tomography

    SciTech Connect (OSTI)

    Carle, S. F.; Daily, W. D.; Newmark, R. L.; Ramirez, A.; Tompson, A.

    1999-01-19

    This project explores the feasibility of combining geologic insight, geostatistics, and high-performance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geostatistical methods are used to characterize the spatial variability of geologic facies that control sub-surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable comparison of the "truth" to inversion results, quantification of the ability to detect particular facies at particular locations, and sensitivity studies on inversion parameters

  10. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments [OSTI]

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  11. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  12. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    SciTech Connect (OSTI)

    HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA; RAMA, OLSI

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  13. Double-Difference Tomography for Sequestration MVA [monitoring, verification, and accounting

    SciTech Connect (OSTI)

    Westman, Erik

    2012-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  14. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    SciTech Connect (OSTI)

    Hullar, Ted; Anastasio, Cort; Paige, David F.; Rowland, Douglas J.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as ?25?C 0.2?C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

  15. Multiple Scattering Measurements in the MICE Experiment

    SciTech Connect (OSTI)

    Carlisle, T.; Cobb, J.; Neuffer, D.; /Fermilab

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), under construction at RAL, will test a prototype cooling channel for a future Neutrino Factory or Muon Collider. The cooling channel aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance. The change in 4D emittance will be determined with an accuracy of 1% by measuring muons individually. Step IV of MICE will make the first precise emittance-reduction measurements of the experiment. Simulation studies using G4MICE, based on GEANT4, find a significant difference in multiple scattering in low Z materials, compared with the standard expression quoted by the Particle Data Group. Direct measurement of multiple scattering using the scintillating-fibre trackers is found to be possible, but requires the measurement resolution to be unfolded from the data.

  16. Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

    SciTech Connect (OSTI)

    Wang, Li; Xu, FengYu; Wu, Hong; Liu, XiaoKum; Li, LanKai; Guo, XingLong; Chen, AnBin; Green, Michael A; Li, D.R.; Virostek, Steve; Pan, H.

    2008-08-02

    The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory in the UK. The coupling magnet is a superconducting solenoid mounted around four 201MHz RF cavities, which produces magnetic field up to 2.6 T on the magnet centerline to keep muons within the iris of RF cavities windows. The coupling coil with inner radius of 750mm, length of 285mm and thickness of 102.5mm will be cooled by a pair of 1.5 W at 4.2 K small coolers. This paper will introduce the updated engineering design of the coupling magnet made by ICST in China. The detailed analyses on magnetic fields, stresses induced during the processes of winding, cool down and charging, and cold mass support assembly are presented as well.

  17. Experimental Tests of Cooling: Expectations and Additional Needs

    SciTech Connect (OSTI)

    Zisman, Michael S

    2008-09-24

    Cooling is a critical aspect for a high-performance Neutrino Factory or a MuonCollider. For this reason, considerable effort is being put toward theexperimental verification of this technique. The international Muon IonizationCooling Experiment, MICE, was approved to operate at Rutherford AppletonLaboratory (RAL) in the UK and beam line commissioning commenced in March, 2008. The MICE collaboration comprises about 130 scientists and engineers from Asia, Europe, and the U.S. In this paper we present the motivation and goals for thisexperiment and describe its present status. MICE is scheduled for completion in2011. We will also indicate the prospects for a future 6D muon coolingexperiment and discuss its possible time schedule.

  18. Achromatic Interaction Point Design

    SciTech Connect (OSTI)

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  19. Skew-Quad Parametric-Resonance Ionization Cooling: Theory and Modeling

    SciTech Connect (OSTI)

    Afanaciev, Andre; Derbenev, Yaroslav S.; Morozov, Vasiliy; Sy, Amy; Johnson, Rolland P.

    2015-09-01

    Muon beam ionization cooling is a key component for the next generation of high-luminosity muon colliders. To reach adequately high luminosity without excessively large muon intensities, it was proposed previously to combine ionization cooling with techniques using a parametric resonance (PIC). Practical implementation of PIC proposal is a subject of this report. We show that an addition of skew quadrupoles to a planar PIC channel gives enough flexibility in the design to avoid unwanted resonances, while meeting the requirements of radially-periodic beam focusing at ionization-cooling plates, large dynamic aperture and an oscillating dispersion needed for aberration corrections. Theoretical arguments are corroborated with models and a detailed numerical analysis, providing step-by-step guidance for the design of Skew-quad PIC (SPIC) beamline.

  20. The superconducting solenoid magnets for MICE

    SciTech Connect (OSTI)

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.