National Library of Energy BETA

Sample records for muon tomography muon

  1. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  2. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  3. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  4. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  5. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. ,

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  6. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

    2014-01-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  7. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

    2014-10-27

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  8. Muons, gravity and time

    E-Print Network [OSTI]

    Francis J. M. Farley

    2015-08-14

    In the muon storage rings the muons are subject to a very large radial acceleration. The equivalence principle implies a large gravity force. It has no effect on the muon lifetime.

  9. The cosmic ray muon tomography facility based on large scale MRPC detector

    E-Print Network [OSTI]

    Xuewu Wang; Ming Zeng; Zhi Zeng; Yi Wang; Ziran Zhao; Xiaoguang Yue; Zhifei Luo; Hengguan Yi; Baihui Yu; Jianping Cheng

    2015-04-18

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  10. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  11. Chapter 12. The Muon Kicker

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    per fill with direct muon injection, compared to pion injection. The disadvantage of direct muonChapter 12. The Muon Kicker Revised September 1994 12.1. Introduction and Overview Direct muon injection into the storage ring is accomplished by giving the muon beam a 10 milliradian kick at a quarter

  12. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  13. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  14. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  15. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  16. Muon-proton Scattering

    E-Print Network [OSTI]

    E. Borie

    2013-02-05

    A recent proposal to measure the proton form factor by means of muon-proton scattering will use muons which are not ultrarelativistic (and also not nonrelativistic). The usual equations describing the scattering cross section use the approximation that the scattered lepton (usually an electron) is ultrarelativistic, with v/c approximately equal to 1. Here the cross section is calculated for all values of the energy. It agrees with the standard result in the appropriate limit.

  17. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  18. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  19. The Design and Performance of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons are increasingly being exploited for the non-destructive assay of shielded containers in a wide range of applications. One such application is the characterisation of legacy nuclear waste materials stored within industrial containers. The design, assembly and performance of a prototype muon tomography system developed for this purpose are detailed in this work. This muon tracker comprises four detection modules, each containing orthogonal layers of Saint-Gobain BCF-10 2mm-pitch plastic scintillating fibres. Identification of the two struck fibres per module allows the reconstruction of the incoming and Coulomb-scattered muon trajectories. These allow the container content, with respect to the atomic number Z of the scattering material, to be determined through reconstruction of the scattering location and magnitude. On each detection layer, the light emitted by the fibre is detected by a single Hamamatsu H8500 MAPMT with two fibre...

  20. Muon Cooling and Future Muon Facilities: The Coming Decade

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2009-10-21

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the neutrino mixing matrix. The performance and cost of these depend sensitively on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built in the decade to come.

  1. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  2. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  3. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  4. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  5. GEANT4 Simulation of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01

    Cosmic-ray muons are highly penetrative charged particles that are observed at sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be det...

  6. Muons for a Neutrino Factory and a Muon Collider

    E-Print Network [OSTI]

    McDonald, Kirk

    @princeton.edu Fact'99, Lyon, France July 6, 1999 Muon Collider main page: http://www.cap.bnl.gov/mumu/mu home page the proton requirements. · Goal: 0.1/p delivered for physics use. 2 #12;The Muon Source · Pion production beam pulse shock heating of target. ­ Resulting pressure wave may disperse liquid (or crack solid

  7. Electron-Muon Ranger: performance in the MICE Muon Beam

    E-Print Network [OSTI]

    D. Adams; A. Alekou; M. Apollonio; R. Asfandiyarov; G. Barber; P. Barclay; A. de Bari; R. Bayes; V. Bayliss; P. Bene; R. Bertoni; V. J. Blackmore; A. Blondel; S. Blot; M. Bogomilov; M. Bonesini; C. N. Booth; D. Bowring; S. Boyd; T. W. Bradshaw; U. Bravar; A. D. Bross; F. Cadoux; M. Capponi; T. Carlisle; G. Cecchet; C. Charnley; F. Chignoli; D. Cline; J. H. Cobb; G. Colling; N. Collomb; L. Coney; P. Cooke; M. Courthold; L. M. Cremaldi; S. Debieux; A. DeMello; A. Dick; A. Dobbs; P. Dornan; F. Drielsma; F. Filthaut; T. Fitzpatrick; P. Franchini; V. Francis; L. Fry; A. Gallagher; R. Gamet; R. Gardener; S. Gourlay; A. Grant; J. S. Graulich; J. Greis; S. Griffiths; P. Hanlet; O. M. Hansen; G. G. Hanson; T. L. Hart; T. Hartnett; T. Hayler; C. Heidt; M. Hills; P. Hodgson; C. Hunt; C. Husi; A. Iaciofano; S. Ishimoto; G. Kafka; D. M. Kaplan; Y. Karadzhov; Y. K. Kim; Y. Kuno; P. Kyberd; J-B Lagrange; J. Langlands; W. Lau; M. Leonova; D. Li; A. Lintern; M. Littlefield; K. Long; T. Luo; C. Macwaters; B. Martlew; J. Martyniak; F. Masciocchi; R. Mazza; S. Middleton; A. Moretti; A. Moss; A. Muir; I. Mullacrane; J. J. Nebrensky; D. Neuffer; A. Nichols; R. Nicholson; L. Nicola; E. Noah Messomo; J. C. Nugent; A. Oates; Y. Onel; D. Orestano; E. Overton; P. Owens; V. Palladino; J. Pasternak; F. Pastore; C. Pidcott; M. Popovic; R. Preece; S. Prestemon; D. Rajaram; S. Ramberger; M. A. Rayner; S. Ricciardi; T. J. Roberts; M. Robinson; C. Rogers; K. Ronald; K. Rothenfusser; P. Rubinov; P. Rucinski; H. Sakamato; D. A. Sanders; R. Sandstrom; E. Santos; T. Savidge; P. J. Smith; P. Snopok; F. J. P. Soler; D. Speirs; T. Stanley; G. Stokes; D. J. Summers; J. Tarrant; I. Taylor; L. Tortora; Y. Torun; R. Tsenov; C. D. Tunnell; M. A. Uchida; G. Vankova-Kirilova; S. Virostek; M. Vretenar; P. Warburton; S. Watson; C. White; C. G. Whyte; A. Wilson; H. Wisting; X. Yang; A. Young; M. Zisman

    2015-11-03

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  8. Electron-Muon Ranger: performance in the MICE Muon Beam

    E-Print Network [OSTI]

    Adams, D; Apollonio, M; Asfandiyarov, R; Barber, G; Barclay, P; de Bari, A; Bayes, R; Bayliss, V; Bene, P; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Brashaw, T W; Bravar, U; Bross, A D; Cadoux, F; Capponi, M; Carlisle, T; Cecchet, G; Charnley, C; Chignoli, F; Cline, D; Cobb, J H; Colling, G; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; Debieux, S; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Drielsma, F; Filthaut, F; Fitzpatrick, T; Franchini, P; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gardener, R; Gourlay, S; Grant, A; Graulich, J S; Greis, J; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Husi, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kuno, Y; Kyberd, P; Lagrange, J-B; Langlands, J; Lau, W; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Masciocchi, F; Mazza, R; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nicola, L; Messomo, E Noah; Nugent, J C; Oates, A; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rothenfusser, K; Rubinov, P; Rucinski, P; Sakamato, H; Sanders, D A; Sandstrom, R; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Speirs, D; Stanley, T; Stokes, G; Summers, D J; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Uchida, M A; Vankova-Kirilova, G; Virostek, S; Vretenar, M; Warburton, P; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Yang, X; Young, A; Zisman, M

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  9. COSMIC RAY MUONS Anthony Tatum

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Production and Path Effects in The Atmosphere Using Muons to Test Beam Profile Monitor Conclusion #12 Nuclei (Protons) Remaining 11% includes Helium, Carbon and Oxygen among other less abundant elements #12 are the decay product of Pions and Kaons + + #12; The mean energy of muons at the site of production (~15 km

  10. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  11. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  12. The Muon Anomalous Magnetic Moment

    E-Print Network [OSTI]

    Marc Knecht

    2014-12-03

    The calculations entering the prediction of the standard model value for the anomalous magnetic moment of the muon $a_\\mu$ are reviewed, and compared to the very accurate experimental measurement. The situation for the electron is discussed in parallel.

  13. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  14. Low-energy muons via frictional cooling

    E-Print Network [OSTI]

    Yu Bao; Allen Caldwell; Daniel Greenwald; Guoxing Xia

    2010-01-18

    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes.

  15. GEANT4 Simulation of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; Russell Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Sian Nutbeam-Tuffs; Craig Shearer; Cassie Staines; Guangliang Yang; Colin Zimmerman

    2013-09-13

    Cosmic-ray muons are highly penetrative charged particles that are observed at sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  16. Progress on muon{sup +}muon{sup {minus}} colliders

    SciTech Connect (OSTI)

    Palmer, R.B.

    1997-05-01

    Advantages and disadvantages of muon colliders are discussed. Recent results of calculations of the radiation hazard from muon decay neutrinos are presented. This is a significant problem for machines with center of mass energy of 4 TeV, but of no consequence for lower energies. Plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 4 TeV collider, studies are now starting on a machine near 100 GeV that could be a factory for the s-channel production of Higgs particles. Proposals are also presented for a demonstration of ionization cooling and of the required targeting, pion capture, and phase rotation rf.

  17. Pion contamination in the MICE muon beam

    E-Print Network [OSTI]

    D. Adams; A. Alekou; M. Apollonio; R. Asfandiyarov; G. Barber; P. Barclay; A. de Bari; R. Bayes; V. Bayliss; R. Bertoni; V. J. Blackmore; A. Blondel; S. Blot; M. Bogomilov; M. Bonesini; C. N. Booth; D. Bowring; S. Boyd; T. W. Bradshaw; U. Bravar; A. D. Bross; M. Capponi; T. Carlisle; G. Cecchet; C. Charnley; F. Chignoli; D. Cline; J. H. Cobb; G. Colling; N. Collomb; L. Coney; P. Cooke; M. Courthold; L. M. Cremaldi; A. DeMello; A. Dick; A. Dobbs; P. Dornan; M. Drews; F. Drielsma; F. Filthaut; T. Fitzpatrick; P. Franchini; V. Francis; L. Fry; A. Gallagher; R. Gamet; R. Gardener; S. Gourlay; A. Grant; J. R. Greis; S. Griffiths; P. Hanlet; O. M. Hansen; G. G. Hanson; T. L. Hart; T. Hartnett; T. Hayler; C. Heidt; M. Hills; P. Hodgson; C. Hunt; A. Iaciofano; S. Ishimoto; G. Kafka; D. M. Kaplan; Y. Karadzhov; Y. K. Kim; Y. Kuno; P. Kyberd; J-B Lagrange; J. Langlands; W. Lau; M. Leonova; D. Li; A. Lintern; M. Littlefield; K. Long; T. Luo; C. Macwaters; B. Martlew; J. Martyniak; R. Mazza; S. Middleton; A. Moretti; A. Moss; A. Muir; I. Mullacrane; J. J. Nebrensky; D. Neuffer; A. Nichols; R. Nicholson; J. C. Nugent; A. Oates; Y. Onel; D. Orestano; E. Overton; P. Owens; V. Palladino; J. Pasternak; F. Pastore; C. Pidcott; M. Popovic; R. Preece; S. Prestemon; D. Rajaram; S. Ramberger; M. A. Rayner; S. Ricciardi; T. J. Roberts; M. Robinson; C. Rogers; K. Ronald; P. Rubinov; P. Rucinski; H. Sakamato; D. A. Sanders; E. Santos; T. Savidge; P. J. Smith; P. Snopok; F. J. P. Soler; D. Speirs; T. Stanley; G. Stokes; D. J. Summers; J. Tarrant; I. Taylor; L. Tortora; Y. Torun; R. Tsenov; C. D. Tunnell; M. A. Uchida; G. Vankova-Kirilova; S. Virostek; M. Vretenar; P. Warburton; S. Watson; C. White; C. G. Whyte; A. Wilson; M. Winter; X. Yang; A. Young; M. Zisman

    2015-11-03

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi contamination requirements of the study of ionization cooling.

  18. Pion contamination in the MICE muon beam

    E-Print Network [OSTI]

    Adams, D; Apollonio, M; Asfandiyarov, R; Barber, G; Barclay, P; de Bari, A; Bayes, R; Bayliss, V; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, C; Chignoli, F; Cline, D; Cobb, J H; Colling, G; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Drews, M; Drielsma, F; Filthaut, F; Fitzpatrick, T; Franchini, P; Francis, V; Fry, L; Gallagher, A; Gamet, R; Gardener, R; Gourlay, S; Grant, A; Greis, J R; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kuno, Y; Kyberd, P; Lagrange, J-B; Langlands, J; Lau, W; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Mazza, R; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Oates, A; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, P; Sakamato, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Speirs, D; Stanley, T; Stokes, G; Summers, D J; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Uchida, M A; Vankova-Kirilova, G; Virostek, S; Vretenar, M; Warburton, P; Watson, S; White, C; Whyte, C G; Wilson, A; Winter, M; Yang, X; Young, A; Zisman, M

    2015-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi contamination requirements of the study of ionization cooling.

  19. Precision Muon Reconstruction in Double Chooz

    E-Print Network [OSTI]

    Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

    2014-08-15

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  20. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  1. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.

    2011-10-06

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R and D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  2. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  3. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    1 Muon Cooling via Ionization Andrea Kay Forget Department of Physics, Wayne State University decay, as a result of their short lives many of the known cooling techniques (electron, stochastic, and laser cooling) cannot be used to properly cool muons that are being used in proposed accelerators

  4. Muon Flux at the Geographical South Pole

    E-Print Network [OSTI]

    X. Bai; T. K. Gaisser; A. Karle; K. Rawlins; G. M. Spiczak; Todor Stanev

    2006-02-17

    The muon flux at the South-Pole was measured for five zenith angles, $0^{\\circ}$, $15^{\\circ}$, $35^{\\circ}$, $82.13^{\\circ}$ and $85.15^{\\circ}$ with a scintillator muon telescope incorporating ice Cherenkov tank detectors as the absorber. We compare the measurements with other data and with calculations.

  5. Detector Background at Muon Colliders

    SciTech Connect (OSTI)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  6. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo featureParticleDarkMuons photo

  7. Cosmic Muon Detector Using Proportional Chambers

    E-Print Network [OSTI]

    Dezs? Varga; Zoltán Gál; Gerg? Hamar; Janka Sára Molnár; Éva Oláh; Péter Pázmándi

    2015-07-28

    A set of classical multi-wire proportional chambers were designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  8. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  9. Muons for a Muon-Collider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Muon Collider R&D Status Report: http://www.cap.bnl.gov/mumu/status report.html Muon � 10-10 (mm)3 . · Initial pulse length only 1-2 ns. The Source · The muons come from the decay of soft pulse shock heating of target. ­ Resulting pressure wave may disperse liquid (or crack solid). ­ Damage

  10. Muon Cooling Progress and Prospects for an S-channel Muon Collider Higgs Factory

    E-Print Network [OSTI]

    Cummings, Mary Anne

    2015-01-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced thus enabling high quality physics results. Thanks to these and other advances in design and simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider and an S-Channe...

  11. The Cosmic Ray Muon Flux at WIPP

    E-Print Network [OSTI]

    Esch, E I; Hime, A; Pichlmaier, A; Reifarth, R; Wollnik, H

    2005-01-01

    In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).

  12. The Cosmic Ray Muon Flux at WIPP

    E-Print Network [OSTI]

    E. -I. Esch; T. J. Bowles; A. Hime; A. Pichlmaier; R. Reifarth; H. Wollnik

    2004-08-25

    In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).

  13. The Neutrino Factory and Muon Collider Collaboration Physics Opportunities with Muon Beams

    E-Print Network [OSTI]

    McDonald, Kirk

    (s). ­ Can store muons in rings. ­ Lower cost of acceleration. · But muons decay. ­ Secondary neutrino experiments based on innovative particle sources. · A full range of new phenomena can be investigated accelerators with a more cost-effective technology, that is capable of extension to 10's of TeV of constituent

  14. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M. [comp.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  15. Electrons from Muon Decay in Bound State

    E-Print Network [OSTI]

    Rashid M. Djilkibaev; Rostislav V. Konoplich

    2009-02-12

    We present results of a study of the muon decay in orbit (DIO) contribution to the signal region of muon - electron conversion. Electrons from DIO are the dominant source of background for muon - electron conversion experiments because the endpoint of DIO electrons is the same as the energy of electrons from elastic muon - electron conversion. The probability of DIO contribution to the signal region was considered for a tracker with Gaussian resolution function and with a realistic resolution function obtained in the application of pattern recognition and momentum reconstruction Kalman filter based procedure to GEANT simulated DIO events. It is found that the existence of non Gaussian tails in the realistic resolution function does not lead to a significant increase in DIO contribution to the signal region. The probability of DIO contribution to the calorimeter signal was studied in dependence on the resolution, assuming a Gaussian resolution function of calorimeter. In this study the geometrical acceptance played an important role, suppressing DIO contribution of the intermediate range electrons from muon decay in orbit.

  16. Exploring Geometries of SRF Cavities for a Future Muon Collider

    E-Print Network [OSTI]

    Geng, Rong-Li

    application of super- conducting RF cavities in a future muon collider. Such RF cavities are expected to workExploring Geometries of SRF Cavities for a Future Muon Collider Rong-Li Geng LEPP, Cornell

  17. DESIGN OF HIGH INTENSITY MUON SOURCES HISHAM KAMAL SAYED

    E-Print Network [OSTI]

    McDonald, Kirk

    /19/15 OUTLINE Goal : Op0mize number of useful muons Involved systems: - Carbon parameters: Carbon target length, radius, and 0lt angle to solenoid axis 2 momentum spread Challenges with muon beams: - Short life0me ~ 2

  18. Use of dielectric material in muon accelerator RF cavities

    E-Print Network [OSTI]

    French, Katheryn Decker

    2011-01-01

    The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

  19. Muon (g-2) Technical Design Report

    E-Print Network [OSTI]

    J. Grange; V. Guarino; P. Winter; K. Wood; H. Zhao; R. M. Carey; D. Gastler; E. Hazen; N. Kinnaird; J. P. Miller; J. Mott; B. L. Roberts; J. Benante; J. Crnkovic; W. M. Morse; H. Sayed; V. Tishchenko; V. P. Druzhinin; B. I. Khazin; I. A. Koop; I. Logashenko; Y. M. Shatunov; E. Solodov; M. Korostelev; D. Newton; A. Wolski; R. Bjorkquist; N. Eggert; A. Frankenthal; L. Gibbons; S. Kim; A. Mikhailichenko; Y. Orlov; D. Rubin; D. Sweigart; D. Allspach; G. Annala; E. Barzi; K. Bourland; G. Brown; B. C. K. Casey; S. Chappa; M. E. Convery; B. Drendel; H. Friedsam; T. Gadfort; K. Hardin; S. Hawke; S. Hayes; W. Jaskierny; C. Johnstone; J. Johnstone; V. Kashikhin; C. Kendziora; B. Kiburg; A. Klebaner; I. Kourbanis; J. Kyle; N. Larson; A. Leveling; A. L. Lyon; D. Markley; D. McArthur; K. W. Merritt; N. Mokhov; J. P. Morgan; H. Nguyen; J-F. Ostiguy; A. Para; C. C. Polly M. Popovic; E. Ramberg; M. Rominsky; D. Schoo; R. Schultz; D. Still; A. K. Soha; S. Strigonov; G. Tassotto; D. Turrioni; E. Villegas; E. Voirin; G. Velev; D. Wolff; C. Worel; J-Y. Wu; R. Zifko; K. Jungmann; C. J. G. Onderwater; P. T. Debevec; S. Ganguly; M. Kasten; S. Leo; K. Pitts; C. Schlesier; M. Gaisser; S. Haciomeroglu; Y-I. Kim; S. Lee; M-J Lee; Y. K. Semertzidis; K. Giovanetti; V. A. Baranov; V. N. Duginov; N. V. Khomutov; V. A. Krylov; N. A. Kuchinskiy; V. P. Volnykh; C. Crawford; R. Fatemi; W. P. Gohn; T. P. Gorringe; W. Korsch; B. Plaster; A. Anastasi; D. Babusci; S. Dabagov; C. Ferrari; A. Fioretti; C. Gabbanini; D. Hampai; A. Palladino; G. Venanzoni; T. Bowcock; J. Carroll; B. King; S. Maxfield; K. McCormick; A. Smith; T. Teubner; M. Whitley; M. Wormald; R. Chislett; S. Kilani; M. Lancaster; E. Motuk; T. Stuttard; M. Warren; D. Flay; D. Kawall; Z. Meadows; T. Chupp; R. Raymond; A. Tewlsey-Booth; M. J. Syphers; D. Tarazona; C. Ankenbrandt; M. A. Cummings; R. P. Johnson; C. Yoshikawa; S. Catalonotti; R. Di Stefano; M. Iacovacci; S. Mastroianni; S. Chattopadhyay; M. Eads; M. Fortner; D. Hedin; N. Pohlman; A. de Gouvea; H. Schellman; L. Welty-Rieger; T. Itahashi; Y. Kuno; K. Yai; F. Azfar; S. Henry; G. D. Alkhazov; V. L. Golovtsov; P. V. Neustroev; L. N. Uvarov; A. A. Vasilyev; A. A. Vorobyov; M. B. Zhalov; L. Cerrito; F. Gray; G. Di Sciascio; D. Moricciani; C. Fu; X. Ji; L. Li; H. Yang; D. Stöckinger; G. Cantatore; D. Cauz; M. Karuza; G. Pauletta; L. Santi; S. Bae\\ssler; M. Bychkov; E. Frlez; D. Pocanic; L. P. Alonzi; M. Fertl; A. Fienberg; N. Froemming; A. Garcia; D. W. Hertzog J. Kaspar; P. Kammel; R. Osofsky; M. Smith; E. Swanson; T. van Wechel; K. Lynch

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  20. High Intensity Muon Beams in Osaka -MuSIC

    E-Print Network [OSTI]

    McDonald, Kirk

    High Intensity Muon Beams in Osaka - MuSIC Yoshitaka Kuno Osaka Unviersity, Osaka, Japan ! THB2014 ·Muon Transport ·COMET ·MuSIC facility at Osaka University ·MuSIC stage-I for µSR ·PRISM demonstration at MuSIC ·Phase Rotation at FFAG ·Summary #12;Muon Beam Sources #12;ISIS EM, RIKEN-RAL J-PARC, MUSE

  1. Pion/Muon Beam and Monitoring Revised February 1995

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    injection scheme used in the CERN experiment, [1] a pion beam was formed and directed parallel to, but just. This technique of direct muon injection has two benefits: i) the number of stored muons per fill is increased, and produced the ``flash'' following injection which presented such a challenge to the muon decay electron

  2. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect (OSTI)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  3. Constraints on muon-specific dark forces

    E-Print Network [OSTI]

    Savely G. Karshenboim; David McKeen; Maxim Pospelov

    2014-01-23

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on $e-p$ scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier---in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the $g-2$ of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV, and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon $g-2$. However, we also observe that in the absence of a consistent standard model embedding, high energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by $(E/m_V)^2$, with $E$ a characteristic energy scale and $m_V$ the mass of the mediator. In particular, leptonic $W$ decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  4. Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion

    E-Print Network [OSTI]

    Sachie Kimura; Aldo Bonasera

    2006-07-31

    We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

  5. Muons for a MuonCollider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Muon Collider R&D Status Report: http://www.cap.bnl.gov/mumu/status report.html Muon­D emittance of 2 \\Theta 10 \\Gamma10 (�mm) 3 . ffl Initial pulse length only 1­2 ns. The Source ffl). 3 #12; Targetry Issues ffl Is a liquid jet target viable? -- 1­ns beam pulse ) shock heating

  6. Precision Measurements at a Muon Collider

    E-Print Network [OSTI]

    S. Dawson

    1995-12-08

    We discuss the potential for making precision measurements of $M_W$ and $M_T$ at a muon collider and the motivations for each measurement. A comparison is made with the precision measurements expected at other facilities. The measurement of the top quark decay width is also discussed.

  7. Thermal Conductivity of Electrons and Muons

    E-Print Network [OSTI]

    Gnedin, Oleg Y.

    Thermal Conductivity of Electrons and Muons in Neutron Star Cores O.Y. Gnedin and D.G. Yakovlev A thermal conductivity of dense matter (ae ? ¸ 10 14 g cm \\Gamma3 ) in neutron star cores with various expressions valid for a wide class of models of dense matter. 1 #12; 1 Introduction Thermal conductivity

  8. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  9. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  10. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  11. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  12. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  13. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Charged Current Quasielastic (CCQE) Double Differential Cross Section Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report...

  14. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    E-Print Network [OSTI]

    Rob Roy Fletcher; Linda Coney; Gail Hanson

    2011-05-03

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  15. Measurements of integral muon intensity at large zenith angles

    E-Print Network [OSTI]

    A. N. Dmitrieva; D. V. Chernov; R. P. Kokoulin; K. G. Kompaniets; G. Mannocchi; A. A. Petrukhin; O. Saavedra; V. V. Shutenko; D. A. Timashkov; G. Trinchero; I. I. Yashin

    2006-11-28

    High-statistics data on near-horizontal muons collected with Russian-Italian coordinate detector DECOR are analyzed. Precise measurements of muon angular distributions in zenith angle interval from 60 to 90 degrees have been performed. In total, more than 20 million muons are selected. Dependences of the absolute integral muon intensity on zenith angle for several threshold energies ranging from 1.7 GeV to 7.2 GeV are derived. Results for this region of zenith angles and threshold energies have been obtained for the first time. The dependence of integral intensity on zenith angle and threshold energy is well fitted by a simple analytical formula.

  16. Pion and muon decays beyond the standard model

    SciTech Connect (OSTI)

    Herczeg, P.

    1988-01-01

    We review and discuss the information provided by charged pion and muon decays on physics beyond the minimal standard model. 109 refs., 3 tabs.

  17. The performance of the MICE muon beam line

    SciTech Connect (OSTI)

    Rayner, Mark Alastair

    2011-10-06

    The Muon Ionization Cooling Experiment is one lattice cell of a cooling channel suitable for conditioning the muon beam at the front end of a Neutrino Factory or Muon Collider. The beam line designed to transport muons into MICE has been installed, and data was collected in 2010. In this paper the method of reconstructing longitudinal momentum and transverse trace space using two timing detectors is discussed, and a preliminary simulation of the performance of a measured beam in the cooling channel is presented.

  18. Muon Figures: 2001/04/19 Chris Waltham

    E-Print Network [OSTI]

    Learned, John

    TO SAVE SPACE. Figure 6: Muon event: PMT hit times in ns. OMITTED TO SAVE SPACE. A B C W E N S Figure 7

  19. SIMULATION STUDY OF BACKGROUND PARTICLES IN THE MUON TELESCOPE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIMULATION STUDY OF BACKGROUND PARTICLES IN THE MUON TELESCOPE DETECTOR AT THE STAR EXPERIMENT Matthew Breen Thanks to Dr. Mioduszewski and Yanfang Liu Overview Background ...

  20. Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    E-Print Network [OSTI]

    Blyth, S C; Chen, X C; Chu, M C; Cui, K X; Hahn, R L; Ho, T H; Hsiung, Y B; Hu, B Z; Kwan, K K; Kwok, M W; Kwok, T; Lau, Y P; Leung, J K C; Leung, K Y; Lin, G L; Lin, Y C; Luk, K B; Luk, W H; Ngai, H Y; Ngan, S Y; Pun, C S J; Shih, K; Tam, Y H; Tsang, R H M; Wang, C H; Wong, C M; Wong, H L; Wong, K K; Yeh, M; Zhang, B J

    2015-01-01

    We measured the muon flux and the production rate of muon-induced neutrons at a depth of 611 meters water equivalent. Our apparatus comprises of three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid scintillator for both neutron production and detection targets. The vertical muon intensity was measured to be $I_{\\mu}$ = (5.7 $\\pm$ 0.6) $\\times$ 10$^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The muon-induced neutron yield in the liquid scintillator was determined to be $Y_{n}$ = (1.19 $\\pm$ 0.08(stat.) $\\pm$ 0.21(syst.)) $\\times$ 10$^{-4}$ neutrons / ($\\mu$ g cm$^{-2}$). A fitting to recently measured neutron yields at different depths gave a muon energy dependence of $\\left\\langle E_{\\mu} \\right\\rangle^{0.76 \\pm 0.03}$ for scintillator targets.

  1. The Neutrino Factory and Muon Collider Collaboration Physics Opportunities with Muon Beams

    E-Print Network [OSTI]

    McDonald, Kirk

    . -- ) Enhanced coupling to Higgs boson(s). -- ) Can store muons in rings. -- ) Lower cost of acceleration. ffl experiments based on innovative particle sources. ffl A full range of new phenomena can be investigated For this we need accelerators with a more cost­effective technology, that is capable of extension to 10's

  2. The Muon g2 Experiment at Gerry Bunce for the Muon g2 Collaboration 1

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    )=2. a is approximately 0.001 for the muon (and electron). Standard Model contributions come from electromagnetic be obtained from measurements of e + e \\Gamma !hadrons, measured now very accurately at lower center of mass energies in the VEPP2M machine at Novosibirsk. [2] The present theoretical error on g­2 is \\Sigma0:7 ppm

  3. Precise parametrizations of muon energy losses in water

    E-Print Network [OSTI]

    S. I. Klimushin; E. V. Bugaev; I. A. Sokalski

    2001-06-01

    The description of muon propagation through large depths of matter, based on a concept of the correction factor, is proposed. The results of Monte-Carlo calculations of this correction factor are presented. The parametrizations for continuous energy loss coefficients, valid in the broad interval of muon energies, and for the correction factor are given. The concrete calculations for pure water are presented.

  4. GLOBAL OPTIMIZATION FOR THE NEW MUON COLLIDER HISHAM SAYED

    E-Print Network [OSTI]

    McDonald, Kirk

    GLOBAL OPTIMIZATION FOR THE NEW MUON COLLIDER FRONT END HISHAM SAYED BROOKHAVEN NATIONAL LABORATORY FRONT END MEETING 01-28-2014 #12;GLOBALLY OPTIMIZING MUON TARGET & FRONT END 325 Sayed BNL #12;INTRODUCTION & LAYOUT Ă? High performance Optimization Tools on NERSC Ă? Target

  5. SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS

    E-Print Network [OSTI]

    McDonald, Kirk

    SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS BNL Nov 30, 2010 1 #12;MUON). 6. CRYOGENIC COOLING FOR THE SC SOLENOIDS. 7. MERCURY COLLECTING TANK AND REMOVAL SYSTEM. 8. SHIELDING CONFIGURATIONS (WC BEADS+H2O). 2 #12;REQUIREMENTS/LIMITATIONS PROTON BEAM AND MERCURY JET

  6. The Neutrino Factory and Muon Collider Collaboration Considerations on

    E-Print Network [OSTI]

    McDonald, Kirk

    Plenary Meeting, KEK Jan 24, 2006 http://puhep1.princeton.edu/mumu/target/ (Presented by M. Zisman) Kirk T.) Kirk T. McDonald ISS Plenary Meeting, KEK, Jan 24, 2006 2 #12;The Neutrino Factory and Muon Collider". Kirk T. McDonald ISS Plenary Meeting, KEK, Jan 24, 2006 3 #12;The Neutrino Factory and Muon Collider

  7. CMS TECHNICAL DESIGN REPORT FOR THE MUON ENDCAP GEM UPGRADE

    E-Print Network [OSTI]

    Colaleo, A; Sharma, A; Tytgat, M

    2015-01-01

    This report describes both the technical design and the expected performance of the Phase-II upgrade, using Gas Electron Multiplier (GEM) detectors, of the first endcap station of the CMS muon system. The upgrade is targeted for the second long shutdown of the CERN LHC and is designed to improve the muon trigger and tracking performance at high luminosity. The GEM detectors will add redundancy to the muon system in the 1.6 technology to operate in the high radiation environment present in that region. The first muon endcap station will be instrumented with a double layer of triple-GEM chambers in the 1.6 < |?| < 2.2 region. The detector front-end electronics uses the custom designed VFAT3 chip to provide both fast input for the level-1 muon trigger ...

  8. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect (OSTI)

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  9. Construccion, calibracion evaluacion del sistema link de alineamiento del espectrometro de muones del experimento CMS

    E-Print Network [OSTI]

    Calderon A T

    Construccion, calibracion evaluacion del sistema link de alineamiento del espectrometro de muones del experimento CMS

  10. DYNAMICS OF DECAY ELECTRONS AND SYNCHROTRON RADIATION IN A TEV MUON COLLIDER*

    E-Print Network [OSTI]

    McIntyre, Peter

    ) in a TeV muon col- lider present major challenges as heat loads to the super- conducting magnetsDYNAMICS OF DECAY ELECTRONS AND SYNCHROTRON RADIATION IN A TEV MUON COLLIDER* P. McIntyre and A problems are mitigated. 1 MUON DECAY IN A MUON COLLIDER Ankenbrandt et al. [1] summarize the design

  11. The muon system of the Daya Bay Reactor antineutrino experiment

    E-Print Network [OSTI]

    Daya Bay Collaboration

    2014-11-28

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  12. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-02-01

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  13. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  14. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    E-Print Network [OSTI]

    MICE Collaboration

    2012-03-23

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  15. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  16. Extending theories on muon-specific interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to ?? decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore »the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  17. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ??? production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ??? events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3?. The best fit to oscillation yields |?m?2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 ??) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS ?? and ??? measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  18. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect (OSTI)

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  19. Detecting Special Nuclear Material Using Muon-Induced Neutron Emission

    E-Print Network [OSTI]

    E. Guardincerri; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; A. Hecht; E. C. Milner; H. Miyadera; C. L. Morris; J. O. Perry; D. Poulson

    2015-03-25

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  20. Fermilab | Newsroom | Press Releases | May 8, 2013: Muon g-2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Res Crews work to attach the red stabilizing apparatus to the Muon g-2 rings at Brookhaven National Laboratory in New York in preparation for moving them over land and sea to...

  1. Measurement of muon plus proton final states in $\

    E-Print Network [OSTI]

    Walton, T; Aliaga, L; Altinok, O; Bodek, A; Bravar, A; Budd, H; Bustamante, M J; Butkevich, A; Caicedo, D A Martinez; Carneiro, M F; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Datta, M; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Fiorentini, G A; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kleykamp, J; Kordosky, M; Kulagin, S A; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Mari, C Martin; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Schellman, H; Schmitz, D W; Simon, C; Snider, F D; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P

    2014-01-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon and a proton and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70$^{\\circ}$ and proton kinetic energies greater than 110~MeV. The extracted cross section, when based completely on hadronic kinematics, is well-described by a simple relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multi-nucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interaction...

  2. Measurement of the Positive Muon Lifetime and Determination of...

    Office of Scientific and Technical Information (OSTI)

    measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2x10sup 12 decays. Two different stopping...

  3. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

  4. CROSS SECTION MEASUREMENTS FOR CHARM PRODUCTION BY MUONS AND PHOTONS

    E-Print Network [OSTI]

    Clark, A.R.

    2013-01-01

    Production by Muons and Photons A.Rc Clark, K.J, Johnson,section for 178(100)-GeV photons is 750 _ ) nb, too small tohigh-energy rise in the photon-nucleon total cross sectiono

  5. Muon Acceleration with RLA and Non-scaling FFAG Arcs

    SciTech Connect (OSTI)

    Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

    2010-05-01

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  6. Muon acceleration with RLA and non-scaling FFAG ARCS

    SciTech Connect (OSTI)

    Morozov, V.S.; Trbojevic, D.; Bogacz, A.

    2010-05-23

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  7. Muon Pair Production in ep Collisions at HERA

    E-Print Network [OSTI]

    Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Delerue, N; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Knutsson, A; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Kuckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüders, S; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martisikova, M; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milcewicz, I; Milstead, D; Moreau, F; Morozov, A; Morozov, I; Morris, J V; Mozer, M; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikitin, D K; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ossoskov, G; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perieanu, A; Petrukhin, A; Pitzl, D; Pöschl, R; Portheault, B; Povh, B; Raicevic, N; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rurikova, Z; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winde, M; Winter, G G; Wissing, C; Woerling, E E; Wünsch, E; Yan, W; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zohrabyan, H G; Zomer, F

    2003-01-01

    Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.

  8. Muon Anomaly and Dark Parity Violation

    E-Print Network [OSTI]

    Hooman Davoudiasl; Hye-Sung Lee; William J. Marciano

    2012-07-06

    The muon anomalous magnetic moment exhibits a 3.6 \\sigma discrepancy between experiment and theory. One explanation requires the existence of a light vector boson, Z_d (the dark Z), with mass 10 - 500 MeV that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution also comes from astrophysics conjectures regarding the utility of a U(1)_d gauge symmetry in the dark matter sector. In that scenario, we show that mass mixing between the Z_d and ordinary Z boson introduces a new source of "dark" parity violation which is potentially observable in atomic and polarized electron scattering experiments. Restrictive bounds on the mixing (m_{Z_d} / m_Z) \\delta are found from existing atomic parity violation results, \\delta^2 < 2 x 10^{-5}. Combined with future planned and proposed polarized electron scattering experiments, a sensitivity of \\delta^2 ~ 10^{-6} is expected to be reached, thereby complementing direct searches for the Z_d boson.

  9. Elliptic flow of muons from heavy-flavour hadron decays at forward...

    Office of Scientific and Technical Information (OSTI)

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at sNN2.76 TeV Citation Details In-Document Search Title: Elliptic flow of muons...

  10. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  11. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect (OSTI)

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  12. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good –but not super– conductors at cryogenic temperatures, can be used.

  13. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Annarita Margiotta

    2006-02-01

    A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

  14. Alternative muon frontend for the International Design Study (IDS) A. Alekou, Imperial College, London, UK

    E-Print Network [OSTI]

    McDonald, Kirk

    Alternative muon front­end for the International Design Study (IDS) A. Alekou, Imperial College discuss alternative designs of the muon capture front end of the Neutrino Factory International Design measurements of neutrino oscillation parame­ ters. The present paper discusses alternative muon capture

  15. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  16. A New Measurement of the Muon Magnetic Anomaly

    E-Print Network [OSTI]

    K. Jungmann; :; g-2 collaboration

    2000-02-08

    The muon magnetic anomaly may contain contributions from physics beyond the standard model. At the Brookhaven National Laboratory (BNL) a precision experiment aims for a measurement of the muon magnetic anomaly $a_{\\mu}$ to 0.35 ppm, where conclusions about various theoretical approaches beyond standard theory can be expected. The difference between the spin precession and cyclotron frequencies is measured in a magnetic storage ring with highly homogeneous field. Data taking is in progress and part of all recorded data has been analyzed. Combining all experimental results to date yields preliminarily $a_{\\mu}(expt)=1~165~921(5) \\cdot 10^{-9}$ (4 ppm) in agreement with standard theory.

  17. Anomalous magnetic moment of the muon in a dispersive approach

    E-Print Network [OSTI]

    Vladyslav Pauk; Marc Vanderhaeghen

    2014-09-03

    We present a new general dispersive formalism for evaluating the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. In the suggested approach, this correction is related to the imaginary part of the muon's electromagnetic vertex function. The latter may be directly related to measurable hadronic processes by means of unitarity and analyticity. As a test we apply the introduced formalism to the case of meson pole exchanges and find agreement with the direct two-loop calculation.

  18. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  19. Lowest Order Hadronic Contribution to the Muon g-2

    E-Print Network [OSTI]

    Christopher Aubin; Tom Blum

    2005-09-20

    We present the most recent lattice results for the lowest-order hadronic contribution to the muon anomalous magnetic moment using 2+1 flavor improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory with the inclusion of the vector particles as resonances, to evaluate the vacuum polarization. We discuss the preliminary fit results and attendant systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons.

  20. Performance of the ATLAS muon trigger in pp collisions at ?s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 T more »top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.« less

  1. Production of Charged Hadrons in Muon Deep Inelastic Scattering

    E-Print Network [OSTI]

    Mohammed Sultan Al-Buriahi; Mohammed Tarek Hussein; Mohammed Tawfik Ghoneim

    2015-08-06

    The production of charged hadrons, in muon Deep inelastic scattering (DIS), at light and heavy target is presented. The particles produced by the interaction with Xenon (Xe) is compared with that produced by the interaction with Deuteron (D), to obtain information on cascading process, forward-backward productions, and the rapidity distribution in different bins of the invariant mass of the interacting system W.

  2. A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS

    E-Print Network [OSTI]

    McDonald, Kirk

    856 A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS David Cline University of Wisconsin, Madison, Wl 53706 David Neuffer Fermilab,* Batavia, IL 60510 ABSTRACT · + decay in a ~- Storage Ring can as a possible first ~ storage ring. INTRODUCTION Recent experimental reports 1'2 of a non-zero ~ mass and of e

  3. Neutrinos from Stored Muons nuSTORM: Expression of Interest

    E-Print Network [OSTI]

    Adey, D; Ankenbrandt, C M; Asfandiyarov, R; Back, J J; Barker, G; Baussan, E; Bayes, R; Bhadra, S; Blackmore, V; Blondel, A; Bogacz, S A; Booth, C; Boyd, S B; Bravar, A; Brice, S J; Bross, A D; Cadoux, F; Cease, H; Cervera, A; Cobb, J; Colling, D; Coney, L; Dobbs, A; Dobson, J; Donini, A; Dornan, P J; Dracos, M; Dufour, F; Edgecock, R; Evans, J; Geelhoed, M; George, M A; Ghosh, T; de Gouvea, A; Gomez-Cadenas, J J; Haesler, A; Hanson, G; Harrison, P F; Hartz, M; Hernandez, P; Hernando-Morata, J A; Hodgson, P J; Huber, P; Izmaylov, A; Karadhzov, Y; Kobilarcik, T; Kopp, J; Kormos, L; Korzenev, A; Kurup, A; Kuno, Y; Kyberd, P; Lagrange, J P; Laing, A M; Link, J; Liu, A; Long, K R; McCauley, N; McDonald, K T; Mahn, K; Martin, C; Martin, J; Mena, O; Mishra, S R; Mokhov, N; Morfin, J; Mori, Y; Murray, W; Neuffer, D; Nichol, R; Noah, E; Palmer, M A; Parke, S; Pascoli, S; Pasternak, J; Popovic, M; Ratoff, P; Ravonel, M; Rayner, M; Ricciardi, S; Rogers, C; Rubinov, P; Santos, E; Sato, A; Scantamburlo, E; Sedgbeer, J K; Smith, D R; Smith, P J; Sobczyk, J T; Soldner-Rembold, S; Soler, F J P; Sorel, M; Stahl, A; Stanco, L; Stamoulis, P; Striganov, S; Tanaka, H; Taylor, I J; Touramanis, C; Tunnell, C D; Uchida, Y; Vassilopoulos, N; Wascko, M O; Wilking, M J; Weber, A; Wildner, E; Winter, W; Yang, U K

    2013-01-01

    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contrib...

  4. Muon and Tau Neutrinos Spectra from Solar Flares

    E-Print Network [OSTI]

    D. Fargion; F. Moscato

    2004-05-03

    Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeV

  5. The Neutrino Factory and Muon Collider Collaboration Large Underground Space

    E-Print Network [OSTI]

    McDonald, Kirk

    Kirk T. McDonald Princeton University June 26, 2001 Meeting with Brierley Associates Ithaca, NY http://puhep1.princeton.edu/~mcdonald/nufact/ Kirk T. McDonald June 26, 2001 1 #12; The Neutrino Factory for neutrino detectors. Kirk T. McDonald June 26, 2001 2 #12; The Neutrino Factory and Muon Collider

  6. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    E-Print Network [OSTI]

    Pei, L; Klebaner, A; Soyars, W; Bossert, R

    2015-01-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  7. Shielded RF Lattice for the Muon Front End Chris Rogers,

    E-Print Network [OSTI]

    McDonald, Kirk

    Shielded RF Lattice for the Muon Front End Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory #12; Shielded RF Lattice I wanted to remind folks a lot of slides apologies I've tried to break it up a bit #12; Part 1 Shielded Lattice Baseline

  8. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  9. PION PRODUCTION FOR NEUTRINO FACTORIES AND MUON COLLIDERS

    E-Print Network [OSTI]

    McDonald, Kirk

    PION PRODUCTION FOR NEUTRINO FACTORIES AND MUON COLLIDERS Workshop on Applications of High production for nufact/mu-collider - N.V. Mokhov Outline · Pion Production and Collection · Event Generators-independent analysis of HARP data 2 #12;AHIPA Workshop, Fermilab, October 19-21, 2009 Pion production for nufact

  10. Neutrinos from Stored Muons nuSTORM: Expression of Interest

    E-Print Network [OSTI]

    D. Adey; S. K. Agarwalla; C. M. Ankenbrandt; R. Asfandiyarov; J. J. Back; G. Barker; E. Baussan; R. Bayes; S. Bhadra; V. Blackmore; A. Blondel; S. A. Bogacz; C. Booth; S. B. Boyd; A. Bravar; S. J. Brice; A. D. Bross; F. Cadoux; H. Cease; A. Cervera; J. Cobb; D. Colling; L. Coney; A. Dobbs; J. Dobson; A. Donini; P. J. Dornan; M. Dracos; F. Dufour; R. Edgecock; J. Evans; M. A. George; T. Ghosh; A. deGouvea; J. J. Gomez-Cadenas; A. Haesler; G. Hanson; M. Geelhoed; P. F. Harrison; M. Hartz; P. Hernandez; J. A. Hernando-Morata; P. J. Hodgson; P. Huber; A. Izmaylov; Y. Karadhzov; T. Kobilarcik; J. Kopp; L. Kormos; A. Korzenev; A. Kurup; Y. Kuno; P. Kyberd; J. P. Lagrange; A. M. Laing; J. Link; A. Liu; K. R. Long; N. McCauley; K. T. McDonald; K. Mahn; C. Martin; J. Martin; O. Mena; S. R. Mishra; N. Mokhov; J. Morfin; Y. Mori; W. Murray; D. Neuffer; R. Nichol; E. Noah; M. A. Palmer; S. Parke; S. Pascoli; J. Pasternak; M. Popovic; P. Ratoff; M. Ravonel; M. Rayner; S. Ricciardi; C. Rogers; P. Rubinov; E. Santos; A. Sato; E. Scantamburlo; J. K. Sedgbeer; D. R. Smith; P. J. Smith; J. T. Sobczyk; S. Soldner-Rembold; F. J. P. Soler; M. Sorel; A. Stahl; L. Stanco; P. Stamoulis; S. Striganov; H. Tanaka; I. J. Taylor; C. Touramanis; C. D. Tunnel; Y. Uchida; N. Vassilopoulos; M. O. Wascko; A. Weber; E. Wildner; M. J. Wilking; W. Winter; U. K. Yang

    2013-05-07

    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report.

  11. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    E-Print Network [OSTI]

    Xiao, Ran; Xu, Wenzhen; Ni, Xiaojie; Pan, Ziwen; Ye, Bangjiao

    2015-01-01

    A new muon and pion capture system was proposed at the under-conduction China Spallation Neutron Source (CSNS). Using about 4 % of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated by Geant4, the bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions and to reduce proton dosages to following beam elements. According to the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-propose muon spin rotation areas(surface, decay and low-energy muons). Finally, hi...

  12. The scattering of muons in low Z materials

    E-Print Network [OSTI]

    MuScat Collaboration; D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-02

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

  13. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect (OSTI)

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  14. Analysis of ordinary and radiative muon capture in liquid hydrogen

    E-Print Network [OSTI]

    Shung-ichi Ando; Fred Myhrer; Kuniharu Kubodera

    2001-10-04

    A simultaneous analysis is made of the measured rates of ordinary muon capture (OMC) and radiative muon capture (RMC) in liquid hydrogen, using theoretical estimates for the relevant atomic capture rates that have been obtained in chiral perturbation theory with the use of the most recent values of the coupling constants. We reexamine the basic formulas for relating the atomic OMC and RMC rates to the liquid-hydrogen OMC and RMC rates, respectively. Although the analysis is significantly influenced by ambiguity in the molecular state population, we can demonstrate that, while the OMC data can be reproduced, the RMC data can be explained only with unrealistic values of the coupling constants; the degree of difficulty becomes even more severe when we try to explain the OMC and RMC data simultaneously.

  15. A Pionic Hadron Explains the Muon Magnetic Moment Anomaly

    E-Print Network [OSTI]

    Rainer W. Schiel; John P. Ralston

    2007-10-01

    A significant discrepancy exists between experiment and calculations of the muon's magnetic moment. We find that standard formulas for the hadronic vacuum polarization term have overlooked pionic states known to exist. Coulomb binding alone guarantees $\\pi^+ \\pi^-$ states that quantum mechanically mix with the $\\rho$ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for a mixing angle of order $\\alpha \\sim 10^{-2}$. The relevant physical state is predicted to give a tiny observable bump in the ratio R(s) of $e^+ e^-$ annihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon's anomalous moment.

  16. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  17. The Neutrino Factory and Muon Collider Collaboration Tests of Targets

    E-Print Network [OSTI]

    McDonald, Kirk

    .edu/mumu/target/ Kirk T. McDonald December 15, 2000 1 #12; The Neutrino Factory and Muon Collider Collaboration The Need collection efficiency. Solution: a moving target, such as a liquid metal jet. Kirk T. McDonald December 15 0.16 858 0.35 80 y 2.9 Bismuth 83 9.7 271 1610 0.12 857 0.079 120 1.3 y liquid Kirk T. Mc

  18. Measurement of the nucleon structure function using high energy muons

    SciTech Connect (OSTI)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  19. Lateral Distribution for Aligned Events in Muon Groups Deep Underground

    E-Print Network [OSTI]

    A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

    2007-01-09

    The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

  20. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    E-Print Network [OSTI]

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  1. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    E-Print Network [OSTI]

    D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

    2011-01-24

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

  2. NuFact03, June 04 -11, New York Funneling pions and muons.

    E-Print Network [OSTI]

    McDonald, Kirk

    9/9/2004 NuFact03, June 04 -11, New York Funneling pions and muons. 1 Funneling 's and µ's Bruno, New York Funneling pions and muons. 2 Proton Beam Parameters 4Beam power [MW] 50Repetition frequency bunch 140Number of bunches #12;9/9/2004 NuFact03, June 04 -11, New York Funneling pions and muons. 3 Why

  3. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  4. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science...

  5. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  6. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  7. An investigation of the spin structure of the proton in deep inelastic scattering of polarised muons on polarised protons

    E-Print Network [OSTI]

    Ashman, John Gavin; Baum, G; Beaufays, J; Bee, C P; Benchouk, C; Bird, I G; Brown, S C; Caputo, M C; Cheung, H W K; Chima, J S; Cibarowski, J; Clifft, R W; Coignet, G; Combley, F; Court, G R; D'Agostini, Giulio; Drees, J; Düren, M; Dyce, N; Edwards, A W; Edwards, M; Ernst, T; Ferrero, M I; Francis, D; Gabathuler, Erwin; Gamet, R; Gibson, V; Gillies, James D; Grafström, P; Hamacher, K; Von Harrach, D; Hayman, P J; Holt, J R; Hughes, V W; Jacholkowska, A; Jones, T; Kabuss, E M; Korzen, B; Krüner, U; Kullander, Sven; Landgraf, U; Lanske, D; Lattenstrom, F; Lindqvist, T; Loken, J G; Matthews, N; Mizuno, Y; Mönig, K; Montanet, François; Nagy, E; Nassalski, J P; Niinikoski, T O; Norton, P R; Oakham, F G; Oppenheim, R F; Osborne, A M; Papavassiliou, V; Pavel, N; Peroni, C; Peschel, H; Piegaia, R; Pietrzyk, B; Pietrzyk, U; Povh, B; Renton, P B; Rieubland, Jean Michel; Rijllart, A; Rith, K; Rondio, Ewa; Ropelewski, Leszek; Salmon, D P; Sandacz, A; Schröder, T B; Schüler, K P; Schultze, K; Shibata, T A; Sloan, Terence; Staiano, A; Stier, H E; Stock, J T; Taylor, G N; Thompson, J C; Walcher, T; Tóth, J; Urbŕn, L; Wallucks, W; Wheeler, S; Williams, D A; Williams, W S C; Wimpenny, S J; Windmolders, R; Womersley, W J; Ziemons, K

    1989-01-01

    An investigation of the spin structure of the proton in deep inelastic scattering of polarised muons on polarised protons

  8. GLOBAL OPTIMIZATION OF THE MUON COLLIDER/NEUTRINO FACTORY FRONT END

    E-Print Network [OSTI]

    McDonald, Kirk

    GLOBAL OPTIMIZATION OF THE MUON COLLIDER/NEUTRINO FACTORY FRONT END HISHAM SAYED BROOKHAVEN MEETING 10 September 2013 #12;GLOBALLY OPTIMIZING MUON TARGET & FRONT END 9/10/13 2 in bunches #12;INTRODUCTION & LAYOUT Ă? High performance Optimization Tools on NERSC Ă? Target: Ă?

  9. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  10. Flux of upward high-energy muons at the multi-component primary energy spectrum

    E-Print Network [OSTI]

    S. V. Ter-Antonyan; P. L. Biermann

    2001-06-07

    The atmospheric neutrino-induced upward muon flux are calculated by using the multi-component primary energy spectrum, CORSIKA EAS simulation code for the reproduction of the atmospheric neutrino spectra and improved parton model for charged-current cross sections. The results are obtained at 0.1-1000 TeV muon energy range and 0-89 degrees zenith angular range.

  11. Semi-analytic approximations for production of atmospheric muons and neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2001-04-19

    Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.

  12. The Neutrino Factory and Muon Collider Collaboration The R&D Program for

    E-Print Network [OSTI]

    McDonald, Kirk

    Subpanel on Long­Range Plans for US HEP http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald April 19 intense proton pulses. Kirk T. McDonald April 19, 2001 2 #12; The Neutrino Factory and Muon Collider. Kirk T. McDonald April 19, 2001 3 #12; The Neutrino Factory and Muon Collider Collaboration 2. Long

  13. Neutron production by cosmic-ray muons at shallow depth J. Busenitz,1

    E-Print Network [OSTI]

    Piepke, Andreas G.

    Neutron production by cosmic-ray muons at shallow depth F. Boehm,3 J. Busenitz,1 B. Cook,3 G Received 23 June 2000; published 12 October 2000 The yield of neutrons produced by cosmic ray muons of one and two neutron captures was determined. Modeling the neutron capture efficiency allowed us

  14. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  15. Lithium Lens ANSYS Mechanical Simula3on for Muon g-2 R. Schultz, P. Hurh (FNAL)

    E-Print Network [OSTI]

    McDonald, Kirk

    Lithium Lens ANSYS Mechanical Simula3on for Muon g-2 R. Schultz, P. Hurh (FNAL) § The Lithium Collec;on Lens was used in the Fermilab Tevatron collider, is roughly 1e6 pulses per month § Muon g-2 intends to use the Lithium Collec

  16. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  17. PHYSICAL REVIEW D VOLUME 53, NUMBER 1 1 JANUARY 1996 Measurement of the negative muon spectrum between 0.3

    E-Print Network [OSTI]

    Morselli, Aldo

    Particle Astrophysics Labor&y, New Mexico State University, Las Cmes, New Mexico 88003 M. P. De Pascale, A is momentum dependent; the low energy muon flux peaks around 150 g/cm' and higher energy muons penetrate calculations has created a renewed interest in the muon spectra as a function of the atmospheric depth (e

  18. The rest masses of the electron and muon and of the stable mesons and baryons

    E-Print Network [OSTI]

    E. L. Koschmieder

    2007-07-30

    The rest masses of the electron, the muon and of the stable mesons and baryons can be explained, within 1% accuracy, with the standing wave model, which uses only photons, neutrinos, charge and the weak nuclear force. We do not need hypothetical particles for the explanation of the masses of the electron, muon, mesons and baryons. We can also explain the charge of the electron, the spin of the electron, of the muon and of the stable baryons, without any additional assumption. We also have determined the rest masses of the electron-, muon- and tau neutrinos and found that the mass of the electron neutrino is equal to the fine structure constant times the mass of the muon neutrino.

  19. Recherche De Correlations Temporelles Des Muons Cosmiques Avec Macro Et Perte D'Energie Des Nuclearites

    E-Print Network [OSTI]

    Moussa, A

    2009-01-01

    The first parts of the thesis recalls the main features of the large MACRO experiment at the underground Gran Sasso Laboratory. It then describes the atmospheric muons measured by the experiment and the selection criteria to obtain and analyze a large sample of cosmic muons. The time series of MACRO muons was analyzed with two complementary approaches: search for the occurrence of bursts of muon events and search for periodicities in the muon time distribution. The Scan Statistics method was used in the first case and the Lomb-Scargle spectral analysis in the second case. The two techniques complete early analyses performed with "folding" methods. It is confirmed that the seasonal variation is the dominant periodic variation, and one also confirms the solar diurnal and sidereal modulations. A separate study concerns the analysis of the energy losses of the hypothetical Nuclearites in different materials and detectors; their importance for the searches performed by the MACRO and the SLIM experiments is discuss...

  20. nuSTORM and A Path to a Muon Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a ?+?- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore »in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the ?+?-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  1. A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice

    E-Print Network [OSTI]

    M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

    2009-10-22

    In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

  2. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore »peaks in the winter.« less

  3. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    E-Print Network [OSTI]

    U. Bravar; M. Bogomilov; Y. Karadzhov; D. Kolev; I. Russinov; R. Tsenov; L. Wang; F. Y. Xu; S. X. Zheng; R. Bertoni; M. Bonesini; R. Mazza; V. Palladino; G. Cecchet; A. de Bari; M. Capponi; A. Iaciofano; D. Orestano; F. Pastore; L. Tortora; S. Ishimoto; S. Suzuki; K. Yoshimura; Y. Mori; Y. Kuno; H. Sakamoto; A. Sato; T. Yano; M. Yoshida; F. Filthaut; M. Vretenar; S. Ramberger; A. Blondel; F. Cadoux; F. Masciocchi; J. S. Graulich; V. Verguilov; H. Wisting; C. Petitjean; R. Seviour; M. Ellis; P. Kyberd; M. Littlefield; J. J. Nebrensky; D. Forrest; F. J. P. Soler; K. Walaron; P. Cooke; R. Gamet; A. Alecou; M. Apollonio; G. Barber; A. Dobbs; P. Dornan; A. Fish; R. Hare; A. Jamdagni; V. Kasey; M. Khaleeq; K. Long; J. Pasternak; H. Sakamoto; T. Sashalmi; V. Blackmore; J. Cobb; W. Lau; M. Rayner; C. D. Tunnell; H. Witte; S. Yang; J. Alexander; G. Charnley; S. Griffiths; B. Martlew; A. Moss; I. Mullacrane; A. Oats; S. York; R. Apsimon; R. J. Alexander; P. Barclay; D. E. Baynham; T. W. Bradshaw; M. Courthold; R. Edgecock T. Hayler; M. Hills; T. Jones; N. McCubbin; W. J. Murray; C. Nelson; A. Nicholls; P. R. Norton; C. Prior; J. H. Rochford; C. Rogers; W. Spensley; K. Tilley; C. N. Booth; P. Hodgson; R. Nicholson; E. Overton; M. Robinson; P. Smith; D. Adey; J. Back; S. Boyd; P. Harrison; J. Norem; A. D. Bross; S. Geer; A. Moretti; D. Neuffer; M. Popovic; Z. Qian; R. Raja; R. Stefanski; M. A. C. Cummings; T. J. Roberts; A. DeMello; M. A. Green; D. Li; A. M. Sessler; S. Virostek; M. S. Zisman; B. Freemire; P. Hanlet; D. Huang; G. Kafka; D. M. Kaplan; P. Snopok; Y. Torun; Y. Onel; D. Cline; K. Lee; Y. Fukui; X. Yang; R. A. Rimmer; L. M. Cremaldi; T. L. Hart; D. J. Summers; L. Coney; R. Fletcher; G. G. Hanson; C. Heidt; J. Gallardo; S. Kahn; H. Kirk; R. B. Palmer

    2013-07-30

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.

  4. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  5. Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    E-Print Network [OSTI]

    MuLan Collaboration; D. B. Chitwood; T. I. Banks; M. J. Barnes; S. Battu; R. M. Carey; S. Cheekatmalla; S. M. Clayton; J. Crnkovic; K. M. Crowe; P. T. Debevec; S. Dhamija; W. Earle; A. Gafarov; K. Giovanetti; T. P. Gorringe; F. E. Gray; M. Hance; D. W. Hertzog; M. F. Hare; P. Kammel; B. Kiburg; J. Kunkle; B. Lauss; I. Logashenko; K. R. Lynch; R. McNabb; J. P. Miller; F. Mulhauser; C. J. G. Onderwater; C. S. Ozben; Q. Peng; C. C. Polly; S. Rath; B. L. Roberts; V. Tishchenko; G. D. Wait; J. Wasserman; D. M. Webber; P. Winter; P. A. Zolnierczuk

    2008-02-08

    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.

  6. Search for Two-Particle Muon Decay to Positron and Goldstone Massless Boson (FAMILON)

    E-Print Network [OSTI]

    Andreev, V A; Demidova, E V; Duginov, V N; Elkin, Y V; Gordeev, V A; Gritsai, K I; Gustov, S A; Ivochkin, V G; Karasev, E M; Khlopov, M Ya; Komarov, E N; Kosianenko, S V; Krivshich, A G; Levchenko, M P; Mamedov, T N; Mirokhin, I V; Olshevsky, V G; Scheglov, Y; Scherbakov, G V; Schkurenko, Y P; Sokolov, A Yu; Stoykov, A V; Vorobyev, S I; Zhdanov, A A; Zhukov, V A; Elkin, Yu.V.; Scheglov, Yu.A.; Schkurenko, Yu.P.

    2006-01-01

    The experimental test of possible expansion for the Higgs sector is proposed. The lepton family violation will be studied. To reach this goal we are going to carry out the search for the scalar Goldstone boson in the neutrinoless muon decay mu+ to e+ and alpha. The asymmetry of the muon decay near the high energy edge of Michel spectrum is to be measured. To examine previous TRIUMF data the experiment FAMILON is prepared at the surface muon beam of JINR (Dubna) accelerator. The setup consist of the precision magnetic spectrometer and the device for muSR - analysis.

  7. Search for Two-Particle Muon Decay to Positron and Goldstone Massless Boson (FAMILON)

    E-Print Network [OSTI]

    V. A. Andreev; V. S. Demidov; E. V. Demidova; V. N. Duginov; Yu. V. Elkin; V. A. Gordeev; K. I. Gritsai; S. A. Gustov; V. G. Ivochkin; E. M. Karasev; M. Yu. Khlopov; E. N. Komarov; S. V. Kosianenko; A. G. Krivshich; M. P. Levchenko; T. N. Mamedov; I. V. Mirokhin; V. G. Olshevsky; Yu. A. Scheglov; G. V. Scherbakov; A. Yu. Sokolov; Yu. P. Schkurenko; A. V. Stoykov; S. I. Vorobyev; A. A. Zhdanov; V. A. Zhukov

    2006-12-28

    The experimental test of possible expansion for the Higgs sector is proposed. The lepton family violation will be studied. To reach this goal we are going to carry out the search for the scalar Goldstone boson in the neutrinoless muon decay mu+ to e+ and alpha. The asymmetry of the muon decay near the high energy edge of Michel spectrum is to be measured. To examine previous TRIUMF data the experiment FAMILON is prepared at the surface muon beam of JINR (Dubna) accelerator. The setup consist of the precision magnetic spectrometer and the device for muSR - analysis.

  8. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  9. CP-safe Gravity Mediation and Muon g-2

    E-Print Network [OSTI]

    Sho Iwamoto; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-02-03

    We propose a CP-safe gravity mediation model, where the phases of the Higgs B parameter, scalar trilinear couplings and gaugino mass parameters are all aligned. Since all dangerous CP violating phases are suppressed, we are now safe to consider low-energy SUSY scenarios. As an application, we consider a gravity mediation model explaining the observed muon $g-2$ anomaly. The CP-safe property originates in two simple assumptions: SUSY breaking in the K\\"ahler potential and a shift symmetry of a SUSY breaking field $Z$. As a result of the shift symmetry, the imaginary part of $Z$ behaves as a QCD axion, leading to an intriguing possibility: the strong CP problem in QCD and the SUSY CP problem are solved simultaneously.

  10. Mercury Handling for the Target System for a Muon Collider

    SciTech Connect (OSTI)

    Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

  11. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  12. Superconducting solenoids for muon-cooling in the neutrino factory

    SciTech Connect (OSTI)

    Green, M.A.; Miller, J.R.; Prestemon, S.

    2001-05-12

    The cooling channel for a neutrino factory consists of a series of alternating field solenoidal cells. The first section of the bunching cooling channel consists of 41 cells that are 2.75-m long. The second section of the cooling channel consists of 44 cells that are 1.65-m long. Each cell consists of a single large solenoid with an average diameter of 1.5 m and a pair of flux reversal solenoids that have an average diameter of 0.7 to 0.9 meters. The magnetic induction on axis reaches a peak value of about 5 T at the end of the second section of the cooling channel. The peak on axis field gradients in flux reversal section approaches 33 T/m. This report describes the two types of superconducting solenoid magnet sections for the muon-cooling channel of the proposed neutrino factory.

  13. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  14. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

    2005-07-19

    Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

  15. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    E-Print Network [OSTI]

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Flaminio, V; Folger, F; Fusco, L A; Galatŕ, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Gómez-González, J P; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefčvre, D; Leonora, E; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; P?v?la?, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldańa, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúńiga, J

    2015-01-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  16. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  17. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect (OSTI)

    The Soudan 2 Collaboration

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  18. Muon Collider/Neutrino Factory Targetry R&D 2009-2012 Simulations

    E-Print Network [OSTI]

    McDonald, Kirk

    in collection pool (beam dump) 0.4 FTE engineer effort × 1 year H. Kirk, K. McDonald (July 10, 2009) #12;Muon, Latvia) 0.2 scientist effort × 3 years Travel $20k ·Use of a Pb-Bi alloy rather than Hg (?) H. Kirk, K for high TC solenoid ·0.3 engineer effort × 2 years H. Kirk, K. McDonald (July 10, 2009) #12;Muon Collider

  19. ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD

    E-Print Network [OSTI]

    Fukunaga, Chikara

    ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD Version 0 June,2000 1 Hi-pT ASIC Design in every block. There may be, therefore, maximum six hi-pT tracks found by a chip if each chip find-Packard G-link protocol. #12;ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD Version 0 June,2000 2

  20. High-Energy Cosmic-Ray Muons Under Thick Layers of Matter I. a Method to Solve the Transport Equation

    E-Print Network [OSTI]

    V. A. Naumov; S. I. Sinegovsky; E. V. Bugaev

    1993-01-22

    An effective analytical method for calculating energy spectra of cosmic-ray muons at large depths of homogeneous media is developed. The method allows to include an arbitrary (decreasing) muon spectrum at the medium boundary and the energy dependence of both discrete (radiative and photonuclear) and continuous (ionization) muon energy losses, with resonable requirements for the high-energy behavior of the initial spectrum and differential cross sections of the muon-matter interactions. (To be published in the Proceedings of the Second NESTOR International Workshop, 19 -- 21 October 1992, Pylos, Greece.)

  1. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect (OSTI)

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  2. Discovering Tau and Muon Solar Neutrino Flares above backgrounds

    E-Print Network [OSTI]

    D. Fargion; F. Moscato

    2004-07-11

    Solar neutrino flares astronomy is at the edge of its discover. High energy flare particles (protons, alpha) whose self scattering within the solar corona is source of a rich prompt charged pions are also source of sharp solar neutrino "burst" (at tens-hundred MeV) produced by their pion-muon primary decay in flight. This brief (minute) solar neutrino "burst" at largest peak overcome by four-five order of magnitude the steady atmospheric neutrino noise at the Earth. Later on, solar flare particles hitting the terrestrial atmosphere may marginally increase the atmospheric neutrino flux without relevant consequences. Largest prompt "burst" solar neutrino flare may be detected in present or better in future largest neutrino underground neutrino detectors. Our estimate for the recent and exceptional October - November 2003 solar flares gives a number of events above or just near unity for Super-Kamiokande. The neutrino spectra may reflect in a subtle way the neutrino flavour mixing in flight. A surprising tau appearance may even occur for a hard ({E}_{nu}_{mu}--> {E}_{nu}_{tau} > 4 GeV) flare spectra. A comparison of the solar neutrino flare (at their birth place on Sun and after oscillation on the arrival on the Earth) with other neutrino foreground is here described and it offer an independent road map to disentangle the neutrino flavour puzzles and its secret flavour mixing angles .

  3. Feasibility study of heavy ion beams and compound target materials for muon production

    E-Print Network [OSTI]

    Jaebum Son; Ju Hahn Lee; Gi Dong Kim; Yong Kyun Kim

    2015-07-15

    We have investigated the feasibility of using compound materials as target for muon production by virtue of simulations using a GEANT4 toolkit. A graphite and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C) were considered as muon production targets and their muon production rates for 600-MeV proton beam were calculated and compared. For thermal analysis, total heat deposited on the targets by the proton beams and the secondary particles was calculated with a MCNPX code, and then the temperature distribution of target was derived from the calculated heat by using an ANSYS code with consideration for heat transfer mechanisms, such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with that obtained for a proton beam.

  4. Feasibility study of heavy ion beams and compound target materials for muon production

    E-Print Network [OSTI]

    Son, Jaebum; Kim, Gi Dong; Kim, Yong Kyun

    2015-01-01

    We have investigated the feasibility of using compound materials as target for muon production by virtue of simulations using a GEANT4 toolkit. A graphite and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C) were considered as muon production targets and their muon production rates for 600-MeV proton beam were calculated and compared. For thermal analysis, total heat deposited on the targets by the proton beams and the secondary particles was calculated with a MCNPX code, and then the temperature distribution of target was derived from the calculated heat by using an ANSYS code with consideration for heat transfer mechanisms, such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with that obtained for a proton beam.

  5. BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY (IPAC11 with shielding out to 1.2 m radius. W-C shielding likely needed beyond the target station, where ~ 800 kW power-carbide + water shielding of superconducting magnets for the target station at a Muon Collider or Neutrino Factory

  6. Compact storage ring to search for the muon electric dipole moment

    E-Print Network [OSTI]

    A. Adelmann; K. Kirch; C. J. G. Onderwater; T. Schietinger

    2009-06-25

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment of the muon ($d_\\mu$) by adapting the "frozen spin" method. At existing muon facilities a statistics limited sensitivity of $d_\\mu \\sim 5 \\times 10^{-23} \\ecm$ can be achieved within one year of data taking. Reaching this precision would demonstrate the viability of this novel technique to directly search for charged particle EDMs and already test a number of Standard Model extensions. At a future, high-power muon facility a statistical reach of $d_\\mu \\sim 5 \\times 10^{-25} \\ecm$ seems realistic with this setup.

  7. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  8. Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth

    E-Print Network [OSTI]

    G. Bellini; J. Benziger; D. Bick; G. Bonfini; D. Bravo; M. Buizza Avanzini; B. Caccianiga; L. Cadonati; F. Calaprice; C. Carraro; P. Cavalcante; A. Chavarria; A. Chepurnov; D. D'Angelo; S. Davini; A. Derbin; A. Etenko; F. von Feilitzsch; K. Fomenko; D. Franco; C. Galbiati; S. Gazzana; C. Ghiano; M. Giammarchi; M. Goeger-Neff; A. Goretti; L. Grandi; E. Guardincerri; C. Hagner; S. Hardy; Aldo Ianni; Andrea Ianni; D. Korablev; G. Korga; Y. Koshio; D. Kryn; M. Laubenstein; T. Lewke; E. Litvinovich; B. Loer; F. Lombardi; P. Lombardi; L. Ludhova; I. Machulin; S. Manecki; W. Maneschg; G. Manuzio; Q. Meindl; E. Meroni; L. Miramonti; M. Misiaszek; D. Montanari; P. Mosteiro; V. Muratova; L. Oberauer; M. Obolensky; F. Ortica; K. Otis; M. Pallavicini; L. Papp; L. Perasso; S. Perasso; A. Pocar; R. S. Raghavan; G. Ranucci; A. Razeto; A. Re; A. Romani; A. Sabelnikov; R. Saldanha; C. Salvo; S. Schönert; H. Simgen; M. Skorokhvatov; O. Smirnov; A. Sotnikov; S. Sukhotin; Y. Suvorov; R. Tartaglia; G. Testera; D. Vignaud; R. B. Vogelaar; J. Winter; M. Wojcik; A. Wright; M. Wurm; J. Xu; O. Zaimidoroga; S. Zavatarelli; G. Zuzel

    2012-11-22

    We have measured the muon flux at the underground Gran Sasso National Laboratory (3800 m w.e.) to be (3.41 \\pm 0.01) \\times 10-4m-2s-1 using four years of Borexino data. A modulation of this signal is observed with a period of (366\\pm3) days and a relative amplitude of (1.29 \\pm 0.07)%. The measured phase is (179 \\pm 6) days, corresponding to a maximum on the 28th of June. Using the most complete atmospheric data models available, muon rate fluctuations are shown to be positively correlated with atmospheric temperature, with an effective coefficient {\\alpha}T = 0.93 \\pm 0.04. This result represents the most precise study of the muon flux modulation for this site and is in good agreement with expectations.

  9. Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

    E-Print Network [OSTI]

    Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

    2014-01-01

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

  10. Distortions of Experimental Muon Arrival Time Distributions of Extensive Air Showers by the Observation Conditions

    E-Print Network [OSTI]

    R. Haeusler; A. F. Badea; H. Rebel; I. M. Brancus; J. Oehlschlaeger

    2001-10-17

    Event-by-event measured arrival time distributions of Extensive Air Shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (R < 200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.

  11. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    E-Print Network [OSTI]

    The MACRO Collaboration; M. Ambrosio et al

    1998-07-09

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  12. Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele, Department of Physics, University of California, Berkeley;

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele National Labs, Berkeley, CA 94720 Abstract Ionization cooling of muon beams is a crucial component of the proposed muon collider and neutrino factory. Cur- rent studies of cooling channels predominantly use simula

  13. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-04-28

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6--18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  14. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  15. Status of Studies of Achromat-based 6D Ionization Cooling Rings for Muons

    SciTech Connect (OSTI)

    Ding, X.; Kirk, H.; Cline, D.; Garren, A.A.; Berg, J.S.

    2011-09-04

    Six dimensional ionization cooling of muons is needed to achieve the necessary luminosity for a muon collider. If that cooling could occur over multiple turns in a closed ring, there would be significant cost savings over a single-pass cooling channel. We report on the status of a cooling ring with achromatic arcs. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring. The ring is designed with sufficient space in each superperiod for injection and extraction magnets. We describe the ring's lattice design, performance, and injection/extraction requirements.

  16. Data acquisition system for the MuLan muon lifetime experiment

    E-Print Network [OSTI]

    V. Tishchenko; S. Battu; S. Cheekatmalla; D. B. Chitwood; S. Dhamija; T. P. Gorringe; F. Gray; K. R. Lynch; I. Logashenko; S. Rath; D. M. Webber

    2008-02-07

    We describe the data acquisition system for the MuLan muon lifetime experiment at Paul Scherrer Institute. The system was designed to record muon decays at rates up to 1 MHz and acquire data at rates up to 60 MB/sec. The system employed a parallel network of dual-processor machines and repeating acquisition cycles of deadtime-free time segments in order to reach the design goals. The system incorporated a versatile scheme for control and diagnostics and a custom web interface for monitoring experimental conditions.

  17. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    SciTech Connect (OSTI)

    Blum, Thomas [Univ. of Connecticut, Storrs, CT (United States); Brookhaven National Lab., Upton, NY (United States); Chowdhury, Saumitra [Univ. of Connecticut, Storrs, CT (United States); Hayakawa, Masashi [Nagoya Univ. (Japan); Nishina Center, RIKEN, Wako, Saitama (Japan); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  18. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  19. Prompt muon-induced fission: a probe for nuclear energy dissipation

    E-Print Network [OSTI]

    Volker E. Oberacker

    1999-05-04

    We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

  20. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  1. A Small Multi-Wire Telescope for High Energy Cosmic Ray Muon Detection

    E-Print Network [OSTI]

    Maghrabi, Abdullrahnan; Aldosari, A; Almuteri, M

    2016-01-01

    Different types of ground-based detectors have been developed and deployed around the world to monitor and study CR variations. We have designed, constructed and operated a three layer small (20x20 cm2) multiwire proportional chamber MWPC telescope for cosmic ray muon observations. In this paper, the technical aspects of this detector will be briefly discussed. The abilities of the telescope in detecting high nergy cosmic ray muons (primaries higher than 20 GeV) were established. The telescope performs well in this sense and showed comparable results with a 1 m2 scintillator detector.

  2. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  3. Construction and test of MDT chambers for the ATLAS muon spectrometer

    E-Print Network [OSTI]

    Bauer, F; Dietl, H; Kroha, H; Lagouri, T; Manz, A; Ostapchuk, A Ya; Richter, R; Schael, S; Chouridou, S; Deile, M; Kortner, O; Staude, A; Ströhmer, R; Trefzger, T M

    2001-01-01

    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurized drift tubes on either side ofa space frame carrying an optical monitoring system to correct fordeformations. The full-scale prototype of a large MDT chamber has been constructed with methods suitable for large-scale production. X-ray measurements at CERN showed a positioning accuracy of the sense wires in the chamber of better than the required 20 micrometers (rms). The performance of the chamber was studied in a muon beam at CERN. Chamber production for ATLAS now has started.

  4. Measurement of the Muon content of Extensive Air Showers with the Pierre Auger Observatory

    E-Print Network [OSTI]

    J. Espadanal; for the Pierre Auger Collaboration

    2015-05-20

    Several methods developed within the Pierre Auger Collaboration for the estimation of the muonic component of the Extensive Air Showers observed in the surface Cherenkov detectors are described. The results derived from the data show a deficit of muons predicted by the current hadronic interactions models at ultra-high energies.

  5. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect (OSTI)

    Psihas Olmedo, Silvia Fernanda

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  6. On the Rejection of Fake Muons in AMANDA using Neural Networks

    E-Print Network [OSTI]

    Wiebusch, Christopher

    On the Rejection of Fake Muons in AMANDA using Neural Networks Alexander Biron, Sabine Schilling This report describes the use of an artificial neural network in the final quality analysis for AMANDA. Aim the reconstructed tracks and are fed as inputs into the neural network. We use a simple feedforward architecture

  7. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  8. Physics Opportunities at a Muon Collider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    of TeV of constituent CoM energy. . That a Muon Collider is the best option to accomplish the above. 2 solenoids (to avoid buildup of angular momentum). The Energy Spread Rises due to ``Straggling'' # Must reduce energy spread by a wedge absorber at a momentum dispersion point: Absorber wedge Nominal energy

  9. Study of the performance of the MicroMegas chambers for the ATLAS Muon Spectrometer Upgrade

    E-Print Network [OSTI]

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution in highly irradiated environments. In 2007 an ambitious long-term R&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2018 and 2019 during the second long shutdown of the Large Hadron Collider, and will serve as precision detectors in the innermost part of the ATLAS Muon Spectrometer. Eight layers of Micromegas modules of unprecedented size, up to 3 $\\rm{{m^2}}$, will cover a surface of 150 $\\rm{{m^2}}$ for a total active area of about 1200 $\\rm{{m^2}}$. This upgrade will be crucial to ensure high quality performance for the ATLAS Muon Spectrometer in view of the third run of the Large Hadron Collider and...

  10. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

  11. SHIELDING STUDIES FOR THE MUON COLLIDER TARGET (From STUDY II to IDS120f Geometries)

    E-Print Network [OSTI]

    McDonald, Kirk

    COLLECTING TANK (BEAM DUMP) AND REMOVAL SYSTEM. 8. SHIELDING CONFIGURATIONS (WC BEADS+H2O). 2 #12;TARGETSHIELDING STUDIES FOR THE MUON COLLIDER TARGET (From STUDY II to IDS120f Geometries) NICHOLAS. RADIATION DAMAGE. STRUCTURAL/MECHANICAL LIMITS FOR SUPERCONDUCTING COILS. SHIELDING MATERIAL. RESULTS

  12. Design and optimization of a particle selection system for muon based applications

    E-Print Network [OSTI]

    McDonald, Kirk

    are generated that deposit heat in superconducting materials and activate the machine. In this study we describe ·Scanned chicane length and angle · Defined performance in terms of ­ Muon transmission from 80 to 260 Me the point with best transmission and fitted results to a mathematical expression (yellow line) Summary ·We

  13. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  14. The Neutrino Factory and Muon Collider Collaboration The R&D Program for

    E-Print Network [OSTI]

    McDonald, Kirk

    , May 26, 2001 http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald May 26, 2001 1 #12 target is feasible for beam power of 4 MW (and more). Kirk T. McDonald May 26, 2001 2 #12; The Neutrino Target system support facility. Kirk T. McDonald May 26, 2001 3 #12; The Neutrino Factory and Muon

  15. Simulation of High-Power Mercury Jet Targets for Neutrino Factory and Muon

    E-Print Network [OSTI]

    McDonald, Kirk

    Simulation of High-Power Mercury Jet Targets for Neutrino Factory and Muon Collider R. Samulyak,1 interacting with proton pulses in 15-20T magnetic field is a key element of high-power target systems · Proof rarefaction waves · Cavities can form on inter-particle size scales · Present work focuses of pure hydro

  16. Neutrino Physics at a Muon Collider K.T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    GeV: light Higgs, calibrate on Z0. Cost: > 1$B. Could the case be strengthened by ancillary physics-energy (and ) beams exist in the early stages of a muon collider. 2 #12;Summary of Ancillary Physics than a horn. Bottom line: Present understanding of ancillary physics capabilities does not provide

  17. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  18. FFAGS FOR MUON ACCELERATION J. Scott Berg, Stephen Kahn, Robert Palmer, Dejan Trbojevic,

    E-Print Network [OSTI]

    Keil, Eberhard

    the desired energy gain. An alter- native method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelera- tor has a very large energy acceptance (a factor of two with time. The arc must be able to transmit a beam over a wide range of energies. The first difficulty

  19. High-energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory

    E-Print Network [OSTI]

    Sukanta Panda; Sergei I. Sinegovsky

    2008-02-04

    We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behaviour of hadronic cross-sections relevant at very high energies.

  20. SHIELDING OF SUPERCONDUCTING COILS FOR A 4-MW MUON-COLLIDER TARGET SYSTEM

    E-Print Network [OSTI]

    McDonald, Kirk

    SHIELDING OF SUPERCONDUCTING COILS FOR A 4-MW MUON-COLLIDER TARGET SYSTEM R.J. Weggel , N. Souchlas intercoil gaps to 40% of the O.D. of the flanking coils. Longitudinal sag of the tungsten shielding vessels an aggregate cross section of 0.1 m2 ; the cryogenic heat leakage may be large. The innermost shielding vessel

  1. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_?$: Quo vadis? Workshop. Mini proceedings

    E-Print Network [OSTI]

    Maurice Benayoun; Johan Bijnens; Tom Blum; Irinel Caprini; Gilberto Colangelo; Henryk Czy?; Achim Denig; Cesareo A. Dominguez; Simon Eidelman; Christian S. Fischer; Paolo Gauzzi; Yuping Guo; Andreas Hafner; Masashi Hayakawa; Gregorio Herdoiza; Martin Hoferichter; Guangshun Huang; Karl Jansen; Fred Jegerlehner; Benedikt Kloss; Bastian Kubis; Zhiqing Liu; William Marciano; Pere Masjuan; Harvey B. Meyer; Tsutomu Mibe; Andreas Nyffeler; Vladimir Pascalutsa; Vladyslav Pauk; Michael R. Pennington; Santiago Peris; Christoph F. Redmer; Pablo Sanchez-Puertas; Boris Shwartz; Evgeny Solodov; Dominik Stoeckinger; Thomas Teubner; Marc Unverzagt; Marc Vanderhaeghen; Magnus Wolke

    2014-07-21

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  2. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect (OSTI)

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  3. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  4. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  5. Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

  6. Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

  7. R&D Towards a Muon Collider H. Guler (undergraduate student), C. Lu, K.T. McDonald,

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Princeton muon collider page: http://www.hep.princeton.edu/�mcdonald/mumu 1 #12; Options (?). . Muon collider: # $1B for source/cooler + $100k/m for rings Well­defined leptonic initial state. m µ /m; Targetry Issues . 1­ns beam pulse # shock heating of target. -- Resulting pressure wave may disperse liquid

  8. R&D Towards a Muon Collider H. Guler (undergraduate student), C. Lu, K.T. McDonald,

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Princeton muon collider page: http://www.hep.princeton.edu/~mcdonald/mumu 1 #12;Options collider: $1B for source/cooler + $100k/m for rings Well-defined leptonic initial state. m/me 200 Little of the muon bunch). 7 #12;Targetry Issues · 1-ns beam pulse shock heating of target. ­ Resulting pressure

  9. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  10. Reconcile muon g-2 anomaly with LHC data in SUGRA with generalized gravity mediation

    E-Print Network [OSTI]

    Fei Wang; Wenyu Wang; Jin Min Yang

    2015-05-29

    From generalized gravity mediation we build a SUGRA scenario in which the gluino is much heavier than the electroweak gauginos at the GUT scale. We find that such a non-universal gaugino scenario with very heavy gluino at the GUT scale can be naturally obtained with proper high dimensional operators in the framework of SU(5) GUT. Then, due to the effects of heavy gluino, at the weak scale all colored sparticles are heavy while the uncolored sparticles are light, which can explain the Brookhaven muon g-2 measurement while satisfying the collider constraints (both the 125 GeV Higgs mass and the direct search limits of sparticles) and dark matter requirements. We also find that, in order to explain the muon g-2 measurement, the neutralino dark matter is lighter than 200 GeV in our scenario, which can be mostly covered by the future Xenon1T experiment.

  11. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  12. Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics

    E-Print Network [OSTI]

    Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

    2004-03-30

    Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p -> 1s and the 3d -> 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 - 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission.

  13. A Decisive Disappearance Search at High-$\\Delta m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    Axani, S; Conrad, JM; Shaevitz, MH; Spitz, J; Wongjirad, T

    2015-01-01

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  14. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

    SciTech Connect (OSTI)

    C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz

    2010-05-01

    Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.

  15. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute(Armenia)

    2011-07-01

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  16. Irradiation of Nuclear Track Emulsions with Thermal Neutrons, Heavy Ions, and Muons

    E-Print Network [OSTI]

    D. A. Artemenkov; V. Bradnova; A. A. Zaitsev; P. I. Zarubin; I. G. Zarubina; R. R. Kattabekov; K. Z. Mamatkulov; V. V. Rusakova

    2015-08-11

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n$_{th} + ^{10}$B $\\rightarrow ^{7}$Li $+ (\\gamma) + \\alpha$ were studied in nuclear tack emulsions enriched in boron. Nuclear track emulsions were also irradiated with $^{86}$Kr$^{+17}$ and $^{132}$Xe$^{+26}$ of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsions made it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nuclear-diffraction interaction mechanism.

  17. A Decisive Disappearance Search at High-$?m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    S Axani; G Collin; JM Conrad; MH Shaevitz; J Spitz; T Wongjirad

    2015-06-18

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  18. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    E-Print Network [OSTI]

    A. Anastasi; D. Babusci; F. Baffigi; G. Cantatore; D. Cauz; G. Corradi; S. Dabagov; G. Di Sciascio; R. Di Stefano; C. Ferrari; A. T. Fienberg; A. Fioretti; L. Fulgentini; C. Gabbanini; L. A. Gizzi; D. Hampai; D. W. Hertzog; M. Iacovacci; M. Karuza; J. Kaspar; P. Koester; L. Labate; S. Mastroianni; D. Moricciani; G. Pauletta; L. Santi; G. Venanzoni

    2015-04-01

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  19. The Neutrino Factory and Muon Collider Collaboration The R&D Program for

    E-Print Network [OSTI]

    McDonald, Kirk

    , May 26, 2001 http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald May 26, 2001 1 #12;The Neutrino is feasible for beam power of 4 MW (and more). Kirk T. McDonald May 26, 2001 2 #12;The Neutrino Factory facility. Kirk T. McDonald May 26, 2001 3 #12;The Neutrino Factory and Muon Collider Collaboration Pion

  20. The Neutrino Factory and Muon Collider Collaboration The Target System and Support Facility

    E-Print Network [OSTI]

    McDonald, Kirk

    , May 4, 2001 http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald May 4, 2001 1 #12; The Neutrino target is feasible for beam power of 4 MW (and more). Kirk T. McDonald May 4, 2001 2 #12; The Neutrino Target system support facility. Kirk T. McDonald May 4, 2001 3 #12; The Neutrino Factory and Muon

  1. The Neutrino Factory and Muon Collider Collaboration The R&D Program for

    E-Print Network [OSTI]

    McDonald, Kirk

    , BNL http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald June 15, 2000 1 #12; The Neutrino with phase­rotation via rf (to compress the bunch energy). Kirk T. McDonald June 15, 2000 2 #12; The Neutrino For 1.5 MW beam Kirk T. McDonald June 15, 2000 3 #12; The Neutrino Factory and Muon Collider

  2. Precise determination of muon and electromagnetic shower contents from shower universality property

    E-Print Network [OSTI]

    A. Yushkov; M. Ambrosio; C. Aramo; F. Guarino; D. D'Urso; L. Valore

    2010-04-21

    We consider two new aspects of Extensive Air Shower development universality allowing to make accurate estimation of muon and electromagnetic (EM) shower contents in two independent ways. In the first case, to get muon (or EM) signal in water Cherenkov tanks or in scintillator detectors it is enough to know the vertical depth of shower maximum and the total signal in the ground detector. In the second case, the EM signal can be calculated from the primary particle energy and the zenith angle. In both cases the parametrizations of muon and EM signals are almost independent on primary particle nature, energy and zenith angle. Implications of the considered properties for mass composition and hadronic interaction studies are briefly discussed. The present study is performed on 28000 of proton, oxygen and iron showers, generated with CORSIKA 6.735 for $E^{-1}$ spectrum in the energy range log(E/eV)=18.5-20.0 and uniformly distributed in cos^2(theta) in zenith angle interval theta=0-65 degrees for QGSJET II/Fluka interaction models.

  3. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    E-Print Network [OSTI]

    Kobayashi, Dai; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20fb-1 in 2012, which required dedicated strategies to guard the highest possible physics output while reducing effectively the event rate. The Muon High Level Trigger has successfully adapted to the changing environment of a low luminosity in 2010 to the luminosities encountered in 2012. The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher center of mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain a h...

  4. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    E-Print Network [OSTI]

    Kobayashi, Dai; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20 fb?1 in 2012, which required dedicated strategies to guard the highest possible physics output while reducing effectively the event rate. The Muon High Level Trigger has successfully adapted to the changing environment of a low luminosity in 2010 to the luminosities encountered in 2012. The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher center of mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain ...

  5. Study of high pressure gas filled RF cavities for muon collider

    E-Print Network [OSTI]

    Yonehara, Katsuya

    2015-01-01

    Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

  6. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  7. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  8. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  9. Design and Construction of Large Size Micromegas Chambers for the Upgrade of the ATLAS Muon Spectrometer

    E-Print Network [OSTI]

    Lösel, Philipp

    2015-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about $\\mathbf{150~m^2}$ of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each layer covers more than $\\mathbf{2~m^2}$ for a total active area of $\\mathbf{1200~m^2}$. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15$\\mathbf{\\%}$ transverse momentum resolution for $\\mathbf{1~TeV}$ muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as $\\mathbf{30~\\mu m}$ along the precision coordinate and $\\mathbf{80~\\mu m}$ perpendicular to the chamber. The design and construction procedure of the Micromegas modules will be presented, as well as the design for the assembly ...

  10. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    E-Print Network [OSTI]

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  11. Matched Optics of Muon RLA and Non-Scaling FFAG ARCS

    SciTech Connect (OSTI)

    V.S. Morozov, S.A. Bogacz, Y. Roblin, K.B. Beard, D. Trbojevic

    2011-03-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes’ energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs.

  12. Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    E-Print Network [OSTI]

    A. V. Glushkov; I. T. Makarov; M. I. Pravdin; I. E. Sleptsov; D. S. Gorbunov; G. I. Rubtsov; S. V. Troitsky

    2008-02-18

    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \\sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.

  13. Isolated electrons and muons in events with missing transverse momentum at HERA

    E-Print Network [OSTI]

    Andreev, V; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boudry, V; Bracinik, J; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kueckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, Terence; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Chechelnitskii, S; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winde, M; Winter, G G; Wissing, C; Woerling, E E; Wünsch, E; Wyatt, A C; Zácek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    A search for events with a high energy isolated electron or muon and missing transverse momentum has been performed at the electron-proton collider HERA using an integrated luminosity of 13.6 pb-1 in e-p scattering and 104.7 pb-1 in e+p scattering. Within the Standard Model such events are expected to be mainly due to W boson production with subsequent leptonic decay. In e-p interactions one event is observed in the electron channel and none in the muon channel, consistent with the expectation of the Standard Model. In the e+p data a total of 18 events are seen in the electron and muon channels compared to an expectation of 12.4 \\pm 1.7 dominated by W production (9.4 \\pm 1.6). Whilst the overall observed number of events is broadly in agreement with the number predicted by the Standard Model, there is an excess of events with transverse momentum of the hadronic system greater than 25 GeV with 10 events found compared to 2.9 \\pm 0.5 expected. The results are used to determine the cross section for events with ...

  14. Design and Construction of Large Size Micromegas Chambers for the Upgrade of the ATLAS Muon Spectrometer

    E-Print Network [OSTI]

    Philipp Lösel; Ralph Müller

    2015-08-11

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about $\\mathbf{150~m^2}$ of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each layer covers more than $\\mathbf{2~m^2}$ for a total active area of $\\mathbf{1200~m^2}$. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15$\\mathbf{\\%}$ transverse momentum resolution for $\\mathbf{1~TeV}$ muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as $\\mathbf{30~\\mu m}$ along the precision coordinate and $\\mathbf{80~\\mu m}$ perpendicular to the chamber. The design and construction procedure of the Micromegas modules will be presented, as well as the design for the assembly of modules onto the New Small Wheel. Emphasis will be on the methods developed to achieve the challenging mechanical precision. Measurements and simulations of deformations created on chamber prototypes as a function of thermal gradients, internal stress (mesh tension and module fixation on supports) and gas over-pressure were essential in the development of the final design. During installation and operation all deformations and relative misalignments will be monitored by an optical alignment system and compensated in the tracking software.

  15. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  16. Analysis of RE4 Construction Cosmic Muon Test Data and Comparison with 2015 Collision Calibration Run Data for the Newly Installed RPC Chambers in the 4th Muon Endcap Station of the CMS Detector

    E-Print Network [OSTI]

    Iqbal, Muhammad Ansar

    2015-01-01

    RPC are the heart of the muon system of CMS experiment at LHC, CERN. Recently a new endcap layer, RE4, was added to increase redundancy. These added chambers were tested during the construction period with cosmic muons in the 904 lab at Prevessin, CERN. This study analyzes the HV scan from those tests and compares them with the first 2015 collision data taken at Point-5. The analysis showed that most of the chambers were producing more than 90% efficiency and were in good agreement with the Point-5 results. Those which did not give good results were reported. Other variables like working point and maximum efficiency were also studied.

  17. Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    E-Print Network [OSTI]

    D. M. Webber; V. Tishchenko; Q. ~Peng; S. Battu; R. M. Carey; D. B. Chitwood; J. Crnkovic; P. T. Debevec; S. Dhamija; W. Earle; A. Gafarov; K. Giovanetti; T. P. Gorringe; F. E. Gray; Z. Hartwig; D. W. Hertzog; B. Johnson; P. Kammel; B. Kiburg; S. Kizilgul; J. Kunkle; B. Lauss; I. Logashenko; K. R. Lynch; R. McNabb; J. P. Miller; F. Mulhauser; C. J. G. Onderwater; J. Phillips; S. Rath; B. L. Roberts; P. Winter; B. Wolfe

    2010-12-06

    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.

  18. Muon anomalous magnetic moment in a $SU(4) \\otimes U(1)_N$ model without exotic electric charges

    E-Print Network [OSTI]

    D. Cogollo

    2014-11-11

    We study an electroweak gauge extension of the standard model, so called 3-4-1 model, which does not contain exotic electric charges and it is anomaly free. We discuss phenomenological constraints of the model and compute all the corrections to the muon magnetic moment. Mainly, we discuss different mass regimes and their impact on this correction, deriving for the first time direct limits on the masses of the neutral fermions and charged vector bosons. Interestingly, the model could address the reported muon anomalous magnetic moment excess, however it would demands a rather low scale of symmetry breaking, far below the current electroweak constraints on the model. Thus, if this excess is confirmed in the foreseeable future by the g-2 experiment at FERMILAB, this 3-4-1 model can be decisively ruled out since the model cannot reproduce a sizeable and positive contribution to the muon anomalous magnetic moment consistent with current electroweak limits.

  19. Downward Muon Intensity at Surface dI 0 (E 0 ; cos )

    E-Print Network [OSTI]

    Learned, John

    Downward Muon Intensity at Surface dI #22;0 (E #22;0 ; cos #18;) dE #22;0 = 0:14 #1; E #22;0 #1; 0 B @ 1 1 + 1:1E #22;0 cos #18; #3; 115 GeV + 0:054 1 + 1:1E #22;0 cos #18; ? 850 GeV + R c 1 C A Ref Approx. Isotropic H.E. Primary C.R. Flux Depth of Atmosphere a( ) q -1 -0.5 0 0.5 1 cos q 10 100 1000

  20. Fabrication of the prototype 201.25 mhz cavity for a muon ionization cooling experiment

    SciTech Connect (OSTI)

    Rimmer, R.A.; Manning, S.; Manus, R.; Phillips, L.; Stirbet, M.; Worland, K.; Wu, G.; Li, D.; MacGill, R.; Staples, J.; Virostek, S.; Zisman, M.S.; Taminger, K.; Hafley, R.; Martin, R.; Summers, D.; Reep, M.

    2005-05-20

    We describe the fabrication and assembly of the first prototype 201. 25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new MUCOOL Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Some of the methods developed for this cavity are novel and offer significant cost savings over conventional methods.

  1. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    E-Print Network [OSTI]

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  2. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Harigaya, Keisuke; Yokozaki, Norimi

    2015-01-01

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  3. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Keisuke Harigaya; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-01-29

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  4. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMay AdvancedMuon Radiography at LANL Nuclear

  5. Measurement of the Positive Muon Lifetime and Determination of the Fermi

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelement method in the muon+jets final state

  6. Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement of Muon Neutrino and Antineutrino

  7. was a decisive one as in the studies of hyperon rare decays at FNAL (E715 and E761 experi ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic

    E-Print Network [OSTI]

    Titov, Anatoly

    ­ ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic nuclei nuclear fusion reactions was successfully carried out in the muon channel of the SC. The muon beam is also intensity (1ŻA) make this accelerator valuable even in the up­to­date nuclear studies. For example

  8. A new part-per-million measurement of the positive muon lifetime and determination of the Fermi Constant

    E-Print Network [OSTI]

    David M. Webber

    2011-09-29

    The Fermi Constant, G_F, describes the strength of the weak force and is determined most precisely from the mean life of the positive muon, tau_mu. Advances in theory have reduced the theoretical uncertainty on G_F as calculated from tau_mu to a few tenths of a part per million (ppm). Until recently, the remaining uncertainty on G_F was entirely experimental and dominated by the uncertainty on tau_mu. We report the MuLan collaboration's recent 1.0 ppm measurement of the positive muon lifetime. This measurement is over a factor of 15 more precise than any previous measurement, and is the most precise particle lifetime ever measured. The experiment used a time-structured low-energy muon beam and an array of plastic scintillators read-out by waveform digitizers and a fast data acquisition system to record over 2 times 10^{12} muon decays. Two different in-vacuum muon-stopping targets were used in separate data-taking periods. The results from these two data-taking periods are in excellent agreement. The combined results give tau_{mu^+}({MuLan})=2196980.3(2.2) ps. This measurement of the muon lifetime gives the most precise value for the Fermi Constant: G_F({MuLan}) = 1.1663788 (7) \\times 10^{-5} {GeV}^{-2} (0.6 ppm). The lifetime is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.

  9. A Discrimination Procedure between Muon and Electron in Superkamiokande Experiment Based on the Angular Distribution Function Method

    E-Print Network [OSTI]

    V. I. Galkin[1; A. M. Anokhina[1; E. Konishi[2; A. Misaki{3

    2007-03-29

    In the previous paper, we construct the angular distribution functions for muon and electron as well as their relative fluctuation functions to find suitable discrimination procedure between muon and electron in Superkamiokande experiment. In the present paper, we are able to discriminate muons from electrons in Fully Contained Events with a probability of error of less than several %. At the same time, our geometrical reconstruction procedure, considering only the ring-like structure of the Cherenkov image, gives an unsatisfactory resolution for 1GeV electron and muon, with a mean vertex position error, delta r, of 5-10 m and a mean directional error, delta theta, of about 6-20 degrees. In contrast, a geometrical reconstruction procedure utilizing the full image and using a detailed approximation of the event angular distribution works much better: for a 1 GeV electron, delta r is about 2 m and delta theta is about 3 degrees; for a 1GeV muon, delta r is about 3 m and delta theta is about 5 degrees. At 5 GeV, the corresponding values are about 1.4 m and about 2 degree for electron and are about 2.9m and about 4.3 degrees for muon. The numerical values depend on a single PMT contribution threshold. The values quoted above are the minima with respect to this threshold. Even the methodologically correct approach we have adopted, based on detailed simulations using closer approximations than those adopted in the SK analysis, cannot reproduce the accuracies for particle discrimination, momentum resolution, interaction vertex location, and angular resolution obtained by the SK simulations, suggesting the assumptions in these may be inadequate.

  10. An additional study of multi-muon events produced in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Fermilab

    2011-11-01

    We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb{sup -1}. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

  11. Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector

    E-Print Network [OSTI]

    D0 Collaboration

    2013-02-22

    We present a search for Higgs bosons in multilepton final states in pp-bar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb-1. The multilepton states considered are two electron plus muon, electron with two muons, muon with two hadronic tau leptons, and like-charge electron-muon pairs. These channels directly probe the HVV (V=W,Z) coupling of the Higgs boson in production and decay. The muon with two hadronic tau lepton channel is also sensitive to H to tau lepton pair decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 Higgs boson model.

  12. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  13. Muon conversion to electron in nuclei in type-I seesaw models

    E-Print Network [OSTI]

    Rodrigo Alonso; Mikael Dhen; Belen Gavela; Thomas Hambye

    2012-10-08

    We compute the muon to electron conversion in the type-I seesaw model, as a function of the right-handed neutrino mixings and masses. The results are compared with previous computations in the literature. We determine the definite predictions resulting for the ratios between the muon to electron conversion rate for a given nucleus and the rate of two other processes which also involve a mu-e flavour transition: mu -> e gamma and mu -> eee. For a quasi-degenerate mass spectrum of right-handed neutrino masses -which is the most natural scenario leading to observable rates- those ratios depend only on the seesaw mass scale, offering a quite interesting testing ground. In the case of sterile neutrinos heavier than the electroweak scale, these ratios vanish typically for a mass scale of order a few TeV. Furthermore, the analysis performed here is also valid down to very light masses. It turns out that planned mu -> e conversion experiments would be sensitive to masses as low as 2 MeV. Taking into account other experimental constraints, we show that future mu -> e conversion experiments will be fully relevant to detect or constrain sterile neutrino scenarios in the 2 GeV-1000 TeV mass range.

  14. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore »standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  15. Simulation of muon radiography for monitoring CO$_2$ stored in a geological reservoir

    E-Print Network [OSTI]

    Klinger, J; Coleman, M; Gluyas, J G; Kudryavtsev, V A; Lincoln, D L; Pal, S; Paling, S M; Spooner, N J C; Telfer, S; Thompson, L F; Woodward, D

    2015-01-01

    Current methods of monitoring subsurface CO$_2$, such as repeat seismic surveys, are episodic and require highly skilled personnel to acquire the data. Simulations based on simplified models have previously shown that muon radiography could be automated to continuously monitor CO$_2$ injection and migration, in addition to reducing the overall cost of monitoring. In this paper, we present a simulation of the monitoring of CO$_2$ plume evolution in a geological reservoir using muon radiography. The stratigraphy in the vicinity of a nominal test facility is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO$_2$ plume. A planar detection region with a surface area of 1000 m$^2$ is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO$_2$ injection leads to changes in the column density of $\\lesssim 1\\%$, and that the CO$_2$ plume is already resolvable with an exposure time of less than 50 days.

  16. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  17. The muon anomalous magnetic moment in the supersymmetric economical 3-3-1 model

    E-Print Network [OSTI]

    D. T. Binh; D. T. Huong; H. N. Long

    2015-04-14

    We investigate the muon anomalous magnetic moment in the context of the supersymmetric version of the economical 3-3-1 model. We compute the 1-loop contribution of super-partner particles. We show that contribution of superparticle loop becomes significant when \\tan \\gamma is large. We investigate for both small and large values of $\\tan \\gamma$. We find the region of the parameter space where the slepton masses are of a few hundreds GeV is favour by the muon g-2 for small \\tan \\gamma (\\tan \\gamma \\sim 5 ). Numerical estimation gives the mass of supersymmetric particle, the mass of gauginos m_G \\sim 700 GeV and light slepton mass m_{\\tilde{L}} is of order O (100) GeV. When \\tan{\\gamma} is large (\\tan{\\gamma} \\sim 60), the mass of charged slepton m_{\\tilde{L}} and the mass of gauginos m_G\\sim O(1) TeV while the mass of sneutrino \\sim 450 GeV is in the reach of LHC.

  18. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  19. The muon anomalous magnetic moment in the supersymmetric economical 3-3-1 model

    E-Print Network [OSTI]

    Binh, D T; Long, H N

    2015-01-01

    We investigate the muon anomalous magnetic moment in the context of the supersymmetric version of the economical 3-3-1 model. We compute the 1-loop contribution of super-partner particles. We show that contribution of superparticle loop becomes significant when \\tan \\gamma is large. We investigate for both small and large values of $\\tan \\gamma$. We find the region of the parameter space where the slepton masses are of a few hundreds GeV is favour by the muon g-2 for small \\tan \\gamma (\\tan \\gamma \\sim 5 ). Numerical estimation gives the mass of supersymmetric particle, the mass of gauginos m_G \\sim 700 GeV and light slepton mass m_{\\tilde{L}} is of order O (100) GeV. When \\tan{\\gamma} is large (\\tan{\\gamma} \\sim 60), the mass of charged slepton m_{\\tilde{L}} and the mass of gauginos m_G\\sim O(1) TeV while the mass of sneutrino \\sim 450 GeV is in the reach of LHC.

  20. The muon anomalous magnetic moment in the supersymmetric economical 3-3-1 model

    E-Print Network [OSTI]

    D. T. Binh; D. T. Huong; H. N. Long

    2015-11-06

    We investigate the muon anomalous magnetic moment in the context of the supersymmetric version of the economical 3-3-1 model. We compute the 1-loop contribution of super-partner particles. We show that contribution of superparticle loop becomes significant when \\tan \\gamma is large. We investigate for both small and large values of $\\tan \\gamma$. We find the region of the parameter space where the slepton masses are of a few hundreds GeV is favour by the muon g-2 for small \\tan \\gamma (\\tan \\gamma \\sim 5 ). Numerical estimation gives the mass of supersymmetric particle, the mass of gauginos m_G \\sim 700 GeV and light slepton mass m_{\\tilde{L}} is of order O (100) GeV. When \\tan{\\gamma} is large (\\tan{\\gamma} \\sim 60), the mass of charged slepton m_{\\tilde{L}} and the mass of gauginos m_G\\sim O(1) TeV while the mass of sneutrino \\sim 450 GeV is in the reach of LHC.

  1. Simulation of muon radiography for monitoring CO$_2$ stored in a geological reservoir

    E-Print Network [OSTI]

    J. Klinger; S. J. Clark; M. Coleman; J. G. Gluyas; V. A. Kudryavtsev; D. L. Lincoln; S. Pal; S. M. Paling; N. J. C. Spooner; S. Telfer; L. F. Thompson; D. Woodward

    2015-10-12

    Current methods of monitoring subsurface CO$_2$, such as repeat seismic surveys, are episodic and require highly skilled personnel to acquire the data. Simulations based on simplified models have previously shown that muon radiography could be automated to continuously monitor CO$_2$ injection and migration, in addition to reducing the overall cost of monitoring. In this paper, we present a simulation of the monitoring of CO$_2$ plume evolution in a geological reservoir using muon radiography. The stratigraphy in the vicinity of a nominal test facility is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO$_2$ plume. A planar detection region with a surface area of 1000 m$^2$ is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO$_2$ injection leads to changes in the column density of $\\lesssim 1\\%$, and that the CO$_2$ plume is already resolvable with an exposure time of less than 50 days.

  2. y Vacuum Polarization in Low Energy Physics: g -2 1. g -2 introduction, history, muon properties, lepton moments

    E-Print Network [OSTI]

    Röder, Beate

    y Vacuum Polarization in Low Energy Physics: g - 2 1. g - 2 introduction, history, muon properties light-by-light scattering contribution 7. Summary and Outlook 105-1 #12;Physics of vacuum polarization Frascati, Frascati, Italy ­ November 9-13, 2009 ­ #12;Physics of vacuum polarization ... Basic principle

  3. Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train wheels and potential methods of

    E-Print Network [OSTI]

    Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train with a great business idea. For more information about how your business could benefit from access to ISIS: Tel: +44 (0)1925 603708 Email: innovations@stfc.ac.uk Twitter: @STFC_B2B Using ISIS to optimise train wheel

  4. Measurement of muon plus proton final states in ? ? interactions on hydrocarbon at ‹ E? › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.?J.; Butkevich, A.; Martinez Caicedo, D.?A.; et al

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  5. Measurement of muon plus proton final states in ?? interactions on hydrocarbon at ? > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  6. Measurement of muon plus proton final states in ? ? interactions on hydrocarbon at ‹ E? › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.?J.; Butkevich, A.; Martinez Caicedo, D.?A.; Carneiro, M.?F.; Castromonte, C.?M.; Christy, M.?E.; Chvojka, J.; da Motta, H.; Datta, M.; Devan, J.; Dytman, S.?A.; Díaz, G.?A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Fiorentini, G.?A.; Gago, A.?M.; Gallagher, H.; Gran, R.; Harris, D.?A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Kulagin, S.?A.; Le, T.; Maher, E.; Manly, S.; Mann, W.?A.; Marshall, C.?M.; Martin Mari, C.; McFarland, K.?S.; McGivern, C.?L.; McGowan, A.?M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J.?G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J.?K.; Norrick, A.; Osta, J.; Paolone, V.; Park, J.; Patrick, C.?E.; Perdue, G.?N.; Rakotondravohitra, L.; Ransome, R.?D.; Ray, H.; Ren, L.; Rodrigues, P.?A.; Ruterbories, D.; Schellman, H.; Schmitz, D.?W.; Simon, C.; Snider, F.?D.; Sobczyk, J.?T.; Solano Salinas, C.?J.; Tagg, N.; Tice, B.?G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Ziemer, B.?P.; (MINERvA Collaboration)

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  7. Search for the gamma-branch of the shape isomers of separated U isotopes using muon for nuclide excitation

    SciTech Connect (OSTI)

    Mireshghi, A.

    1982-12-01

    We have searched for back-decay gamma rays from the shape isomeric states in /sup 235/U, /sup 236/U, and /sup 238/U possibly excited in muon radiationless transition. The energies and intensities of gamma rays following muon atomic capture were measured as a function of time after muon stopping. Background was suppressed by requiring that the candidate gamma ray be followed by another gamma ray (..mu..-capture gamma ray). The prompt gamma-ray spectra included the U-muonic x rays. The measured /sup 235/U and /sup 238/U x-ray energies were in good agreement with previously reported results. The x-ray spectrum from /sup 236/U has not been previously reported. The /sup 236/U spectrum is very similar to that of /sup 238/U, except that the K x-rays exhibit an isotope shift of approximately 20 keV, the /sup 236/U energies being higher. In the analysis of the delayed spectra of /sup 236/U and /sup 238/U using the GAMANL peak searching program, and with an effective lower-limit detection efficiency of .15% per stopping muon, no candidate gamma rays for the back decay transitions from the shape isomeric state were observed.

  8. BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY N of simulated power deposition in a y-z (vertical) section of the target station is shown in Fig. 2, and some, Coventry CV4 7AL, UK Abstract We present the results of power deposition in various components

  9. Carbon Target Optimization for a Muon Collider/Neutrino Factory with a 6.75 GeV Proton

    E-Print Network [OSTI]

    McDonald, Kirk

    Carbon Target Optimization for a Muon Collider/Neutrino Factory with a 6.75 GeV Proton Driver X. Ding, UCLA MAP Spring 2014 Meeting 2731 May 2014 Fermilab 15/29/14 #12;OUTLINE · Carbon Target Configuration, Fieldmap and Setting · Carbon target optimization (tilt beam) · Carbon target yield comparison

  10. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    E-Print Network [OSTI]

    ALICE Collaboration

    2015-07-27

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\\rho_{\\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above $10^{16}$ eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  11. Hybrid Rings of Fixed 8T Superconducting Magnets and Iron Magnets Rapidly Cycling between -2T and +2T for a Muon Collider

    E-Print Network [OSTI]

    D. J. Summers

    2001-08-01

    Two 2200m radius hybrid rings of fixed superconducting magnets and iron magnets ramping at 200 Hz and 330 Hz are used to accelerate muons. Muons are given 25 GeV of RF energy per orbit. Acceleration is from 250 GeV/c to 2400 GeV/c and requires a total of 86 orbits in both rings; 82% of the muons survive. The total power consumption of the iron dipoles is 4 megawatts. Stranded copper conductors and thin Metglas laminations are used to reduce power losses.

  12. Hybrid Rings of Fixed 8T Superconducting Magnets and Iron Magnets Rapidly Cycling between -2T and +2T for a Muon Collider

    E-Print Network [OSTI]

    Summers, D J

    2001-01-01

    Two 2200m radius hybrid rings of fixed superconducting magnets and iron magnets ramping at 200 Hz and 330 Hz are used to accelerate muons. Muons are given 25 GeV of RF energy per orbit. Acceleration is from 250 GeV/c to 2400 GeV/c and requires a total of 86 orbits in both rings; 82% of the muons survive. The total power consumption of the iron dipoles is 4 megawatts. Stranded copper conductors and thin Metglas laminations are used to reduce power losses.

  13. Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{\

    E-Print Network [OSTI]

    Fields, L; Aliaga, L; Altinok, O; Bodek, A; Boehnlein, D; Bradford, R; Brooks, W K; Budd, H; Butkevich, A; Caicedo, D A M; Castromonte, C M; Christy, M E; da Motta, H; Damiani, D S; Danko, I; Datta, M; Day, M; DeMaat, R; Devan, J; Diaz, G A; Dytman, S A; Eberly, B; Edmondson, D A; Felix, J; Fitzpatrick, T; Fiorentini, G A; Gago, A M; Gallagher, H; Gobbi, B; Gran, R; Harris, D A; Higuera, A; Howley, I J; Hurtado, K; Jerkins, M; Kafka, T; Kanter, M O; Keppel, C; Kordosky, M; Krajeski, A H; Kulagin, S A; Le, T; Leister, A G; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Niculescu, G; Niculescu, I; Ochoa, N; O'Connor, C D; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Pena, C; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Sassin, K E; Schellman, H; Schmitz, D W; Schneider, R M; Schulte, E C; Sedita, P; Simon, C; Snider, F D; Snyder, M C; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tan, W; Tice, B G; Tzanakos, G; Velasquez, J P; Walding, J; Walton, T; Wolcott, J; Wolthuis, B A; Zavala, G; Zhang, D; Ziemer, B P

    2013-01-01

    We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0.99 GeV/c^2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross-section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q^2 favor this interpretation over an alternative in which the axial mass is increased.

  14. Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{\

    E-Print Network [OSTI]

    Fiorentini, G A; Rodrigues, P A; Aliaga, L; Altinok, O; Bodek, A; Boehnlein, D; Bradford, R; Brooks, W K; Budd, H; Butkevich, A; Caicedo, D A M; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Damiani, D S; Danko, I; Datta, M; Day, M; DeMaat, R; Devan, J; Diaz, G A; Dytman, S A; Eberly, B; Edmondson, D A; Felix, J; Fields, L; Fitzpatrick, T; Gago, A M; Gallagher, H; Gobbi, B; Gran, R; Harris, D A; Higuera, A; Howley, I J; Hurtado, K; Jerkins, M; Kafka, T; Kanter, M O; Keppel, C; Kordosky, M; Krajeski, A H; Kulagin, S A; Le, T; Leister, A G; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Niculescu, G; Niculescu, I; Ochoa, N; O'Connor, C D; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Pena, C; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Sassin, K E; Schellman, H; Schneider, R M; Schulte, E C; Sedita, P; Simon, C; Snider, F D; Snyder, M C; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tan, W; Tice, B G; Tzanakos, G; Velasquez, J P; Walding, J; Walton, T; Wolcott, J; Wolthuis, B A; Zavala, G; Zhang, D; Ziemer, B P

    2013-01-01

    We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and study the low energy particle content of the final state. Deviations are found between the measured d{\\sigma}/dQ^2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

  15. Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL

    E-Print Network [OSTI]

    Anokhina, A; Benettoni, M; Bernardini, P; Brugnera, R; Calabrese, M; Cecchetti, A; Cecchini, S; Chernyavskiy, M; Corso, F Dal; Dalkarov, O; Del Prete, A; De Robertis, G; De Serio, M; Di Ferdinando, D; Dusini, S; Dzhatdoev, T; Fini, R A; Fiore, G; Garfagnini, A; Guerzoni, M; Klicek, B; Kose, U; Jakovcic, K; Laurenti, G; Lippi, I; Loddo, F; Longhin, A; Malenica, M; Mancarella, G; Mandrioli, G; Margiotta, A; Marsell, G; Mauri, N; Medinaceli, E; Mingazheva, R; Morgunova, O; Muciaccia, M T; Nessi, M; Orecchini, D; Paoloni, A; Papadia, G; Paparella, L; Pasqualini, L; Pastore, A; Patrizii, L; Polukhina, N; Pozzato, M; Roda, M; Roganova, T; Rosa, G; Sahnoun, Z; Shchedrina, T; Simone, S; Sirignano, C; Sirri, G; Spurio, M; Stanco, L; Starkov, N; Stipcevic, M; Surdo, A; Tenti, M; Togo, V; Vladymyrov, M

    2015-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {\\em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos, or even to robustly establish the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were extensively studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. \

  16. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Univ. of Cyprus, Nicosia; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore »?hvp. The final result involving an estimate of the systematic uncertainty a?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less

  17. Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

    2012-05-01

    In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

  18. Electron-muon heat conduction in neutron star cores via the exchange of transverse plasmons

    E-Print Network [OSTI]

    P. S. Shternin; D. G. Yakovlev

    2007-05-14

    We calculate the thermal conductivity of electrons and muons kappa_{e-mu} produced owing to electromagnetic interactions of charged particles in neutron star cores and show that these interactions are dominated by the exchange of transverse plasmons (via the Landau damping of these plasmons in nonsuperconducting matter and via a specific plasma screening in the presence of proton superconductivity). For normal protons, the Landau damping strongly reduces kappa_{e-mu} and makes it temperature independent. Proton superconductivity suppresses the reduction and restores the Fermi-liquid behavior kappa_{e-mu} ~ 1/T. Comparing with the thermal conductivity of neutrons kappa_n, we obtain kappa_{e-mu}> kappa_n for T>2 GK in normal matter and for any T in superconducting matter with proton critical temperatures T_c>3e9 K. The results are described by simple analytic formulae.

  19. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    E-Print Network [OSTI]

    Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

    2005-07-26

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

  20. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array

    E-Print Network [OSTI]

    Brown, Anthony M; Chadwick, Paula M; Daniel, Michael; White, Richard

    2015-01-01

    The GCT is a dual-mirror Small-Sized-Telescope prototype proposed for the Cherenkov Telescope Array. Calibration of the GCT's camera is primarily achieved with LED-based flasher units capable of producing $\\sim4$ ns FWHM pulses of 400 nm light across a large dynamic range, from 0.1 up to 1000 photoelectrons. The flasher units are housed in the four corners of the camera's focal plane and illuminate it via reflection from the secondary mirror. These flasher units are adaptable to allow several calibration scenarios to be accomplished: camera flat-fielding, linearity measurements (up to and past saturation), and gain estimates from both single pe measurements and from the photon statistics at various high illumination levels. In these proceedings, the performance of the GCT flashers is described, together with ongoing simulation work to quantify the efficiency of using muon rings as an end-to-end calibration for the optical throughput of the GCT.

  1. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  2. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

    2012-05-01

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  3. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    E-Print Network [OSTI]

    D. J. Summers; L. M. Cremaldi; T. L. Hart; L. P. Perera; M. Reep; H. Witte; S. Hansen; M. L. Lopes; J. Reidy, Jr.

    2012-07-28

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  4. Spin ice: magnetic excitations without monopole signatures using muon spin rotation

    SciTech Connect (OSTI)

    Dunsiger, Sarah [Technical University, Munich, Germany; Aczel, Adam A. [McMaster University; Arguello, Carlos [Columbia University; Dabkowska, H. A. [McMaster University; Dabkowski, A [McMaster University; Du, Mao-Hua [ORNL; Goko, Tatsuo [Columbia University; Javanparast, B [University of Waterloo, Canada; Lin, T [University of Waterloo, Canada; Ning, F. L. [McMaster University; Noad, H. M. [McMaster University; Singh, David J [ORNL; Williams, T.J. [McMaster University; Uemura, Yasutomo J. [Columbia University; Gingras, M.P.J. [University of Waterloo, Canada; Luke, Graeme M. [McMaster University

    2011-01-01

    Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation ({mu}SR) experiment [S.T. Bramwell et al., Nature (London) 461 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of {mu}SR experiments in Dy{sub 2}Ti{sub 2}O{sub 7} that such an effect is not observable in a TF {mu}SR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.

  5. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    SciTech Connect (OSTI)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic {tau} lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp(1)}, is estimated.

  6. A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron

    SciTech Connect (OSTI)

    Anastasoaie, Carmen Miruna; /Nijmegen U.

    2008-02-01

    All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + light jets (W{sup {+-}}jj) (and the corresponding backgrounds with a Z boson), t{bar t}, single top production, and QCD multijet background.

  7. Search for high-energy muon neutrinos from the "naked-eye" GRB080319B with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.; IceCube Collaboration

    2009-01-01

    muon neutrinos from the “naked-eye” GRB 080319B with themuon neutrinos from the “naked-eye” GRB080319B with theof 5.3 even visible to the naked eye for a short period of

  8. Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    An inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1.6??fb[superscript -1] of integrated luminosity ...

  9. Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years

    SciTech Connect (OSTI)

    Boliev, M.M.; Demidov, S.V.; Mikheyev, S.P.; Suvorova, O.V. E-mail: demidov@ms2.inr.ac.ru E-mail: suvorova@cpc.inr.ac.ru

    2013-09-01

    We present a new dataset analysis of the neutrino experiment at the Baksan Underground Scintillator Telescope with muon energy threshold about 1 GeV for the longest exposure time toward the Sun. In search for a signal from self-annihilations of dark matter particles in the center of the Sun we use an updated sample of upward through-going muons for 24.12 years of live time. No observable excess has been found in measured muons relative to expected background from neutrinos of atmospheric origin. We present an improved data analysis procedure and describe it in detail. We set the 90% C.L. new upper limits on expected neutrino and muon fluxes from dark matter annihilations in the Sun, on the corresponding annihilation rates and cross sections of their elastic scattering off proton.

  10. Simulations Study of Muon Response in the Peripheral Regions of the Iron Calorimeter Detector at the India-based Neutrino Observatory

    E-Print Network [OSTI]

    Kanishka, R; Bhatnagar, Vipin; Indumathi, D; Sinha, Nita

    2015-01-01

    The magnetized Iron CALorimeter detector (ICAL) which is proposed to be built in the India-based Neutrino Observatory (INO) laboratory, aims to study atmospheric neutrino oscillations primarily through charged current interactions of muon neutrinos and anti-neutrinos with the detector. The response of muons and charge identification efficiency, angle and energy resolution as a function of muon momentum and direction are studied from GEANT4-based simulations in the peripheral regions of the detector. This completes the characterisation of ICAL with respect to muons over the entire detector and has implications for the sensitivity of ICAL to the oscillation parameters and mass hierarchy compared to the studies where only the resolutions and efficiencies of the central region of ICAL were assumed for the entire detector. Selection criteria for track reconstruction in the peripheral region of the detector were determined from the detector response. On applying these, for the 1--20 GeV energy region of interest fo...

  11. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    E-Print Network [OSTI]

    Bijay, Biplab; Bhadra, Arunava

    2015-01-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  12. SINGLE BUNCH COLLECTIVE EFFECTS IN MUON COLLIDERS Wen-Hao Cheng, Andrew M. Sessler, Jonathan S. Wurtele

    E-Print Network [OSTI]

    Wurtele, Jonathan

    experiences can be modeled as having two parts, one is due to the radio frequency (rf) cavities, and the other of Energy under contract No. EDDEFG-03-95ER-40936, DE-AC03-76SF00098 and DE-AC02- 76CHO3000 where Krf(z) = e the impacts and the cures of collective instabilities for the muon collider. Some important simula- tion

  13. Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    E-Print Network [OSTI]

    V. Tishchenko; S. Battu; R. M. Carey; D. B. Chitwood; J. Crnkovic; P. T. Debevec; S. Dhamija; W. Earle; A. Gafarov; K. Giovanetti; T. P. Gorringe; F. E. Gray; Z. Hartwig; D. W. Hertzog; B. Johnson; P. Kammel; B. Kiburg; S. Kizilgul; J. Kunkle; B. Lauss; I. Logashenko; K. R. Lynch; R. McNabb; J. P. Miller; F. Mulhauser; C. J. G. Onderwater; Q. Peng; J. Phillips; S. Rath; B. L. Roberts; D. M. Webber; P. Winter; B. Wolfe

    2012-11-05

    We present a detailed report of the method, setup, analysis and results of a precision measurement of the positive muon lifetime. The experiment was conducted at the Paul Scherrer Institute using a time-structured, nearly 100%-polarized, surface muon beam and a segmented, fast-timing, plastic scintillator array. The measurement employed two target arrangements; a magnetized ferromagnetic target with a ~4 kG internal magnetic field and a crystal quartz target in a 130 G external magnetic field. Approximately 1.6 x 10^{12} positrons were accumulated and together the data yield a muon lifetime of tau_{mu}(MuLan) = 2196980.3(2.2) ps (1.0 ppm), thirty times more precise than previous generations of lifetime experiments. The lifetime measurement yields the most accurate value of the Fermi constant G_F (MuLan) = 1.1663787(6) x 10^{-5} GeV^{-2} (0.5 ppm). It also enables new precision studies of weak interactions via lifetime measurements of muonic atoms.

  14. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at ?s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/? ? ??, Z ? ?? and ? ? ?? decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |?| T ? 100 GeV) the efficiencymore »is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ? 10 GeV, to 4% at large rapidity and pT ? 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.« less

  15. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    E-Print Network [OSTI]

    Claus, Richard; The ATLAS collaboration

    2015-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thro...

  16. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    E-Print Network [OSTI]

    Claus, Richard; The ATLAS collaboration

    2015-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thr...

  17. Performance studies of resistive Micromegas chambers for the upgrade of the ATLAS Muon Spectrometer

    E-Print Network [OSTI]

    Ntekas, Konstantinos; The ATLAS collaboration

    2015-01-01

    The ATLAS collaboration at LHC has endorsed the resistive Micromegas technology (MM), along with the small-strip Thin Gap Chambers (sTGC), for the high luminosity upgrade of the first muon station in the high-rapidity region, the so called New Small Wheel (NSW) project. The NSW requires fully efficient MM chambers, up to a particle rate of $\\sim15\\,\\mathrm{kHz/cm^2}$, with spatial resolution better than $100\\,\\mu\\mathrm{m}$ independent of the track incidence angle and the magnetic field ($B \\leq 0.3\\,\\mathrm{T}$). Along with the precise tracking the MM should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small ($10\\times10\\,\\mathrm{cm^2}$) MM chambers using medium ($10\\,\\mathrm{GeV/c}$, PS) and high ($150\\,\\mathrm{GeV/c}$, SPS) momentum hadron beams at CERN. Results on the efficiency and position resolution measured during these tests are presented demonstrating the excellent characteristics of the MM that fulf...

  18. Searching for the Higgs Bosons of Minimal Supersymmetry with Muon Pairs and Bottom Quarks

    E-Print Network [OSTI]

    Sally Dawson; Duane Dicus; Chung Kao

    2002-08-07

    The prospects for the discovery of neutral Higgs bosons (phi^0 = H^0, h^0, A^0) produced with bottom quarks via Higgs decays into muon pairs (pp --> b b-bar phi^0 --> b b-bar mu mu-bar +X) at the CERN LHC are investigated in the minimal supersymmetric model. The complete physics background from the production of b b-bar mu mu-bar, b b-bar W^+ W^- (including t t-bar) and jj mu mu-bar, j = g, u, d, s, c in the Standard Model is calculated with realistic acceptance cuts. This discovery mode has a simple production mechanism from gg --> b b-bar phi^0 with its cross section proportional to 1/cos^2(beta) and could provide an opportunity to measure tan(beta) and the b b-bar phi^0 couplings. In addition, we compare the associated discovery mode above with the inclusive discovery channel pp --> phi^0 --> mu mu-bar +X. Promising results are found for the CP-odd pseudoscalar (A^0) and the heavier CP-even scalar (H^0) Higgs bosons for tan(beta) equivalent to v_2/v_1 >~ 14 and m_A,m_H <~ 325 GeV.

  19. Calculation of Doublet Capture Rate for Muon Capture in Deuterium within Chiral Effective Field Theory

    E-Print Network [OSTI]

    J. Adam, Jr.; M. Tater; E. Truhlik; E. Epelbaum; R. Machleidt; P. Ricci

    2012-01-31

    The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant d^R will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.

  20. Search for non Standard Model Higgs boson decays in events with displaced muon-jets

    E-Print Network [OSTI]

    Dildick, Sven; Krutelyov, Slava; Pakhotin, Yuriy; Rose, Anthony; Safonov, Alexei; Tararinov, Aysen; Bouhali, Othmane; Hernandez, Alfredo Martin Castaneda

    2015-01-01

    New light bosons that couple weakly to the standard model (SM) particles are predicted in various extensions of the standard model (BSM). Examples include supersymmetric (SUSY) theories with extended Higgs sectors or with a hidden valleys (dark SUSY). In these models the light bosons can be produced directly in the decay of a Higgs boson, or as part of the decay chain of SUSY particles. Depending on the branching fraction, the exotic decays of the SM-Higgs can be undetected in standard analysis techniques or due to its modified production cross section of the Higgs bosons at the LHC. Therefore, direct searches for non-SM decays of the Higgs boson are the fastest way to understand the nature of the Higgs boson. Either it will confirm its SM character, or it will rule out a whole array of BSM scenarios. We present status of the search at CMS for non-SM Higgs boson decays in events with displaced muon-jets.

  1. Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters

    E-Print Network [OSTI]

    CMS Collaboration

    2015-02-17

    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.

  2. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    E-Print Network [OSTI]

    Yildiz, Suleyman Cenk; The ATLAS collaboration

    2015-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambe...

  3. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  4. Detector Optimization Studies and Light Higgs Decay into Muons at CLIC

    E-Print Network [OSTI]

    Christian Grefe

    2014-02-12

    The Compact Linear Collider (CLIC) is a concept for a future $e^{+}e^{-}$ linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab$^{-1}$, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  5. Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model

    E-Print Network [OSTI]

    A. E. Dorokhov; A. E. Radzhabov; A. S. Zhevlakov

    2015-07-24

    The hadronic corrections to the muon anomalous magnetic moment a_mu, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a_mu in the leading order in the 1/Nc expansion. The result for the quark loop contribution is a_mu^{HLbL,Loop}=(11.0+-0.9)*10^(-10), and the total result is a_mu^{HLbL,NxQM}=(16.8+-1.2)*10^(-10).

  6. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  7. Performance of the CLEO III LiF-TEA Ring Imaging Cherenkov Detector in a High Energy Muon Beam

    E-Print Network [OSTI]

    Artuso, M; Azfar, F; Efimov, A; Kopp, S E; Mountain, R; Majumder, G; Schuh, S; Skwarnicki, T; Stone, S; Viehhauser, G; Wang, J C; Coan, T E; Fadeev, V; Volobuev, I P; Ye, J; Anderson, S; Kubota, Y; Smith, A; Lipeles, E

    2000-01-01

    The CLEO III Ring Imaging Cherenkov detector uses LiF radiators to generate Cherenkov photons which are then detected by proportional wire chambers using a mixture of CH$_4$ and TEA gases. The first two photon detector modules which were constructed, were taken to Fermilab and tested in a beam dump that provided high momentum muons. We report on results using both plane and "sawtooth" shaped radiators. Specifically, we discuss the number of photoelectrons observed per ring and the angular resolution. The particle separation ability is shown to be sufficient for the physics of CLEO III.

  8. Performance of the CLEO III LiF-TEA Ring Imaging Cherenkov Detector in a High Energy Muon Beam

    E-Print Network [OSTI]

    M. Artuso; R. Ayad; F. Azfar; A. Efimov; S. Kopp; R. Mountain; G. Majumder; S. Schuh; T. Skwarnicki; S. Stone; G. Viehhauser; J. C. Wang; T. Coan; V. Fadeyev; I. Volobouev; J. Ye; S. Anderson; Y. Kubota; A. Smith; E. Lipeles

    1999-10-26

    The CLEO III Ring Imaging Cherenkov detector uses LiF radiators to generate Cherenkov photons which are then detected by proportional wire chambers using a mixture of CH$_4$ and TEA gases. The first two photon detector modules which were constructed, were taken to Fermilab and tested in a beam dump that provided high momentum muons. We report on results using both plane and "sawtooth" shaped radiators. Specifically, we discuss the number of photoelectrons observed per ring and the angular resolution. The particle separation ability is shown to be sufficient for the physics of CLEO III.

  9. Study of the muon content of very high-energy EAS measured with the KASCADE-Grande observatory

    E-Print Network [OSTI]

    Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Fuhrmann, D; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

    2013-01-01

    The KASCADE-Grande detector is an air-shower array devoted to the study of primary cosmic rays with very high-energies (E = 10^{16} - 10^{18} eV). The instrument is composed of different particle detector systems suitable for the detailed study of the properties of Extensive Air Showers (EAS) developed by cosmic rays in the atmosphere. Among the EAS observables studied with the detector, the charged number of particles, the muon content (at different energy thresholds), and the number of electrons are found. By comparing the measurements of these air-shower parameters with the expectations from MC simulations, different hadronic interaction models can be tested at the high-energy regime with the KASCADE-Grande experiment. In this work, the results of a study on the evolution of the muon content of EAS with zenith angle, performed with the KASCADE-Grande instrument, is presented. Measurements are compared with predictions from MC simulations based on the QGSJET II, QGSJET II-04, SIBYLL 2.1 and EPOS 1.99 hadron...

  10. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    E-Print Network [OSTI]

    ,

    2015-01-01

    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measuremen...

  11. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    E-Print Network [OSTI]

    Super-Kamiokande Collaboration

    2015-09-28

    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measurements, the application of a neutron tagging technique using correlated triggers was found to improve this $^9$Li measurement. The measured yields were generally found to be comparable with theoretical calculations based on the simulation code FLUKA.

  12. Nonuniversal gaugino masses and muong-2

    SciTech Connect (OSTI)

    Gogoladze, Ilia [Univ. of Delaware, Newark, DE (United States); Nasir, Fariha [Univ. of Delaware, Newark, DE (United States); Shafi, Qaisar [Univ. of Delaware, Newark, DE (United States); Ün, Cem Salih [Univ. of Delaware, Newark, DE (United States)

    2014-08-01

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125–126 GeV Higgs boson mass and the WMAP dark matter bounds.

  13. Measurements of the electron and muon inclusive cross-sections in proton–proton collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of ?s = 7 TeV using data collected by the ATLAS detector ...

  14. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    SciTech Connect (OSTI)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  15. Search for Heavy Bottomlike Quarks Decaying to an Electron or Muon and Jets in pp? Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We report the most sensitive direct search for pair production of fourth-generation bottomlike chiral quarks (b?)[(b prime)] each decaying promptly to tW. We search for an excess of events with an electron or muon, at least ...

  16. Measurement of muon plus proton final states in $?_?$ Interactions on Hydrocarbon at $\\langle$$E_?$$\\rangle$ = 4.2 GeV

    E-Print Network [OSTI]

    T. Walton; M. Betancourt; L. Aliaga; O. Altinok; A. Bodek; A. Bravar; H. Budd; M. J. Bustamante; A. Butkevich; D. A. Martinez Caicedo; M. F. Carneiro; C. M. Castromonte; M. E. Christy; J. Chvojka; H. da Motta; M. Datta; J. Devan; S. A. Dytman; G. A. Díaz; B. Eberly; J. Felix; L. Fields; R. Fine; G. A. Fiorentini; A. M. Gago; H. Gallagher; R. Gran; D. A. Harris; A. Higuera; K. Hurtado; J. Kleykamp; M. Kordosky; S. A. Kulagin; T. Le; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; C. Martin Mari; K. S. McFarland; C. L. McGivern; A. M. McGowan; B. Messerly; J. Miller; A. Mislivec; J. G. Morfín; J. Mousseau; T. Muhlbeier; D. Naples; J. K. Nelson; A. Norrick; J. Osta; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; P. A. Rodrigues; D. Ruterbories; H. Schellman; D. W. Schmitz; C. Simon; F. D. Snider; J. T. Sobczyk; C. J. Solano Salinas; N. Tagg; B. G. Tice; E. Valencia; J. Wolcott; M. Wospakrik; G. Zavala; D. Zhang; B. P. Ziemer

    2015-04-06

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon and a proton and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70$^{\\circ}$ and proton kinetic energies greater than 110 MeV. The extracted cross section, when based completely on hadronic kinematics, is well-described by a simple relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multi-nucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  17. 200MHZ NB-CU CAVITIES FOR MUON ACCELERATION , P. Barnes, D. Hartill, H. Padamsee, J. Sears, LEPP, Cornell Univ., Ithaca, NY 14853, USA

    E-Print Network [OSTI]

    Geng, Rong-Li

    . Because of the large phase space and short muon life- time, the accelerating system should provide rapid acceptance has driven the de- sign to a low RF frequency of 200 MHz [3]. The layout of the acceleration system is shown in Fig. 2. It consists of a pre-accelerator linac followed by a four-pass RLA. KE=20 Ge

  18. Primary proton spectrum in the energy range $5-10^3$ TeV from the sea level muon spectrum

    E-Print Network [OSTI]

    A. A. Lagutin; A. G. Tyumentsev; A. V. Yushkov

    2005-07-07

    Primary proton spectrum in the energy range $5-10^3$ TeV is reconstructed from the sea level muon spectrum with the use of QGSJET01 and SYBILL2.1 interaction models. Heavier nuclei are taken in accordance with the direct measurements data, 100% uncertainty in helium flux is accounted for. The obtained proton intensity strongly contradicts to the available data of balloon experiments, exceeding them at the least by 100% for QGSJET01. This discrepancy is due to the combined effect of primary nucleon flux underestimation in the direct measurements and incorrect description of extensive air shower development. In the latter case it is required earlier shower development and harder spectra of secondary pions and kaons in comparison with QGSJET01. This conclusion is in agreement with the obtained by the KASCADE group on the basis of events rate study.

  19. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?ą and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearlymore »isotropic.« less

  20. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?ą and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  1. Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_? ~ 3.5 GeV

    E-Print Network [OSTI]

    The MINERvA collaboration; G. A. Fiorentini; D. W. Schmitz; P. A. Rodrigues; L. Aliaga; O. Altinok; B. Baldin; A. Baumbaugh; A. Bodek; D. Boehnlein; S. Boyd; R. Bradford; W. K. Brooks; H. Budd; A. Butkevich; D. A. Martinez Caicedo; C. M. Castromonte; M. E. Christy; H. Chung; J. Chvojka; M. Clark; H. da Motta; D. S. Damiani; I. Danko; M. Datta; M. Day; R. DeMaat; J. Devan; E. Draeger; S. A. Dytman; G. A. Díaz; B. Eberly; D. A. Edmondson; J. Felix; T. Fitzpatrick; L. Fields; A. M. Gago; H. Gallagher; C. A. George; J. A. Gielata; C. Gingu; B. Gobbi; R. Gran; N. Grossman; J. Hanson; D. A. Harris; J. Heaton; A. Higuera; I. J. Howley; K. Hurtado; M. Jerkins; T. Kafka; J. Kaisen; M. O. Kanter; C. E. Keppel; J. Kilmer; M. Kordosky; A. H. Krajeski; S. A. Kulagin; T. Le; H. Lee; A. G. Leister; G. Locke; G. Maggi; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; K. S. McFarland; C. L. McGivern; A. M. McGowan; A. Mislivec; J. G. Morf?; J. Mousseau; D. Naples; J. K. Nelson; G. Niculescu; I. Niculescu; N. Ochoa; C. D. O'Connor; J. Olsen; B. Osmanov; J. Osta; J. L. Palomino; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; C. Peńa; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; C. Rude; K. E. Sassin; H. Schellman; R. M. Schneider; E. C. Schulte; C. Simon; F. D. Snider; M. C. Snyder; J. T. Sobczyk; C. J. Solano Salinas; N. Tagg; W. Tan; B. G. Tice; G. Tzanakos; J. P. Velásquez; J. Walding; T. Walton; J. Wolcott; B. A. Wolthuis; N. Woodward; G. Zavala; H. B. Zeng; D. Zhang; L. Y. Zhu; B. P. Ziemer

    2014-03-30

    We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and study the low energy particle content of the final state. Deviations are found between the measured d{\\sigma}/dQ^2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

  2. Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_? ~ 3.5 GeV

    E-Print Network [OSTI]

    The MINERvA collaboration; L. Fields; J. Chvojka; L. Aliaga; O. Altinok; B. Baldin; A. Baumbaugh; A. Bodek; D. Boehnlein; S. Boyd; R. Bradford; W. K. Brooks; H. Budd; A. Butkevich; D. A. Martinez Caicedo; C. M. Castromonte; M. E. Christy; H. Chung; M. Clark; H. da Motta; D. S. Damiani; I. Danko; M. Datta; M. Day; R. DeMaat; J. Devan; E. Draeger; S. A. Dytman; G. A. Díaz; B. Eberly; D. A. Edmondson; J. Felix; T. Fitzpatrick; G. A. Fiorentini; A. M. Gago; H. Gallagher; C. A. George; J. A. Gielata; C. Gingu; B. Gobbi; R. Gran; N. Grossman; J. Hanson; D. A. Harris; J. Heaton; A. Higuera; I. J. Howley; K. Hurtado; M. Jerkins; T. Kafka; J. Kaisen; M. O. Kanter; C. E. Keppel; J. Kilmer; M. Kordosky; A. H. Krajeski; S. A. Kulagin; T. Le; H. Lee; A. G. Leister; G. Locke; G. Maggi; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; K. S. McFarland; C. L. McGivern; A. M. McGowan; A. Mislivec; J. G. Morfín; J. Mousseau; D. Naples; J. K. Nelson; G. Niculescu; I. Niculescu; N. Ochoa; C. D. O'Connor; J. Olsen; B. Osmanov; J. Osta; J. L. Palomino; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; C. Peńa; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; P. A. Rodrigues; C. Rude; K. E. Sassin; H. Schellman; D. W. Schmitz; R. M. Schneider; E. C. Schulte; C. Simon; F. D. Snider; M. C. Snyder; J. T. Sobczyk; C. J. Solano Salinas; N. Tagg; W. Tan; B. G. Tice; G. Tzanakos; J. P. Velásquez; J. Walding; T. Walton; J. Wolcott; B. A. Wolthuis; N. Woodward; G. Zavala; H. B. Zeng; D. Zhang; L. Y. Zhu; B. P. Ziemer

    2014-03-30

    We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0.99 GeV/c^2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross-section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q^2 favor this interpretation over an alternative in which the axial mass is increased.

  3. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    SciTech Connect (OSTI)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  4. SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Ahlers, M.; Auffenberg, J.; Becker, K.-H.; Bai, X.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.

    2009-08-20

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10{sup -3} erg cm{sup -2} in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

  5. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect (OSTI)

    Lancaster, T.; Pratt, F. L.; Blundell, S. J.; Steele, Andrew J.; Baker, Peter J.; Wright, Jack D.; Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  6. Measurement of the w boson mass at the Collider Detector at Fermilab from a fit to the transverse momentum spectrum of the muon

    SciTech Connect (OSTI)

    Vollrath, Ian Eberhard; /Toronto U.

    2007-01-01

    This thesis describes a measurement of the W boson mass from a fit to the transverse momentum spectrum of the muon in W decay. In past measurements this technique was used as a cross-check, however, now presents the best method in terms of systematic uncertainty. We discuss all sources of systematic uncertainty with emphasis on those to which the muon p{sub T} measurement is particularly sensitive, specifically, those associated with modeling the production and decay of W bosons. The data were collected with the CDF II detector between March 2002 and September 2003 and correspond to an integrated luminosity of (191 {+-} 11) pb{sup -1}. We measure the W mass to be (80.316 {+-} 0.066{sub stat.} {+-} 0.051{sub syst.}) GeV/c{sup 2} = (80.316 {+-} 0.083) GeV/c{sup 2}.

  7. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; /Indiana U.

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for {nu}{sub {mu}} {yields} {nu}{sub e} appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions ({nu}{sub {mu}} + n {yields} {mu} + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is {sigma} = (1.058 {+-} 0.003 (stat) {+-} 0.111 (syst)) x 10{sup -38} cm{sup 2} at the MiniBooNE muon neutrino beam energy (700-800 MeV). {nu}{sub e} appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  8. The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data

    E-Print Network [OSTI]

    Aglietta, M; Antonioli, P; Arneodo, F; Bergamasco, L; Bertaina, M; Castagnoli, C; Castellina, A; Chiavassa, A; Cini, G; D'Ettorre-Piazzoli, B; Di Sciascio, G; Fulgione, W; Galeotti, P; Ghia, P L; Iacovacci, M; Mannocchi, G; Morello, C; Navarra, G; Saavedra, O; Stamerra, A; Trinchero, G C; Valchierotti, S; Vallania, P; Vernetto, S; Vigorito, C; Ambrosio, M; Antolini, R; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; De Vincenzi, M; Di Credico, A; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolň, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2004-01-01

    The cosmic ray primary composition in the energy range between 10**15 and 10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nmu-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the kn...

  9. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    SciTech Connect (OSTI)

    Marshall, John Stuart; /Cambridge U.

    2008-06-01

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0.953 (68% confidence level). The models of neutrino decoherence and decay are disfavored at the 5.0{sigma} and 3.2{sigma} levels respectively, while the no oscillation model is excluded at the 9.4{sigma} level.

  10. A Proposal for the Muon Piston Calorimeter Extension (MPC-EX) to the PHENIX Experiment at RHIC

    E-Print Network [OSTI]

    S. Campbell; R. Hollis; A. Iordanova; E. Kistenev; X. Jiang; Y. Kwon; J. Lajoie; J. Perry; R. Seto; A. Sukhanov; A. Timilsina; for the PHENIX Collaboration

    2013-01-07

    The PHENIX MPC-EX detector is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeters (MPC). The MPC-EX will consist of eight layers of alternating W absorber and Si mini-pad sensors and will be installed in time for RHIC Run-15. Covering a large pseudorapidity range, 3.1 energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward neutral pion and jet measurements, it also provides the necessary neutral pion rejection to make a prompt photon measurement feasible in both p+A and p+p collisions. With this neutral pion rejection, prompt (direct + fragmentation) photon yields at high p_T, p_T > 3 GeV, can be statistically extracted using a double ratio method. In p+A collisions direct photons at forward rapidities are optimally sensitive to the gluon distribution because, unlike pions, direct photons are only produced by processes that are directly sensitive to the gluon distribution at leading order. A measurement of the forward prompt photon R_pA will cleanly access and greatly expand our understanding of the gluon nuclear parton distribution functions and provide important information about the initial state in heavy ion collisions. In transversely polarized p+p collisions the MPC-EX will make possible a measurement of the prompt photon single spin asymmetry A_N, and will help elucidate the correlation of valence partons in the proton with the proton spin.

  11. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article) |SciTechphysical experiments, and

  12. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article) |SciTechphysical experiments, andPatent:

  13. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N_f=2+1+1 twisted mass fermions

    SciTech Connect (OSTI)

    Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

    2013-11-01

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  14. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  15. Muon spin resonance study of transverse spin freezing in a-FexZr100x Department of Physics and Centre for the Physics of Materials, McGill University, 3600 University Street,

    E-Print Network [OSTI]

    Ryan, Dominic

    Muon spin resonance study of transverse spin freezing in a-FexZr100Ŕx D. H. Ryan Department transition at Tc followed by transverse spin freezing at Txy . We have confirmed the presence of a peak of exchange frustration. In extreme cases, a spin glass is formed with random isotropic spin freezing

  16. Measurement of the ? ? * distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb - 1 of p p Ż collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V.?M.; Abbott, B.; Acharya, B.?S.; Adams, M.; Adams, T.; Agnew, J.?P.; Alexeev, G.?D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2015-04-06

    We present a measurement of the distribution of the variable ?*? for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb?ą at ?s=1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ?*? probes the same physical effects as the Z/?* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at anymore »collider of the ?*? distributions for dilepton masses away from the Z?l?l? boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.« less

  17. Constraining the fraction of primary gamma rays at ultra-high energies from the muon data of the Yakutsk extensive-air-shower array

    E-Print Network [OSTI]

    A. V. Glushkov; D. S. Gorbunov; I. T. Makarov; M. I. Pravdin; G. I. Rubtsov; I. E. Sleptsov; S. V. Troitsky

    2007-01-09

    By making use of the data on the total signal and on the muon component of the air showers detected by the Yakutsk array, we analyze, in the frameworks of the recently suggested event-by-event approach, how large the fraction of primary gamma-rays at ultra-high energies can be. We derive upper limits on the photon fraction in the integral flux of primary cosmic rays. At the 95% confidence level (CL), these limits are 22% for primary energies E_0>4\\cdot 10^{19}eV and 12% for E_0>2\\cdot 10^{19}eV. Despite the presence of muonless events, the data are consistent with complete absence of photons at least at 95% CL. The sensitivity of the results to systematic uncertainties, in particular to those of the energy determination for non-photon primaries, is discussed.

  18. Measurement of the ? ? * distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb - 1 of p p Ż collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V.?M.; Abbott, B.; Acharya, B.?S.; Adams, M.; Adams, T.; Agnew, J.?P.; Alexeev, G.?D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D.?V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J.?F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S.?B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P.?C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E.?E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X.?B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C.?P.; Camacho-Pérez, E.; Casey, B.?C.?K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K.?M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S.?W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W.?E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S.?J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S.?P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H.?T.; Diesburg, M.; Ding, P.?F.; Dominguez, A.; Dubey, A.; Dudko, L.?V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V.?D.; Enari, Y.; Evans, H.; Evdokimov, V.?N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H.?E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P.?H.; Garcia-Bellido, A.; García-González, J.?A.; Gavrilov, V.; Geng, W.; Gerber, C.?E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P.?D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M.?W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J.?M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A.?P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M.?D.; Hirosky, R.; Hoang, T.; Hobbs, J.?D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J.?L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A.?S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M.?S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A.?W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y.?N.; Kiselevich, I.; Kohli, J.?M.; Kozelov, A.?V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V.?A.; Lammers, S.; Lebrun, P.; Lee, H.?S.; Lee, S.?W.; Lee, W.?M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q.?Z.; Li, X.; Lim, J.?K.; Lincoln, D.; Linnemann, J.; Lipaev, V.?V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A.?L.; Maciel, A.?K.?A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V.?L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C.?L.; Meijer, M.?M.; Melnitchouk, A.; Menezes, D.; Mercadante, P.?G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N.?K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H.?A.; Negret, J.?P.; Neustroev, P.; Nguyen, H.?T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S.?K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V.?M.; Popov, A.?V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Qin, Y.; Quadt, A.; Quinn, B.; Ratoff, P.?N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M.?P.; Santos, A.?S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R.?D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A.?A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G.?R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D.?A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V.?V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W.?M.; Varelas, N.; Varnes, E.?W.; Vasilyev, I.?A.; Verkheev, A.?Y.; Vertogradov, L.?S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H.?D.; Wang, M.?H.?L.?S.; Warchol, J.; Watts, G.

    2015-04-01

    We present a measurement of the distribution of the variable ?*? for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb?ą at ?s=1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ?*? probes the same physical effects as the Z/?* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the ?*? distributions for dilepton masses away from the Z?l?l? boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.

  19. Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at s=8TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.; Sirunyan, A.?M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V.?M.; et al

    2015-03-18

    A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6?(20.5)??fb?ą in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at ?s = 8??TeV. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presentedmore »as a function of the long-lived particle’s mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125–1000??GeV/c˛ decays into a pair of long-lived neutral bosons in the mass range 20–350??GeV/c˛, each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2–10 fb for mean proper decay lengths of the long-lived particles in the range 0.01–100 cm. In the case of the lowest Higgs mass considered (125??GeV/c˛), the limits are in the range 2–50 fb. These limits are sensitive to Higgs boson branching fractions as low as 10??.« less

  20. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    SciTech Connect (OSTI)

    Schmitz, David W.; /Columbia U.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  1. Long-range ordering of reduced magnetic moments in the spin-gap compound CeOs{sub 2}Al{sub 10} as seen via muon spin relaxation and neutron scattering

    SciTech Connect (OSTI)

    Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2010-09-01

    We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.

  2. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  3. Long-term variation of the solar diurnal anisotropy of galactic cosmic rays observed with the Nagoya multi-directional muon detector

    SciTech Connect (OSTI)

    Munakata, K.; Kozai, M.; Kato, C. [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan); Kóta, J., E-mail: kmuna00@shinshu-u.ac.jp [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 87721 (United States)

    2014-08-10

    We analyze the three-dimensional anisotropy of the galactic cosmic ray (GCR) intensities observed independently with a muon detector at Nagoya in Japan and neutron monitors over four solar activity cycles. We clearly see the phase of the free-space diurnal anisotropy shifting toward earlier hours around solar activity minima in A > 0 epochs, due to the reduced anisotropy component parallel to the mean magnetic field. This component is consistent with a rigidity-independent spectrum, while the perpendicular anisotropy component increases with GCR rigidity. We suggest that this harder spectrum of the perpendicular component is due to contribution from the drift streaming. We find that the bi-directional latitudinal density gradient is positive in the A > 0 epoch, while it is negative in the A < 0 epoch, in agreement with the drift model prediction. The radial density gradient of GCRs, on the other hand, varies with a ?11 yr cycle with maxima (minima) in solar maximum (minimum) periods, but we find no significant difference between the radial gradients in the A > 0 and A < 0 epochs. The corresponding parallel mean free path is larger in A < 0 than in A > 0. We also find, however, that the parallel mean free path (radial gradient) appears to persistently increase (decrease) in the last three cycles of weakening solar activity. We suggest that simple differences between these parameters in A > 0 and A < 0 epochs are seriously biased by these long-term trends.

  4. AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE

    SciTech Connect (OSTI)

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others

    2011-12-01

    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  5. Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at $\\sqrt{s}=7$ TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-09

    This study presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp ? Z/? * ? l +l -, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at \\( \\sqrt{s}=7 \\) TeV, corresponding to an integrated luminosity of 4.8 fb-1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effectivemore »weak mixing angle of sin2 ?efflept =0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.« less

  6. Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-03-18

    Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\\sqrt{s}$ = 8 TeV11/25/2014A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charge dleptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of $19.6\\,(20.5)~\\mathrm{fb}^{-1}$ in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at $\\sqrt{s} = 8~\\mathrm{TeV}$. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presented as a function of the long-lived particle's mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range $125-1000~\\mathrm{GeV}/c^2$ decays into a pair of long-lived neutral bosons in the mass range $20-350~\\mathrm{GeV}/c^2$, each of which can then decay to dileptons, the upper limits obtained are typically in the range $0.2-10~\\mathrm{fb}$ for mean proper decay lengths of the long-lived particles in the range $0.01-100~\\mathrm{cm}$. In the case of the lowest Higgs mass considered ($125~\\mathrm{GeV}/c^2$), the limits are in the range $2-50~\\mathrm{fb}$. These limits are sensitive to Higgs boson branching fractions as low as $10^{-4}$.

  7. Mesure de la masse du quark top dans le canal électron-muon ŕ l'aide de la méthode des éléments de matrice avec les données ŕ 8 TeV de l'expérience ATLAS du LHC

    E-Print Network [OSTI]

    Pires, Sylvestre

    2015-07-03

    The work presented in this thesis lies within the scope of the measurement of the top quark mass in the decay channel electron-muon. This experimental measurement is achieved by the use of the matrix element method with events produced at LHC at a centre of mass energy of 8 TeV and collected by the ATLAS detector in 2012. After introducing the theoretical context of the Standard Model and the physics of the top quark, a detailed description of the ATLAS detector design and of both the event simulation and reconstruction is given. The first analysis presented was done during the beginning of the thesis and focuses on the impact of the insertion of an innermost new pixel layer in the ATLAS detector on the b-tagging performance during the data taking starting in 2015 with an centre of mass energy of 13 TeV. The second part of the thesis is dedicated the top quark mass measurement. After reviewing the selection procedure to which the analysis is linked, the calibration of the matrix element method is presented. T...

  8. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    of particles ... . At the time, the elementary particles which were involved were the electrons and the neutrino. ... We required the BNL accelerator, which was the effort of...

  9. Superconducting Magnets for a Muon Collider

    E-Print Network [OSTI]

    Green, M.A.

    1996-01-01

    IEEE Transactions on Applied Superconductivity 3, No. 1,pMAG-544 LBL-38398 UC-414 Superconducting Magnets for a Muonsections, the nominal superconductor plus matrix current

  10. February 9, 2002 Muon Collaboration Technical Board

    E-Print Network [OSTI]

    McDonald, Kirk

    of gaseous helium at 66 K or 22 K in a closed loop configuration. Phased Temperature Approach/Pulse- ~3-15 MJ · Possible Rep Rate High Temp- >10/hr · High Temperature Helium Delivery- ~66 K · Low Temperature Helium Delivery- ~22 K · Energy Removal Rate (Low Temp)- ~25 kJ/s · Energy Removal Rate (High Temp

  11. White Paper Neutrinos from STORed Muons

    E-Print Network [OSTI]

    McDonald, Kirk

    , Canada L. Coney and G. Hanson University of California, Riverside S. Pascoli Institute for Particle. Haesler, Y. Karadzhov, A. Korzenev, C. Martin, E. Noah, M. Ravonel, M. Rayner, and E. Scantamburlo, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada K. Mahn and M.J. Wilking

  12. Muon Accelerator Program: Area System Concept

    E-Print Network [OSTI]

    McDonald, Kirk

    periodically. Operation at high temperature provides annealing of radiation damage and substantially longer stainless-steel vessel with intramural He-gas flow for cooling. This vessel will be replaced along

  13. Jack Steinberger and the Muon-Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation byIs aItemPolarTool andJackJack

  14. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    E-Print Network [OSTI]

    McDonald, Kirk

    . Cassel,1 M. Gabriela Catanesi,12 Swapan Chattopadhyay,11 Weiren Chou,2 David B. Cline,15 Linda R. Coney Fritz DeJongh,2 Alexandr Drozhdin,2 Paul Drumm,6 V. Daniel Elvira,2 Deborah Errede,18 Adrian Fabich,3. Kirk,8 Yoshitaka Kuno,31 Tony S. Ladran,16 Wing W. Lau,32 John G. Learned,33 Valeri Lebedev,2 Paul

  15. Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration

    E-Print Network [OSTI]

    . Cassel,1 M. Gabriela Catanesi,12 Swapan Chattopadhyay,11 Weiren Chou,2 David B. Cline,15 Linda R. Coney Fritz DeJongh,2 Alexandr Drozhdin,2 Paul Drumm,18 V. Daniel Elvira,2 Deborah Errede,19 Adrian Fabich,3. Kirk,8 Yoshitaka Kuno,32 Tony S. Ladran,16 Wing W. Lau,33 John G. Learned,34 Valeri Lebedev,2 Paul

  16. Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration

    E-Print Network [OSTI]

    Kevin W. Cassel, 1 M. Gabriela Catanesi, 12 Swapan Chattopadhyay, 11 Weiren Chou, 2 David B. Cline, 15 Christine Darve, 2 Fritz DeJongh, 2 Alexandr Drozhdin, 2 Paul Drumm, 18 V. Daniel Elvira, 2 Deborah Errede Tony S. Ladran, 16 Wing W. Lau, 33 John G. Learned, 34 Valeri Lebedev, 2 Paul Lebrun, 2 Kevin Lee, 15

  17. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  18. Measurement of the Michel parameter rho in muon decay 

    E-Print Network [OSTI]

    Musser, James Raymond

    2006-04-12

    , and my colleague, the late Nate Rodning, as two whose embodiment of this spirit have been a continual source of inspiration to me. \\It is the glory of God to conceal a matter; to search out a matter is the glory of kings." (Solomon) v TABLE OF CONTENTS... . . . . . . . . . . . . . . . . . . . . . 31 3. Field Map Scaling . . . . . . . . . . . . . . . . . . . . 33 D. Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1. Beam Package . . . . . . . . . . . . . . . . . . . . . . 34 2. Stack...

  19. Search for spontaneous muon emission from lead nuclei

    E-Print Network [OSTI]

    L. Arrabito; D. Autiero; E. Barbuto; C. Bozza; S. Cecchini; L. Consiglio; M. Cozzi; N. D'Ambrosio; Y. Declais; G. De Lellis; G. De Rosa; M. De Serio; D. Di Ferdinando; A. Di Giovanni; N. Di Marco; L. S. Esposito; G. Giacomelli; M. Giorgini; G. Grella; M. Hauger; M. Ieva; D. B. Ion; I. Janicsko; F. Juget; I. Laktineh; G. Mandrioli; S. Manzoor; A. Margiotta; P. Migliozzi; P. Monacelli; M. T. Muciaccia; L. Patrizii; C. Pistillo; V. Popa; G. Romano; G. Rosa; P. Royole-Degieux; S. Simone; M. Sioli; C. Sirignano; G. Sirri; G. Sorrentino; M. Spurio; V. Tioukov

    2005-08-05

    We describe a possible search for muonic radioactivity from lead nuclei using the base elements ("bricks" composed by lead and nuclear emulsion sheets) of the long-baseline OPERA neutrino experiment. We present the results of a Monte Carlo simulation concerning the expected event topologies and estimates of the background events. Using few bricks, we could reach a good sensitivity level.

  20. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    E-Print Network [OSTI]

    Zisman, Michael S.

    2010-01-01

    Table 1 summarizes the NF proton driver parameters obtainedboth facilities. Table 1. Proton driver requirements for arepetition frequency (Hz) Proton energy (GeV) Proton rms

  1. Design of the Muon Lifetime Experiment By Steve Kliewer

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , solar flares · Mostly made up of protons (some electrons and helium, C, O, & Fe nuclei) · Energies from is a Hamamatsu 931A photomultiplier tube with an HC123-01 low voltage base. Power to the bases is provided by a custom designed power supply that allows adjustment of a separate control voltage to each tube

  2. Muon-induced backgrounds in the CUORICINO experiment

    E-Print Network [OSTI]

    Andreotti, E.

    2010-01-01

    background in the neutrinoless double beta decay region ofis searching for neutrinoless double beta decay (0???), a

  3. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    . A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool. · Providing a mercury pool that serves as a dump for both the jet and the proton beam remaining after target

  4. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable target module includes the interaction region and mercury pool inside a primary containment vessel flow loop: The interaction region inside the target module: Cross section of the mercury pool: Services

  5. Neutrinos from Stored Muons STORM Target Station Conceptualg p

    E-Print Network [OSTI]

    McDonald, Kirk

    beamline chase with adequate shielding · Active beamline elements include: - Production target Focusing Supply Lines OOuter Conductor Water Scavenge Tank #12;STORM Target Station Conceptual Design Approach techniques T h hi ldi l ld b l i· Target chase shielding steel would be mostly comprise of relatively

  6. Recent progress in neutrino factory and muon collider research...

    Office of Scientific and Technical Information (OSTI)

    Colin ; Johnson, Rolland P. ; Johnstone, Carol ; Jungmann, Klaus ; Kahn, Stephen A. ; Kaplan Daniel M. ; Keil, Eberhard K. ; Kim, Eun-San ; Kim, Kwang-Je ; King, Bruce J. ; Kirk,...

  7. Graphite Sublimation Tests for the Muon Collider/Neutrino Factory

    E-Print Network [OSTI]

    McDonald, Kirk

    cooled graphite target was proposed for a 1.5 MW neutrino production research facility because of its simplicity and favorable performance as a target material for neutrino production (Ref. 1). The conceptual handling performance of radiatively cooled graphite targets, a helium cover gas at nominally one atmosphere

  8. Neutrinos from STORed Muons Proposal to the Fermilab PAC

    E-Print Network [OSTI]

    McDonald, Kirk

    . Ratoff,21 M. Ravonel,4 M. Rayner,4 S. Ricciardi,16 C. Rogers,16 P. Rubinov,1 E. Santos,13 A. Sato,22 T Street, Toronto, Ontario, M3J 1P3, Canada 9 Oxford University, Subdepartment of Particle Physics, Oxford University, Kyoto, Japan 25 TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3, Canada 26 Department

  9. Status of Muon Collider Research and Development and Future Plans

    E-Print Network [OSTI]

    McDonald, Kirk

    , Oxford, MS 38677 13 Brookhaven National Laboratory, Upton, NY 11973 14 KEK High Energy Accelerator Research Organization, 1­1 Oho, Tsukuba 305, Japan 15 Oak Ridge National Laboratory, Oak Ridge, TN 37831 16. Wurtele 28 , Yongxiang Zhao 13 , Max Zolotorev 9 1 Fermi National Laboratory, P. O. Box 500, Batavia, IL

  10. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  11. Evidence for Neutrino Oscillations from Muon Decay at Rest

    E-Print Network [OSTI]

    C. Athanassopoulos; L. B. Auerbach; R. L. Burman; I. Cohen; D. O. Caldwell; B. D. Dieterle; J. B. Donahue; A. M. Eisner; A. Fazely; F. J. Federspiel; G. T. Garvey; M. Gray; R. M. Gunasingha; R. Imlay; K. Johnston; H. J. Kim; W. C. Louis; R. Majkic; J. Margulies; K. McIlhany; W. Metcalf; G. B. Mills; R. A. Reeder; V. Sandberg; D. Smith; I. Stancu; W. Strossman; R. Tayloe; G. J. VanDalen; W. Vernon; N. Wadia; J. Waltz; Y-X. Wang; D. H. White; D. Works; Y. Xiao; S. Yellin The LSND Collaboration

    1996-05-01

    A search for nu_bar_mu to nu_bar_e oscillations has been conducted at the Los Alamos Meson Physics Facility using nu_bar_mu from mu+ decay at rest. The nu_bar_e are detected via the reaction (nu_bar_e,p) -> (e+,n), correlated with the 2.2 MeV gamma from (n,p) -> (d,gamma). The use of tight cuts to identify e+ events with correlated gamma rays yields 22 events with e+ energy between 36 and 60 MeV and only 4.6 (+/- 0.6) background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1E-08. A chi^2 fit to the entire e+ sample results in a total excess of 51.8 (+18.7) (-16.9) (+/- 8.0) events with e+ energy between 20 and 60 MeV. If attributed to nu_bar_mu -> nu_bar_e oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of 0.0031 (+0.0011) (-0.0010) (+/- 0.0005).

  12. Wissenschaftliche Berichte Features of the EAS Muon Den

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    . Doll, J. Engler, F. Feßler, H.J. Gils, R. Glasstet­ ter, R. Haeusler, W. Hafemann, D. Heck, T. Holst, J , K. Daumiller 3 , P. Doll, J. Engler, F. Feßler, H.J. Gils, R. Glasstetter, R. Haeusler, W. Hafemann

  13. Jet quenching in the compact muon solenoid at the LHC

    E-Print Network [OSTI]

    López Mateos, David

    2005-01-01

    In this thesis we perform analyses on simulated data that allow us to demonstrate the sensitivity of the CMS experiment to certain jet quenching observables. In particular, two theoretical scenarios which mimic RHIC data ...

  14. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    E-Print Network [OSTI]

    Zisman, Michael S.

    2011-01-01

    surface treatments (i.e. , atomic layer deposition, ALD) arecopper cavities using atomic layer deposition or Be walls toInitial tests of atomic layer deposition (ALD) techniques 14

  15. MERIT Magnet Testing Status Neutrino Factory Muon Collider Collaboration Meeting

    E-Print Network [OSTI]

    McDonald, Kirk

    tap of the transformers (to support 700 v operation) will be done this week Bus Bar connections, and the bolt strength, which limits the pressure capability of the vessel, increases with lower temperatures pressure. The vessel can be de-rated further if needed for qualification at CERN. · The strength of bolting

  16. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    ScienceCinema (OSTI)

    Latina, Andrea

    2010-01-08

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  17. TARGET SYSTEM CONCEPT FOR A MUON COLLIDER/NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    be replaced periodically. Operation at high temperature provides annealing of radiation damage in a double-walled stainless-steel vessel with intramural He-gas flow for cool- ing, shown in Fig. 2

  18. Chiral effective field theory predictions for muon capture on...

    Office of Scientific and Technical Information (OSTI)

    studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) csub D and csub...

  19. A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News BelowAsked toUSC-Aiken, SRNL SignDOEA Look

  20. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces. (Technical Report) |Double

  1. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces. (Technical Report) |DoubleDouble

  2. Muon-induced backgrounds in the CUORICINO experiment (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentativea(Patent) |center (Journal Article) |SciTech

  3. Muon-induced backgrounds in the CUORICINO experiment (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentativea(Patent) |center (Journal Article)

  4. Neutron Production by Muon Spallation I: Theory (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech Connect NeutronSciTech Connect

  5. Neutron Production by Muon Spallation I: Theory (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech Connect NeutronSciTech

  6. Publisher's Note: Measurement of the Positive Muon Lifetime and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers'(x≤2)Article)SciTechonnotSciTechProtonDeviation

  7. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22 LANSCE TopicalElectricity &LIMIT

  8. Melvin Schwartz and the Discovery of the Muon Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement ofSchweglerfeed-imagelevel

  9. IDS120j WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGIONPION AND MUON STUDIES WITHIN TAPER REGION

    E-Print Network [OSTI]

    McDonald, Kirk

    RESISTIVE MAGNETS AND FILLING UPPER HALF OF Hg POOL WITH SHIELDING. GENERAL OVERVIEW (LEFT), POOL REGION UPSTREAM TO THE POOL SH#1A Hg POOL Hg POOL CRYO#4CRYO#3 2 cm THICK STST BEAM PIPE WAY UPSTREAM TO THE POOL RIGHT FLANGE Hg POOL STARTS ~ 85 cm AND EXTENDS ALL THE WAY TO THE END OF THE FIRSTALL THE WAY

  10. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Materials in Extremes Muon Tomography Neuro and Cognitive Sciences Nuclear Physics Nuclear Weapons and Global Security Data...

  11. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  12. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  13. Doppler Tomography

    E-Print Network [OSTI]

    T. R. Marsh

    2000-11-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  14. Mathematics of thermoacoustic tomography

    E-Print Network [OSTI]

    Peter Kuchment; Leonid Kunyansky

    2007-10-21

    The paper presents a survey of mathematical problems, techniques, and challenges arising in the Thermoacoustic and Photoacoustic Tomography.

  15. A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Lakdawala, Samir

    2013-05-02

    of the collider will increase the rate of collisions and expand the physics reach of CMS, but will also push the detector systems beyond their current capabilities. One critically affected element is the CMS trigger, a system responsible for making a fast...

  16. Dual baseline search for muon antineutrino disappearance at 0.1 eV˛

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; et al

    2012-09-25

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ?Ż? at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ?? background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ?Ż? disappearance that dramatically improves upon prior limits inmore »the ?m˛=0.1–100 eV˛ region.« less

  17. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-10-27

    The authors report the results of a search for ?e appearance in ?? beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (?23 sin2 (?13) 2?23) sin 2 (2?13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The ?13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  18. CHARACTERISTICS OF MUON PAIR PRODUCTION IN P-P COLLISIONS AT VERY HIGH ENERGIES

    E-Print Network [OSTI]

    of corrections necessary for measurements made with nuclear targets. Cross-sections are given for J of scaling violation is seen in a comparison with lower energy data. The measured cross-section is found of Philosophy ABSTRACT The reaction P + P + + + (anything) has been measured at the CERN Intersecting Storage

  19. IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION, III

    E-Print Network [OSTI]

    McDonald, Kirk

    RESISTIVE MAGNETS AND FILLING UPPER HALF OF Hg POOL WITH SHIELDING. GENERAL OVERVIEW (LEFT), POOL REGION DETAILS (RIGHT). [20 cm GAPS] SH#1 SH#1 SH#1A SH#2 SH#1A Hg POOL SH#4 SH#3 Hg POOL SH#1 2 cm THICK STST TO THE POOL SH#1 10 cm THICK STST RIGHT FLANGE Hg POOL STARTS ~ 85 cm AND EXTENDS ALL THE WAY TO THE END

  20. IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION

    E-Print Network [OSTI]

    McDonald, Kirk

    ;IDS120j: REPLACING RESISTIVE MAGNETS AND FILLING UPPER HALF OF Hg POOL WITH SHIELDING. GENERAL OVERVIEW (LEFT), POOL REGION DETAILS (RIGHT). [20 cm GAPS] SH#1 SH#1 SH#1A SH#2 SH#1A Hg POOL SH#4 SH#3 Hg POOL SH#1 2 cm THICK STST OUTER TUBE CRYO#1 CRYO#4CRYO#3 CRYO#2 2 cm THICK STST BEAM PIPE BEAM PIPE

  1. K. McDonald Muon Collaboration Meeting 19 Mar 2008 Future Target System R&D

    E-Print Network [OSTI]

    McDonald, Kirk

    be good to verify feasibility of recovery of the mercury jet in an open pool. An opportunity exists (presentation by V. Graves). Such studies would begin with no magnetic field (jet quality, Hg pool), followed in a pool in ~ 4 T magnetic field. Issues: Jet quality after emerging from long cylindrical nozzle in iron

  2. INFLUENCE OF PROTON BEAM EMITTANCES ON PARTICLE PRODUCTION OFF A MUON COLLIDER TARGET*

    E-Print Network [OSTI]

    McDonald, Kirk

    of the beam and target to maximize particle production by incoming protons with kinetic energies (KE) between between the mercury jet and the proton beam) to maximize particle production initiated by incoming protons, and the incoming proton beam angle. We also studied the influence of a shift of the beam focal point relative

  3. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect (OSTI)

    Ochoa Ricoux, Juan Pedro; /Caltech

    2009-10-01

    We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  4. A 4-MW TARGET STATION FOR A MUON COLLIDER OR NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    beam, because the intense pressure waves induced by the proton beam, and consequent cavitation in a 20-T solenoid, without proton beam, indicated favorable stabi- lization of hydrodynamic instabilities

  5. SIMULATION OF HIGH-POWER MERCURY JET TARGETS FOR NEUTRINO FACTORY AND MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    , Princeton, NJ 08544, USA Abstract Hydrodynamic behavior of high power targets for future particle a smoothed particle hydrodynamics code de- signed to accurately resolve free surface 3D hydrodynamic flows cavitation and disruption caused by interac- tion with proton pulses were presented in [4] and previous works

  6. A 4MW TARGET STATION FOR A MUON COLLIDER OR NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    beam, because the intense pressure waves induced by the proton beam, and consequent cavitation of hydrodynamic instabilities by the high magnetic field [6]. These encouraging results led to a proposal [7

  7. Event-Shape Engineering and Muon-Hadron Correlations with ALICE

    E-Print Network [OSTI]

    Jan Fiete Grosse-Oetringhaus; for the ALICE collaboration

    2015-11-17

    Angular correlations of two and more particles are a sensitive probe of the initial state and the transport properties of the system produced in heavy-ion collisions. Two recent results of the ALICE collaboration are presented. Event-shape engineering, a novel method, is applied to Pb-Pb collisions which splits events within the same centrality interval into classes with different average flow. The results indicate an interplay between radial and elliptic flow likely related to the initial-state eccentricity. In pp and p-Pb collisions, recent results revealed intriguing long-range correlation structures reminiscent of features observed in heavy-ion collisions. The use of forward detectors allowed to show that long-range correlation structures persist also at large rapidities in p-Pb collisions.

  8. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01

    and O. Yasuda (eds. ), “Physics at a future neutrino factoryAccelerators for Particle Physics Michael S. Zisman trendP HYSICS Q UESTIONS Particle physics is a broad subject, and

  9. Technical Challenges of the Neutrino-Factory / Muon-Collider Capture Systemp y

    E-Print Network [OSTI]

    McDonald, Kirk

    is proposed ­ 14 Tesla to be generated by a superconducting magnet ­ 6 Tesla to be generated using a resistive Station Concept · A 20 Tesla hybrid Nb3Sn / Cu solenoid is proposed· A 20 Tesla hybrid Nb3Sn / Cu solenoid that lead to some significant technical challenges: 1. Demanding Magnet Parameters - High field (14 Tesla

  10. Muon-Induced Backgrounds in the Double Chooz Neutrino Oscillation Experiment

    E-Print Network [OSTI]

    for neutrinoless double-beta decay, a lepton-number violating nuclear process. The observation of a non-zero rate

  11. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    E-Print Network [OSTI]

    Achterberg, A.; IceCube Collaboration

    2008-01-01

    only on simulation and low energy data, where the signal isones (Figure 2). Only low energy data events (low N ch val-to simulation. High energy data events (high N ch values)

  12. RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM

    E-Print Network [OSTI]

    Leskovar, B.

    2010-01-01

    fai'ijre rate characteristics for electronics components.and J. T. Redforn, Array Electronics and Signal Processing,Physics of Failure in Electronics, Vol. 3, pp 238-263, 1964.

  13. Muonium-antimuonium oscillations and exotic muon decay in broken [ital R]-parity SUSY models

    SciTech Connect (OSTI)

    Halprin, A. (Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)); Masiero, A. (Instituto Nazionale di Fisica Nucleare, Sezione di Padova, 35100 Padova (Italy))

    1993-10-01

    We analyze the process of muonium-antimuonium conversion and the rare decay [mu][sup +][r arrow][ital e][sup +][bar [nu

  14. The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA

    E-Print Network [OSTI]

    Achterberg, A.; IceCube Collaboration

    2008-01-01

    see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

  15. Improvement of the Track-based Alignment Procedure of the CMS Muon System 

    E-Print Network [OSTI]

    Amin, Nick Jogesh

    2013-12-02

    and analyzed through a sophisticated cylindrical layering of subdetectors. Proper alignment of the outermost sub- detector on the endcaps of the cylinder, the Cathode Strip Chambers (CSC), is essential for an accurate reconstruction of momenta of various...

  16. The Neutrino Factory and Muon Collider Collaboration The R&D Program for

    E-Print Network [OSTI]

    McDonald, Kirk

    Technical Board, Feb. 9, 2002 http://puhep1.princeton.edu/mumu/target/ Kirk T. McDonald February 9, 2002 1 we done so far? · What more should we do? Technical Presentations Harold Kirk: Overview of Beam. Ioannis Marneris: Power Supply Issues. Harold Kirk: Overview of the Pulsed Magnet Project. KTM: Summary

  17. The Development of Fluidised Powder Target Technology for a Neutrino Factory or Muon Collider

    E-Print Network [OSTI]

    McDonald, Kirk

    , and multiple beam pulses · Quasi-liquid ­ Target material continually reformed ­ Can be pumped away, cooled Monitoring · Expect rig lifetime to be limited by wear · Wall thickness monitoring: ­ Dense-phase hopper

  18. arXiv:acc-phys/9602001v112Feb1996 MUON COLLIDERS

    E-Print Network [OSTI]

    Wurtele, Jonathan

    , A. Garren3,7 , M. Green3 , S. Kahn1 , H. Kirk1 , Y. Y. Lee1 , F. Mills5 , N. Mokhov5 , G. Morgan1 on upgrades of the FERMILAB machines would also be possible (see second Ref. [4]). Hadron collider energies are limited by their size and technical constraints on bending magnetic fields. At very high energies it would

  19. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom...

    Office of Scientific and Technical Information (OSTI)

    Aren't Brilliant" Leon's Story Leon M. Lederman - Unauthorized Autobiography Additional Web Pages: Discovery of One of the Smallest Particles of Matter Landmarks: Breaking the...

  20. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    SciTech Connect (OSTI)

    J. Donald Cossairt

    2000-05-15

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work.

  1. The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad

    E-Print Network [OSTI]

    McDonald, Kirk

    . · The WIPP underground science facility is well sized and well located to host a large detector for neutrinos

  2. The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad

    E-Print Network [OSTI]

    McDonald, Kirk

    The WIPP underground science facility is well sized and well located to host a large detector for neutrinos

  3. FISSION YIELDS AND LIFETIMES FOR MUON INDUCED FISSION IN 235U AND 238U

    E-Print Network [OSTI]

    Ahmad, S.

    2012-01-01

    HAUSSER Atomic Energy of Canada Ltd. , Chalk River NuclearLaboratories~ Chalk River, Ont. , Canada KOJ lJO S.N. I~LAN

  4. FermilabPUB98/179 Status of Muon Collider Research and

    E-Print Network [OSTI]

    McDonald, Kirk

    . Alex Bogacz, 8 T. Bolton, 9 Shlomo Caspi, 10 Christine Celata, 10 Weiren Chou, 1 David B. Cline, 11 Harold G. Kirk, 13 Yoshitaka Kuno, 14 Paul Lebrun, 1 Kevin Lee, 11 Peter Lee, 10 Derun Li, 10 David

  5. The Leptonic CP Phase from Muon Decay at Rest with Two Detectors

    E-Print Network [OSTI]

    Emilio Ciuffoli; Jarah Evslin; Xinmin Zhang

    2014-03-10

    We propose a novel experimental setup for the determination of the leptonic CP-violating phase delta using the decay at rest (DAR) of mu+ from a single source located at distances of 10 and 30 km from two 20 kton organic liquid scintillator detectors. The mu+ are created by bombarding a target with a 9 mA beam of 800 MeV protons. With this proposal delta can be determined with a precision of about 20 (15) degrees in 6 (12) years. In contrast with the DAEdALUS project, only a single source is required and it runs with a duty factor of 100 percent. Therefore 9 mA is the maximum instanteous current, greatly reducing both the technological challenges and the costs.

  6. Proposal for characterization of muon spectrometers for neutrino beam lines with the Baby MIND

    E-Print Network [OSTI]

    Noah, E

    2015-01-01

    Neutrino detectors based on state-of-the-art plastic scintillators read out with solid state photo-sensors, as well as new magnetization schemes, have been developed in the framework of AIDA. Meaningful size prototypes are under construction. In the framework of the CERN neutrino platform, we propose to test a Totally Active Scintillator Detector (TASD) and a prototype of a Magnetized Iron Neutrino Detector (MIND), called Baby MIND in the H8 beam line in 2016-2018. The design of the detectors and the purpose and plans for the beam tests are presented. An opportunity to use the Baby MIND detector in a real neutrino beam at JPARC for the measurement of the cross-section ratio between Water and scintillator (WAGASCI experiment) is described.

  7. Search for excited muons in p p collisions at V. M. Abazov,36

    E-Print Network [OSTI]

    . W. Gru¨newald,30 F. Guo,73 J. Guo,73 G. Gutierrez,51 P. Gutierrez,76 A. Haas,71 N. J. Hadley,62 P

  8. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01

    effort toward the International Linear Collider. Looking tosuch as the International Linear Collider (ILC) [6].

  9. Prospects for improving the LHC W boson mass measurement with forward muons

    E-Print Network [OSTI]

    Bozzi, Giuseppe; Vesterinen, Mika; Vicini, Alessandro

    2015-01-01

    Measurements of the $W$ boson mass are planned by the ATLAS and CMS experiments, but for the time being, these may be unable to compete with the current world average precision of 15 MeV, due to uncertainties in the PDFs. We discuss the potential of a measurement by the LHCb experiment based on the charged lepton transverse momentum $p_T^{\\ell}$ spectrum in $W \\to \\mu\

  10. ENERGY DEPOSITION IN THE TARGET SYSTEM OF A MUON COLLIDER/NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    damage and must be replaced periodically. Operation at high temperature provides annealing of radi- ation. It is encased in a double-walled stainless-steel vessel with in- tramural He-gas flow for cooling, shown in Fig

  11. Study of the neutralino sector and analysis of the muon response

    E-Print Network [OSTI]

    and the detector R&D program of the International Linear Collider (ILC), an e+ e- collider with a centre of mass¨ufungausschusses: Prof. Dr. C. Hagner Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN (97.71 GeV) can be estimated with a relative statistical uncertainty of 1.09%. The mass of the ~µ

  12. A more realistic scheme for the front-end of a muon accelerator

    E-Print Network [OSTI]

    McDonald, Kirk

    V protons obtained from MARS runs1 1 H. G. Kirk and X. Ding Simulation Tools #12;5 · Target to buncher within acceptance AT cut in momentum 100 Be coating · Later, I will vary the absorber thickness 1MUC-NOTE-COOL-THEORY-296 (2004) Addition of Windows

  13. A search for charge 1/3 third generation leptoquarks in muon channels

    SciTech Connect (OSTI)

    Uzunyan, Sergey A.; /Northern Illinois U.

    2006-08-01

    Leptoquarks are exotic particles that have color, electric charge, and lepton number and appear in extended gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations corresponding to the three quark and lepton generations. We are searching for charge 1/3 third generation leptoquarks produced in p{bar p} collisions at {radical}s = 1.96 TeV using data collected by the D0 detector. Such leptoquarks would decay into either a tau-neutrino plus a b-quark or, if heavy enough, to a tau-lepton plus a t-quark. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-quarks using 367 pb{sup -1} of Run II D0 data taken between August 2002 and September 2004. We place upper limits on {sigma}(p{bar p} {yields} LQ{ovr LQ})B{sup 2} as a function of the leptoquark mass M{sub LQ}. Assuming B = 1, we exclude at the 95% confidence level third generation leptoquarks with M{sub LQ} < 197 GeV/c{sup 2}.

  14. The Bethe-Heitler Process as a Source of Muons Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    transport such that rms measures of emittance increase rapidly along a beam transport system. Analytic-pair-production process [3, 4, 5, 6], + A A + + - , (1) in high-energy photon interactions with a nucleus A, as recently to electron-positron pair production by the ratio (me/mµ)2 1/40, 000, so there is an issue of the efficiency

  15. Chiral effective field theory predictions for muon capture on deuteron and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORS FROM BOILINGChemCam on Marsand$^3$He

  16. Chiral effective field theory predictions for muon capture on deuteron and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission,TextitSciTechin ComplexChi-NuSciTechand

  17. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collidertransfer (Journal Article) | SciTechFLARES FROM RHESSI

  18. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collidertransfer (Journal Article) | SciTechFLARES FROM

  19. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scaleCoherentCharacterizationArticle) |

  20. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scaleCoherentCharacterizationArticle) |Platform

  1. A search for pair production of new light bosons decaying into muons

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL(Technicalentanglements for linearAoffrom electron(Journal

  2. Measurement of Muon Capture on the Proton (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTech ConnectnonlinearityConnect Measurement of

  3. Measurement of Muon Capture on the Proton to 1% Precision and Determination

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTech ConnectnonlinearityConnect Measurement

  4. Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal Article)at theReport) |in QCD: The vectorQCD:in

  5. Muon fluxes and showers from dark matter annihilation in the Galactic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentativea(Patent) |center (Journal Article) | SciTech

  6. Muon fluxes from dark matter annihilation (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentativea(Patent) |center (Journal Article) |

  7. Neutrinos from STORed Muons - nuSTORM (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for integrationDecompositionArticle) |Neutrino

  8. Neutrinos from STORed Muons - nuSTORM (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for integrationDecompositionArticle) |NeutrinoNeutrinos

  9. R-Axion: A New LHC Physics Signature Involving Muon Pairs (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect Pulse energy(Conference) | SciTechQuirks at the

  10. Recent progress in neutrino factory and muon collider research within the

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect(Conference) | SciTech ConnectConnect Recentmuon

  11. Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERALProblems I nArgonneGasolinePDepartment

  12. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray4Leon Lederman,

  13. Entanglement of neutrino states

    E-Print Network [OSTI]

    D. L. Khokhlov

    2008-11-12

    Muon and muon antineutrino born in the decay of charged pion form the entangled spin state. The decay of muon with the left helicity triggers the left helicity for muon antineutrino to preserve the null total angular momentum of muon and muon antineutrino. This is forbidden for antineutrino hence one cannot detect the muon antineutrino after the decay of muon. This effect may explain the deficit of muon neutrino flux in the Super-Kamiokande, K2K, MINOS experiments.

  14. Turbocharging Quantum Tomography.

    SciTech Connect (OSTI)

    Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  15. THERMOACOUSTIC TOMOGRAPHY WITH VARIABLE SOUND ...

    E-Print Network [OSTI]

    2009-10-26

    We study the mathematical model of thermoacoustic tomography in media with a ... In thermoacoustic tomography, a short electro-magnetic pulse is sent through ...

  16. Quantum Tomography twenty years later

    E-Print Network [OSTI]

    M. Asorey; A. Ibort; G. Marmo; F. Ventriglia

    2015-10-28

    A sample of some relevant developments that have taken place during the last twenty years in classical and quantum tomography are displayed. We will present a general conceptual framework that provides a simple unifying mathematical picture for all of them and, as an effective use of it, three subjects have been chosen that offer a wide panorama of the scope of classical and quantum tomography: tomography along lines and submanifolds, coherent state tomography and tomography in the abstract algebraic setting of quantum systems.

  17. Introduction to Positron Emission Tomography

    E-Print Network [OSTI]

    Oakes, Terry

    range: 1-10 mm Gamma-Ray range: 10 mm - 8 positron annihilation #12;Positron Emission TomographyIntroduction to Positron Emission Tomography Positron Annihilation 180 o #1 #2 with your host detector #2 detector #1 #2 #1 detector ring #12;Positron Emission Tomography detector #2 detector #1 #2

  18. Finite quantum tomography via semidefinite programming

    E-Print Network [OSTI]

    M. A. Jafarizadeh; M. Mirzaee; M. Rezaee

    2007-07-26

    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \\cite{schack,Pegg,Barnett,Buzek,Weigert}.

  19. Thermoacoustic tomography, variable sound speed

    E-Print Network [OSTI]

    Plamen Stefanov

    2009-10-26

    In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, ...

  20. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-00

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  1. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  2. An Induction Linac Approach to Phase Rotation of a Muon Bunch in the Production Region of a mu+ - mu- Collider

    E-Print Network [OSTI]

    Turner, W.C.

    2011-01-01

    ferromagnetic alloy, Metglas 2605SC, chosen for its veryshaped hysteresis loops. For Metglas 2605SC we then obtain;cores fabricated from Metglas with L1B = 2.5 T rather than

  3. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector

    E-Print Network [OSTI]

    Ruan, L.

    2010-01-01

    ux return bar has a magnetic ?eld of 1.2 Telsa while the TPChas a 0.5 Telsa ?eld. Pion and kaon misidenti?cations come

  4. An Investigation of the Neutral Cascade Muon Semileptonic Decay and its Observation at KTeV, Fermilab

    SciTech Connect (OSTI)

    Gomes, Ricardo Avelino

    2005-07-01

    The authors report an investigation of the semileptonic decay {Xi}{sup 0} {yields} {sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}}. This decay was observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the {Xi}{sup 0} beta decay mode and yields a value for the ratio of decay rates {Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}})/{Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +}e{sup -}{bar {nu}}{sub e}) of (1.8{sub -0.5}{sup +0.7}(stat.) {+-} 0.2(syst.)) x 10{sup -2} at the 68.27% confidence level, being the official measurement of KTeV Collaboration. They also used the dominant decay {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) as normalization mode in an independent analysis which corroborated with the main result. In addition, a new measurement of the {Xi}{sup 0} {yields} {Sigma}{sup +} e{sup -}{bar {nu}}{sub e} branching ratio is presented, based on 1139 events and normalized to the {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) decay mode. The results are in agreement with the SU(3) flavor symmetric quark model.

  5. Design Issues for the Superconducting Magnet that Goes Around the Liquid Hydrogen Absorber for the Muon Ionization Cooling Experiment (MICE)

    E-Print Network [OSTI]

    2004-01-01

    THAT GOES AROUND THE LIQUID HYDROGEN ABSORBER FOR THE MUONthat goes around a liquid hydrogen absorber for the Muonand magnet quench on the liquid hydrogen absorber is also

  6. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    E-Print Network [OSTI]

    Klein, Spencer; IceCube Collaboration

    2009-01-01

    neutralino annihilations in the Sun with the IceCube 22-neutralino annihilations in the Sun with the IceCube 22-neutralino annihilations in the Sun has been performed with

  7. K. McDonald LEMC Workshop 22 Apr 2008 From MERIT to a Muon Collider (Front End)

    E-Print Network [OSTI]

    McDonald, Kirk

    to magnetic axis. Beam dump (mercury pool) out of the way of secondary 's and 's. Desire 1014 /s from 1015 p R&D needed! length (cm) 0 250 500 750 -100 -50 0 50 100 radii(cm) PPPP ```````````````Hg Pool SC of capture solenoid to reduce fringe-field effect on shape of free jet. Mercury collected in a pool in ~ 4

  8. Search for High Mass Resonances Decaying to Muon Pairs in ?s=1.96??TeV pp? Collisions

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present a search for a new narrow, spin-1, high mass resonance decaying to ?+?-+X [mu superscript + mu superscript - + X], using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and ...

  9. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect (OSTI)

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  10. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at E?~3.5 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; et al

    2013-07-11

    We report a study of ?? charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a ?? and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, d?/dQ˛, and study the low energy particle content of the final state. Deviations are found between the measured d?/dQ˛ and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons inmore »the final state.« less

  11. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E?~3.5 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; et al

    2013-07-11

    We have isolated ?Ż? charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, d?/dQ˛, and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c˛ but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at highermore »Q˛ favor this interpretation over an alternative in which the axial mass is increased.« less

  12. A SOLENOID CAPTURE SYSTEM FOR A MUON COLLIDER , R. Fernow, N. Souchlas, BNL, Upton, NY 11973, U.S.A.

    E-Print Network [OSTI]

    McDonald, Kirk

    beam, because the intense pressure waves induced by the proton beam, and consequent cavitation favorable stabi- lization of hydrodynamic instabilities by the high magnetic field [6]. These encouraging

  13. Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.; Nakajima, Y; Aguilar-Arevalo, A A; Alcaraz-Aunion, J L; Anderson, C E; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; et al

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a ?? disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on ?? disappearance in the 0.5-40 eV2 ?m2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  14. ccsd-00000318(version1):29Apr2003 Calculation of muon transfer from muonic hydrogen to atomic oxygen

    E-Print Network [OSTI]

    Boyer, Edmond

    ), the problem corresponds to an ultra-cold collision. The close-coupling time-independent quantum equations explanation. Werthm¨uller et al [4] suggest the existence of a resonance at low energies. It is worth to stress that such an increase has not been observed in the case of muonic hydrogen colliding with sulfur

  15. Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector

    E-Print Network [OSTI]

    Iori, M; Yilmaz, A; Ferrarotto, F; Russ, J

    2015-01-01

    We present results demonstrating the time resolution and $\\mu$/e separation capabilities with a new concept of an EAS detector capable for measurements of cosmic rays arriving with large zenith angles. This kind of detector has been designed to be a part of a large area (several square kilometers) surface array designed to measure Ultra High Energy (10-200 PeV) $\\tau$ neutrinos using the Earth-skimming technique. A criteria to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  16. arXiv:hep-ex/0207031v213Aug2002 Status of Neutrino Factory and Muon Collider Research and

    E-Print Network [OSTI]

    Wurtele, Jonathan

    ,10 Kevin W. Cassel,1 M. Gabriela Catanesi,12 Swapan Chattopadhyay,11 Weiren Chou,2 David B. Cline,15 Christine Darve,2 Fritz DeJongh,2 Alexandr Drozhdin,2 Paul Drumm,18 V. Daniel Elvira,2 Deborah Errede,19 Valeri Lebedev,2 Paul Lebrun,2 Kevin Lee,15 Jacques A. Lettry,3 Marco Laveder,12 Derun Li,16 Alessandra

  17. arXiv:hep-ex/0207031v32Jul2003 Recent Progress in Neutrino Factory and Muon Collider

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Campanelli,10 Kevin W. Cassel,1 M. Gabriela Catanesi,12 Swapan Chattopadhyay,11 Weiren Chou,2 David B. Cline Christine Darve,2 Fritz DeJongh,2 Alexandr Drozhdin,2 Paul Drumm,6 V. Daniel Elvira,2 Deborah Errede,18 Valeri Lebedev,2 Paul Lebrun,2 Kevin Lee,15 Jacques A. Lettry,3 Marco Laveder,12 Derun Li,16 Alessandra

  18. Dual baseline search for muon antineutrino disappearance at 0.1 eV˛

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Dore, U.; Finley, D. A.; Ford, R.; Franke, A. J.; Garcia, F. G.; Garvey, G. T.; Giganti, C.; Gomez-Cadenas, J. J.; Grange, J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Jones, B. J. P.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Marsh, W.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mirabal, J.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Mousseau, J.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Osmanov, B.; Otani, M.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; Van de Water, R. G.; Walding, J. J.; Wascko, M. O.; White, D. H.; White, H. B.; Wickremasinghe, D. A.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2012-09-01

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ?Ż? at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ?? background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ?Ż? disappearance that dramatically improves upon prior limits in the ?m˛=0.1–100 eV˛ region.

  19. Inclusive Electroweak measurements in the muon channel with pp collisions at [the square root of] s=7 TeV

    E-Print Network [OSTI]

    Harris, Philip Coleman

    2011-01-01

    In this thesis, we perform the measurement of the production of W and Z bosons in proton-proton collisions at [the square root of]s = 7 TeV with the Large Hadron Collider (LHC). In the LHC, W and Z bosons are produced at ...

  20. Introduction to Positron Emission Tomography

    E-Print Network [OSTI]

    Oakes, Terry

    Introduction to Positron Emission Tomography with your host, Terry Oakes Positron Annihilation #1 neighboring atom Positron range: 1-10 mm Gamma-Ray range: 10 mm - 8 positron annihilation #2 #1 T.R.Oakes Univ. WI-Madison #12;Positron Emission Tomography detector #2 detector #1 #2 #1 detector ring T