Powered by Deep Web Technologies
Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Superconducting solenoids for the Muon collider  

E-Print Network [OSTI]

muon collider has superconducting solenoids as an integralLBNL-44303 SCMAG-690 Superconducting Solenoids for the MuonDE-AC03-76SFOOO98. J Superconducting Solenoids for the Muon

Green, M.A.

2011-01-01T23:59:59.000Z

2

A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC  

E-Print Network [OSTI]

Compact Muon Solenoid (CMS) is one of the flagship experiments in particle physics operating at the Large Hadron Collider (LHC). CMS was built to search for signatures of Higgs bosons, supersymmetry, and other new phenomena. The coming upgrade...

Lakdawala, Samir

2013-05-02T23:59:59.000Z

3

Improvement of the Track-based Alignment Procedure of the CMS Muon System  

E-Print Network [OSTI]

The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is used to explore subatomic interactions through proton-proton collisions. The resulting out- burst of particles from these high energy collisions is then tracked...

Amin, Nick Jogesh

2013-12-02T23:59:59.000Z

4

B physics expected performances with the Compact Muon Solenoid detector  

SciTech Connect (OSTI)

We present here the future performances of the Compact Muon Solenoid detector for B physics. We show that CMS will contribute significantly to the CP violation parameter sin 2{beta} measurement with a precision of {delta} sin 2{beta}{approx_equal}0.02 (1 year of integrated luminosity). The asymetry in the channel B{sub s}{sup 0}{yields}J/{psi}{phi} will be tested to the 2-5% level. The mixing parameter x{sub s} of B{sub s}{sup 0} oscillations will be measured up to 40. Finaly the rare B decay should be searched down to the SM expectation and in the case of the semileptonic rare decays will provide enough statistics to performed detailed studies.

Charles, Francois [Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 rue A. Camus, 68093 Mulhouse (France)

1998-10-19T23:59:59.000Z

5

The Solenoid Muon Capture System for the MELC Experiment  

E-Print Network [OSTI]

calculation of the magnetic field for the MELC setup are presented. Production of muon from pion decay as low as --~2 Tesla. In the vicinity of the solenoid axis there are targets, consisting of thin tungsten production backward is determined by the location of targets along the solenoid axis and by spacing of target

McDonald, Kirk

6

Muon Collider Final Cooling in 30-50 T Solenoids  

SciTech Connect (OSTI)

Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

Palmer, R.B.; Fernow, R.C.; Lederman, J.

2011-03-28T23:59:59.000Z

7

Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning  

E-Print Network [OSTI]

The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

S. Colafranceschi; L. Benussi; S. Bianco; L. Passamonti; D. Piccolo; D. Pierluigi; A. Russo; G. Saviano; C. Vendittozzi; M. Abbrescia; A. Aleksandrov; U. Berzano; C. Calabria; C. Carrillo; A. Colaleo; V. Genchev; P. Iaydjiev; M. Kang; K. S. Lee; F. Loddo; S. K. Park; G. Pugliese; M. Maggi; S. Shin; M. Rodozov; M. Shopova; G. Sultanov; P. Verwillingen

2012-09-18T23:59:59.000Z

8

Standard Model Higgs Boson Discovery Potential in the Decay Channel H - > ZZ(*) - > 4 mu with the CMS Detector.  

E-Print Network [OSTI]

??The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC) currently under construction at CERN with start-up date in… (more)

Drozdetski, Alexei Alexandrovic

2007-01-01T23:59:59.000Z

9

Preparations for Measurement of Electroweak Boson Production Cross-Sections using the Electron Decay Modes, with the Compact Muon Solenoid Detector  

E-Print Network [OSTI]

The Compact Muon Solenoid was designed to make discoveries at the TeV scale : to elucidate the nature of electroweak symmetry breaking and to search for physics beyond the Standard Model. For any such discovery to be credible, it must first be demonstrated that the CMS detector is understood. One mechanism to make this demonstration is to measure “standard candle” processes, such as W and Z production. This thesis describes preparations undertaken to make these measurements using the electron decay modes, with an integrated luminosity of 10 inverse picobarns of collision data. The energy resolution of the electromagnetic calorimeter was measured in test beam data. An improved method of deriving the optimised weights necessary for amplitude reconstruction is described. The measurement of electron charge using tracks is impaired by the electron showering in the tracker material. A novel charge measurement technique that is complementary to the existing method was assessed. Missing transverse energy is a pow...

Wardrope, D R

2009-01-01T23:59:59.000Z

10

Measurement of the charge ratio of atmospheric muons with the CMS detector  

SciTech Connect (OSTI)

We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

Khachatryan, Vardan; et al.

2010-08-01T23:59:59.000Z

11

in2p3-00142647,version1-25Apr2007 Available on CMS information server CMS NOTE 2006/110  

E-Print Network [OSTI]

2007 Search for a neutral Higgs boson with WH / ZH, H channel with the CMS detector at the LHC M for the discovery of a light Higgs boson in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is presented. The associated production channels WH and ZH of a Higgs boson decaying

Boyer, Edmond

12

A search for excited electrons with the Compact Muon Solenoid detector  

E-Print Network [OSTI]

There are four experimental caverns along the path of thiswhere the experimental caverns and utilities such asunderground in the CMS cavern. The second is software-base

Sudano, Elizabeth Jane Dusinberre

2012-01-01T23:59:59.000Z

13

Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays  

SciTech Connect (OSTI)

The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

Chatrchyan, S. [Yerevan Physics Institute (Aremenia); et al.,

2010-03-01T23:59:59.000Z

14

Magnetic design constraints of helical solenoids  

E-Print Network [OSTI]

Helical solenoids have been proposed as an option for a Helical Cooling Channel for muons in a proposed Muon Collider. Helical solenoids can provide the required three main field components: solenoidal, helical dipole, and a helical gradient. In general terms, the last two are a function of many geometric parameters: coil aperture, coil radial and longitudinal dimensions, helix period and orbit radius. In this paper, we present design studies of a Helical Solenoid, addressing the geometric tunability limits and auxiliary correction system.

Lopes, M L; Tompkins, J C; Yonehara, K; Flanagan, G; Kahn, S A; Melconian, K

2015-01-01T23:59:59.000Z

15

Measuring the Magnetic Flux Density in the CMS Steel Yoke  

E-Print Network [OSTI]

The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; A. Ball; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; M. Mulders; R. Loveless

2012-12-06T23:59:59.000Z

16

Measuring the Magnetic Flux Density in the CMS Steel Yoke  

E-Print Network [OSTI]

The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

2012-01-01T23:59:59.000Z

17

Commissioning of the CMS Cryogenic System After Final Installation in the Underground Cavern  

E-Print Network [OSTI]

After having served for the surface tests of the Compact Muon Solenoid (CMS) magnet, the cold box and ancillaries of the CMS helium refrigerator have been dismantled, moved and re-installed in the USC55 cavern in 2007. The full re-commissioning in the cavern has been followed by several tests of the refrigerator to confirm its nominal performance before it was used for the magnet and detector tests in 2008. During these tests the safety modes of the refrigeration system have been tested and improved. After a nine-year project both, the magnet and the refrigeration system are now ready for the CMS operation.

Dupont, T; Perinic, G; 10.1063/1.3422381

2010-01-01T23:59:59.000Z

18

The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC  

E-Print Network [OSTI]

The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton--proton collision data at sqrt(s) = 7 TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 inverse picobarns. The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80-120 micrometers in the DTs, 40-150 micrometers in the CSCs, and 0.8-1.2 centimeters in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95-98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds.

The CMS Collaboration

2014-03-11T23:59:59.000Z

19

Solenoid magnet system for the Fermilab Mu2e experiment  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

Lamm, M J [Fermilab; Andreev, N [Fermilab /Boston U.; Ambrosio, G [Fermilab; Brandt, J [Fermilab; Coleman, R [CERN; Evbota, D [Fermilab; Kashikhin, V V [City Coll., N.Y.; Lopes, M [Fermilab; Miller, J [Fermilab; Nicol, T [KEK; Ostojic, R [Tsukuba

2012-06-08T23:59:59.000Z

20

Measurement of the muon charge asymmetry in inclusive $pp \\rightarrow W + X$ production at $\\sqrt{s} = 7$ TeV at CMS and an improved determination of light parton distribution functions  

E-Print Network [OSTI]

Measurements of the muon charge asymmetry in inclusive $pp \\rightarrow WX$ production at $\\sqrt{s}=7$ TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 $\\mathrm{fb^{-1}}$ recorded with the CMS detector at the LHC. With a sample of more than twenty million $W \\rightarrow \\mu\

Ghosh, Saranya

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measurement of the muon charge asymmetry in inclusive $pp \\rightarrow W + X$ production at $\\sqrt{s} = 7$ TeV at CMS and an improved determination of light parton distribution functions  

E-Print Network [OSTI]

Measurements of the muon charge asymmetry in inclusive $pp \\rightarrow WX$ production at $\\sqrt{s}=7$ TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 $\\mathrm{fb^{-1}}$ recorded with the CMS detector at the LHC. With a sample of more than twenty million $W \\rightarrow \\mu\

Saranya Ghosh; for the CMS Collaboration

2015-02-18T23:59:59.000Z

22

Mu2e production solenoid cryostat conceptual design  

SciTech Connect (OSTI)

Mu2e is a muon-to-electron conversion experiment being designed by an international collaboration of more than 65 scientists and engineers from more than 20 research institutions for installation at Fermilab. The experiment is comprised of three large superconducting solenoid magnet systems, production solenoid (PS), transport solenoid (TS) and detector solenoid (DS). A 25 kW, 8 GeV proton beam strikes a target located in the PS creating muons from the decay of secondary particles. These muons are then focused in the PS and the resultant muon beam is transported through the TS towards the DS. The production solenoid presents a unique set of design challenges as the result of high radiation doses, stringent magnetic field requirements, and large structural forces. This paper describes the conceptual design of the PS cryostat and will include discussions of the vacuum vessel, thermal shield, multi-layer insulation, cooling system, cryogenic piping, and suspension system.

Nicol, T.H.; Kashikhin, V.V.; Page, T.M.; Peterson, T.J.; /Fermilab

2011-06-01T23:59:59.000Z

23

An outlook of the user support model to educate the users community at the CMS Experiment  

E-Print Network [OSTI]

The CMS (Compact Muon Solenoid) experiment is one of the two large general-purpose particle physics detectors built at the LHC (Large Hadron Collider) at CERN in Geneva, Switzerland. The diverse collaboration combined with a highly distributed computing environment and Petabytes/year of data being collected makes CMS unlike any other High Energy Physics collaborations before. This presents new challenges to educate and bring users, coming from different cultural, linguistics and social backgrounds, up to speed to contribute to the physics analysis. CMS has been able to deal with this new paradigm by deploying a user support structure model that uses collaborative tools to educate about software, computing an physics tools specific to CMS. To carry out the user support mission worldwide, an LHC Physics Centre (LPC) was created few years back at Fermilab as a hub for US physicists. The LPC serves as a "brick and mortar" location for physics excellence for the CMS physicists where graduate and postgraduate scientists can find experts in all aspects of data analysis and learn via tutorials, workshops, conferences and gatherings. Following the huge success of LPC, a centre at CERN itself called LHC Physics Centre at CERN (LPCC) and Terascale Analysis Centre at DESY have been created with similar goals. The CMS user support model would also facilitate in making the non-CMS scientific community learn about CMS physics. A good example of this is the effort by HEP experiments, including CMS, to focus on data preservation efforts. In order to facilitate its use by the future scientific community, who may want to re-visit our data, and re-analyze it, CMS is evaluating the resources required. A detailed, good quality and well-maintained documentation by the user support group about the CMS computing and software may go a long way to help in this endeavour.

Sudhir Malik; Kati Lassila-Perini

2011-10-03T23:59:59.000Z

24

The Large Hadron Collider CERN is the European Particle Physics Laboratory and was founded in 1954 to  

E-Print Network [OSTI]

was assembled underground in a cavern the size of the nave of Westminster Abbey. CMS (Compact Muon Solenoid) CMS

25

Aluminum alloy production for the reinforcement of the CMS conductor  

E-Print Network [OSTI]

The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the Large Hadron Collider (LHC) project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. To reinforce the high-purity (99.998%) Al-stabilized conductor of the magnet against the magnetic loadings experienced during operation at 4.2 K, two continuous sections of Al-alloy (AA) reinforcement are Electron Beam (EB) welded to it. The reinforcements have a section of 24*18 mm and are produced in continuous 2.55 km lengths. The alloy EN AW-6082 has been selected for the reinforcement due to its excellent extrudability, high strength in the precipitation hardened states, high toughness and strength at cryogenic temperature and good EB weldability. Each of the continuous lengths of the reinforcement is extruded billet on billet and press quenched on-line from the extrusion temperature in an industrial extrusion plant. In order to insure the ready EB welda...

Sequeira-Lopes-Tavares, S; Campi, D; Curé, B; Horváth, I L; Riboni, P; Sgobba, Stefano; Smith, R P

2002-01-01T23:59:59.000Z

26

Progress on the Design and Fabircation of the MICE SpectrometerSolenoids  

SciTech Connect (OSTI)

The Muon Ionization Cooling Experiment (MICE) willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. A five-coil, superconducting spectrometer solenoid magnet at each endof the cooling channel will provide a 4 T uniform field region for thescintillating fiber tracker within the magnet bore tubes. The trackermodules are used to measure the muon beam emittance as it enters andexits the cooling channel. The cold mass for the 400 mm warm bore magnetconsists of two sections: a three-coil spectrometer magnet and a two-coilmatching section that matches the uniform field of the solenoid into theMICE cooling channel. The spectrometer solenoid detailed designandanalysis has been completed, and the fabrication of the magnets is wellunder way. The primary features of the spectrometer solenoid magnet andmechanical designs are presented along with a summary of key fabricationissues and photos of the construction.

Virostek, S.P.; Green, M.A.; Lia, D.; Sizman, M.S.

2007-06-20T23:59:59.000Z

27

Conceptual design of the Mu2e production solenoid cold mass  

SciTech Connect (OSTI)

The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.

Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Lamm, M.; Mokhov, N.V.; Nicol, T.H.; Page, T.M.; Pronskikh, V.; /Fermilab

2011-06-01T23:59:59.000Z

28

Superconducting magnets for muon capture and phase rotation  

E-Print Network [OSTI]

LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUONDE-AC03-76SF00098. Green SUPERCONDUCTING MAGNETS FOR MUONet ai, "The Use of Superconducting Solenoids in a Muon

Green, M.A.

2011-01-01T23:59:59.000Z

29

Muon Collider Task Force Report  

SciTech Connect (OSTI)

Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

2007-12-01T23:59:59.000Z

30

Measurements of the Higgs boson mass and width in the four-lepton final state and electron reconstruction in the CMS experiment at the LHC  

E-Print Network [OSTI]

This thesis document reports measurements of the mass and width of the new boson re- cently discovered at the Large Hadron Collider (LHC), candidating to be the Standard Model Higgs boson. The analysis uses proton-proton collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC, corresponding to integrated luminosities of $5.1~fb^{?1}$ at $7~$TeV center of mass energy and $19.7~fb^{?1}$ at $8~$TeV center of mass energy. Set of events selecting Higgs boson via the $H\\to ZZ$ decay channel, where both $Z$ bosons decay to electron or muon lepton pairs, is used for the Higgs boson properties measurements. A precise measurement of its mass has been performed and gives $125.6\\pm0.4\\mbox{(stat)}\\pm0.2\\mbox{(syst)}~$GeV. Constraints on the Higgs boson width were established using its off-shell production and decay to a pair of $Z$ bosons, where one $Z$ boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The obtained result is an upper limit on the Hi...

Dalchenko, Mykhailo; Charlot, Claude

31

Search for the Higgs boson in its decay into tau leptons at CMS  

E-Print Network [OSTI]

A search for the Standard Model Higgs boson in the H --> rr channel is presented. The search is performed on proton collision data collected by the Compact Muon Solenoid at the Large Hadron Collider. The data corresponds ...

Chan, Matthew Hans

2013-01-01T23:59:59.000Z

32

LCLS Gun Solenoid Design Considerations  

SciTech Connect (OSTI)

The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

Schmerge, John

2010-12-10T23:59:59.000Z

33

Diborane Electrode Response in 3D Silicon Sensors for the CMS and ATLAS Experiments  

SciTech Connect (OSTI)

Unusually high leakage currents have been measured in test wafers produced by the manufacturer SINTEF containing 3D pixel silicon sensor chips designed for the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) experiments. Previous data has shown the CMS chips as having a lower leakage current after processing than ATLAS chips. Some theories behind the cause of the leakage currents include the dicing process and the usage of copper in bump bonding, and with differences in packaging and handling between the ATLAS and CMS chips causing the disparity between the two. Data taken at SLAC from a SINTEF wafer with electrodes doped with diborane and filled with polysilicon, before dicing, and with indium bumps added contradicts this past data, as ATLAS chips showed a lower leakage current than CMS chips. It also argues against copper in bump bonding and the dicing process as main causes of leakage current as neither were involved on this wafer. However, they still display an extremely high leakage current, with the source mostly unknown. The SINTEF wafer shows completely different behavior than the others, as the FEI3s actually performed better than the CMS chips. Therefore this data argues against the differences in packaging and handling or the intrinsic geometry of the two as a cause in the disparity between the leakage currents of the chips. Even though the leakage current in the FEI3s overall is lower, the current is still significant enough to cause problems. As this wafer was not diced, nor had it any copper added for bump bonding, this data argues against the dicing and bump bonding as causes for leakage current. To compliment this information, more data will be taken on the efficiency of the individual electrodes of the ATLAS and CMS chips on this wafer. The electrodes will be shot perpendicularly with a laser to test the efficiency across the width of the electrode. A mask with pinholes has been made to focus the laser to a beam smaller than the width of an electrode in order to properly scan it. This will provide more information on whether something in the electrodes, such as the polysilicon filling, is contributing to the leakage current or if there is another cause to be found. It will also reveal whether the diborane doping method and the new polysilicon filling has increased the electrode efficiency as expected. Thus, the cause of these leakage currents on the wafers from SINTEF has yet to be definitively found.

Brown, Emily R.; /Reed Coll. /SLAC

2011-06-22T23:59:59.000Z

34

Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities  

SciTech Connect (OSTI)

There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity.

Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; /Fermilab; Norem, J.; /Argonne; Li, D.; Zisman, M.; /LBL, Berkeley; Torun, Y.; /IIT, Chicago; Rimmer, R.; /Jefferson Lab; Errede,; /Illinois U., Urbana

2005-10-01T23:59:59.000Z

35

Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment  

E-Print Network [OSTI]

CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

Pöttgens, Michael

2007-01-01T23:59:59.000Z

36

atmospheric muon charge: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the CMS detector HEP - Experiment (arXiv) Summary: A measurement is presented of the flux ratio of positive and negative muons from cosmic ray interactions in the atmosphere,...

37

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC  

E-Print Network [OSTI]

Results are presented from searches for the standard model Higgs boson in proton–proton collisions at ?s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated ...

Apyan, Aram

38

The Sector Collector of the CMS DT Trigger system: Installation and Performance  

E-Print Network [OSTI]

Drift Tubes chambers are used for muon detection in the central region of the CMS experiment at LHC. Custom electronics is used for reconstructing muon track segments and for triggering the CMS readout. The trigger Sector Collector modules collect muon segments identified by the on-chamber devices, synchronize the data received from different chambers and convert from LVDS to Optical for transmission to the off-detector electronics. Installation and integration tests were developed for tuning both firmware and hardware of the Sector Collector system: results are reviewed. The system performance during CMS data taking with cosmic rays is discussed.

Travaglini, R

2008-01-01T23:59:59.000Z

39

Magnets for Muon 6D Cooling Channels  

SciTech Connect (OSTI)

The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

2014-09-10T23:59:59.000Z

40

Progress on the Fabrication and Testing of the MICE Spectrometer Solenoids  

SciTech Connect (OSTI)

The Muon Ionization Cooling Experiment (MICE) is an international collaboration that will demonstrate ionization cooling in a section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. At each end of the cooling channel a spectrometer solenoid magnet consisting of five superconducting coils will provide a 4 tesla uniform field region. The scintillating fiber tracker within the magnet bore will measure the muon beam emittance as it enters and exits the cooling channel. The 400 mm diameter warm bore, 3 meter long magnets incorporate a cold mass consisting of two coil sections wound on a single aluminum mandrel: a three-coil spectrometer magnet and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The fabrication of the first of two spectrometer solenoids has been completed, and preliminary testing of the magnet is nearly complete. The key design features of the spectrometer solenoid magnets are presented along with a summary of the progress on the training and testing of the first magnet.

Virostek, Steve; Green, M.A.; Li, Derun; Zisman, Michael

2009-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal Design of the Mu2e Detector Solenoid  

SciTech Connect (OSTI)

The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

Dhanaraj, Nandhini; Wands, Bob; Buehler, Marc; Feher, Sandor; Page, Thomas M; Peterson, Thomas; Schmitt, Richard L

2014-12-18T23:59:59.000Z

42

Integrating and automating the software environment for the Beam and Radiation Monitoring for CMS  

E-Print Network [OSTI]

The real-time online visualization framework used by the Beam and Radiation Monitoring group at the Compact Muon Solenoid at Large Hadron Collider, CERN. The purpose of the visualization framework is to provide real-time diagnostic of beam conditions, which defines the set of the requirements to be met by the framework. Those requirements include data quality assurance, vital safety issues, low latency, data caching, etc. The real-time visualization framework is written in the Java programming language and based on JDataViewer--a plotting package developed at CERN. At the current time the framework is run by the Beam and Radiation Monitoring, Pixel, Tracker groups, Run Field Manager and others. It contributed to real-time data analysis during 2009-2010 runs as a stable monitoring tool. The displays reflect the beam conditions in a real-time with the low latency level, thus it is the first place at the CMS detector where the beam collisions are observed.

Filyushkina, Olga; Juslin, J

2010-01-01T23:59:59.000Z

43

CMS Data Processing Workflows during an Extended Cosmic Ray Run  

SciTech Connect (OSTI)

The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

Not Available

2009-11-01T23:59:59.000Z

44

Solenoid and monocusp ion source  

DOE Patents [OSTI]

An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

1997-10-07T23:59:59.000Z

45

Radiation and thermal analysis of production solenoid for Mu2e experimental setup  

SciTech Connect (OSTI)

The Muon-to-Electron (Mu2e) experiment at Fermilab, will seek the evidence of direct muon to electron conversion at the sensitivity level where it cannot be explained by the Standard Model. An 8-GeV 25-kW proton beam will be directed onto a tilted gold target inside a large-bore superconducting Production Solenoid (PS) with the peak field on the axis of {approx}5T. The negative muons resulting from the pion decay will be captured in the PS aperture and directed by an S-shaped Transport Solenoid towards the stopping target inside the Detector Solenoid. In order for the superconducting magnets to operate reliably and with a sufficient safety margin, the peak neutron flux entering the coils must be reduced by 3 orders of magnitude that is achieved by means of a sophisticated absorber placed in the magnet aperture. The proposed absorber, consisting of W- and Cu-based alloy parts, is optimized for the performance and cost. Results of MARS15 simulations of energy deposition and radiation are reported. The results of the PS magnet thermal analysis, coordinated with the coil cooling scheme, are reported as well for the selected absorber design.

Pronskikh, V.S.; Kashikhin, V.V.; Mokhov, N.V.; /Fermilab

2011-03-01T23:59:59.000Z

46

Quench anaylsis of MICE spectrometer superconducting solenoid  

SciTech Connect (OSTI)

MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

2011-09-01T23:59:59.000Z

47

Central Solenoid Insert Technical Specification  

SciTech Connect (OSTI)

The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by the Company and ITER. The Fabrication Specifications may reflect some national requirements and regulations that are not fully provided here. This document presents the ITER CSI specifications.

Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

2011-09-01T23:59:59.000Z

48

Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System  

SciTech Connect (OSTI)

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory in the UK. The coupling magnet is a superconducting solenoid mounted around four 201MHz RF cavities, which produces magnetic field up to 2.6 T on the magnet centerline to keep muons within the iris of RF cavities windows. The coupling coil with inner radius of 750mm, length of 285mm and thickness of 102.5mm will be cooled by a pair of 1.5 W at 4.2 K small coolers. This paper will introduce the updated engineering design of the coupling magnet made by ICST in China. The detailed analyses on magnetic fields, stresses induced during the processes of winding, cool down and charging, and cold mass support assembly are presented as well.

Wang, Li; Xu, FengYu; Wu, Hong; Liu, XiaoKum; Li, LanKai; Guo, XingLong; Chen, AnBin; Green, Michael A; Li, D.R.; Virostek, Steve; Pan, H.

2008-08-02T23:59:59.000Z

49

Commissioning of CMS and early standard model measurements with jets, missing transverse energy and photons at the LHC  

E-Print Network [OSTI]

We report on the status and history of the CMS commissioning, together with selected results from cosmic-ray muon data. The second part focuses on strategies for optimizing the reconstruction of jets, missing transverse energy and photons for early standard model measurements at ATLAS and CMS with the first collision data from the Large Hadron Collider at CERN.

T. Christiansen

2008-05-13T23:59:59.000Z

50

On the possibility to use ATLAS and CMS detectors for neutrino physics  

E-Print Network [OSTI]

Energetic primary cosmic rays entering the Earth's atmosphere generate flux of secondary particles including neutrinos. Muon neutrinos passed through the Earth and produced muons via the charged current reaction can be registered by experimental setups intended for the measurements with colliding beams. Due to large geometrical size and advanced muon detecting system such detectors as ATLAS and CMS on LHC have chance to contribute also into the neutrino physics. The estimation of possible rates of up-going muons produced by neutrinos is given.

A. Guskov

2009-09-14T23:59:59.000Z

51

Experimental studies of helical solenoid model based on YBCO tape-bridge joints  

SciTech Connect (OSTI)

Helical solenoids that provide solenoid, helical dipole and helical gradient field components are designed for a helical cooling channel (HCC) proposed for cooling of muon beams in a muon collider. The high temperature superconductor (HTS), 12 mm wide and 0.1 mm thick YBCO tape, is used as the conductor for the highest-field section of HCC due to certain advantages, such as its electrical and mechanical properties. To study and address the design, and technological and performance issues related to magnets based on YBCO tapes, a short helical solenoid model based on double-pancake coils was designed, fabricated and tested at Fermilab. Splicing joints were made with Sn-Pb solder as the power leads and the connection between coils, which is the most critical element in the magnet that can limit the performance significantly. This paper summarizes the test results of YBCO tape and double-pancake coils in liquid nitrogen and liquid helium, and then focuses on the study of YBCO splices, including the soldering temperatures and pressures, and splice bending test.

Yu, M.; Lombardo, V.; Turrioni, D.; Zlobin, A.V.; /Fermilab; Flangan, G.; /MUONS Inc., Batavia; Lopes, M.L.; /Fermilab; Johnson, R.P.; /Fermilab

2011-06-01T23:59:59.000Z

52

Muon Muon Collider: Feasibility Study  

SciTech Connect (OSTI)

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley; ,

2012-04-05T23:59:59.000Z

53

Muon Beam Helical Cooling Channel Design  

SciTech Connect (OSTI)

The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

2013-06-01T23:59:59.000Z

54

A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER  

E-Print Network [OSTI]

A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

O'Donnell, Tom

55

D0 Solenoid Commissioning September 1998  

SciTech Connect (OSTI)

D-Zero installed a new 2 Tesla superconducting solenoid magnet into the central tracking region of the D-Zero detector. This report documents the cryogenic performance of the superconducting solenoid during its first cryogenic operation at Fermilab. By necessity, the liquid helium refrigerator was also operated. This was the second time the refrigerator plant has been operated. The refrigerator's performance is also documented herein.

Rucinski, R.; /Fermilab

1998-10-12T23:59:59.000Z

56

Fabrication and test of short helical solenoid model based on YBCO tape  

SciTech Connect (OSTI)

A helical cooling channel (HCC) is a new technique proposed for six-dimensional (6D) cooling of muon beams. To achieve the optimal cooling rate, the high field section of HCC need to be developed, which suggests using High Temperature Superconductors (HTS). This paper updates the parameters of a YBCO based helical solenoid (HS) model, describes the fabrication of HS segments (double-pancake units) and the assembly of six-coil short HS model with two dummy cavity insertions. Three HS segments and the six-coil short model were tested. The results are presented and discussed.

Yu, M.; Lombardo, V.; Lopes, M.L.; Turrioni, D.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; /MUONS Inc., Batavia

2011-03-01T23:59:59.000Z

57

The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid  

SciTech Connect (OSTI)

The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

2007-08-27T23:59:59.000Z

58

Emittance control in rf cavities and solenoids  

E-Print Network [OSTI]

We study emittance growth for transport of uniform and Gaussian beams of particles in rf cavities and solenoids and show analytically its dependence on initial beam parameters. Analytical results are confirmed with simulation studies over a broad range of different initial beams.

Eshraqi, Mohammad; Lombardi, Alessandra M

2009-01-01T23:59:59.000Z

59

COMPENSATION OF DETECTOR SOLENOID IN SUPER-B  

SciTech Connect (OSTI)

The SUPER-B detector solenoid has a strong 1.5 T field in the Interaction Region (IR) area, and its tails extend over the range of several meters. The main effect of the solenoid field is coupling of the horizontal and vertical betatron motion which must be corrected in order to preserve the small design beam size at the Interaction Point. The additional effects are orbit and dispersion caused by the angle between the solenoid and beam trajectories. The proposed correction system provides local compensation of the solenoid effects independently for each side of the IR. It includes 'bucking' solenoids to remove the solenoid field tails and a set of skew quadrupoles, dipole correctors and anti-solenoids to cancel linear perturbations to the optics. Details of the correction system are presented.

Nosochkov, Yuri; Bertsche, Kirk; Sullivan, Michael; /SLAC

2011-06-02T23:59:59.000Z

60

Laser ion source with solenoid field  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan); Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

2014-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

KT McDonald Muon Accelerator Program Advisory Committee Review (FNAL) July 11, 2012 1 Target and Absorbers  

E-Print Network [OSTI]

Advisory Committee Review (FNAL) July 11, 2012 2 Mission Target: · Maximum production of ± of energies particles in He-gas-cooled tungsten beads ­ inside solenoid magnets. · Low-Z solid/liquid muon absorbers includes the production target and the magnetized pion-decay channel. This system is about 50 m long

McDonald, Kirk

62

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER  

E-Print Network [OSTI]

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER D. Taqqu Paul Scherrer Institut, Villigen, CH Abstract A scheme for obtaining an intense source of low energy muons is described. It is based of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative

McDonald, Kirk

63

Solenoid Compensation for the SuperB Interaction Region  

SciTech Connect (OSTI)

We present an approach for compensating adverse effects of the detector solenoid in the SuperB Interaction Region (IR). We place compensating solenoids around the IR quadrupole magnets to reduce the magnetic fields nearly to zero. This allows more operational headroom for superconducting IR magnets and avoids saturation of ferric IR magnets. We place stronger compensating solenoids between IR magnets to reverse the magnetic field direction. This allows adjusting the total integrated solenoid field to zero, which eliminates coordinate plane rotation and reduces vertical beam displacements in the IR.

Bertsche, Kirk; /SLAC; Sullivan, Michael K.; /SLAC

2010-08-25T23:59:59.000Z

64

MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement  

SciTech Connect (OSTI)

MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

Hart, T. L. [University of Mississippi-Oxford, University, MS 38677 (United States)

2010-03-30T23:59:59.000Z

65

Rare muon processes  

SciTech Connect (OSTI)

The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

Cooper, M.D.

1993-01-01T23:59:59.000Z

66

Rare muon processes  

SciTech Connect (OSTI)

The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

Cooper, M.D.; The MEGA Collaboration

1993-05-01T23:59:59.000Z

67

Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)  

E-Print Network [OSTI]

following observations: 1) A ferrite-cored solenoidal coilthe same order as L. 2) A ferrite-cored solenoidal coil canstable response. 4) Feedback ferrite-cored solenoidal coils

Morrison, F.

2012-01-01T23:59:59.000Z

68

Annual Report CMS Spring Assembly  

E-Print Network [OSTI]

Annual Report 2007-2008 CMS Spring Assembly & Length of Service Awards March 9, 2012 #12;Annual Report 2007-2008 News & Events: Alumni David Mearns (CMS MS `86) Selected as co-recipient of USF's Distinguished Alumni Award, Fall 2011 #12;Annual Report 2007-2008 News & Events: Faculty Dr. Robert Byrne

Meyers, Steven D.

69

Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility  

SciTech Connect (OSTI)

This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

Smirnov, Alexandre [ORNL; Martovetsky, Nicolai N [ORNL; Nunoya, Yoshihiko [Japan Atomic Energy Agency (JAEA), Naka

2011-06-01T23:59:59.000Z

70

Muons and Neutrinos 2007  

E-Print Network [OSTI]

This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

Thomas K. Gaisser

2008-01-29T23:59:59.000Z

71

Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons  

SciTech Connect (OSTI)

A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

Kurennoy, Sergey S. [Los Alamos National Laboratory

2012-05-14T23:59:59.000Z

72

ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION  

SciTech Connect (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

2009-06-11T23:59:59.000Z

73

ITER Central Solenoid Coil Insulation Qualification  

SciTech Connect (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials

2010-01-01T23:59:59.000Z

74

G-2 and CMS Fast Optical Calorimetry  

SciTech Connect (OSTI)

Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter.

Winn, David R

2012-08-07T23:59:59.000Z

75

Muon Collider Progress: Accelerators  

E-Print Network [OSTI]

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Michael S. Zisman

2011-09-14T23:59:59.000Z

76

CMS kinematic edge from s-bottoms  

E-Print Network [OSTI]

We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

Peisi Huang; Carlos E. M. Wagner

2015-02-05T23:59:59.000Z

77

The LHCb Muon System  

E-Print Network [OSTI]

The ability to provide fast muon triggering and efficient offline muon identification is an essential feature of the LHCb experiment. The muon detector is required to have a high efficiency over a large area and an appropriate time resolution to identify the bunch crossing for level–0 triggers. The LHCb muon detector consists of five stations equipped with 1368 Multi Wire Proportional Chambers and 12 Gas Electron Multiplier chambers. The technical design of the chambers is briefly presented and the Quality Control procedures during the various construction steps are described. The method developed for gas gain uniformity measurement is also described together with the results on efficiency of detectors fully equipped with the front–end electronics, obtained from tests with cosmic rays.

Lenzi, Michela

2005-01-01T23:59:59.000Z

78

The Upgrade of the CMS RPC System during the First LHC Long Shutdown  

E-Print Network [OSTI]

The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|control procedures.

M. Tytgat; A. Marinov; P. Verwilligen; N. Zaganidis; A. Aleksandrov; V. Genchev; P. Iaydjiev; M. Rodozov; M. Shopova; G. Sultanov; Y. Assran; M. Abbrescia; C. Calabria; A. Colaleo; G. Iaselli; F. Loddo; M. Maggi; G. Pugliese; L. Benussi; S. Bianco; M. Caponero; S. Colafranceschi; F. Felli; D. Piccolo; G. Saviano; C. Carrillo; U. Berzano; M. Gabusi; P. Vitulo; M. Kang; K. S. Lee; S. K. Park; S. Shin; A. Sharma

2012-09-10T23:59:59.000Z

79

A Software Suite for Testing the Performance of the Optical Trigger Motherboard Electronics System for the CMS Experiment at the LHC  

E-Print Network [OSTI]

and commissioned in 2014 to ensure high efficiency of data collection following the upgrade of the LHC beam energy and intensity. The comprehensive testing of electronics is crucial to operation and efficiency of the CMS muon system, as electronics can become...

Schneider, Austin William

2013-09-28T23:59:59.000Z

80

Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.  

SciTech Connect (OSTI)

The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

2012-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

TETRA MUON COOLING RING  

SciTech Connect (OSTI)

We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

2003-11-18T23:59:59.000Z

82

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

83

Heavy neutrinos and the $pp\\to lljj$ CMS data  

E-Print Network [OSTI]

We show that the excess in the $pp \\to ee jj$ CMS data can be naturally interpreted within the Minimal Left Right Symmetric model (MLRSM), keeping $g_L = g_R$, if CP phases and non-degenerate masses of heavy neutrinos are taken into account. As an additional benefit, a natural interpretation of the reported ratio (14:1) of the opposite-sign (OS) $pp\\to l^\\pm l^\\mp jj$ to the same-sign (SS) $pp\\to l^\\pm l^\\pm jj$ lepton signals is possible. Finally, a suppression of muon pairs with respect to electron pairs in the $pp \\to lljj$ data is obtained, in accordance with experimental data. If the excess in the CMS data survives in the future, it would be a first clear hint towards presence of heavy neutrinos in right-handed charged currents with specific CP phases, mixing angles and masses, which will have far reaching consequences for particle physics directions.

Gluza, J

2015-01-01T23:59:59.000Z

84

The Results of Recent MICE Superconducting Spectrometer Solenoid Test  

SciTech Connect (OSTI)

The MICE spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The MICE spectrometer solenoids may be the largest magnets that have been cooled using small two stage coolers. During the previous test of this magnet, the cooler first stage temperatures were too high. The causes of some of the extra first stage heat load has been identified and corrected. The rebuilt magnet had a single stage GM cooler in addition to the three pulse tube coolers. The added cooler reduces the temperature of the top of the HTS leads, the shield and of the first stage of the pulse tube coolers.

Green, Michael A; Virostek, Steve P.; Zisman, Michael S.

2010-10-15T23:59:59.000Z

85

Virtual data in CMS production  

SciTech Connect (OSTI)

Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: (1) a Virtual Data Language, which is used to describe virtual data products, (2) a Virtual Data Catalog, which is used to store virtual data entries, (3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence independent plan, (4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as WorkRunner, is used to schedule the instantiation of virtual data products across a grid.

Arbree, A. et al.

2004-08-26T23:59:59.000Z

86

Beam Dynamical Evolutions in a Solenoid Channel: A Review  

E-Print Network [OSTI]

Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. This solenoid channel transports the proton beam ejected by a proton source, and matches it with the Radio Frequency Quadrupole (RFQ) that is a subcomponent just after the LEBT. These solenoid magnets are used as focusing element to get the beam divergence and emittance growth under control. This paper includes settings of the LEBT solenoids with regard to beam dynamics, which investigates the beam particles motion in particle accelerators, for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER. Furthermore, the simulation results have been interpreted analytically.

H. F. Kisoglu; M. Yilmaz

2014-09-15T23:59:59.000Z

87

The CMS integration grid testbed  

SciTech Connect (OSTI)

The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

Graham, Gregory E.

2004-08-26T23:59:59.000Z

88

Muon capture at PSI  

E-Print Network [OSTI]

Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calculate related processes such as solar pp-fusion or neutrino-deuteron scattering. The MuSun experiment will deduce Lambda_d to better than 1.5%. The experiment uses the MuCap detection setup with a new time projection chamber operated with deuterium at 30K and several hardware upgrades. The system is currently fully commissioned and the main physics data taking will start in 2011.

Peter Winter

2010-12-17T23:59:59.000Z

89

The CMS Journey to LHC Physics  

ScienceCinema (OSTI)

An overview of the design, the construction and physics of CMS will be given. A history of construction, encompassing the R&D; and challenges faced over the last decade and a half, will be recalled using selected examples. CMS is currently in the final stages of installation and commissioning is gathering pace. After a short status report of where CMS stands today some of the expected (great) physics to come will be outlined. * Tea & coffee will be served at 16:00.

None

2011-10-06T23:59:59.000Z

90

Available on CMS information server CMS CR 2006/0044 29th August 2006  

E-Print Network [OSTI]

in 36 countries. 2. CMS detector assembly overview The CMS experimental cavern (Fig. 2) is now) will be in the cavern by Christmas 2006. All detector elements will be in place by early February 2007. Installation-00141597,version1-13Apr2007 #12;Figure 2. Main CMS cavern, ready to receive the detector Figure 3. Heavy lifting

Paris-Sud XI, Université de

91

Imaging and sensing based on muon tomography  

DOE Patents [OSTI]

Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

2012-10-16T23:59:59.000Z

92

Studies of high-field sections of a muon helical cooling channel with coil separation  

SciTech Connect (OSTI)

The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling discussed. The paper also describes methods for field corrections and their practical limits. The magnetic performance of the helical solenoid with coil separation was discussed in this work. The separation could be done in three different ways and the performances could be very different which is important and should be carefully described during the beam cooling simulations. The design that is currently being considered is the one that has the poorest magnetic performance because it presents ripples in all three components, in particular in the helical gradient which could be quite large. Moreover, the average gradient could be off, which could affect the cooling performance. This work summarized methods to tune the gradient regarding the average value and the ripple. The coil longitudinal thickness and the helix period can be used to tune G. Thinner coils tend to reduce the ripples and also bring G to its target value. However, this technique reduces dramatically the operational margin. Wider coils can also reduce the ripple (not as much as thinner coils) and also tune the gradient to its target value. Longer helix periods reduce ripple and correct the gradient to the target value.

Lopes, M.L.; Kashikhin, V.S.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab

2011-03-01T23:59:59.000Z

93

The Design and Construction of the MICE Spectrometer Solenoids  

SciTech Connect (OSTI)

The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.

Wang, Bert; Wahrer, Bob; Taylor, Clyde; Xu, L.; Chen, J. Y.; Wang, M.; Juang, Tiki; Zisman, Michael S.; Virostek, Steve P.; Green, Michael A.

2008-08-02T23:59:59.000Z

94

First Generation Final Focusing Solenoid For NDCX-I  

SciTech Connect (OSTI)

This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

Seidl, P. A.; Waldron, W.

2011-11-09T23:59:59.000Z

95

Stochastic cooling in muon colliders  

SciTech Connect (OSTI)

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

96

Muon catalyzed fusion  

SciTech Connect (OSTI)

This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

1986-01-01T23:59:59.000Z

97

Solenoidal Fields for Ion Beam Transport and Focusing  

SciTech Connect (OSTI)

In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some numerical results obtained with it are also presented. Details of design, fabrication, installation, and operation of magnet systems are not included; here we are concerned with calculations that precede or supplement detailed design. Mathematical derivations are presented with only a moderate number of steps. While there is no claim of originality, except for various numerical approximations and a conceptual induction module design in section 20, many of the results and discussions are not readily available elsewhere. Our primary topic is axisymmetric solenoidal systems with no magnetic materials. These simplifying features allow useful analytical calculations, which occupy sections 2-13. Deviations from axisymmetry are considered in sections 14, 15, 21, 22, and 23 and the effects of magnetic materials are treated in sections 16-20. Since magnetic aberrations are mixed with geometric aberrations in computing ion orbits, section 22 on the ion equations of motion in an arbitrary field is included.

Lee, Edward P.; Leitner, Matthaeus

2007-11-01T23:59:59.000Z

98

The US muon accelerator program  

E-Print Network [OSTI]

A directed R&D program is presently underway in the U.S. to evaluate the designs and technologies required to provide muon-based high energy physics (HEP) accelerator capabilities. Such capabilities have the potential to provide unique physics reach for the HEP community. An overview of the status of the designs for the neutrino factory and muon collider applications is provided. Recent progress in the technology R&D program is summarized.

Palmer, M A

2015-01-01T23:59:59.000Z

99

Muon Colliders: The Next Frontier  

ScienceCinema (OSTI)

Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

Yagmur Tourun

2010-01-08T23:59:59.000Z

100

CAT Guide to the ANL CMS system  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS CAT Guide to Using the ANL Chemical Management System (August 30, 2000) The Argonne Chemical Management System (CMS) is a database used to track the ownership and location of...

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Top quark production at ATLAS and CMS  

E-Print Network [OSTI]

A review of the main recent results on top quark production from the ATLAS and CMS experiments is presented. Results on both electroweak single top quark production and strong top pair production are presented.

Luca Lista; on behalf of the ATLAS; CMS collaborations

2014-05-20T23:59:59.000Z

102

Qualification of the Joints for the ITER Central Solenoid  

SciTech Connect (OSTI)

The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

Martovetsky, N; Berryhill, A; Kenney, S

2011-09-01T23:59:59.000Z

103

Virtual data in CMS analysis  

SciTech Connect (OSTI)

The use of virtual data for enhancing the collaboration between large groups of scientists is explored in several ways: by defining ''virtual'' parameter spaces which can be searched and shared in an organized way by a collaboration of scientists in the course of their analysis; by providing a mechanism to log the provenance of results and the ability to trace them back to the various stages in the analysis of real or simulated data; by creating ''check points'' in the course of an analysis to permit collaborators to explore their own analysis branches by refining selections, improving the signal to background ratio, varying the estimation of parameters, etc.; by facilitating the audit of an analysis and the reproduction of its results by a different group, or in a peer review context. We describe a prototype for the analysis of data from the CMS experiment based on the virtual data system Chimera and the object-oriented data analysis framework ROOT. The Chimera system is used to chain together several steps in the analysis process including the Monte Carlo generation of data, the simulation of detector response, the reconstruction of physics objects and their subsequent analysis, histogramming and visualization using the ROOT framework.

A. Arbree et al.

2003-10-01T23:59:59.000Z

104

Method and apparatus for monitoring armature position in direct-current solenoids  

DOE Patents [OSTI]

A method for determining the position of an armature of a dc-powered solenoid. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature's position.

Moyers, John C. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN)

1996-12-10T23:59:59.000Z

105

Optical solenoid beams Sang-Hyuk Lee,1 Yohai Roichman,2 and David G. Grier2  

E-Print Network [OSTI]

Optical solenoid beams Sang-Hyuk Lee,1 Yohai Roichman,2 and David G. Grier2 1Department York, NY 10003 Abstract: We introduce optical solenoid beams, diffractionless solutions, and whose wavefronts carry an indepen- dent helical pitch. Unlike other collimated beams of light

Grier, David

106

Optical solenoid beams SangHyuk Lee, 1 Yohai Roichman, 2 and David G. Grier 2  

E-Print Network [OSTI]

Optical solenoid beams Sang­Hyuk Lee, 1 Yohai Roichman, 2 and David G. Grier 2 1 Department, New York, NY 10003 Abstract: We introduce optical solenoid beams, diffractionless solutions, and whose wavefronts carry an indepen­ dent helical pitch. Unlike other collimated beams of light

Grier, David

107

26 July 2000 TESLA Report 2000-13 Compensation of Solenoid Effects at the TESLA  

E-Print Network [OSTI]

26 July 2000 TESLA Report 2000-13 Compensation of Solenoid Effects at the TESLA Interaction Point at the TESLA interaction point is 5 nm. The long solenoid encompassing the detector introduces coupling effects along the beam line. This is a concern for a linear collider such as TESLA, where the vertical beam size

108

Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics  

SciTech Connect (OSTI)

A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

Chatrchyan, S. [Yerevan Physics Institute(Armenia)

2011-07-01T23:59:59.000Z

109

Novel linac structures for low-beta ions and for muons  

SciTech Connect (OSTI)

Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

Kurennoy, Sergey S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

110

The MICE Muon Beam Line  

SciTech Connect (OSTI)

In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

2011-10-06T23:59:59.000Z

111

Muon Capture on the Proton  

E-Print Network [OSTI]

The MuCap experiment measures the singlet rate Lambda_S of muon capture on the proton. A negative muon beam is stopped in a time projection chamber filled with ultra-pure hydrogen gas at 10 bar and room temperature. In combination with the surrounding decay electron detectors, the lifetime of muons in hydrogen can be measured to determine LS to a final precision of 1%. The capture rate is then used to derive the nucleon's pseudoscalar form factor gP. Our first-stage result, gP= 7.3\\pm1., will soon be updated with the final analysis of the full statistics reducing the error by a factor of ~2.

P. Winter

2011-10-23T23:59:59.000Z

112

Muon collider interaction region design  

SciTech Connect (OSTI)

Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta}* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 10{sup 34} cm{sup -2}s{sup -1} with an adequate protection of magnet and detector components.

Alexahin, Y.I.; Gianfelice-Wendt, E.; Kashikhin, V.V.; Mokhov, N.V.; Zlobin, A.V.; /Fermilab; Alexakhin, V.Y.; /Dubna, JINR

2010-05-01T23:59:59.000Z

113

Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV  

SciTech Connect (OSTI)

A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

Chatrchyan, Serguei; et al.

2011-07-01T23:59:59.000Z

114

Measurements of Heavy Flavour Production at ATLAS and CMS  

E-Print Network [OSTI]

New and updated (after the previous Moriond QCD) ATLAS and CMS results on heavy flavour production are reviewed.

Gladilin, Leonid; The ATLAS collaboration

2015-01-01T23:59:59.000Z

115

Heavy Flavour Physics at CMS and ATLAS  

E-Print Network [OSTI]

Prospects for heavy flavour studies with the CMS and ATLAS detectors are presented. Many studies are aimed for early LHC data, taking advantage of the large $b$ production cross-section. Rare decay studies as the $B_s \\to \\mu^+\\mu^-$ decay have also been performed.

L. Wilke; for the CMS; ATLAS Collaborations

2009-05-26T23:59:59.000Z

116

MC & Tuning at CMS December 16, 2008  

E-Print Network [OSTI]

Rick Field ­ Florida/CDF/CMS Page 5 JIMMY at CDFJIMMY at CDF The Energy in the "Underlying Event "Leading Jet" JIMMY Default JM325 "Transverse" ETsum Density: dET/dd 0.0 1.0 2.0 3.0 4.0 0 100 200 300 400 Tune A MidPoint R = 0.7 |(jet)| JIMMY

Field, Richard

117

Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies  

SciTech Connect (OSTI)

An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

118

E-Print Network 3.0 - air core solenoid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEAM RESEARCH* M.Y. Lee, F.D. Becchetti, J... -line superconducting solenoids (Bo 6 tesla, bore 30 cm) which will be used to ... Source: Becchetti, Fred - Department of...

119

E-Print Network 3.0 - atlas solenoid magnetic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. A schematic view of the ATLAS detector. Tracker). The inner detector is inside a 2 Tesla solenoid magnet... LAPP-EXP 2005-13 December 2005 Tau identification at ATLAS :...

120

Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids  

E-Print Network [OSTI]

updated calculations confirmed the measured heat load of ~6of these calculations was the direct heat load into the coldcalculations was carried out in order to characterize the spectrometer solenoid heat loads

Virostek, S.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - aperture superconducting solenoid Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coils 1st Main Solenoid last "double" layer underway NLE layer 24 complete NLE layer 25... application of POR-15 epoxy putty between conductor and flange) 12;5 AFF,...

122

Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field  

E-Print Network [OSTI]

Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K.?R. Samokhvalova, J. Zhou and C. Chen ...

Barton, T. J.

123

The Fractal Density Structure in Supersonic Isothermal Turbulence: Solenoidal versus Compressive Energy Injection  

E-Print Network [OSTI]

In a systematic study, we compare the density statistics in high resolution numerical experiments of supersonic isothermal turbulence, driven by the usually adopted solenoidal (divergence-free) forcing and by compressive (curl-free) forcing. We find that for the same rms Mach number, compressive forcing produces much stronger density enhancements and larger voids compared to solenoidal forcing. Consequently, the Fourier spectra of density fluctuations are significantly steeper. This result is confirmed using the Delta-variance analysis, which yields power-law exponents beta~3.4 for compressive forcing and beta~2.8 for solenoidal forcing. We obtain fractal dimension estimates from the density spectra and Delta-variance scaling, and by using the box counting, mass size and perimeter area methods applied to the volumetric data, projections and slices of our turbulent density fields. Our results suggest that compressive forcing yields fractal dimensions significantly smaller compared to solenoidal forcing. However, the actual values depend sensitively on the adopted method, with the most reliable estimates based on the Delta-variance, or equivalently, on Fourier spectra. Using these methods, we obtain D~2.3 for compressive and D~2.6 for solenoidal forcing, which is within the range of fractal dimension estimates inferred from observations (D~2.0-2.7). The velocity dispersion to size relations for both solenoidal and compressive forcing obtained from velocity spectra follow a power law with exponents in the range 0.4-0.5, in good agreement with previous studies.

Christoph Federrath; Ralf S. Klessen; Wolfram Schmidt

2009-02-03T23:59:59.000Z

124

Introduction to Mini Muon Tracker  

SciTech Connect (OSTI)

Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

Borozdin, Konstantin N. [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

125

Precision Muon Reconstruction in Double Chooz  

E-Print Network [OSTI]

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

2014-08-15T23:59:59.000Z

126

Description and performance of track and primary-vertex reconstruction with the CMS tracker  

E-Print Network [OSTI]

A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For $t\\bar{t}$ events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of $p_T$ > 0.9 GeV is 94% for pseudorapidities of |$\\eta$| < 0.9 and 85% for |$\\eta$| between 0.9 and 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of $p_T$ = 100 GeV emitted at |$\\eta$| lower than 1.4, the resolutions are approximately 2.8% in $p_T$, and respectively, 10 mi...

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; De Callatay, Bernard; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Michotte, Daniel; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko

2014-01-01T23:59:59.000Z

127

Description and performance of track and primary-vertex reconstruction with the CMS tracker  

E-Print Network [OSTI]

A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For ttbar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pt > 0.9 GeV is 94% for pseudorapidities of abs(eta) nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pt = 100 GeV emitted at abs(eta) impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 microns in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

CMS Collaboration

2014-10-28T23:59:59.000Z

128

Concept of the CMS Trigger Supervisor  

E-Print Network [OSTI]

The Trigger Supervisor is an online software system designed for the CMS experiment at CERN. Its purpose is to provide a framework to set up, test, operate and monitor the trigger components on one hand and to manage their interplay and the information exchange with the run control part of the data acquisition system on the other. The Trigger Supervisor is conceived to provide a simple and homogeneous client interface to the online software infrastructure of the trigger subsystems. This document specifies the functional and non-functional requirements, design and operational details, and the components that will be delivered in order to facilitate a smooth integration of the trigger software in the context of CMS.

Magrans de Abril, Ildefons; Varela, Joao

2006-01-01T23:59:59.000Z

129

Development of the bus joint for the ITER Central Solenoid  

SciTech Connect (OSTI)

The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

Martovetsky, Nicolai N [ORNL] [ORNL; Irick, David Kim [ORNL] [ORNL; Kenney, Steven J [ORNL] [ORNL

2013-01-01T23:59:59.000Z

130

The Program in Muon and Neutrino Physics Super Beams, Cold Muon Beams, Neutrino Factory and the Muon Collider  

E-Print Network [OSTI]

We outline in detail a staging scenario for realizing the Neutrino Factory and the Muon Collider. As a first stage we envisage building an intense proton source that can be used to perform high intensity conventional neutrino beam experiments ("Superbeams"). While this is in progress, we perform R&D in collecting, cooling and accelerating muons which leads to the next two stages of "Cold Muon Beams" and the Neutrino Factory. Further progress in Muon Cooling especially in the area of emittance exchange will lead us to the Muon Collider. A staged scenario such as this opens up new physics avenues at each step and will provide a long range base program for particle physics.

Raja, R; Gallardo, J; Geer, S; Kaplan, D; McDonald, K F; Palmer, R; Sessler, Andrew M; Skrinsky, A N; Summers, D; Tigner, Maury; Tollestrup, Alvin V; Wurtele, J S; Zisman, M S; Raja, Rajendran

2001-01-01T23:59:59.000Z

131

Muon Cooling via Ionization Andrea Kay Forget  

E-Print Network [OSTI]

decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

Cinabro, David

132

Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator  

SciTech Connect (OSTI)

MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

Geynisman, Michael; /Fermilab

2010-05-01T23:59:59.000Z

133

Muon Accelerator Program (MAP) | Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModificationEnzyme-Functionalized GoldMuon Accelerator

134

Fermilab | Science | Particle Physics | Muons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDarkDiscoveriesMuons photo Two

135

Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)  

SciTech Connect (OSTI)

We have designed and lab tested a new ferrite cored induction coil sensor for measuring the secondary fields from metallic UXO with the BUD system. The objective was to replace the 5-inch diameter air-cored coils in the BUD system with smaller sensors that would allow the placement of multiple sensors in the smaller package of the new BUD hand-held system. A ferrite-cored solenoidal coil of length L can easily be made to have sensitivity and noise level roughly the same as an air-cored coil of a diameter on the same order as L. A ferrite-cored solenoidal coil can easily have a feedback configuration to achieve critical damping. The feedback configuration leads to a very stable response. Feedback ferrite-cored solenoidal coils show very little interaction as long as they are separated by one half their length.

Morrison, F.; Becker, A.; Conti, U.; Gasperikova, E.

2011-06-15T23:59:59.000Z

136

The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider  

SciTech Connect (OSTI)

The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

R. Raja et al.

2001-08-08T23:59:59.000Z

137

A Detector Scenario for the MuonCollider Cooling Experiment  

E-Print Network [OSTI]

: Meson Lab at Fermilab: Power Supplies (two floors) Cooling Apparatus Muon Beamline shielding shieldingA Detector Scenario for the Muon­Collider Cooling Experiment C. Lu, K.T. McDonald and E.J. Prebys the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus. 1 #12; Possible site

McDonald, Kirk

138

CMS Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: EnergyCECGSeries JumpEnergyCMS

139

Optimization of a Mu2e production solenoid heat and radiation shield using MARS15  

SciTech Connect (OSTI)

A Monte-Carlo study of several Mu2e Production Solenoid (PS) absorber (heat shield) versions using the MARS15 code has been performed. Optimizations for material as well as cost (amount of tungsten) have been carried out. Studied are such quantities as the number of displacements per atom (DPA) in the helium-cooled solenoid superconducting coils, power density and dynamic heat load in various parts of the PS and its surrounding structures. Prompt dose, residual dose, secondary particle flux are also simulated in the PS structures and the experimental hall. A preliminary choice of the PS absorber design is made on the ground of these studies.

Pronskikh, V.S.; Mokhov, N.V.; /Fermilab

2011-02-01T23:59:59.000Z

140

Muon simulation codes MUSIC and MUSUN for underground physics  

E-Print Network [OSTI]

The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

V. A. Kudryavtsev

2008-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Magnetic Cavern Solenoid R&D A. Bross, V.V Kashikhin and A.V. Zlobin  

E-Print Network [OSTI]

Magnetic Cavern Solenoid R&D A. Bross, V.V Kashikhin and A.V. Zlobin Fermilab (Feb. 16, 2010) #12 Cavern design concept · · · STL is placed inside the external support structure (cylindrical strongback) · Cavern Wall?Solenoid strongback Thermal shield STL cable Invar pipe with SC strands, stabilizer and LHe

McDonald, Kirk

142

SNM detection by active muon interrogation  

SciTech Connect (OSTI)

Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

143

B8 Page 1 B8. Using CMS-Wave  

E-Print Network [OSTI]

B8 ­ Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: · Full-plane wind-generation of waves · Automatic wave run-up calculation · Infra-gravity wave calculation · Nonlinear wave-wave interaction · Muddy

US Army Corps of Engineers

144

Identifying Nuclear Materials Using Tagged Muons  

E-Print Network [OSTI]

Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

C. L. Morris; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; E. Guardincerri; A. Hecht; E. C. Milner; H. Miyadera; J. O. Perry; D. Poulson

2014-06-04T23:59:59.000Z

145

Imaging Fukushima Daiichi reactors with muons  

SciTech Connect (OSTI)

A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

2013-05-15T23:59:59.000Z

146

Over Voltage in a Multi-sectioned Solenoid during a Quenching  

SciTech Connect (OSTI)

Accurate analysis of over voltage in the superconducting solenoid during a quench is one of the bases for quench protection system design. Classical quench simulation methods can only give rough estimation of the over voltage within a magnet coil. In this paper, for multi-sectioned superconducting solenoid, based on the classical assumption of ellipsoidal normal zone, three-dimension al temperature results are mapped to the one-dimension of the wire, the temperature distribution along the wire and the resistances of each turn are obtained. The coil is treated as circuit comprised of turn resistances, turn self and mutual inductances. The turn resistive voltage, turn inductive voltage, and turn resultant voltage along the wire are calculated. As a result, maximum internal voltages, the layer-to-layer voltages and the turn-to-turn voltages are better estimated. Utilizing this method, the over voltage of a small solenoid and a large solenoid during quenching have been studied. The result shows that this method can well improve the over voltage estimate, especially when the coil is larger.

Guo, Xinglong; Wang, Li; Pan, Heng; Wu, Hong; Liu, Xiaokun; Chen, Anbin; Green, M.A.; Xu, F.Y.

2009-06-21T23:59:59.000Z

147

Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction  

E-Print Network [OSTI]

Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction S. P FRC formation technique is described, where a spheromak transitions to a FRC with inductive current are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal

Ji, Hantao

148

Worcester 1 Inch Solenoid Actuated Gas Operated VPS System Ball Valve  

SciTech Connect (OSTI)

1 inch Gas-operated full-pod ball valve incorporates a solenoid and limit switches as integral park of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS.

MISKA, C.R.

2000-11-13T23:59:59.000Z

149

Theoretical survey of muon catalyzed fusion  

SciTech Connect (OSTI)

The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H/sub 2/ densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec./sup 1/ The muon spends essentially all of its time in either the (d..mu..) ground state, waiting for transfer to a (t..mu..) ground state to occur, or in the (t..mu..) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs.

Leon, M.

1988-01-01T23:59:59.000Z

150

Muon capture rates within the projected QRPA  

E-Print Network [OSTI]

The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

Danilo Sande Santos; Arturo R. Samana; Francisco Krmpoti?; Alejandro J. Dimarco

2012-03-03T23:59:59.000Z

151

Recent results of the CMS experiment  

E-Print Network [OSTI]

The CMS experiment is a multi-purpose detector successfully operated at the LHC where predominantly pp collisions take place at various centre-of-mass energies up to sqrt(s)=8 TeV so far. Several weeks per year also heavy-ion collisions take place leading to interesting studies in Pb-Pb and p-Pb collisions at sqrt(s_(NN))=2.76 TeV and sqrt(s_(NN))=5.02 TeV centre-of-mass energies per nucleon, respectively. The excellent performance of the accelerator and the experiment allows for dedicated physics measurements over a wide range of subjects, starting from particle identification, encompassing forward physics, Standard Model measurements in multijet, boson, heavy flavour and top quark physics, building the basis for new physics searches interpreted within the framework of various models and theories. These pursued pp physics subjects are complemented by a rich heavy ion physics programme.

Lars Sonnenschein

2014-08-18T23:59:59.000Z

152

Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93  

SciTech Connect (OSTI)

This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

Leon, M. [comp.

1994-01-01T23:59:59.000Z

153

TPE-CMS: A Comfort Measuring System for Public Bus Service in Taipei City  

E-Print Network [OSTI]

TPE-CMS: A Comfort Measuring System for Public Bus Service in Taipei City Cheng-Yu Lin and Ling Measuring System (CMS) for public transportation systems in Taipei city, called TPE-CMS. TPE-CMS exploits the GPS and G-sensor of modern smart phones to measure the comfort level of vehicle rides. Then, it mashes

Chen, Ling-Jyh

154

Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons  

SciTech Connect (OSTI)

Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

Schwellenbach, D.

2012-07-17T23:59:59.000Z

155

Search for Supersymmetry Using Weak Boson Fusion Processes in Proton-Proton Collisions at the Large Hadron Collider  

E-Print Network [OSTI]

In 2012, the Large Hadron Collider at CERN (LHC) collided protons at an unprecedented center-of-mass energy of 8 TeV. With data corresponding to a total integrated luminosity of 19.7 fb^(?1), the Compact Muon Solenoid (CMS) collaboration is studying...

Flanagan, Will

2014-08-08T23:59:59.000Z

156

Triggering and W-Polarisation Studies with CMS at the LHC  

E-Print Network [OSTI]

Results from studies on the commissioning of the Global Calorimeter Trigger (GCT) of the CMS experiment are presented. Event-by-event comparisons of the hardware with a bit-level software emulation are used to achieve 100% agreement for all trigger quantities. In addition, a missing energy trigger based on jets is motivated using a simulation study, and consequently implemented and commissioned in the GCT. Furthermore, a templated-fit method for measuring the polarisation of W bosons at the LHC in the Helicity Frame is developed, and validated in simulation. An analysis of the first 3.2/pb of sqrt(s) = 7 TeV LHC data in the muon channel yields values of (fL ? fR)+ = 0.347 ± 0.070, f0+ = 0.240 ± 0.176, and (fL ? fR)? = 0.097 ± 0.088, f0? = 0.262 ± 0.196 for positive and negative charges respectively. The errors quoted are statistical. A preliminary systematic study is also presented.

Marrouche, Jad

2010-01-01T23:59:59.000Z

157

Strongest Pulsed Muon Source at J-PARC MUSE  

SciTech Connect (OSTI)

The muon science facility (MUSE, abbreviation of MUon Science Establishment), along with the neutron, hadron, and neutrino facilities, is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. On the November, 2009 beam cycle, we achieved extraction of the world's strongest pulsed muon beam at J-PARC MUSE by beam tuning at the Decay-Surface muon beam line (D-line). Surface muons ({mu}{sup +}) as much as 1.8x10{sup 6}/s were extracted with the use of 120 kW of protons from the Rapid Cycle Synchrotron (RCS), which corresponds to 1.5x10{sup 7}/s surface muons when a future proton beam reached at the intensity of 1MW. These intensities, at the future 1 MW operation, will correspond to more than ten times those at the RIKEN-RAL Muon facility.

Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Koda, A.; Fujimori, H.; Makimura, S.; Nakahara, K.; Kato, M.; Takeshita, S.; Nishiyama, K.; Kobayashi, Y.; Kojima, K.; Kadono, R. [Meson Science Laboratory, High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Muon Section, Materials and Life Science Division, J-PARC Center, Ibaraki 319-1195 (Japan); Higemoto, W.; Ito, T.; Ninomiya, K. [Muon Section, Materials and Life Science Division, J-PARC Center, Ibaraki 319-1195 (Japan); Japan Atomic Energy Research Center (JAEA), Ibaraki 319-1195 (Japan); Hiraishi, M.; Miyazaki, M. [Department of Materials Structure Science, Graduate University for Advanced Studies (Japan); Kubo, K. [Graduate School Division of Natural Sciences, International Christian University, Mitaka, Tokyo (Japan)

2011-10-06T23:59:59.000Z

158

Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities  

SciTech Connect (OSTI)

The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

Heffner, R.H.

1980-01-01T23:59:59.000Z

159

Use of dielectric material in muon accelerator RF cavities  

E-Print Network [OSTI]

The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

French, Katheryn Decker

2011-01-01T23:59:59.000Z

160

Measurement of the Top Quark Mass With 2012 CMS Data  

E-Print Network [OSTI]

The mass of the top quark was an active topic of research at CMS using 2011 data, and remains so as the 2012 data analysis campaign proceeds. Here we discuss some of the earliest results on the top mass using 2012 sqrt(s) = 8 TeV CMS data, including measurements of the top mass from semileptonic t\\bar{t} decays and the lifetime of the B-hadron, as well as a measurement of the top-antitop mass difference.

Richard Nally

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing  

SciTech Connect (OSTI)

Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Molvik, A. W.; Vay, J.-L.; Seidl, P. A.; Roy, P. K.; Coleman, J. E.; Haber, I.

2007-06-20T23:59:59.000Z

162

THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS  

SciTech Connect (OSTI)

Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

2000-05-11T23:59:59.000Z

163

A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons  

E-Print Network [OSTI]

We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

2008-06-12T23:59:59.000Z

164

EXPERIMENT E951 POWER SUPPLY TO PULSE A 14.5 TESLA SOLENOID MAGNET  

E-Print Network [OSTI]

.1 15.2 Cases 2 and 3 require the same power supply, but differ in the magnet cooling scheme. #12;0 4 8EXPERIMENT E951 POWER SUPPLY TO PULSE A 14.5 TESLA SOLENOID MAGNET IOANNIS MARNERIS BOOSTER supply. #12;0 4 8 12 16 20 24 28 32 36 40 0 2 4 6 8 10 -500 -400 -300 -200 -100 0 100 200 300 400 500

McDonald, Kirk

165

Evaluation and Compensation of Detector Solenoid Effects on Disrupted Beam in the ILC 14 mrad Extraction Line  

SciTech Connect (OSTI)

This paper presents calculations of detector solenoid effects on disrupted primary beam in the ILC 14 mrad extraction line. Particle tracking simulations are performed for evaluation of primary beam loss along the line as well as of beam distribution and polarization at Compton Interaction Point. The calculations are done both without and with solenoid compensation. The results are obtained for the baseline ILC energy of 500 GeV center-of-mass and three options of beam parameters.

Toprek, Dragan; /VINCA Inst. Nucl. Sci., Belgrade; Nosochkov, Yuri; /SLAC

2008-12-18T23:59:59.000Z

166

Muon (g-2) Technical Design Report  

E-Print Network [OSTI]

The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

J. Grange; V. Guarino; P. Winter; K. Wood; H. Zhao; R. M. Carey; D. Gastler; E. Hazen; N. Kinnaird; J. P. Miller; J. Mott; B. L. Roberts; J. Benante; J. Crnkovic; W. M. Morse; H. Sayed; V. Tishchenko; V. P. Druzhinin; B. I. Khazin; I. A. Koop; I. Logashenko; Y. M. Shatunov; E. Solodov; M. Korostelev; D. Newton; A. Wolski; R. Bjorkquist; N. Eggert; A. Frankenthal; L. Gibbons; S. Kim; A. Mikhailichenko; Y. Orlov; D. Rubin; D. Sweigart; D. Allspach; G. Annala; E. Barzi; K. Bourland; G. Brown; B. C. K. Casey; S. Chappa; M. E. Convery; B. Drendel; H. Friedsam; T. Gadfort; K. Hardin; S. Hawke; S. Hayes; W. Jaskierny; C. Johnstone; J. Johnstone; V. Kashikhin; C. Kendziora; B. Kiburg; A. Klebaner; I. Kourbanis; J. Kyle; N. Larson; A. Leveling; A. L. Lyon; D. Markley; D. McArthur; K. W. Merritt; N. Mokhov; J. P. Morgan; H. Nguyen; J-F. Ostiguy; A. Para; C. C. Polly M. Popovic; E. Ramberg; M. Rominsky; D. Schoo; R. Schultz; D. Still; A. K. Soha; S. Strigonov; G. Tassotto; D. Turrioni; E. Villegas; E. Voirin; G. Velev; D. Wolff; C. Worel; J-Y. Wu; R. Zifko; K. Jungmann; C. J. G. Onderwater; P. T. Debevec; S. Ganguly; M. Kasten; S. Leo; K. Pitts; C. Schlesier; M. Gaisser; S. Haciomeroglu; Y-I. Kim; S. Lee; M-J Lee; Y. K. Semertzidis; K. Giovanetti; V. A. Baranov; V. N. Duginov; N. V. Khomutov; V. A. Krylov; N. A. Kuchinskiy; V. P. Volnykh; C. Crawford; R. Fatemi; W. P. Gohn; T. P. Gorringe; W. Korsch; B. Plaster; A. Anastasi; D. Babusci; S. Dabagov; C. Ferrari; A. Fioretti; C. Gabbanini; D. Hampai; A. Palladino; G. Venanzoni; T. Bowcock; J. Carroll; B. King; S. Maxfield; K. McCormick; A. Smith; T. Teubner; M. Whitley; M. Wormald; R. Chislett; S. Kilani; M. Lancaster; E. Motuk; T. Stuttard; M. Warren; D. Flay; D. Kawall; Z. Meadows; T. Chupp; R. Raymond; A. Tewlsey-Booth; M. J. Syphers; D. Tarazona; C. Ankenbrandt; M. A. Cummings; R. P. Johnson; C. Yoshikawa; S. Catalonotti; R. Di Stefano; M. Iacovacci; S. Mastroianni; S. Chattopadhyay; M. Eads; M. Fortner; D. Hedin; N. Pohlman; A. de Gouvea; H. Schellman; L. Welty-Rieger; T. Itahashi; Y. Kuno; K. Yai; F. Azfar; S. Henry; G. D. Alkhazov; V. L. Golovtsov; P. V. Neustroev; L. N. Uvarov; A. A. Vasilyev; A. A. Vorobyov; M. B. Zhalov; L. Cerrito; F. Gray; G. Di Sciascio; D. Moricciani; C. Fu; X. Ji; L. Li; H. Yang; D. Stöckinger; G. Cantatore; D. Cauz; M. Karuza; G. Pauletta; L. Santi; S. Bae\\ssler; M. Bychkov; E. Frlez; D. Pocanic; L. P. Alonzi; M. Fertl; A. Fienberg; N. Froemming; A. Garcia; D. W. Hertzog J. Kaspar; P. Kammel; R. Osofsky; M. Smith; E. Swanson; T. van Wechel; K. Lynch

2015-01-27T23:59:59.000Z

167

Muon (g-2) Technical Design Report  

E-Print Network [OSTI]

The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

Grange, J; Winter, P; Wood, K; Zhao, H; Carey, R M; Gastler, D; Hazen, E; Kinnaird, N; Miller, J P; Mott, J; Roberts, B L; Benante, J; Crnkovic, J; Morse, W M; Sayed, H; Tishchenko, V; Druzhinin, V P; Khazin, B I; Koop, I A; Logashenko, I; Shatunov, Y M; Solodov, E; Korostelev, M; Newton, D; Wolski, A; Bjorkquist, R; Eggert, N; Frankenthal, A; Gibbons, L; Kim, S; Mikhailichenko, A; Orlov, Y; Rubin, D; Sweigart, D; Allspach, D; Annala, G; Barzi, E; Bourland, K; Brown, G; Casey, B C K; Chappa, S; Convery, M E; Drendel, B; Friedsam, H; Gadfort, T; Hardin, K; Hawke, S; Hayes, S; Jaskierny, W; Johnstone, C; Johnstone, J; Kashikhin, V; Kendziora, C; Kiburg, B; Klebaner, A; Kourbanis, I; Kyle, J; Larson, N; Leveling, A; Lyon, A L; Markley, D; McArthur, D; Merritt, K W; Mokhov, N; Morgan, J P; Nguyen, H; Ostiguy, J-F; Para, A; Popovic, C C Polly M; Ramberg, E; Rominsky, M; Schoo, D; Schultz, R; Still, D; Soha, A K; Strigonov, S; Tassotto, G; Turrioni, D; Villegas, E; Voirin, E; Velev, G; Wolff, D; Worel, C; Wu, J-Y; Zifko, R

2015-01-01T23:59:59.000Z

168

Muon Tracking to Detect Special Nuclear Materials  

SciTech Connect (OSTI)

Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

Schwellenbach, D. [NSTec; Dreesen, W. [NSTec; Green, J. A. [NSTec; Tibbitts, A. [NSTec; Schotik, G. [NSTec; Borozdin, K. [LANL; Bacon, J. [LANL; Midera, H. [LANL; Milner, C. [LANL; Morris, C. [LANL; Perry, J. [LANL; Barrett, S. [UW; Perry, K. [UW; Scott, A. [UW; Wright, C. [UW; Aberle, D. [NSTec

2013-03-18T23:59:59.000Z

169

Muon Fluence Measurements for Homeland Security Applications  

SciTech Connect (OSTI)

This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

2010-08-10T23:59:59.000Z

170

Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection  

SciTech Connect (OSTI)

The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX.

Roger Raman; Thomas R. Jarboe; Michael G. Bell; Dennis Mueller; Brian A. Nelson; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

2005-01-03T23:59:59.000Z

171

A nonintrusive method for measuring the operating temperature of a solenoid-operated valve  

SciTech Connect (OSTI)

Experimental data are presented to show that the in-service operating temperature of a solenoid-operated valve (SOV) can be interred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include (a) there is no need for an add-on temperature sensor, (b) the true temperature of a critical --- and likely the hottest --- part of the SOV (namely, the electrical coil) is measured directly, (c) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (d) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (e) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40{degree}C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system. 5 refs., 7 figs.

Kryter, R.C.

1990-01-01T23:59:59.000Z

172

A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms  

E-Print Network [OSTI]

Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

Ming-Xia Huo; Nie Wei; David A. W. Hutchinson; Leong Chuan Kwek

2014-08-11T23:59:59.000Z

173

Characterisation of the muon beams for the Muon Ionisation Cooling Experiment  

E-Print Network [OSTI]

A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

2013-01-01T23:59:59.000Z

174

Cosmic-ray Muon Flux In Belgrade  

SciTech Connect (OSTI)

Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

2007-04-23T23:59:59.000Z

175

Large muon electric dipole moment from flavor?  

SciTech Connect (OSTI)

We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10{sup -24}-10{sup -22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the standard model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity-mediated supersymmetry breaking, a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

Hiller, Gudrun; Huitu, Katri; Rueppell, Timo; Laamanen, Jari [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland) and Institut fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Department of Physics, and Helsinki Institute of Physics, FIN-00014 University of Helsinki (Finland); Theoretical High Energy Physics, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands)

2010-11-01T23:59:59.000Z

176

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

177

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

178

Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion  

E-Print Network [OSTI]

We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

Sachie Kimura; Aldo Bonasera

2006-07-31T23:59:59.000Z

179

The Solenoidal Detector Collaboration at the SSCL. Progress report, March 1, 1991--February 29, 1992  

SciTech Connect (OSTI)

Our primary interest is the detection and measurement of muons and the design of the muon detector and trigger for the SDC. We have been concentrating on the design of the forward muon system (in the approximate pseudo-rapidity region of 1.5 <{vert_bar} {eta} {vert_bar}<2.5 corresponding to azimuthal angles of 9.4{degrees} to 26. 0{degrees}) and at present are responsible for the engineering design of the detector support system in this rapidity region. We are also participating in the development of a liquid argon (LAr) calorimeter adapted to the bunch structure of the SSC machine. At present a LAr calorimeter still remains an option for the choice of calorimetry for the SDC. Recent measurements at BNL in a 20 GeV pion beam confirm that many of the problems associated with long signal collection times of LAr can be solved.

Not Available

1992-05-01T23:59:59.000Z

180

BNL -66968 CAP-265-Muon-99C  

E-Print Network [OSTI]

stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system on the Be window. We describe beam optics, the liquid lithium pressure vessel, pump options, power supplies stages of 1 cooling is obtained by passing the beam though a conducting light metal rod which acts

Harilal, S. S.

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source  

SciTech Connect (OSTI)

The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

2011-07-15T23:59:59.000Z

182

CMS conditions data access using FroNTier  

SciTech Connect (OSTI)

The CMS experiment at the LHC has established an infrastructure using the FroNTier framework to deliver conditions (i.e. calibration, alignment, etc.) data to processing clients worldwide. FroNTier is a simple web service approach providing client HTTP access to a central database service. The system for CMS has been developed to work with POOL which provides object relational mapping between the C++ clients and various database technologies. Because of the read only nature of the data, Squid proxy caching servers are maintained near clients and these caches provide high performance data access. Several features have been developed to make the system meet the needs of CMS including careful attention to cache coherency with the central database, and low latency loading required for the operation of the online High Level Trigger. The ease of deployment, stability of operation, and high performance make the FroNTier approach well suited to the GRID environment being used for CMS offline, as well as for the online environment used by the CMS High Level Trigger (HLT). The use of standard software, such as Squid and various monitoring tools, make the system reliable, highly configurable and easily maintained. We describe the architecture, software, deployment, performance, monitoring and overall operational experience for the system.

Blumenfeld, Barry J.; /Johns Hopkins U.; Dykstra, David; Lueking, Lee; Wicklund, Eric; /Fermilab

2007-10-01T23:59:59.000Z

183

Shaping of fuel delivery characteristics for solenoid operated diesel engine gaseous injectors  

SciTech Connect (OSTI)

Solenoid operated gaseous injectors, when compared to conventional liquid fuel diesel injectors, differ in the way the fuel dose and its discharge rate are controlled. While in conventional diesel systems, the fuel dose and its injection rate depends on the fuel injection pump effective stroke and on the plunger diameter and velocity, the solenoid injectors operate in an on-off manner which limits the ability to control the gas discharge rate, resulting in its profile to be basically rectangular in shape. To reduce the gas injection rate at the beginning of the injection process in order to suppress the diesel-knock phenomenon, similar procedures as used in diesel engines could be implemented. One such approach is to use a throttling type pintle nozzle, and another method is to use a double-spring injector with a hole nozzle. The rationale for using such nozzle configurations is that gaseous fuels do not require atomization, and therefore, can be injected at lower discharge velocities than with liquid fuels. The gas delivery characteristics from a solenoid injector has been computer-simulated in order to assess the impact of the investigated three modes of fuel discharge rate control strategies. The simulation results confirmed that the gas dose and its discharge rate can be shaped as required. An experimental set-up is described to measure the gas discharge rate using a special gas injection mass flow rate indicator with a strain-gage sensor installed at the entry to a long tube, similar to that proposed by Bosch for liquid fuel volumetric flow rate measurements.

Hong, H.; Krepec, T.; Kekedjian, H.

1996-09-01T23:59:59.000Z

184

Performance of ?q-lepton reconstruction and identification in CMS  

SciTech Connect (OSTI)

The performance of tau-lepton reconstruction and identification algorithms is studied using a data sample of proton-proton collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns collected with the CMS detector at the LHC. The tau leptons that decay into one or three charged hadrons, zero or more short-lived neutral hadrons, and a neutrino are identified using final-state particles reconstructed in the CMS tracker and electromagnetic calorimeter. The reconstruction efficiency of the algorithms is measured using tau leptons produced in Z-boson decays. The tau-lepton misidentification rates for jets and electrons are determined.

Chatrchyan, Serguei; et al.

2012-01-01T23:59:59.000Z

185

Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade  

SciTech Connect (OSTI)

This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

Brzezniak, J.; Fast, R.W.; Krempetz, K.

1994-05-01T23:59:59.000Z

186

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from  

E-Print Network [OSTI]

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from ATLAS Pixel Optical Link #12;Joint ATLAS/CMS SLHC Opto WG 2 Outline Introduction VCSEL/PIN monitoring Analysis of opto-board/VCSEL/PIN failures Summary K.K. Gan #12;K.K. Gan Joint ATLAS/CMS SLHC Opto WG 3 Introduction Architecture

Gan, K. K.

187

Joint ATLAS/CMS SLHC Opto WG 1 March 5, 2010  

E-Print Network [OSTI]

Joint ATLAS/CMS SLHC Opto WG 1 March 5, 2010 K.K. Gan Status of the Development of On ATLAS/CMS SLHC Opto WG 2 Outline Introduction Current work with IBL Schedule K.K. Gan #12;K.K. Gan Joint ATLAS/CMS SLHC Opto WG 3 Introduction A proposal to develop on-detector array-based opto

Gan, K. K.

188

Measurements of the hadronic activity and the electroweak production in events with a Z boson and two jets in proton-proton collisions with the CMS experiment  

E-Print Network [OSTI]

The observation of the electroweak production of a Z boson with two jets in pp collisions at $\\sqrt{s} = 8$ TeV with the CMS experiment at the CERN LHC is presented, based on a data sample with an integrated luminosity of 19.7 fb$^{-1}$. The cross section measurement, combining the muon and electron channels, is in agreement with the theoretical expectations. Radiation patterns of selected Z plus two jets events, and the hadronic activity in the rapidity interval between the jets are also measured. These results are of substantial importance in the more general study of vector boson fusion processes, of relevance for Higgs boson searches and for measurements of electroweak gauge couplings and vector boson scattering.

Paolo Azzurri; for the CMS Collaboration

2014-11-13T23:59:59.000Z

189

Relativistic QRPA calculation of muon capture rates  

E-Print Network [OSTI]

The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

T. Marketin; N. Paar; T. Niksic; D. Vretenar

2009-03-30T23:59:59.000Z

190

Recent results from COMPASS muon scattering measurements  

SciTech Connect (OSTI)

A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

Capozza, Luigi [Irfu/SPhN - CEA Saclay, 91190 Gif-sur-Yvette (France); Collaboration: COMPASS Collaboration

2012-10-23T23:59:59.000Z

191

H{sup -} beam transport experiments in a solenoid low energy beam transport  

SciTech Connect (OSTI)

The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

2012-02-15T23:59:59.000Z

192

MUON STORAGE RINGS FOR 6D PHASE SPACE COOLING.  

SciTech Connect (OSTI)

We describe several storage ring designs for reducing the 6-dimensional phase space of circulating muon beams. These rings utilize quadrupole and dipole magnets as well as wedge-shaped, liquid-hydrogen, energy-loss absorbers and energy compensating rf cavities. We obtain evaluations of their cooling performance by particle tracking simulation. Such rings are potentially useful for future Neutrino Factories or Muon Colliders as well as for existing facilities in which cooled, intense muon beams could enhance their physics programs.

KIRK,H.CLINE,D.FUKUI,Y.GARREN,A.

2003-05-12T23:59:59.000Z

193

Searches for new phenomena at CMS and ATLAS  

E-Print Network [OSTI]

The prospects of the ATLAS and CMS experiments at LHC for beyond standard model searches are depicted in this document. The presented studies concentrate on the search plans for supersymmetry (SUSY) and beyond in the first few years of data taking.

Tanja Rommerskirchen; for the CMS; ATLAS collaborations

2009-05-26T23:59:59.000Z

194

Status of the International Muon Ionization Cooling Experiment (MICE)  

E-Print Network [OSTI]

target mechanism in the ISIS ring. MUON BEAM LINE Althoughthose located within the ISIS shielded enclosure are beingdelay installation until the next ISIS shutdown (planned for

Zisman, Michael S.

2008-01-01T23:59:59.000Z

195

Toroidal magnetic detector for high resolution measurement of muon momenta  

DOE Patents [OSTI]

A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

Bonanos, P.

1992-01-07T23:59:59.000Z

196

Local Fermi gas in inclusive muon capture from nuclei  

E-Print Network [OSTI]

We compare local Fermi gas and shell model in muon capture in nuclei in order to estimate the effect of finite nuclear size in low energy weak reactions.

J. E. Amaro; J. Nieves; M. Valverde; C. Maieron

2006-05-20T23:59:59.000Z

197

atmospheric muon generator: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As...

198

E-Print Network 3.0 - atlas muon system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Summary: The First Result of Global Commissioning of the ATALS Endcap Muon Trigger...

199

E-Print Network 3.0 - atlas muon endcap Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Summary: The First Result of Global Commissioning of the ATALS Endcap Muon Trigger...

200

E-Print Network 3.0 - atlas 1st-level muon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Summary: The First Result of Global Commissioning of the ATALS Endcap Muon Trigger...

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - atlas high-level muon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pontecorvo, Installation and Commissioning of the ATLAS MUON... recorded in the ATLAS cavern with two muon ... Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

202

E-Print Network 3.0 - atlas mdt muon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Summary: The First Result of Global Commissioning of the ATALS Endcap Muon Trigger...

203

E-Print Network 3.0 - avec des muons Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 66 Implementation and Performance of the Event Filter Muon Selection for the ATLAS experiment at LHC Summary: Implementation and Performance of the Event Filter Muon...

204

Detectors for Neutrino Physics at the First Muon Collider  

E-Print Network [OSTI]

We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop'' scale is also discussed.

Deborah A. Harris; Kevin S. McFarland

1998-04-20T23:59:59.000Z

205

ATLAS Muon TGC Trigger Electronics TTC signal distribution Extended URD  

E-Print Network [OSTI]

ATLAS Muon TGC Trigger Electronics TTC signal distribution Extended URD Version 0 June 2000 1 a TTCrx chip which receives signals distributed by the ATLAS central TTC system. The SPP then extracts to the LVDS level, and #12;ATLAS Muon TGC Trigger Electronics TTC signal distribution Extended URD Version 0

Fukunaga, Chikara

206

ATLAS Muon TGC Trigger Electronics Slave Board ASIC Extended URD  

E-Print Network [OSTI]

ATLAS Muon TGC Trigger Electronics Slave Board ASIC Extended URD Version 0 June 2000 1 Slave Board position of a MATRIX while one from the pivot plane specifies one of the raw. Thus the #12;ATLAS Muon TGC at the highest r is selected from each section giving three hits per an SB chip for the wire triplet. #12;ATLAS

Fukunaga, Chikara

207

PHYSICS AT HIGH LUMINOSITY MUON COLLIDERS AND A FACILITY OVERVIEW.  

SciTech Connect (OSTI)

Physics potentials at future colliders including high luminosity {mu}{sup +}{mu}{sup -} colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included.

PARSA,Z.

2001-07-01T23:59:59.000Z

208

Refurbishment and Testing of the 1970's Era LASS Solenoid Coils for JLab's Hall D  

SciTech Connect (OSTI)

JLab refurbished the LASS1, 1.85 m bore Solenoid, consisting of four superconducting coils to act as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The coils, built in 1971 at Stanford Linier Accelerator Center and used a second time at the MEGA Experiment at Los Alamos, had electrical shorts and leaks to the insulating vacuum along with deteriorated superinsulation & instrumentation. Root cause diagnosis of the problems and the repair methods are described along with the measures used to qualify the vessels and piping within the Laboratory's Pressure Safety Program (mandated by 10CFR851). The extraordinary refrigerator operational methods used to utilize the obsolete cryogenic apparatus gathered for the off-line, single coil tests are described.

Anumagalla, Ravi; Biallas, George; Brindza, Paul; Carstens, Thomas; Creel, Jonathan; Egiyan, Hovanes; Martin, Floyd; Qiang, Yi; Spiegel, Scot; Stevens, Mark; Wissmann, Mark

2012-07-01T23:59:59.000Z

209

Electroweak Radiative Corrections to Muon Capture  

E-Print Network [OSTI]

Electroweak radiative corrections to muon capture on nuclei are computed and found to be sizable. They enhance the capture rates for hydrogen and helium by 2.8% and 3.0% respectively. As a result, the value of the induced pseudoscalar coupling, g_P^exp, extracted from a recent hydrogen 1S singlet capture experiment is increased by about 21% to g_P^exp = 7.3 +/- 1.2 and brought into good agreement with the prediction of chiral perturbation theory, g_P^theory=8.2 +/- 0.2. Implications for helium capture rate predictions are also discussed.

A. Czarnecki; W. J. Marciano; A. Sirlin

2007-04-30T23:59:59.000Z

210

Use of proportional tubes in a muon polarimeter  

SciTech Connect (OSTI)

A prototype muon polarimeter was built to study the feasibility of measuring the positive muon polarization in the decay K/sub L/ ..-->.. ..mu../sup +/..mu../sup /minus//. The system consisted of alternating layers of extruded aluminum gas proportional tubes and polarization-retaining absorber plates of either aluminum or marble. Longitudinally polarized positive muons from the Stopped Muon Channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) were stopped in the absorber plates where they precessed in a field of 60 gauss. Decay times were recorded in 100 ns first-in-first-out memories for all wires hit during a 12.8 ..mu..s period centered about the muon stop trigger. The performance of the system was studied for different beam rates and absorber thicknesses. The value of imposing time and spacial cuts on track data to enhance the precession signal was also investigated. 7 refs., 4 figs., 1 tab.

Kenney, C.J.; Eckhause, M.; Ginkel, J.F.; Guss, P.P.; Kane, J.R.; Vulcan, W.F.; Welsh, R.E.; Whyley, R.J.; Bilskie, J.; Hart, G.W.

1988-01-01T23:59:59.000Z

211

A precision measurement of the muon decay parameter delta  

E-Print Network [OSTI]

The muon decay parameter delta characterizes momentum dependence of the parity-violating muon decay asymmetry. A new measurement of delta has been performed using the first physics data recorded by the TWIST experiment at TRIUMF. The obtained value, delta=0.74964+-0.00066(stat.)+-0.00112(syst.), is consistent with the Standard Model expectation delta=3/4. This is the first determination of delta performed using a blind analysis technique. Combined with other data, the measurement sets new model-independent limits on effective right-handed couplings of the muon. Improved limits on the product of another muon decay parameter, xi, and the muon polarization in pion decay, Pmu, are obtained in the form: 0.9960Pmu*xi<=xi<1.0040, at 90% confidence level. Implications for left-right symmetric models are discussed.

Gaponenko, Andrei

2011-01-01T23:59:59.000Z

212

A precision measurement of the muon decay parameter delta  

E-Print Network [OSTI]

The muon decay parameter delta characterizes momentum dependence of the parity-violating muon decay asymmetry. A new measurement of delta has been performed using the first physics data recorded by the TWIST experiment at TRIUMF. The obtained value, delta=0.74964+-0.00066(stat.)+-0.00112(syst.), is consistent with the Standard Model expectation delta=3/4. This is the first determination of delta performed using a blind analysis technique. Combined with other data, the measurement sets new model-independent limits on effective right-handed couplings of the muon. Improved limits on the product of another muon decay parameter, xi, and the muon polarization in pion decay, Pmu, are obtained in the form: 0.9960Pmu*xi<=xi<1.0040, at 90% confidence level. Implications for left-right symmetric models are discussed.

Andrei Gaponenko

2011-04-14T23:59:59.000Z

213

The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c  

SciTech Connect (OSTI)

The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

Abdullin, S.; /Moscow, ITEP; Abramov, V.; /Serpukhov, IHEP; Acharya, B.; /Tata Inst.; Adam, N.; /Princeton U.; Adams, M.; /Illinois U., Chicago; Adzic, P.; /Belgrade U.; Akchurin, N.; /Texas Tech.; Akgun, U.; Albayrak, E.; /Iowa U.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

2009-01-01T23:59:59.000Z

214

Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors  

E-Print Network [OSTI]

The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

2014-04-30T23:59:59.000Z

215

Prospects for the Higgs Boson Searches with CMS  

E-Print Network [OSTI]

An overview on the prospects for Higgs Boson searches with the CMS detector is presented. Projections have been made to estimate the potential to a possible discovery or exclusion of the Higgs Boson during the run at a center of mass energy of 7 TeV at the LHC, with a recorded integrated luminosity of approximately 1 fb-1, conditions expected by the end of 2011

Matteo Sani

2010-12-01T23:59:59.000Z

216

Juraj Bracink, Hadron Structure, Modra, September 2007 Physics with eP collisions at highest Q2  

E-Print Network [OSTI]

) Solenoidal magnet Muon system Depleted uranium calorimeter #12;Juraj Braciník, Hadron Structure, Modra

217

Fast Beam Condition Monitor for CMS: performance and upgrade  

E-Print Network [OSTI]

The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

Jessica L. Leonard; Alan Bell; Piotr Burtowy; Anne Dabrowski; Maria Hempel; Hans Henschel; Wolfgang Lange; Wolfgang Lohmann; Nathaniel Odell; Marek Penno; Brian Pollack; Dominik Przyborowski; Vladimir Ryjov; David Stickland; Roberval Walsh; Weronika Warzycha; Agnieszka Zagozdzinska

2014-05-08T23:59:59.000Z

218

Optimising a Muon Spectrometer for Measurements at the ISIS Pulsed Muon Source  

E-Print Network [OSTI]

This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.

Giblin, S R; King, P J C; Tomlinson, S; Jago, S J S; Randall, L J; Roberts, M J; Norris, J; Howarth, S; Mutamba, Q B; Rhodes, N J; Akeroyd, F

2014-01-01T23:59:59.000Z

219

FFAG LATTICE FOR MUON ACCELERATION WITH DISTRIBUTED RF.  

SciTech Connect (OSTI)

A future muon collider or neutrino factory requires fast acceleration to minimize muon decay. We have previously described an FFAG ring that accelerated muons from 10 to 20 GeV in energy. The ring achieved its large momentum acceptance using a low-emittance lattice with a small dispersion. In this paper, we present an update on that ring. We have used design tools that more accurately represent the ring's behavior at large momentum offsets. We have also improved the dynamic aperture from the earlier design.

COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.M.PALMER,R.GARREN,A.

2003-05-12T23:59:59.000Z

220

The muon system of the Daya Bay Reactor antineutrino experiment  

E-Print Network [OSTI]

The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

Daya Bay Collaboration

2014-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Novel Muon Beam Facilities for Project X at Fermilab  

SciTech Connect (OSTI)

Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

222

The Muon System of the Daya Bay Reactor Antineutrino Experiment  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

2015-02-01T23:59:59.000Z

223

The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

MICE Collaboration

2012-03-23T23:59:59.000Z

224

SEARCH FOR CONTACT INTERACTIONS IN THE DIELECTRON CHANNEL IN P-P COLLISIONS AT \\sqrt{s} = 8 TeV AT CMS  

SciTech Connect (OSTI)

A possible explanation of mass hierarchy, which is not explained by the Standard Model, is that quarks and leptons are composite objects made of more fundamental particles known as preons. The existence of preons will be manifest as a four fermion contact interaction in the annihilation of a quark and anti-quark, in a p-p collision, producing positron-electron pairs. At high mass, such pairs are also produced from off-shell Z and \\gamma bosons. This thesis provides a detailed discussion of the analysis strategy to study these processes using the Compact Muon Solenoid Experiment at the Large Hadron Collider. The study utilizes data recorded in 2012 at \\sqrt{s} = 8 TeV, corresponding to an integrated luminosity of 19.6 fb^{-1}. The dielectron mass spectrum above 300 GeV shows no significant deviation from the prediction of the Standard Model. In the framework of the left-left iso-scalar model of eeqq contact interactions, 95\\% CL lower limits on the energy scale parameter are found for destructive (13.1 TeV) and constructive (18.3 TeV) interference between the contact and standard model amplitudes. These limits are the most stringent to date.

Lamichhane, Pramod

2013-01-01T23:59:59.000Z

225

First direct observation of muon antineutrino disappearance  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ??? production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ??? events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3?. The best fit to oscillation yields |?m?2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 ??) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS ?? and ??? measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

Adamson, P [Fermilab; Andreopoulos, C [Rutherford; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Bishai, M [Brookhaven; Blake, A [Cambridge U.; Bock, G J [Fermilab; Boehnlein, D J [/Fermilab; Bogert, D [Fermilab; Harvard U., Phys. Dept.

2011-07-05T23:59:59.000Z

226

Ordinary Muon Capture in Hydrogen Reexamined  

E-Print Network [OSTI]

The rate of muon capture in a muonic hydrogen atom is calculated in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To this order, we present the systematic evaluation of all the corrections due to the QED and electroweak radiative corrections and the proton-size effect. Since the low-energy constants involved can be determined from other independent sources of information, the theory has predictive power. For the hyperfine-singlet $\\mu p$ capture rate $\\Gamma_0$, our calculation gives $\\Gamma_0=710 \\,\\pm 5\\,s^{-1}$, which is in excellent agreement with the experimental value obtained in a recent high-precision measurement by the MuCap Collaboration.

U. Raha; F. Myhrer; K. Kubodera

2013-06-03T23:59:59.000Z

227

A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons  

E-Print Network [OSTI]

We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

2008-01-01T23:59:59.000Z

228

Standard Model Prediction of the Muon Anomalous Magnetic Moment  

E-Print Network [OSTI]

I review the present Standard Model prediction of the muon anomalous magnetic moment. The discrepancy with its experimental determination is (25.5 +- 8.0) x 10^-10, i.e., 3.2 standard deviations.

Joaquim Prades

2010-02-18T23:59:59.000Z

229

atmospheric muon flux: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

230

Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays  

E-Print Network [OSTI]

The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

The ATLAS Collaboration

2010-08-02T23:59:59.000Z

231

(ATLAS Muon TDC version 1 & 2) User's Manual  

E-Print Network [OSTI]

1 AMT-1 & 2 (ATLAS Muon TDC version 1 & 2) User's Manual Yasuo Arai KEK, National High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305, Japan yasuo.arai@kek.jp, http://atlas

van Suijlekom, Walter

232

Fermilab Muon Ring Arrives to a Large Crowd of Fans  

SciTech Connect (OSTI)

A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

None

2013-08-15T23:59:59.000Z

233

Superconducting magnets for muon capture and phase rotation  

E-Print Network [OSTI]

of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

Green, M.A.

2011-01-01T23:59:59.000Z

234

ATLAS and CMS hints for a mirror Higgs boson  

E-Print Network [OSTI]

ATLAS and CMS have provided hints for the existence of a Higgs-like particle with mass of about 144 GeV with production cross section into standard decay channels which is about 50% that of the standard model Higgs boson. We show that this 50% suppression is exactly what the mirror matter model predicts when the two scalar mass eigenstates, each required to be maximal admixtures of a standard and mirror-Higgs boson, are separated in mass by more than their decay widths but less than the experimental resolution. We discuss prospects for the future confirmation of this interesting hint for non-standard Higgs physics.

Robert Foot; Archil Kobakhidze; Raymond R. Volkas

2011-11-10T23:59:59.000Z

235

Hit efficiency study of CMS prototype forward pixel detectors  

SciTech Connect (OSTI)

In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

Kim, Dongwook; /Johns Hopkins U.

2006-01-01T23:59:59.000Z

236

Results on SUSY and Higgs searches at CMS  

ScienceCinema (OSTI)

We present the results of searches for Supersymmetry and the Higgs boson performed using data collected in 2010 by the CMS experiment at the LHC in pp-collisions at a centre-of-mass energy of 7 TeV. Searches for Supersymmetry are performed in all-hadronic final states with jets and missing transverse energy and in final states including one or more isolated leptons or photons. No evidence for new physics is observed and limits are set on the predictions of a range of Supersymmetric scenarios. The results of searches for the Higgs boson are presented and limits set.

None

2011-04-25T23:59:59.000Z

237

Theoretical Analysis of the Preload Force for a Tokamak Central Solenoid Coil Structure  

SciTech Connect (OSTI)

A simple one-dimensional analytic formulation is developed for approximate determination of the preload force that must be applied by tie-rods and/or tie-plates for a multimodule central solenoid coil assembly in tokamak devices. The primary purpose of the preload is to ensure that vertical tensile stress does not develop between any two adjacent module coils within the assembly. The absence of the tensile force is a minimal requirement needed to prevent lateral movements of the coils, when friction is the sole means available. An excessive preload, on the other hand, can damage insulation and conductor jackets. The analysis is based on a model system in which the vertical motion of the coil winding is described through representation of the coil conductors and tie-rods/-plates with linear springs. The coupled spring system is represented by a system of simultaneous linear equations, which is solved analytically to obtain the compression force at each spring in terms of the applied preload, electromagnetic forces on the springs, and spring constants. Although this procedure lacks the rigor of complex two- or three-dimensional analyses, it is expected to be able to play some useful role.

You, Kwang-Il; Lee, Deok Kyo [Korea Basic Science Institute (Korea, Republic of)

2003-06-15T23:59:59.000Z

238

A White Paper on SoLID (Solenoidal Large Intensity Device)  

E-Print Network [OSTI]

In order to fully exploit the physics potential of Jefferson Lab after 12 GeV energy upgrade, a new Solenoidal Large Acceptance Device (SoLID) is proposed. The SoLID spectrometer, with its unique capability of large acceptance and high luminosity, is ideal for precision measurements in semi-inclusive DIS to study transverse spin and transverse-momentum-dependent parton distributions of the nucleon, and for parity-violating Deep Inelastic Scattering (DIS) to perform precision tests of the Standard Model at low energy as well as addressing specific issues in nucleon structure including charge symmetry violation, d/u ratio and higher-twist effects due to di-quark. SoLID is also essential for precision measurements of J/\\psi electroproduction in the threshold region to study non-perturbative gluon dynamics and interaction. Five highly rated SoLID experiments and two "run group" experiments have been approved by the JLab Physics Advisory Committee. The physics program is presented along with an overview of the SoLID instrumentation and its current status.

J. P. Chen; H. Gao; T. K. Hemmick; Z. -E. Meziani; P. A. Souder; the SoLID Collaboration

2014-09-26T23:59:59.000Z

239

Interpretation of the atmospheric muon charge ratio in MINOS  

E-Print Network [OSTI]

MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

Philip Schreiner; Maury Goodman

2007-06-04T23:59:59.000Z

240

Accelerator Preparations for Muon Physics Experiments at Fermilab  

SciTech Connect (OSTI)

The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

Syphers, M.J.; /Fermilab

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Final Technical Report Ã?¢Ã?Â?Ã?Â? CMS FAST OPTICAL CALORIMETRY  

SciTech Connect (OSTI)

This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

David R Winn

2012-07-12T23:59:59.000Z

242

Detector and Event Visualization with SketchUp at the CMS Experiment  

E-Print Network [OSTI]

We have created 3D models of the CMS detector and particle collision events in SketchUp, a 3D modelling program. SketchUp provides a Ruby API which we use to interface with the CMS Detector Description to create 3D models of the CMS detector. With the Ruby API, we also have created an interface to the JSON-based event format used for the iSpy event display to create 3D models of CMS events. These models have many applications related to 3D representation of the CMS detector and events. Figures produced based on these models were used in conference presentations, journal publications, technical design reports for the detector upgrades, art projects, outreach programs, and other presentations.

Tai Sakuma; Thomas McCauley

2013-11-20T23:59:59.000Z

243

Measurement of cosmic muon charge ratio with the Large Volume Detector  

E-Print Network [OSTI]

The charge ratio ${k \\equiv \\mu^+/\\mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the sea level greater than 1.3 TeV. The muon charge ratio was defined using the number of the decays of stopping positive muons in the LVD iron structure and the decays of positive and negative muons in scintillator. We have obtained the value of the muon charge ratio ${k}$ ${= 1.26 \\pm 0.04(stat) \\pm 0.11(sys)}$.

N. Yu. Agafonova; M. Aglietta; P. Antonioli; G. Bari; R. Bertoni; V. V. Boyarkin; E. Bressan; G. Bruno; V. L. Dadykin; E. A. Dobrynina; R. I. Enikeev; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; E. Kemp; A. S. Malgin; B. Miguez; A. Molinario; R. Persiani; I. A. Pless; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; M. Selvi; G. C. Trinchero; C. Vigorito; V. F. Yakushev; A. Zichichi

2015-02-14T23:59:59.000Z

244

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting slide 1 Modular Invariant Theory of the Cyclic Group  

E-Print Network [OSTI]

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 1 Modular Invariant Theory Some Consequences Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 2 Modular 2010 CMS Summer Meeting ­ slide 3 #12;The Modular Group of Prime Order Modular Representation Theory

Wehlau, David

245

Explaining the CMS eejj Excess With R?parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay  

E-Print Network [OSTI]

. Khachatryan et al. [CMS Collaboration], arXiv:1407.3683 [hep-ex]. [2] CMS Collaboration, Tech. Rep. CMS-PAS-EXO-12-041, CERN, Geneva, 2014. [3] Y. Bai and J. Berger, arXiv:1407.4466 [hep-ph]. [4] F. F. Deppisch, T. E. Gonzalo, S. Patra, N. Sahu and U. Sarkar...

Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

2015-01-01T23:59:59.000Z

246

Future Accelerators, Muon Colliders, and Neutrino Factories  

SciTech Connect (OSTI)

Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

Richard A Carrigan, Jr.

2001-12-19T23:59:59.000Z

247

ELECTRON MODEL OF AN FFAG MUON ACCELERATOR.  

SciTech Connect (OSTI)

Parameters are derived for the lattice and RF system of an electron model of a non-scaling FFAG ring for accelerating muons. The model accelerates electrons from about 10 to about 20 MeV, and has about 15 m circumference. Magnet types and dimensions, spacing, half apertures, about 12 mm by 20 mm, and number of cells are presented. The tune variation with momentum covers several integers, similar to that in a full machine, and allows the study of resonance crossing. The consequences of misaligned magnets are studied by simulation. The variation of orbit length with momentum is less than 36 mm, and allows the study of acceleration outside a bucket. A 100 mm straight section, in each of the cells, is adequately long for an RF cavity operating at 3 GHz. Hamiltonian dynamics in longitudinal phase space close to transition is used to calculate the accelerating voltage needed. Acceleration is studied by simulation. Practical RF system design issues, e.g. RF power, and beam loading are estimated.

KEIL,E.; BERG,J.S.; SESSLER,A.M.

2004-09-14T23:59:59.000Z

248

Muon density enhancement with a tapered capillary method  

SciTech Connect (OSTI)

The focusing effect of a muon beam with a tapered capillary method has been investigated in a range from 4.2 MeV to 9.2 MeV (i.e. from 30 MeV/c to 45 MeV/c in momentum). We injected the muon beam into a pair of narrowing (tapered) plates and tubes made of glass, copper and gold-coated copper, and measured the energy distribution of the muon leaving from the outlet. The plates were tilted from an inlet of 40 mm to an outlet of 20 mm. The density enhancement was more prominent with the plates made of heavier elements. The largest beam density enhancement at 10 mm downstream of the outlet was 1.3 with the gold-coated copper narrowing plates. The enhancement was composed of muons scattered with a small angle. Their energy was slightly less than that of the initial beam. This effect did not depend on the surface roughness. The result strongly suggests a simple and effective way to increase the muon beam density for a small target.

Tomono, D.; Ishida, K.; Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kojima, T. M.; Ikeda, T.; Iwai, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Tokuda, M. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kanazawa, Y. [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Iwasaki, M. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Yamazaki, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan)

2011-10-06T23:59:59.000Z

249

ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.  

SciTech Connect (OSTI)

Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

FERNOW,R.C.

1999-03-25T23:59:59.000Z

250

Measurements of $t\\bar{t}$ spin correlations in CMS  

E-Print Network [OSTI]

We present an overview of the measurements of $t\\bar{t}$ spin correlations in the CMS Collaboration. We present two analyses both in the dilepton channel using proton-proton collisions at $\\sqrt{s}\\, =\\, 7$ TeV based on an integrated luminosity of 5.0 fb$^{-1}$. The spin correlations and polarization are measured using angular asymmetries. The results are consistent with unpolarized top quarks and Standard Model spin correlation. The second analysis sets a limit on the real part of the top-quark chromo-magnetic dipole moment of $-0.043\\, <\\, Re({\\hat{\\mu}}_{t})\\, <\\, 0.117$ at $95\\,%$ confidence level through the measured azimuthal angle difference between the two charged leptons from $t\\bar{t}$ production.

Kelly Beernaert

2014-11-26T23:59:59.000Z

251

CMS tracking performance results from early LHC operation  

SciTech Connect (OSTI)

The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays.

Khachatryan, Vardan; et al.

2010-11-24T23:59:59.000Z

252

The MUON System in the HERA-B Experiment ITEP, B. Cheremushkinskaya,25 Moscow 117259, Russia  

E-Print Network [OSTI]

, Russia Representing the HERA-B Muon collaboration Abstract The HERA-B experiment is designed to study CP

253

A Cosmic Ray Measurement Facility for ATLAS Muon Chambers  

E-Print Network [OSTI]

Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.

O. Biebel; M. Binder; M. Boutemeur; A. Brandt; J. Dubbert; G. Duckeck; J. Elmsheuser; F. Fiedler; R. Hertenberger; O. Kortner; T. Nunnemann; F. Rauscher; D. Schaile; P. Schieferdecker; A. Staude; W. Stiller; R. Stroehmer; R. Vertesi

2003-07-30T23:59:59.000Z

254

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network [OSTI]

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

255

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

256

R&D Toward a Neutrino Factory and Muon Collider  

SciTech Connect (OSTI)

There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

Zisman, Michael S

2009-04-29T23:59:59.000Z

257

Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion  

SciTech Connect (OSTI)

From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

Armijo, Julien

2006-10-01T23:59:59.000Z

258

A parameterisation of single and multiple muons in the deep water or ice  

E-Print Network [OSTI]

A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

Annarita Margiotta

2006-02-01T23:59:59.000Z

259

Underground Muon Counters as a Tool for Composition Analyses  

E-Print Network [OSTI]

The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above $3 \\times 10^{18}$ eV and, even if the hybrid mode can extend this range below $10^{18}$ eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to $\\sim 10^{17}$ eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle ($30^\\circ-58^\\circ$) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

A. D. Supanitsky; A. Etchegoyen; G. Medina-Tanco; I. Allekotte; M. Gómez Berisso; M. C. Medina

2008-10-13T23:59:59.000Z

260

Muon Bremsstrahlung and Muonic Pair Production in Air Showers  

E-Print Network [OSTI]

The objective of this work is to report on the modifications in air shower development due to muon bremsstrahlung and muonic pair production. In order to do that we have implemented new muon bremsstrahlung and muonic pair production procedures in the AIRES air shower simulation system, and have used it to simulate ultra high energy showers in different conditions. The influence of the mentioned processes in the global development of the air shower is important for primary particles of large zenith angles, while they do not introduce significant changes in the position of the shower maximum.

A. Cillis; S. J. Sciutto

2000-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New facts about muon production in Extended Air Shower simulations  

E-Print Network [OSTI]

Whereas air shower simulations are very valuable tools for interpreting cosmic ray data, there is a long standing problem: is seems to be impossible to accommodate at the same time the longitudinal development of air showers and the number of muons measured at ground. Using a new hadronic interaction model (EPOS) in air shower simulations produces considerably more muons, in agreement with results from the HiRes-MIA experiment. We find that this is mainly due to a better description of baryon-antibaryon production in hadronic interactions. This is a new aspect of air shower physics which has never been considered so far.

T. Pierog; K. Werner

2006-11-09T23:59:59.000Z

262

PROGRESS IN DESIGNING A MUON COOLING RING WITH LITHIUM LENSES.  

SciTech Connect (OSTI)

We discuss particle tracking simulations in a storage ring with lithium lens inserts designed for the six-dimensional phase space cooling of muons by the ionization cooling. The ring design contains one or more lithium lens absorbers for transverse cooling that transmit the beam with very small beta-function values, in addition to liquid-hydrogen wedge-shaped absorbers in dispersive locations for longitudinal cooling. Such a ring could comprise the final component of a cooling system for use in a muon collider. The beam matching between dipole-quadrupole lattices and the lithium lenses is of particular interest.

FUKUI,Y.CLINE,D.B.GARREN,A.A.KIRK,H.G.

2004-03-03T23:59:59.000Z

263

Muon g-2 Anomaly and Dark Leptonic Gauge Boson  

SciTech Connect (OSTI)

One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

Lee, Hye-Sung [W& M

2014-11-01T23:59:59.000Z

264

Muon-Induced Background Study for Underground Laboratories  

E-Print Network [OSTI]

We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

D. -M. Mei; A. Hime

2005-12-06T23:59:59.000Z

265

The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division  

SciTech Connect (OSTI)

This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

2009-10-19T23:59:59.000Z

266

Search for Dijet Resonances in 7 TeV pp Collisions at CMS  

E-Print Network [OSTI]

A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9??pb-1 [pb superscript -1] collected by the CMS experiment at the Large Hadron Collider. ...

Alver, Burak Han

267

Design of a novel Cherenkov detectors system for machine induced background monitoring in the CMS cavern  

E-Print Network [OSTI]

A novel detector system has been designed for an efficient online measurement of the machineinduced background in the CMS experimental cavern. The suppression of the CMS cavern background originating from pp collision products and the 25 ns bunch spacing have set the requirements for the detector design. Each detector unit will be a radiation hard, cylindrical Cherenkov radiator optically coupled to an ultra-fast UV-sensitive photomultiplier tube, providing a prompt, directionally sensitive measurement. Simulation and test beam measurements have shown the achievability of the goals that have driven the baseline design. The system will consist of 20 azimuthally distributed detectors per end, installed at a radius of r ~ 180 cm and a distance 20.6 m away from the CMS interaction region. The detector units will enable a measurement of the transverse distribution of the bunchby- bunch machine induced background flux. This will provide important feedback from the CMS on the beam conditions during the LHC machine s...

Orfanelli, Styliani; Giunta, Marina; Stickland, David P; Ambrose, Mitchell J; Rusack, Roger; Finkel, Alexey

2013-01-01T23:59:59.000Z

268

E-Print Network 3.0 - affecting cms tracking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aldo Moro 2, 00185 Roma... and prop- erties measurement of the Standard Model Higgs boson with the CMS ex- periment at the LHC... -section. The discovery potential of the...

269

Measurement of the inclusive W and Z production cross sections in pp collisions at $ \\sqrt {s} = 7 $ TeV with the CMS experiment  

SciTech Connect (OSTI)

A measurement of inclusive W and Z production cross sections in pp collisions at sqrt(s)=7 TeV is presented. The electron and muon decay channels are analyzed in a data sample collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 inverse picobarns. The measured inclusive cross sections are sigma(pp-> WX) B(W-> l nu) = 10.30 +/- 0.02 (stat.) +/- 0.10 (syst.) +/- 0.10 (th.) +/- 0.41 (lumi.) nb and sigma(pp -> ZX) B(Z-> l^+l^-) = 0.974 +/- 0.007 (stat.) +/- 0.007 (syst.) +/- 0.018 (th.) +/- 0.039 (lumi.) nb, limited to the dilepton invariant mass range 60 to 120 GeV. The luminosity-independent cross section ratios are [sigma(pp->WX) B(W-> l nu)]/[sigma(pp-> ZX) B(Z->l^+l^-)] = 10.54 +/- 0.07 (stat.) +/- 0.08 (syst.) +/- 0.16 (th.) and [sigma(pp->W^+X) B(W^+ -> l^+nu)] / [sigma(pp->W^- X) B(W^- -> l^- nu)] = 1.421 +/- 0.006 (stat.) +/- 0.014 (syst.) +/- 0.029 (th.). The measured values agree with next-to-next-to-leading order QCD cross section calculations based on recent parton distribution functions.

Chatrchyan, Serguei; et al.

2011-10-01T23:59:59.000Z

270

Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter  

E-Print Network [OSTI]

Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

The CMS Electromagnetic Calorimeter Group; P. Adzic; N. Almeida; D. Andelin; I. Anicin; Z. Antunovic; R. Arcidiacono; M. W. Arenton; E. Auffray; S. Argiro; A. Askew; S. Baccaro; S. Baffioni; M. Balazs; D. Bandurin; D. Barney; L. M. Barone; A. Bartoloni; C. Baty; S. Beauceron; K. W. Bell; C. Bernet; M. Besancon; B. Betev; R. Beuselinck; C. Biino; J. Blaha; P. Bloch; A. Borisevitch; A. Bornheim; J. Bourotte; R. M. Brown; M. Buehler; P. Busson; B. Camanzi; T. Camporesi; N. Cartiglia; F. Cavallari; A. Cecilia; P. Chang; Y. H. Chang; C. Charlot; E. A. Chen; W. T. Chen; Z. Chen; R. Chipaux; B. C. Choudhary; R. K. Choudhury; D. J. A. Cockerill; S. Conetti; S. Cooper; F. Cossutti; B. Cox; D. G. Cussans; I. Dafinei; D. R. Da Silva Di Calafiori; G. Daskalakis; A. David; K. Deiters; M. Dejardin; A. De Benedetti; G. Della Ricca; D. Del Re; D. Denegri; P. Depasse; J. Descamps; M. Diemoz; E. Di Marco; G. Dissertori; M. Dittmar; L. Djambazov; M. Djordjevic; L. Dobrzynski; A. Dolgopolov; S. Drndarevic; G. Drobychev; D. Dutta; M. Dzelalija; A. Elliott-Peisert; H. El Mamouni; I. Evangelou; B. Fabbro; J. L. Faure; J. Fay; A. Fedorov; F. Ferri; D. Franci; G. Franzoni; K. Freudenreich; W. Funk; S. Ganjour; S. Gascon; M. Gataullin; F. X. Gentit; A. Ghezzi; A. Givernaud; S. Gninenko; A. Go; B. Gobbo; N. Godinovic; N. Golubev; P. Govoni; N. Grant; P. Gras; M. Haguenauer; G. Hamel de Monchenault; M. Hansen; J. Haupt; H. F. Heath; B. Heltsley; W. Hintz; R. Hirosky; P. R. Hobson; A. Honma; G. W. S. Hou; Y. Hsiung; M. Huhtinen; B. Ille; Q. Ingram; A. Inyakin; P. Jarry; C. Jessop; D. Jovanovic; K. Kaadze; V. Kachanov; S. Kailas; S. K. Kataria; B. W. Kennedy; P. Kokkas; T. Kolberg; M. Korjik; N. Krasnikov; D. Krpic; Y. Kubota; C. M. Kuo; P. Kyberd; A. Kyriakis; M. Lebeau; P. Lecomte; P. Lecoq; A. Ledovskoy; M. Lethuillier; S. W. Lin; W. Lin; V. Litvine; E. Locci; E. Longo; D. Loukas; P. D. Luckey; W. Lustermann; Y. Ma; M. Malberti; J. Malclès; D. Maletic; N. Manthos; Y. Maravin; C. Marchica; N. Marinelli; A. Markou; C. Markou; M. Marone; V. Matveev; C. Mavrommatis; P. Meridiani; P. Milenovic; P. Miné; O. Missevitch; A. K. Mohanty; F. Moortgat; P. Musella; Y. Musienko; A. Nardulli; J. Nash; P. Nedelec; P. Negri; H. B. Newman; A. Nikitenko; F. Nessi-Tedaldi; M. M. Obertino; G. Organtini; T. Orimoto; M. Paganoni; P. Paganini; A. Palma; L. Pant; A. Papadakis; I. Papadakis; I. Papadopoulos; R. Paramatti; P. Parracho; N. Pastrone; J. R. Patterson; F. Pauss; J-P. Peigneux; E. Petrakou; D. G. Phillips II; P. Piroué; F. Ptochos; I. Puljak; A. Pullia; T. Punz; J. Puzovic; S. Ragazzi; S. Rahatlou; J. Rander; P. A. Razis; N. Redaelli; D. Renker; S. Reucroft; P. Ribeiro; C. Rogan; M. Ronquest; A. Rosowsky; C. Rovelli; P. Rumerio; R. Rusack; S. V. Rusakov; M. J. Ryan; L. Sala; R. Salerno; M. Schneegans; C. Seez; P. Sharp; C. H. Shepherd-Themistocleous; J. G. Shiu; R. K. Shivpuri; P. Shukla; C. Siamitros; D. Sillou; J. Silva; P. Silva; A. Singovsky; Y. Sirois; A. Sirunyan; V. J. Smith; F. Stöckli; J. Swain; T. Tabarelli de Fatis; M. Takahashi; V. Tancini; O. Teller; K. Theofilatos; C. Thiebaux; V. Timciuc; C. Timlin; M. Titov; A. Topkar; F. A. Triantis; S. Troshin; N. Tyurin; K. Ueno; A. Uzunian; J. Varela; P. Verrecchia; J. Veverka; T. Virdee; M. Wang; D. Wardrope; M. Weber; J. Weng; J. H. Williams; Y. Yang; I. Yaselli; R. Yohay; A. Zabi; S. Zelepoukine; J. Zhang; L. Y. Zhang; K. Zhu; R. Y. Zhu

2009-12-22T23:59:59.000Z

271

Standard Model Predictions for the Muon $(g-2)/2$  

E-Print Network [OSTI]

The current status of the Standard Model predictions for the muon anomalous magnetic moment is described. Various contributions expected in the Standard Model are discussed. After the reevaluation of the leading-order hadronic term based on the new \\ep data, the theoretical prediction is more than three standard deviations lower than the experimental value.

S. I. Eidelman

2009-04-21T23:59:59.000Z

272

Design of the Muon Lifetime Experiment By Steve Kliewer  

E-Print Network [OSTI]

the lifetime of the Muon particle. This planned device will use 4, low voltage, classroom safe scintillator detectors and a data acquisition electronics board developed by Quarknet of FermiLab. Analysis, low voltage, classroom safe, detectors 2. DAQ: use the electronics developed by Quarknet (QNET2) 3

California at Santa Cruz, University of

273

Neutrino factory front-end: muon capture and cooling optimization  

E-Print Network [OSTI]

The neutrino factory is one of the designs proposed for a future intense neutrino beam facility. The layout discussed here focuses on the front-end of the current baseline. The challenges inherent to the cooling of muons are shown together with possible baseline optimization.

Prior, G

2010-01-01T23:59:59.000Z

274

Computational Needs for Muon Accelerators J. Scott Berg a  

E-Print Network [OSTI]

Computational Needs for Muon Accelerators J. Scott Berg a a Brookhaven National Laboratory that are transported can have energy spreads of ±30% or more. The required emittances necessitate accurate tracking or a model which includes end fields; and accurately design and simulate a beam line where the transported

Berg, J. Scott

275

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

276

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

277

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Murata, Tomoya

2015-01-01T23:59:59.000Z

278

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Tomoya Murata; Toru Sato

2015-01-23T23:59:59.000Z

279

Muon Performance in the Presence of High Pile-up in ATLAS  

E-Print Network [OSTI]

In 2012, the LHC is operated at sqrt(s) = 8 TeV in a mode leading up to 40 inelastic pp collisions per bunch crossing. The identification and reconstruction of muons produced in hard collisions is difficult in this challenging environment. Di-muon decays of Z bosons have been used to study the muon momentum resolution as well as the muon identification and reconstruction efficiencies of the ATLAS detector as a function of the muon transverse momentum from 15 GeV to 100 GeV and the number of inelastic collisions per event. These studies show that the muon momentum resolution, muon identification and reconstruction efficiencies are independent of the amount of pile-up present in an event.

Tülin Varol

2012-12-03T23:59:59.000Z

280

Searches for the Standard Model Higgs Boson at CMS  

E-Print Network [OSTI]

We searched for the standard model Higgs boson in many different channels using approximately 5 fb-1 of 7 TeV pp collisions data collected with the CMS detector at LHC. Combining the results of the different searches we exclude at 95% confidence level a standard model Higgs boson with mass between 127.5 and 600 GeV. The expected 95% confidence level exclusion if the Higgs boson is not present is from 114.5 and 543 GeV. The observed exclusion is weaker than expected at low mass because of some excess that is observed below about 128 GeV. The most significant excess is found at 125 GeV with a local significance of 2.8 sigma. It has a global significance of 0.8 sigma when evaluated in the full search range and of 2.1 sigma when evaluated in the range 110-145 GeV. The excess is consistent both with background fluctuation and a standard model Higgs boson with mass of about 125 GeV, and more data are needed to investigate its origin.

Marco Pieri; for the CMS Collaboration

2012-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

https://edms.cern.ch/document/882783/2.6 Joint ATLAS/CMS NOTE Joint ATLAS-CMS working group on  

E-Print Network [OSTI]

on optoelectronics for SLHC Report from sub-group B Optical System Irradiation Guidelines K.K. Gan Department, ATLAS Pixel, ATLAS LAr and CMS tracker optical link designers. This document summarizes the agreement on irradiation guidelines for the optoelectronic systems at the SLHC. It covers lasers, p-i-n diodes, fibres, LLD

Ye, Jingbo

282

Magnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c;2 K. Fujimoto b J. Haba c;1  

E-Print Network [OSTI]

a novel moving mechanism for the field probes that uses an ultrasonic motor located in the strong magnetic at the solenoid center is 1.5 Tesla at 1 E­mail: junji.haba@kek.jp 2 Present address: Krakow Inst. of Nuclear

283

Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields  

SciTech Connect (OSTI)

The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B {approx} 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

Dorf, Mikhail A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A. [Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2012-05-15T23:59:59.000Z

284

Search for Supersymmetry in Hadronic Final States using MT2 in pp collisions at ?s = 8 TeV and Evolution Studies of the CMS Electromagnetic Calorimeter Endcap Signals  

E-Print Network [OSTI]

Over the past decades, the standard model of particle physics has been proven to accurately describe the vast majority of the experimental observations within particle physics. The discovery of a boson at a mass of about 125 GeV seems to provide the last missing piece of the standard model, the Higgs boson. Despite this success, there are some phenomena, for which the description of the standard model is insufficient. In order to surmount these shortcomings, new-physics models have been advanced. One popular model is supersymmetry, which solves several of the deficiencies of the standard model. Supersymmetry extends the description of the standard model by adding a symmetry between fermions and bosons: the elementary particle spectrum is at least doubled. In this dissertation, a search for supersymmetry in fully hadronic final states is presented. The search analyzes proton-proton collision data, collected at $\\sqrt{s} = 8\\,\\text{TeV}$ with the Compact Muon Solenoid experiment at the Large Hadron Coll...

Weber, Hannsjörg Artur

285

The scattering of muons in low Z materials  

E-Print Network [OSTI]

This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

MuScat Collaboration; D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

2005-12-02T23:59:59.000Z

286

Reducing backgrounds in the higgs factory muon collider detector  

SciTech Connect (OSTI)

A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

Mokhov, N. V.; Tropin, I. S.

2014-06-01T23:59:59.000Z

287

Discussion - Next Step for Fukushima Daiichi Muon Tomography  

SciTech Connect (OSTI)

Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

Miyadera, Haruo [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

288

The scattering of muons in low Z materials  

E-Print Network [OSTI]

This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

Attwood, D; Benveniste, S; Bogacz, A; Bull, S; Cline, D; Curtis-Rouse, M; Edgecock, T R; Ellis, M; Fernow, R; Fukui, Y; Gruber, P; Holmes, S; Ishida, K; Jamdagni, A; Lee, K; Lidbury, J; Long, K; Marshall, G M; Matsuda, Y; McKigney, E; McMahon, T; Murray, W J; Nagamine, K; Nakamura, S; Norton, P; Peach, Kenneth J; Pischalnikov, Y; Savage, P; Wilson, J

2006-01-01T23:59:59.000Z

289

FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.  

SciTech Connect (OSTI)

The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

2001-06-30T23:59:59.000Z

290

A search for two body muon decay signals  

E-Print Network [OSTI]

Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$ are obtained for bosons with masses of 13 - 80 MeV/c$^2$ and with different decay asymmetries. For bosons with masses less than 13 MeV/c$^{2}$ the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

R. Bayes; J. Bueno; Yu. I. Davydov; P. Depommier; W. Faszer; M. C. Fujiwara; C. A. Gagliardi; A. Gaponenko; D. R. Gill; A. Grossheim; P. Gumplinger; M. D. Hasinoff; R. S. Henderson; A. Hillairet; J. Hu; D. D. Koetke; R. P. MacDonald; G. M. Marshall; E. L. Mathie; R. E. Mischke; K. Olchanski; A. Olin; R. Openshaw; J. -M. Poutissou; R. Poutissou; V. Selivanov; G. Sheffer; B. Shin; T. D. S. Stanislaus; R. Tacik; R. E. Tribble

2015-03-10T23:59:59.000Z

291

Hydrogen-filled RF Cavities for Muon Beam Cooling  

SciTech Connect (OSTI)

Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

CHARLES, Ankenbrandt

2009-04-17T23:59:59.000Z

292

Muon-induced backgrounds in the CUORICINO experiment  

SciTech Connect (OSTI)

To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.

Andreotti, E.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Creswick, R. J.; Domizio, S. Di; Dolinski, M. J.; Ejzak, L.; Faccini, R.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Kadel, R.; Kazkaz, K.; Kraft, S.; Kogler, L.; Kolomensky, Yu. G.; Maiano, C.; Maruyama, R. H.; Martinez, C.; Martinez, M.; Mizouni, L.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Tomei, C.; Ventura, G.; Vignati, M.

2010-04-15T23:59:59.000Z

293

Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels  

SciTech Connect (OSTI)

Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

2011-03-01T23:59:59.000Z

294

Measurement of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV and an improved determination of light parton distribution functions  

E-Print Network [OSTI]

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

CMS Collaboration

2014-08-22T23:59:59.000Z

295

Status of the Fermilab Muon (g-2) Experiment  

E-Print Network [OSTI]

The New Muon $(g-2)$ Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, $a_\\mu$, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained $a_\\mu = [116 592 089 (63)] \\times 10^{-11}$ $\\pm 0.54$ ppm. The last digit of $a_{\\mu}$ is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the $\\simeq 3$ standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

B. Lee Roberts

2010-01-20T23:59:59.000Z

296

Our Next Two Steps for Fukushima Daiichi Muon Tomography  

SciTech Connect (OSTI)

After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

Miyadera, Haruo [Los Alamos National Laboratory

2012-04-11T23:59:59.000Z

297

Cosmic ray muon charge ratio in the MINOS far detector  

SciTech Connect (OSTI)

The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub {mu}{sup +}}/N{sub {mu}{sup -}}) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is R{sub eff} = 1.346 {+-} 0.002 (stat) {+-} 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 {+-} 0.008 (stat) {+-} 0.016 (syst) + (1.8 {+-} 0.3) x 10{sup -5} x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

Beall, Erik B; /Minnesota U.

2005-12-01T23:59:59.000Z

298

ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD  

E-Print Network [OSTI]

ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD Version 0 June,2000 1 Hi-pT ASIC Design-Packard G-link protocol. #12;ATLAS Muon TGCTrigger Electronics Hi-pT ASIC Extended URD Version 0 June,2000 2 Position for r position Strip one channel: 1bit Hit on/off + 4 bit position for position #12;ATLAS Muon

Fukunaga, Chikara

299

Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor  

SciTech Connect (OSTI)

We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

Eides, Michael I.; Shelyuto, Valery A. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States); D. I. Mendeleev Institute of Metrology, St. Petersburg 190005 (Russian Federation)

2009-09-01T23:59:59.000Z

300

E-Print Network 3.0 - atlas level-1 muon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ATLAS... of the Third Level Muon Trigger of the ATLAS Experiment at LHC S. Armstrong, K. A. Assamagan, J. T. M. Baines... - ground environment ... Source: Ecole...

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - amiga auger muons Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Board, December 2006 Summary: Karlsruhe Institute of Technology KIT 12;AMIGA: infill tanks + underground muon counters for better shower... &D rather than enhancement of the...

302

Search for a light charged Higgs boson decaying into $c\\bar{s}$ at CMS  

E-Print Network [OSTI]

We present results on the search for a light charged Higgs boson that can be produced in the decay of a top quark and later decays into a charm and an antistrange quark. The analysis is performed using $19.7\\invfb$ pp collison data recorded with the CMS detector at LHC.

Gouranga Kole

2014-11-30T23:59:59.000Z

303

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS  

E-Print Network [OSTI]

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS SLHC Opto ATLAS Tracker Upgrade Workshop 2 Outline Introduction Subgroups activities Summary #12;K.K. Gan ATLAS System #12;K.K. Gan ATLAS Tracker Upgrade Workshop 4 Group A: Lesson Learned and to be Learned from LHC

Gan, K. K.

304

Joint ATLAS/CMS SLHC Opto WG 1 March 4, 2010  

E-Print Network [OSTI]

ATLAS/CMS SLHC Opto WG 4 AOC 10 Gb/s VCSEL w/o long twisted/ coiled fiber Reasonable optical power for 6 arrays irradiated slow recovery of optical power during annealing " need to irradiate Irradiation After 3 years of irradiating ~2 samples/device with 24 GeV protons at CERN, the following

Gan, K. K.

305

A Search For the Higgs Boson in CMS in the Two Photon Decay Channel  

E-Print Network [OSTI]

We report on a search for SM Higgs Boson in the two photon decay mode conducted by the CMS experiment with the data accumulated during the 2010 & 2011 running of the LHC at center of mass collision energy of 7 TeV.

Christopher Palmer

2011-09-30T23:59:59.000Z

306

LC-PHSM-2000-037 CMS NOTE 2000/046  

E-Print Network [OSTI]

LC-PHSM-2000-037 CMS NOTE 2000/046 IEKP-KA/2000-15 EPJdirect Comparison of Higgs Boson Mass of Karlsruhe Abstract Two important properties of a Higgs boson are its mass and width. They may distinguish the Standard Model (SM) Higgs boson from Higgs bosons of extended models. We show results from a direct mass

307

Atmospheric Neutrino Induced Muons in the MINOS Far Detector  

SciTech Connect (OSTI)

The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

Rahman, Dipu; /Minnesota U.

2007-02-01T23:59:59.000Z

308

The First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern  

E-Print Network [OSTI]

The First Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern T to the ATLAS cavern by the end of September 2007. To integrate all sub-detectors before the physics run. The first Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern I

Fukunaga, Chikara

309

Precise Timing Adjustment for the ATLAS Level1 Endcap Muon Trigger System , O. Sasakia  

E-Print Network [OSTI]

Precise Timing Adjustment for the ATLAS Level1 Endcap Muon Trigger System Y. Suzukia , O. Sasakia by Yu Suzuki yu.suzuki@cern.ch Abstract The ATLAS level-1 endcap muon trigger system consists of about alignment of individual channels with the timing adjust- ment facility embedded in the TGC electronics

Fukunaga, Chikara

310

ATLAS Muon TGC Trigger Electronics High-pT ASIC Specification  

E-Print Network [OSTI]

ATLAS Muon TGC Trigger Electronics High-pT ASIC Specification Version 1.02 August, 2002 1 High-pT Trigger ASIC for ATLAS TGC1 Contents High-pT ASIC Technical Document 1. Introduction 2. Overview.comp.metro-u.ac.jp/~fukunaga/public_html/atlas/HipTASIC.pdf #12;ATLAS Muon TGC Trigger Electronics High

Fukunaga, Chikara

311

Physics Opportunities at a Muon Collider Kirk T. McDonald  

E-Print Network [OSTI]

@puphep.princeton.edu January 7, 1999 DPF'99 Session 11B: Future Accelerator Projects Muon Collider main page: http at any energy. · Intense neutrino beams and spallation neutron beams are available as byproducts. Muons. ­ A rich supersymmetric sector. ­ ... And more .... · That our investment in future accelerators

McDonald, Kirk

312

Semi-analytic approximations for production of atmospheric muons and neutrinos  

E-Print Network [OSTI]

Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.

Thomas K. Gaisser

2001-04-19T23:59:59.000Z

313

32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011 Density Imaging of Volcanos with Atmospheric Muons  

E-Print Network [OSTI]

of material renders high-energy atmospheric muons a unique probe for geophysical explorations. Provided physicists, TOMU- VOL, was formed in 2009 to study tomographic muon imaging of volcanos with high measurements obtained after the first months of data taking at the Puy de D^ome, an inactive lava dome volcano

Boyer, Edmond

314

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET (IPAC13, THPFI092) The baseline target concept for a Muon Collider or Neutrino Factory is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir

McDonald, Kirk

315

Muon-induced backgrounds in the CUORICINO experiment  

SciTech Connect (OSTI)

To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

2009-11-16T23:59:59.000Z

316

Holographic calculation of hadronic contributions to muon g-2  

SciTech Connect (OSTI)

Using the gauge-gravity duality, we compute the leading order hadronic (HLO) contribution to the anomalous magnetic moment of muon, a{sub {mu}}{sup HLO}. Holographic renormalization is used to obtain a finite vacuum polarization. We find a{sub {mu}}{sup HLO}=470.5x10{sup -10} in anti-de Sitter/QCD with two light flavors, which is compared with the currently revised BABAR data estimated from e{sup +}e{sup -{yields}{pi}+{pi}-} events, a{sub {mu}}{sup HLO}[{pi}{pi}]=(514.1{+-}3.8)x10{sup -10}.

Hong, Deog Ki; Matsuzaki, Shinya [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Doyoun [Frontier Physics Research Division and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

2010-04-01T23:59:59.000Z

317

PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION  

SciTech Connect (OSTI)

Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

Johnson, Rolland PAUL

2014-12-31T23:59:59.000Z

318

Sudden stratospheric warmings seen in MINOS deep underground muon data  

SciTech Connect (OSTI)

The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

Osprey, S.; /Oxford U.; Barnett, J.; /Oxford U.; Smith, J.; /Oxford U.; Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Arms, K.E.; /Minnesota U.; Armstrong, R.; /Indiana U.; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Baller, B.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

2009-01-01T23:59:59.000Z

319

Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux  

E-Print Network [OSTI]

The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

Soudan 2 Collaboration

1999-05-24T23:59:59.000Z

320

A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First Look at YeastMES- HelpingMUON NEUTRINO

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Compact Muon Production and Collection Scheme for High-Energy Physics Experiments  

E-Print Network [OSTI]

The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

Stratakis, Diktys

2015-01-01T23:59:59.000Z

322

Di-muon measurements in CBM experiment at FAIR  

E-Print Network [OSTI]

The compressed baryonic matter (CBM) experiment at the future FAIR accelerator facility near Darmstadt, Germany, aims at the investigation of baryonic matter at highest net baryon densities but moderate temperatures, by colliding heavy-ions at beam energies from 10 to 45 A GeV. The research program comprises the exploration of some basic landmarks of the QCD phase diagram like transitions from hadronic to partonic phase, the region of first order de-confinement as well as chiral phase transition, and the critical end point. The proposed key observables include the measurement of low mass vector mesons and charmonia, which can be detected via their decay into the di-lepton channel. As the decayed leptons leave the hot and dense fireball without further interactions, hence they provide almost unscathed information about the interior of the collision zone where they are being created. In this paper, we discuss the physics motivation, detector concepts, and the feasibility studies in the di-muon measurements for central Au + Au collisions, with a special reference to the detailed simulation activities performed by the CBM muon group.We also discuss the R&D activities of detector in brief.

A. Prakash; P. P. Bhaduri; S. Chattopadhyay; A. Dubey; B. K. Singh

2011-02-04T23:59:59.000Z

323

Evidence for a Higgs boson in tau decays with the CMS detector  

E-Print Network [OSTI]

In this thesis, I describe the search for a Higgs boson through its decay to a pair of tan leptons with the tau-pair subsequently decaying to ail electron, a muon, and neutrinos. The search is performed using data collected ...

Dutta, Valentina

2014-01-01T23:59:59.000Z

324

COMMISSIONING OF ATLAS AND EARLY MEASUREMENTS WITH LEPTONS IN ATLAS AND CMS  

E-Print Network [OSTI]

at start-up The endwall muon chambers are the last components to be installed in the cavern (June 2008 performed. Once in the cavern, the noise levels were the same as those measured on the surface. The global went down into the cavern beginning in 2006 and have been operating under stable conditions for a long

Paris-Sud XI, Université de

325

A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice  

E-Print Network [OSTI]

In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

Bazzotti, M; Carminati, G; Cecchini, S; Chiarusi, T; Giacomelli, G; Margiotta, A; Sioli, M; Spurio, M

2009-01-01T23:59:59.000Z

326

A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice  

E-Print Network [OSTI]

In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

2009-10-22T23:59:59.000Z

327

A mAnuAl for CAsCAde server Content mAnAgement system (Cms)  

E-Print Network [OSTI]

A mAnuAl for CAsCAde server Content mAnAgement system (Cms) CMS USer GUide #12;#12;A mAnuAl for CAs to Create an email Address Link 74 how to Upload Multiple Files at Once CHapTeR 9 77 BeST PrACTICeS 78 the Mozilla Firefox browser and navigate to webedit.brandeis.edu. Best practice: We recommend using Mozilla

Fraden, Seth

328

Spectra of hadrons and muons in the atmosphere: primary spectra, characteristics of hadron-air interactions  

E-Print Network [OSTI]

Self-consistency of interaction models QGSJET 01, SIBYLL 2.1, NEXUS 3.97 and QGSJET II is checked in terms of their ability to reproduce simultaneously experimental data on fluxes of muons and hadrons. From this point of view SIBYLL 2.1 gives the most acceptable, though not quite satisfactory, results. Analysis of the situation for muons supports our previous conclusions, that high-energy muon deficit is due both to underestimation of primary light nuclei fluxes in direct emulsion chamber experiments and to softness of $p+A\\to\\pi^\\pm,K^\\pm+X$ inclusive spectra in fragmentation region, especially prominent in case of QGSJET 01 model.

A. V. Yushkov; A. A. Lagutin

2006-12-01T23:59:59.000Z

329

Muon decays in the Earth's atmosphere, time dilatation and relativity of simultaneity  

E-Print Network [OSTI]

Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere decaying simultaneously are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames, whereas the decays of muons with different proper frames show relativity of simultaneity when observed from different inertial frames.

J. H. Field

2009-01-22T23:59:59.000Z

330

Measuring the Muon Content of Air Showers with IceTop  

E-Print Network [OSTI]

IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We also discuss the prospects for low energy muon studies with IceTop.

Gonzalez, Javier G

2015-01-01T23:59:59.000Z

331

20 years of cosmic muons research performed in IFIN-HH  

SciTech Connect (OSTI)

During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

Mitrica, Bogdan [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest, P.O.B.MG-6 (Romania)

2012-11-20T23:59:59.000Z

332

Refinements in electroweak contributions to the muon anomalous magnetic moment  

E-Print Network [OSTI]

Effects of strong interactions on the two loop electroweak radiative corrections to the muon anomalous magnetic moment, $a_\\mu=(g_\\mu-2)/2$, are examined. Short-distance logs are shown to be unaffected. Computation of long-distance contributions is improved by use of an effective field theory approach that preserves the chiral properties of QCD and accounts for constraints from the operator product expansion. Small, previously neglected, two loop contributions, suppressed by a $1-4\\sin^2\\theta_W$ factor, are computed and the complete three loop leading short-distance logs are reevaluated. These refinements lead to a reduction in uncertainties and a slight shift in the total electroweak contribution to $a_\\mu^{\\rm EW} = 154(1)(2)\\times 10^{-11}$ where the first error corresponds to hadronic uncertainties and the second is primarily due to the allowed Higgs mass range.

Andrzej Czarnecki; William J. Marciano; Arkady Vainshtein

2006-05-19T23:59:59.000Z

333

Injection/Extraction Studies for the Muon FFAG  

SciTech Connect (OSTI)

The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

Pasternak, J. [Imperial College London, Department of Physics, London (United Kingdom); STFC/RAL/ISIS, Chilton, Didcot, Oxon (United Kingdom); Aslaninejad, M. [Imperial College London, Department of Physics, London (United Kingdom); Berg, J. Scott [BNL, Upton, Long Island, New York (United States); Kelliher, D. J.; Machida, S. [STFC/ASTeC/RAL, Chilton, Didcot, Oxon (United Kingdom)

2010-03-30T23:59:59.000Z

334

E1 Working Group Summary: Neutrino Factories and Muon Colliders  

E-Print Network [OSTI]

We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

D. Harris

2001-11-02T23:59:59.000Z

335

Characterising encapsulated nuclear waste using cosmic-ray muon tomography  

E-Print Network [OSTI]

Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

2014-10-27T23:59:59.000Z

336

Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon  

E-Print Network [OSTI]

The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasi-elastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, kappa = 1.019+/-0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

MiniBooNE collaboration

2007-06-07T23:59:59.000Z

337

Precise Measurement of the Positive Muon Anomalous Magnetic Moment  

E-Print Network [OSTI]

A precise measurement of the anomalous g value, a_mu=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a_mu^+=11 659 202(14)(6) X 10^{-10} (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a_mu(SM)=11 659 159.6(6.7) X 10^{-10} (0.57 ppm) and a_mu(exp)-a_mu(SM)=43(16) X 10^{-10} in which a_mu(exp) is the world average experimental value. This difference may be due to physics beyond the standard model.

Brown, H N; Carey, R M; Cushman, P B; Danby, G T; Debevec, P T; Deile, M; Deng, H; Deninger, W J; Dhawan, S K; Druzhinin, V P; Duong, L; Efstathiadis, E F; Farley, Francis J M; Fedotovich, G V; Giron, S; Gray, F; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, M; Hertzog, D W; Hughes, V W; Iwasaki, M; Jungmann, Klaus; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I J; Larsen, R; Lee, Y Y; Logashenko, I B; McNabb, R; Meng, W; Mi, J; Miller, J P; Morse, W M; Nikas, D; Onderwater, Gerco; Orlov, Yu F; Ozben, C S; Paley, J M; Polly, C; Pretz, J; Prigl, R; zu Putlitz, Gisbert; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N M; Sedykh, S N; Semertzidis, Y K; Shatunov, Yu M; Sichtermann, E P; Solodov, E P; Sossong, M; Steinmetz, A; Sulak, Lawrence R; Timmermans, C; Trofimov, A V; Urner, D; Von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

2001-01-01T23:59:59.000Z

338

Characterising encapsulated nuclear waste using cosmic-ray muon tomography  

E-Print Network [OSTI]

Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

2014-01-01T23:59:59.000Z

339

E-Print Network 3.0 - atlas muon trigger Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Level Summary: of the Third Level Muon Trigger of the ATLAS Experiment at LHC S. Armstrong, K. A. Assamagan, J. T. M. Baines... , F. J. Wickens, W. Wiedenmann, M. Wielers, and...

340

E-Print Network 3.0 - atlas muon monitored Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Level Summary: of the Third Level Muon Trigger of the ATLAS Experiment at LHC S. Armstrong, K. A. Assamagan, J. T. M. Baines... - ground environment expected for ATLAS. Index...

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - atlas precision muon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Level Summary: of the Third Level Muon Trigger of the ATLAS Experiment at LHC S. Armstrong, K. A. Assamagan, J. T. M. Baines... - ground environment expected for ATLAS. Index...

342

Search for R-parity violating supersymmetry in two-muon and four-jet topologies  

E-Print Network [OSTI]

We present results of a search for R-parity-violating decay of the neutralino (?) over tilde (0)(1), taken as the lightest supersymmetric particle, to a muon and two jets. The decay proceeds through a lepton-number ...

Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

2002-10-01T23:59:59.000Z

343

A parameterisation of single and multiple muons in the deep water or ice  

E-Print Network [OSTI]

Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

2005-07-19T23:59:59.000Z

344

Modeling Relativistic Muons in Electromagnetic Storage Rings via Object Oriented Techniques  

E-Print Network [OSTI]

.4 Integrator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 The Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Documentation-conducting magnet which is used as a muon storage ring. Since it is impossible to control the momentum and location

Oliva, Aude

345

Improved Measurement of the Muon Lifetime and Determination of the Fermi Constant  

E-Print Network [OSTI]

The MuLan collaboration has measured the lifetime of the positve muon to a precision of 1.0 parts per million. The Fermi constant is determined to a precision of 0.6 parts per million.

P. T. Debevec

2011-08-22T23:59:59.000Z

346

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

347

Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1993-12-01T23:59:59.000Z

348

Muon production in extensive air showers and its relation to hadronic interactions  

E-Print Network [OSTI]

In this work, the relation between muon production in extensive air showers and features of hadronic multiparticle production at low energies is studied. Using CORSIKA, we determine typical energies and phase space regions of secondary particles which are important for muon production in extensive air showers and confront the results with existing fixed target measurements. Furthermore possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.

C. Meurer; J. Bluemer; R. Engel; A. Haungs; M. Roth

2005-12-21T23:59:59.000Z

349

Remnant Break-up and Muon Production in Cosmic Ray Air Showers  

E-Print Network [OSTI]

We discuss the relation between remnant fragmentation in inelastic high-energy hadronic interactions and muon production in extensive cosmic ray air showers. Using a newly developed tool, a simple and flexible hadronic event generator, we analyze the forward region of hadronic interactions. We show that measurements of the Feynman-x distribution in the beam fragmentation region at LHCf will be key to understanding muon production in air showers quantitatively.

H. J. Drescher

2007-12-10T23:59:59.000Z

350

Differential directional intensities of low energy cosmic ray muons near sea level  

E-Print Network [OSTI]

must be nomalized to results from underground experiments. The present results are thus independent of any assumption about range-energy relations for muons in the earth and can be used by other workers to calibrate similar but less elaborate... decaying radioactively into stable particles, namely electrons and neutrinos. Since muons are charged they are easily detected in scintillation counters. Furthermore, since they are the only ionizing particles which do not interact with nuclear matter...

Durda, David Rudolph

1970-01-01T23:59:59.000Z

351

solenoid_web.DVI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering at JLab and LeadSensorssmarta

352

Position Resolution and Upgrade of the CMS Pixel Detector and Search for the Higgs Boson in the tau+tau- Final State.  

E-Print Network [OSTI]

??The thesis presents a measurement of the resolution of the CMS pixel detector, and shows that with the Phase-I Upgrade an improvement of 25% can… (more)

Burgmeier, Armin

2014-01-01T23:59:59.000Z

353

A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent  

SciTech Connect (OSTI)

We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub ?0.28}{sup +0.21})×10{sup ?3} neutrons/muon/(g/cm{sup 2}) has been obtained.

Reichhart, L.; Ghag, C. [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom)] [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom); Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal)] [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom)] [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); and others

2013-08-08T23:59:59.000Z

354

Research Activities at Fermilab for Big Data Movement  

SciTech Connect (OSTI)

Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

2013-01-01T23:59:59.000Z

355

A Search for Higgs Boson in $H\\rightarrow W^+W^-$  

E-Print Network [OSTI]

A search for the Higgs boson decaying to $W^+W^-$ has been performed on $1.1\\:$fb$^{-1}$ of pp collision data at $\\sqrt{s}=7\\:$TeV collected with the Compact Muon Solenoid (CMS) detector in 2011. No significant excess above Standard Model background expectation is observed, and upper limits on Higgs boson cross section production are derived, excluding the presence of a Higgs boson with mass in the range of $[150, 193]\\:$GeV$/c^{2}$ at 95% confidence level.

Kevin Sung; for the CMS Collaboration

2011-09-12T23:59:59.000Z

356

Results on the search for the standard model Higgs boson at CMS  

SciTech Connect (OSTI)

A summary of the results from searches for the Standard Model Higgs Boson in the CMS experiment at LHC with data collected from proton-proton collisions at {radical}(s) = 7TeV is presented. The Higgs boson is searched in a multiplicity of decay channels using data samples corresponding to integrated luminosities in the range 4.6 - 4.8 fb{sup -1}. The investigated mass range is 110 - 600 GeV. Results are reported for each channel as well as for their combination.

Fabozzi, Francesco [INFN Sezione di Napoli, Complesso Univ. di Monte S. Angelo Via Cintia - 80126 Napoli (Italy) and Universita della Basilicata, Viale dell'Ateneo Lucano 10 - 85100 Potenza (Italy); Collaboration: CMS Collaboration

2012-10-23T23:59:59.000Z

357

Muon Catalyzed Fusion in 3 K Solid Deuterium  

E-Print Network [OSTI]

Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \\mu/s$, and $\\tilde{\\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \\mu /s$. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

P. E. Knowles; A. Adamczak; J. M. Bailey; G. A. Beer; J. L. Beveridge; M. C. Fujiwara; T. M. Huber; R. Jacot-Guillarmod; P. Kammel; S. K. Kim; A. R. Kunselman; G. M. Marshall; C. J. Martoff; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

1997-02-20T23:59:59.000Z

358

Di-muon measurements in CBM experiment at FAIR  

E-Print Network [OSTI]

The compressed baryonic matter (CBM) experiment at the future FAIR accelerator facility near Darmstadt, Germany, aims at the investigation of baryonic matter at highest net baryon densities but moderate temperatures, by colliding heavy-ions at beam energies from 10 to 45 A GeV. The research program comprises the exploration of some basic landmarks of the QCD phase diagram like transitions from hadronic to partonic phase, the region of first order de-confinement as well as chiral phase transition, and the critical end point. The proposed key observables include the measurement of low mass vector mesons and charmonia, which can be detected via their decay into the di-lepton channel. As the decayed leptons leave the hot and dense fireball without further interactions, hence they provide almost unscathed information about the interior of the collision zone where they are being created. In this paper, we discuss the physics motivation, detector concepts, and the feasibility studies in the di-muon measurements for ...

Prakash, A; Chattopadhyay, S; Dubey, A; Singh, B K

2011-01-01T23:59:59.000Z

359

Anomalous Lagrangians and the radiative muon capture in hydrogen  

E-Print Network [OSTI]

The structure of an anomalous Lagrangian of the pi-rho-omega-a_1 system is investigated within the hidden local SU(2)_R x SU(2)_L symmetry approach. The interaction of the external electromagnetic and weak vector and axial-vector fields with the above hadron system is included. The Lagrangian of interest contains the anomalous Wess-Zumino term following from the well known Wess-Zumino-Witten action and six independent homogenous terms. It is characterized by four constants that are to be determined from a fit to the data on various elementary reactions. Present data allows one to extract the constants with a good accuracy. The homogenous part of the Lagrangian has been applied in the study of anomalous processes that could enhance the high energy tail of the spectrum of photons, produced in the radiative muon capture in hydrogen. It should be noted that recently, an intensive search for such enhancement processes has been carried in the literature, in an attempt to resolve the so called "g_P puzzle": an about 50 % difference between the theoretical prediction of the value of the induced pseudoscalar constant g_P and its value extracted from the high energy tail of the photon spectrum, measured in the precision TRIUMF experiment. Here, more details on the studied material are presented and new results, obtained by using the Wess-Zumino term, are provided.

J. Smejkal; E. Truhlik; F. C. Khanna

2005-04-29T23:59:59.000Z

360

Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC  

SciTech Connect (OSTI)

The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

05/08/2008 11:34A-IBMN HIGHLIGHTS Page 1 of 2http://www.natureasia.com/A-IMBN/cms/preview.php?article_id=119  

E-Print Network [OSTI]

05/08/2008 11:34A-IBMN HIGHLIGHTS Page 1 of 2http://www.natureasia.com/A-IMBN/cms/preview.php;05/08/2008 11:34A-IBMN HIGHLIGHTS Page 2 of 2http://www.natureasia.com/A-IMBN/cms/preview.php?article_id=119 3

Gardner, Andy

362

Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1), T.R. Jarboe 1), B.A. Nelson 1), D. Mueller 2), M.G. Bell 2), R. Bell 1),  

E-Print Network [OSTI]

1 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1), T.R. Jarboe 1), B sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating

Princeton Plasma Physics Laboratory

363

Delayed muons in extensive air showers and double-front showers  

SciTech Connect (OSTI)

The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

Beisembaev, R. U.; Vavilov, Yu. N., E-mail: yuvavil@mail.ru; Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation); Takibaev, J. S. [Al-Farabi Kazakh National University (Kazakhstan)

2009-11-15T23:59:59.000Z

364

Explaining the CMS $eejj$ Excess With $\\mathcal{R}-$parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay  

E-Print Network [OSTI]

The recent CMS searches for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown an excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider the resonant slepton and sneutrino production, followed by the three body decays of neutralino and chargino via R-parity violating coupling. These fit the excess for slepton and sneutrino masses around 2 TeV. This scenario can further be tested in neutrinoless double beta decay experiment ($0\

Allanach, Ben; Mondal, Subhadeep; Mitra, Manimala

2014-01-01T23:59:59.000Z

365

Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision  

E-Print Network [OSTI]

The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of $\\mu$ can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we...

Gennai, S; Kalinowski, A; Kinnunen, R; Lethi, S; Nikitenko, A; Weiglein, G

2007-01-01T23:59:59.000Z

366

Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.  

ScienceCinema (OSTI)

The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT?s of 1-3GeV/c, 2.0< |??|<4.8 and ?f?0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

None

2011-10-06T23:59:59.000Z

367

The Role of Quench-back in the Passive Quench Protection of Uncoupled Solenoids in Series with and without Coil Sub-division  

SciTech Connect (OSTI)

This paper is the final paper in a series of papers that discusses passive quench protection for high inductance solenoid magnets. This report describes how passive quench protection system may be applied to superconducting magnets that are connected in series but not inductively coupled. Previous papers have discussed the role of magnet sub-division and quench back from a conductive mandrel in reducing the hot-spot temperature and the peak coil voltages to ground. When magnets are connected in series, quench-back from a conductive mandrel can cause other magnets in a string to quench even without inductive coupling between magnets. The magnet mandrels must be well coupled to the magnet circuit that is being quenched. When magnet circuit sub-division is employed to reduce the voltages-to-ground within magnets, the resistance across the subdivision becomes the most important factor in the successful quenching of the magnet string.

Guo, Xing Long; Green, Michael A; Wang, Li; Wu, Hong; Pan, Heng

2010-10-15T23:59:59.000Z

368

A self-consistent global model of solenoidal-type inductively coupled plasma discharges including the effects of radio-frequency bias power  

SciTech Connect (OSTI)

We developed a self-consistent global simulator of solenoidal-type inductively coupled plasma discharges and observed the effect of the radio-frequency (rf) bias power on the plasma density and the electron temperature. We numerically solved a set of spatially averaged fluid equations for charged particles, neutrals, and radicals. Absorbed power by electrons is determined by using an analytic electron heating model including the anomalous skin effect. To analyze the effects of rf bias power on the plasma properties, our model also combines the electron heating and global transport modules with an rf sheath module in a self-consistent manner. The simulation results are compared with numerical results by using the commercial software package cfd-ace + (ESI group) and experimental measurements by using a wave cutoff probe and a single Langmuir probe.

Kwon, D. C.; Chang, W. S.; Song, M. Y.; Yoon, J.-S. [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, M. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, D. H. [Kyoungwon Tech, Inc., Seongnam 462-806 (Korea, Republic of); You, S. J. [Center for Vacuum Technology, Korea Research Institute of Standard and Science, Daejeon 305-340 (Korea, Republic of); Im, Y. H. [Division of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2011-04-01T23:59:59.000Z

369

Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC (Superconducting Super Collider)  

SciTech Connect (OSTI)

The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs.

Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

1989-09-15T23:59:59.000Z

370

Distortions of Experimental Muon Arrival Time Distributions of Extensive Air Showers by the Observation Conditions  

E-Print Network [OSTI]

Event-by-event measured arrival time distributions of Extensive Air Shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (R < 200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.

R. Haeusler; A. F. Badea; H. Rebel; I. M. Brancus; J. Oehlschlaeger

2001-10-17T23:59:59.000Z

371

Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector  

E-Print Network [OSTI]

We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

The MACRO Collaboration; M. Ambrosio et al

1998-07-09T23:59:59.000Z

372

Simulation of the passage of muons through the rock overburden into the Soudan 2 cavern  

SciTech Connect (OSTI)

I have investigated the energy dependence of the transmission of muons from the surface through the rock into the Soudan 2 cavern using the detector simulation package GEANT. I find the simulation of the various contributions to the muon energy loss in good agreement with available data and formulae for muon energies up into the multi-TeV region. The prediction for the transmission rates and mean energies appearing in the cavern agree with simple calculations in most but not all cases. I use the simulation to determine the energy spread apparent in the Soudan 2 cavern for fixed energies at the surface and the survival probabilities for energies at the surface up to 100 TeV. 28 refs., 16 figs.

Trost, H.J.

1991-07-03T23:59:59.000Z

373

Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider  

SciTech Connect (OSTI)

In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

Alexahin, Y.; /Fermilab; Ohmi, K.; /KEK, Tsukuba

2012-05-01T23:59:59.000Z

374

Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons  

E-Print Network [OSTI]

Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

2014-01-01T23:59:59.000Z

375

Muon decays in the Earth's atmosphere, differential aging and the paradox of the twins  

E-Print Network [OSTI]

Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere, decaying simultaneously, are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames. The analysis of this example reveals the underlying physics of the differential aging effect in Langevin's travelling-twin thought experiment.

J. H. Field

2009-02-05T23:59:59.000Z

376

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector  

E-Print Network [OSTI]

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

The AMANDA collaboration; M. Ackermann

2005-08-24T23:59:59.000Z

377

Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector  

SciTech Connect (OSTI)

The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

Garrison, Lance

2014-01-01T23:59:59.000Z

378

Analysis of muon radiography of the Toshiba nuclear critical assembly reactor  

SciTech Connect (OSTI)

A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

2014-01-13T23:59:59.000Z

379

Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS  

E-Print Network [OSTI]

A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at ?s = 7 TeV corresponding to an integrated luminosity of 1 fb[superscript ?1], collected by the CMS ...

CMS Collaboration

380

Measurement of the charged-hadron multiplicity in proton-proton collisions at LHC with the CMS detector  

E-Print Network [OSTI]

Charged-hadron pseudorapidity densities and multiplicity distributions in protonproton collisions at [the square root of sigma] = 0.9, 2.36, 7.0 TeV were measured with the inner tracking system of the CMS detector at the ...

Lee, Yen-Jie

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alignment of the CMS tracker with LHC and cosmic ray data  

E-Print Network [OSTI]

The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200,000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10 microns.

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; De Callatay, Bernard; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Michotte, Daniel; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko

2014-01-01T23:59:59.000Z

382

Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision  

E-Print Network [OSTI]

The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of $\\mu$ can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1-4% should be achievable, which could make it possible in favourable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.

S. Gennai; S. Heinemeyer; A. Kalinowski; R. Kinnunen; S. Lethi; A. Nikitenko; G. Weiglein

2007-04-04T23:59:59.000Z

383

Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers  

E-Print Network [OSTI]

Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

Li, Shirley Weishi

2015-01-01T23:59:59.000Z

384

Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy  

SciTech Connect (OSTI)

The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

2012-01-01T23:59:59.000Z

385

Neutron production by cosmic-ray muons at shallow depth J. Busenitz,1  

E-Print Network [OSTI]

neutrino and proton decay experiments, as well as dark matter searches even though often at greater depth for cold dark matter 3 , and is presently at shallow depth; muon-induced neutrons repre- sent a major at a shallow depth of 32 meters of water equivalent has been measured. The Palo Verde neutrino detector

Piepke, Andreas G.

386

Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider  

E-Print Network [OSTI]

Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

2015-01-01T23:59:59.000Z

387

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US*  

E-Print Network [OSTI]

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US* Jean. It requires facilities at both high energy and high intensity frontiers. Neutrino oscillations are irrefutable precision flavour physics at the high intensity frontier. At the high energy frontier, a multi-TeV lepton

McDonald, Kirk

388

MUC-NOTE-TARGET-234 Moving Solid Metallic Targets for Pion Production in the Muon Collider /  

E-Print Network [OSTI]

/ Neutrino Factory Project P.A. Thieberger and H.G. Kirk Brookhaven National Laboratory Introduction The production of large fluxes of pions and muons using high energy, high intensity proton pulses impinging) , extremely small, beam-induced strains in a carbon-carbon composite indicate that such a material may perhaps

McDonald, Kirk

389

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET V.B. Graves , Oak is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Modifications

McDonald, Kirk

390

Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts  

E-Print Network [OSTI]

In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

Reetanjali Moharana; Nayantara Gupta

2012-05-27T23:59:59.000Z

391

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad  

E-Print Network [OSTI]

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad BNL FNAL KEK CERN Carlsbad Kirk T. McDonald Princeton U. mcdonald@puphep.princeton.edu Workshop on the Next Generation U.S. Underground Science Facility Carlsbad, NM, June 13, 2000 http://puhep1.princeton

McDonald, Kirk

392

Preprint 0 (2002) ?{? 1 Precise Measurement of Muon Capture on the Proton  

E-Print Network [OSTI]

at Munchen, D-85747 Garching, Germany g Boston University, Boston, MA 02215, USA The aim of the #22. The #22; experiment will be performed in ultra-clean, deuterium-depleted H2 gas at 10 bar. Low density and Technology, US Department of Energy, US National Science Foundation and INTAS. #12; 2 P. Kammel et al. / Muon

Kammel, Peter

393

nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee  

SciTech Connect (OSTI)

The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

2012-06-01T23:59:59.000Z

394

Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine  

E-Print Network [OSTI]

We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

C. Zhang; D. -M. Mei

2014-11-26T23:59:59.000Z

395

Explaining a CMS $eejj$ Excess With $\\mathcal{R}-$parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay  

E-Print Network [OSTI]

A recent CMS search for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown a 2.8$\\sigma$ excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an $\\mathcal{R}-$parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay ($0\

Ben Allanach; Sanjoy Biswas; Subhadeep Mondal; Manimala Mitra

2014-12-01T23:59:59.000Z

396

Explaining the CMS $eejj$ and $e \\slashed {p}_T jj$ Excess and Leptogenesis in Superstring Inspired $E_6$ Models  

E-Print Network [OSTI]

We show that superstring inspired $E_6$ models can explain both the recently detected excess $eejj$ and $e \\slashed p_T jj$ signals at CMS, and also allow for leptogenesis. Working in a R-parity conserving low energy supersymmetric effective model, we show that the excess CMS events can be produced via the decay of exotic sleptons in alternative left-right symmetric models of $E_6$, which can also accommodate leptogenesis at a high scale. On the other hand, either the $eejj$ excess or the $e \\slashed p_T jj$ excess can be produced via the decays of right handed gauge bosons, but some of these scenarios may not accommodate letptogenesis as there will be strong $B-L$ violation at low energy, which, along with the anomalous fast electroweak $B+L$ violation, will wash out all baryon asymmetry. Baryogenesis below the electroweak scale may then need to be implemented in these models.

Dhuria, Mansi; Rangarajan, Raghavan; Sarkar, Utpal

2015-01-01T23:59:59.000Z

397

Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)  

E-Print Network [OSTI]

Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

Marcipar, Lital

398

Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events  

E-Print Network [OSTI]

We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

Bauer, Gerry P.

399

Search for the Standard Model Higgs Boson Produced in Association with a Z Boson in the Electron-Muon Final State and the Higgs Boson Decaying into Bottom Quarks  

E-Print Network [OSTI]

garages in the CMS experimental cavern to allow for the CMSpersonnel working in the cavern. Magnet The CMS magnet is aare in the experimental cavern, and the CSC track finder (

Bartek, Rachel A.

2013-01-01T23:59:59.000Z

400

Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles  

SciTech Connect (OSTI)

We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

Sundaralingam, N.

1993-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CMS hadron calorimeter front-end upgrade for SLHC phase I  

SciTech Connect (OSTI)

We present an upgrade plan for the CMS HCAL detector. The HCAL upgrade is required for the increased luminosity (3 * 10E34) of SLHC Phase I which is targeted for 2014. A key aspect of the HCAL upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at the L1 trigger. The increased segmentation is achieved by replacing the hybrid photodiodes (HPDs) with silicon PMTs (SIPMs). We plan to instrument each fiber of the calorimeter with an SIPM (103,000 total). We will then electrically sum outputs from selected SIPMs to form the longitudinal readout segments. In addition to having more longitudinal information, the upgrade plans include a new custom ADC with matched sensitivity and timing information. The increased data volume requires higher speed transmitters and the additional power dissipation for the readout electronics requires better thermal design, since much of the on-detector infrastructure (front-end electronics crates, cooling pipes, optical fiber plant, etc.) will remain the same. We will report on the preliminary designs for these upgraded systems, along with performance requirements and initial design studies.

Whitmore, Juliana; /Fermilab

2009-09-01T23:59:59.000Z

402

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth  

E-Print Network [OSTI]

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 deg. and different energies of the primary particle. From these distributions we define X(mu)max as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X(mu)max as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

Pierre Auger Collaboration

2014-07-22T23:59:59.000Z

403

Precision muon decay measurements and improved constraints on the weak interaction  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The TWIST Collaboration has completed its measurement of the three muon decay parameters ? , ? , and P? ? . This paper describes our determination of ? , which governs the shape of the overall momentum spectrum, and ? , which controls the momentum dependence of the parity-violating decay asymmetry. The results are ?=0.749?77±0.000?12(stat)±0.000?23(syst) and ?=0.750?49±0.000?21(stat)±0.000?27(syst) . These are consistent with the value of 3/4 given for both parameters in the standard model, and each is over a factor of 10 more precise than the measurements published prior to TWIST. Our final results on ? , ? , and P? ? have been incorporated into a new global analysis of all available muon decay data, resulting in improved model-independent constraints on the possible weak interactions of right-handed particles.

Hillairet, A.; Bayes, R.; Bueno, J. F.; Davydov, Yu. I.; Depommier, P.; Faszer, W.; Gagliardi, C. A.; Gaponenko, A.; Gill, D. R.; Grossheim, A.; Gumplinger, P.; Hasinoff, M. D.; Henderson, R. S.; Hu, J.; Koetke, D. D.; MacDonald, R. P.; Marshall, G. M.; Mathie, E. L.; Mischke, R. E.; Olchanski, K.; Olin, A.; Openshaw, R.; Poutissou, J.-M.; Poutissou, R.; Selivanov, V.; Sheffer, G.; Shin, B.; Stanislaus, T. D. S.; Tacik, R.; Tribble, R. E.; TWIST Collaboration

2012-05-01T23:59:59.000Z

404

Test Facility for Full-Equipped Chambers for the LHCb Muon Detector  

E-Print Network [OSTI]

The LHCb Muon System is made up by more than 1300 chambers of 20 different types, resulting in more than 120k readout channels. In order to guarantee high-quality performance during the experiment it is of crucial importance to get a complete knowledge of the fully equipped detector functionalities.A complete test system was built and a C++ ROOT software was developed to allow carring out a variety of studies on the many LHCb Muon chambers. Such system provides full control of the frontend, the high-voltage and the acquisition electronics and makes available a number of procedures to study the chambersâ?? performance. It was used for studies and a quality control on the chambers before and during the final positioning on the detector. In this note an overview of the hardware setup and of the software will be given. Results of measurements related to front-end channels characteristics will be presented.

Nóbrega, Rafael

2007-01-01T23:59:59.000Z

405

Cross sections and energy loss for lepton pair production in muon transport  

E-Print Network [OSTI]

We reevaluate electron-positron pair production from electromagnetic interactions of muons in transit through materials. Our approach, through the use of structure functions for inelastic and elastic scattering and including hadronic recoil, make the formalism useful for tau pair production at high energies. Our results for electron-positron pair production agree well with prior evaluations. Tau pair production, has a significant contribution from inelastic scattering in addition to the usual coherent scattering with the nucleus and scattering with atomic electrons.

A. Bulmahn; M. H. Reno

2008-12-30T23:59:59.000Z

406

Test of candidate light distributors for the muon (g$-$2) laser calibration system  

E-Print Network [OSTI]

The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

Anastasi, A; Baffigi, F; Cantatore, G; Cauz, D; Corradi, G; Dabagov, S; Di Sciascio, G; Di Stefano, R; Ferrari, C; Fienberg, A T; Fioretti, A; Fulgentini, L; Gabbanini, C; Gizzi, L A; Hampai, D; Hertzog, D W; Iacovacci, M; Karuza, M; Kaspar, J; Koester, P; Labate, L; Mastroianni, S; Moricciani, D; Pauletta, G; Santi, L; Venanzoni, G

2015-01-01T23:59:59.000Z

407

COMET/PRISM Muon to Electron Conversion at J-PARC  

SciTech Connect (OSTI)

A new experimental search for coherent, neutrinoless, muon-to-electron conversion from a muonic atom has been proposed for the Japanese Proton Accelerator, J-PARC, now under commissioning. The experiment is completing a conceptual design which proposes a single event sensitivity in the branching ratio of lepton number violating to lepton conserving decays of {approx_equal}0.26x10{sup -16}. This note briefly describes the experiment and its objectives.

Hungerford, Ed V. [Department of Physics, University of Houston, Houston, TX 77025 (United States)

2009-12-17T23:59:59.000Z

408

On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory  

SciTech Connect (OSTI)

In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

Arsene, N.; Rebel, H.; Sima, O. [Institute of Space Science (ISS), Bucharest-Magurele, P.O. Box MG-23 (Romania) and Physics Department, University of Bucharest, Bucharest-Magurele (Romania); Karlsruhe Institute of Technology, Karlsruhe (Germany); Physics Department, University of Bucharest, Bucharest-Magurele (Romania)

2012-11-20T23:59:59.000Z

409

The Search For The Standard Model Higgs Boson And Investigation Of Its Properties.  

E-Print Network [OSTI]

?? This dissertation presents the search for the standard model Higgs boson and initial measurement of its properties using the Compact Muon Solenoid experiment at… (more)

Bochenek, Joseph

2013-01-01T23:59:59.000Z

410

Progress on Superconducting Magnets for the MICE Cooling Channel  

E-Print Network [OSTI]

274 Progress on the Superconducting Magnets for the MICEM. A Green and J. M. Rey, “Superconducting Solenoids for anG, “Supercritically Cooled Superconducting Muon Channel,”

Green, Michael A

2010-01-01T23:59:59.000Z

411

Prompt muon production in e/sup +/e/sup -/ annihilations at 29 GeV  

SciTech Connect (OSTI)

We have studied the production of prompt muons in hadronic events from e/sup +/e/sup -/ annihilation at a center-of-mass energy of 29 GeV with the PEP4-TPC (Time Projection Chamber) detector. The muon p and p/sub t/ distributions are well described by a combination of bottom- and charm-quark decays, with fitted semimuonic branching fractions of (15.2 +- 1.9 +- 1.2)% and (6.9 +- 1.1 +- 1.1)%, respectively. The muon spectra imply hard fragmentation functions for both b and c quarks, with = 0.80 +- 0.05 +- 0.05 and = 0.60 +- 0.06 +- 0.04. We derive neutral-current axial-vector couplings of a(b quark) = -0.9 +- 1.1 +- 0.3 and a(c quark) = 1.5 +- 1.5 +- 0.5 from the forward-backward asymmetries.

Aihara, H.; Alston-Garnjost, M.; Badtke, D.H.; Bakken, J.A.; Barbaro-Galtieri, A.; Barnes, A.V.; Barnett, B.A.; Bengtsson, H.; Blumenfeld, B.J.; Bross, A.D.; Buchanan, C.D.; Chamberlain, O.; Chien, C.; Clark, A.R.; Cordier, A.; Dahl, O.I.; Day, C.T.; Derby, K.A.; Eberhard, P.H.; Fancher, D.L.; Fujii, H.; Fujii, T.; Gabioud, B.; Gary, J.W.; Gorn, W.; Hadley, N.J.; Hauptman, J.M.; Hofmann, W.; Huth, J.E.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Kerth, L.T.; Koda, R.I.; Kofler, R.R.; Kwong, K.K.; Layter, J.G.; Lindsey, C.S.; Loken, S.C.; Lu, X.; Lynch, G.R.; Madansky, L.; Madaras, R.J.; Maruyama, K.; Marx, J.N.; Matthews, J.A.J.; Melnikoff, S.O.; Moses, W.; Nemethy, P.; Nygren, D.R.; Oddone, P.J.; Park, D.A.; Pevsner, A.; Pripstein, M.; Robrish, P.R.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Sauerwein, R.R.; Shapiro, G.; Shapiro, M.D.; Shen, B.C.; Slater, W.E.; Stevenson, M.L.; Stork, D.H.; Ticho, H.K.; Toge, N.; van Daalen Wetters, R.F.; VanDalen, G.J.; van Tyen, R.; Wang, E.M.; Way

1985-06-01T23:59:59.000Z

412

Time-of-flight measurement of resonant molecular formation in muon catalyzed dt fusion  

SciTech Connect (OSTI)

Preliminary results are reported for an experiment at TRIUMF where a time-of-flight technique was tested for measuring the energy dependence of the rate for muon catalyzed dt fusion. Muonic tritium toms were created following transfer of negative muons from muonic protium in a layer of solid hydrogen (protium) containing a small fraction of tritium. The atoms escaped from the solid layer via the Ramsauer-Townsend mechanism, traversed a drift region of 18 mm, and then struck an adjacent layer of deuterium, where the muonic atom could form a molecular system. The time of detection of a fusion product (neutron or alpha) following muon arrival is dependent upon the energy of the muonic tritium atom as it traverses the drift region. By comparison of the time distribution of fusion events with a prediction based on the theoretical energy dependence of the rate, the strength of resonant formation can in principle be determined. The results extracted so far are discussed and the limitations of the method are examined.

Marshall, G.M. [TRIUMF, Vancouver, British Columbia (Canada); Adamczak, A. [INP, Krakow (Poland); Bailey, J.M. [Chester Technology (United Kingdom)] [and others

1995-11-01T23:59:59.000Z

413

Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction  

E-Print Network [OSTI]

A Neutrino Factory producing an intense beam composed of nu_e(nubar_e) and nubar_mu(nu_mu) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, theta_13 and delta_CP . Using the `wrong-sign muon' signal to measure nu_e to nu_mu(nubar_e to nubar_mu) oscillations in a 50 ktonne Magnetised Iron Neutrino Detector (MIND) sensitivity to delta_CP could be maintained down to small values of theta_13. However, the detector efficiencies used in previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is re-assessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses.

A. Cervera; A. Laing; J. Martin-Albo; F. J. P. Soler

2010-04-02T23:59:59.000Z

414

Study of high pressure gas filled RF cavities for muon collider  

E-Print Network [OSTI]

Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

Yonehara, Katsuya

2015-01-01T23:59:59.000Z

415

The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions  

E-Print Network [OSTI]

This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

Gagliardi, Martino

416

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment  

SciTech Connect (OSTI)

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

Coleman, Stephen James; /William-Mary Coll.

2011-01-01T23:59:59.000Z

417

Analysis of the multigroup model for muon tomography based threat detection  

SciTech Connect (OSTI)

We compare different algorithms for detecting a 5?cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5?cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-02-14T23:59:59.000Z

418

Alignment of the Near Detector scintillator modules using cosmic ray muons  

SciTech Connect (OSTI)

The authors describe the procedures and the results of the first alignment of the Near Detector. Using 15.5 million cosmic ray muon tracks, collected from October, 2004 through early january, 2005, they derive the effective transverse positions of the calorimeter scintillator modules. The residuals from straight line fits indicate that the current alignment has achieved better than 1 mm precision. They estimate the size of the remaining misalignment and using tracks recorded with a magnetic field test the effect of the magnetic field on the alignment.

Ospanov, Rustem; Lang, Karol; /Texas U.

2008-05-01T23:59:59.000Z

419

Lattice calculation of the lowest-order hadronic contribution to the muon anomalous magnetic momen  

E-Print Network [OSTI]

I present quenched domain wall fermion and 2+1 flavor improved Kogut-Susskind fermion calculations of the hadronic vacuum polarization which are used to calculate the ${\\cal O}(\\alpha^2)$ hadronic contribution to the anomalous magnetic moment of the muon. Together with previous quenched calcuations, the new results confirm that in the quenched theory the hadronic contribution is signifcantly smaller ($\\sim 30%$) than the value obtained from the total cross section of $e^+e^-$ annhilation to hadrons. The 2+1 flavor results show an increasing contribution to $g-2$ as the quark mass is reduced.

T. Blum

2004-11-02T23:59:59.000Z

420

was a decisive one as in the studies of hyperon rare decays at FNAL (E715 and E761 experi ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic  

E-Print Network [OSTI]

­ ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic nuclei nuclear fusion reactions was successfully carried out in the muon channel of the SC. The muon beam is also intensity (1¯A) make this accelerator valuable even in the up­to­date nuclear studies. For example

Titov, Anatoly

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Discrimination Procedure between Muon and Electron in Superkamiokande Experiment Based on the Angular Distribution Function Method  

E-Print Network [OSTI]

In the previous paper, we construct the angular distribution functions for muon and electron as well as their relative fluctuation functions to find suitable discrimination procedure between muon and electron in Superkamiokande experiment. In the present paper, we are able to discriminate muons from electrons in Fully Contained Events with a probability of error of less than several %. At the same time, our geometrical reconstruction procedure, considering only the ring-like structure of the Cherenkov image, gives an unsatisfactory resolution for 1GeV electron and muon, with a mean vertex position error, delta r, of 5-10 m and a mean directional error, delta theta, of about 6-20 degrees. In contrast, a geometrical reconstruction procedure utilizing the full image and using a detailed approximation of the event angular distribution works much better: for a 1 GeV electron, delta r is about 2 m and delta theta is about 3 degrees; for a 1GeV muon, delta r is about 3 m and delta theta is about 5 degrees. At 5 GeV, the corresponding values are about 1.4 m and about 2 degree for electron and are about 2.9m and about 4.3 degrees for muon. The numerical values depend on a single PMT contribution threshold. The values quoted above are the minima with respect to this threshold. Even the methodologically correct approach we have adopted, based on detailed simulations using closer approximations than those adopted in the SK analysis, cannot reproduce the accuracies for particle discrimination, momentum resolution, interaction vertex location, and angular resolution obtained by the SK simulations, suggesting the assumptions in these may be inadequate.

V. I. Galkin[1; A. M. Anokhina[1; E. Konishi[2; A. Misaki{3

2007-03-29T23:59:59.000Z

422

Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector  

E-Print Network [OSTI]

We present a search for Higgs bosons in multilepton final states in pp-bar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb-1. The multilepton states considered are two electron plus muon, electron with two muons, muon with two hadronic tau leptons, and like-charge electron-muon pairs. These channels directly probe the HVV (V=W,Z) coupling of the Higgs boson in production and decay. The muon with two hadronic tau lepton channel is also sensitive to H to tau lepton pair decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 Higgs boson model.

D0 Collaboration

2013-02-22T23:59:59.000Z

423

Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c  

SciTech Connect (OSTI)

The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

Schmelling, M.; /Heidelberg, Max Planck Inst.; Hashim, N.O.; /Kenyatta U. Coll.; Grupen, C.; /Siegen U.; Luitz, S.; /SLAC; Maciuc, F.; /Heidelberg, Max Planck Inst.; Mailov, A.; /Siegen U.; Muller, A.-S.; /Karlsruhe, Inst. Technol.; Sander, H.-G.; /Mainz U., Inst. Phys.; Schmeling, S.; /CERN; Tcaciuc, R.; /Siegen U.; Wachsmuth, H.; /CERN; Zuber, K.; /Dresden, Tech. U.

2012-09-14T23:59:59.000Z

424

Towards the optimal energy of the proton driver for a neutrino factory and muon collider  

E-Print Network [OSTI]

Cross section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross section data are corrected for the beam-energy dependent amplification due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4

J. Strait; N. V. Mokhov; S. I. Striganov

2010-11-11T23:59:59.000Z

425

Muon capture on deuteron and the neutron-neutron scattering length  

E-Print Network [OSTI]

The muon capture reaction mu + 2H --> nu_mu + n + n is studied with nuclear potentials and charge-changing weak currents, derived within chiral effective field theory. The next-to-next-to-next-to leading order (N3LO) chiral potential with cutoff parameter Lambda=500 MeV is used, but the low-energy constant (LEC) determining the neutron-neutron S-wave scattering length (a_{nn}) is varied so as to obtain four different values, which are a_{nn}=-18.95 fm, -16.0 fm, -22.0 fm, and +18.22 fm. The first value is the present empirical one, while the last one is chosen such as to lead to a di-neutron bound system with a binding energy of 139 keV. The LEC's c_D and c_E, present in the three-nucleon potential and axial-vector current (c_D), are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The muon capture rate on the deuteron in the doublet hyperfine initial state is found to be 399(3) s^{-1} for a_{nn}=-18.95 and -16.0 fm; and 400(3) s^{-1} for a_{nn}=-22.0 fm. However, ...

Marcucci, L E

2014-01-01T23:59:59.000Z

426

Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider  

SciTech Connect (OSTI)

We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

2010-06-01T23:59:59.000Z

427

Updated Estimate of the Muon Magnetic Moment Using Revised Results from e+e- Annihilation  

E-Print Network [OSTI]

A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e+e- annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e+e- and tau spectral functions in the pi pi channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and 1.0 GeV, so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are a_mu[had,LO] = (696.3 +- 6.2[exp] +- 3.6[rad])e-10 (e+e- -based) and a_mu[had,LO] = (711.0 +- 5.0[exp] +- 0.8[rad] +- 2.8[SU2])e-10 (tau-based), where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read a_mu = (11,659,180.9 +- 7.2[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (e+...

Davier, M; Höcker, A; Zhang, Z; Davier, Michel

2003-01-01T23:59:59.000Z

428

A Novel Method for Transport and Cooling of a Muon Beam Based on Magnetic Insulation  

SciTech Connect (OSTI)

Unwanted field emission is a well known problem for high-gradient accelerating structures as it can cause damage and initiate breakdown. Recent experiments indicated that the deleterious effects of field-emission are greatly enhanced in the presence of external magnetic fields. In the context of designing a muon accelerator this imposes numerous constraints since rf cavities need to operate within strong magnetic fields in order to successfully transport the beam. Here, a novel design of a magnetically insulated cavity in which the walls are parallel to the magnetic field lines is presented. We show that with magnetic insulation, damage from field emission can be significantly suppressed. Effects of coil positioning errors on the cavity performance are discussed and the required magnetic field strength to achieve insulation is estimated. We present a conceptual design of a muon collider cooling lattice with magnetic insulated cavities and cross-check its performance to the one with pillbox cavities. Finally an experiment to test magnetic insulation is described.

Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B. [Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-11-04T23:59:59.000Z

429

Hyperspherical elliptic coordinates treatment of muon transfer from muonic hydrogen to atomic oxygen  

E-Print Network [OSTI]

Quantum-mechanical calculations of muon transfer between muonic hydrogen and an oxygen nuclei for $s$ waves and collision energies in the range $10^{-3} - 10^3$ eV, are presented. Close-coupling time-independent Schr\\"odinger equations, written in terms of hyperspherical elliptic coordinates were integrated along the hyper-radius to obtain the partial and total muon-transfer probabilities. The results show the expected Wigner-Bethe threshold behavior up to collision energies of the order of $10^{-2}$ eV and pronounced maxima at $10^2$ eV which can be interpreted in terms of crossings between potential energy curves corresponding to the entrance channel state $(\\mu p)_{1s} + \\mO$ and two product channels which asymptotically correlate to $p + (\\mO\\mu)_{n=5,6}$. The population of the final states with different orbital angular momenta is found to be essentially independent of energy in the range considered in this work. This can be attributed to a strong selection rule for the conservation of the quantum number associated to one of the elliptic hyperangles.

Arnaud Dupays; Bruno Lepetit; J. Alberto Beswick; Carlo Rizzo; Dimitar Bakalov

2006-12-20T23:59:59.000Z

430

Optimization of the baseline and the parent muon energy for a low energy neutrino factory  

E-Print Network [OSTI]

We discuss the optimal setup for a low energy neutrino factory in order to achieve a 5\\sigma-discovery of a nonzero mixing angle \\theta_{13}, a nonzero CP phase \\delta_{CP}, and the mass hierarchy. We explore parent muon energies in the range 5--16 GeV, and baselines in the range 500--5000 km. We present the results in terms of the reach in sin^2\\theta_{13}, emphasizing the dependence of the optimal baseline on the true value of \\delta_{CP}. We show that the sensitivity of a given setup typically increases with parent muon energy, reaching saturation for higher energies. The saturation energy is larger for longer baselines; we present an estimate of this dependence. In the light of the recent indications of a large \\theta_{13}, we also determine how these preferences would change if indeed a large \\theta_{13} is confirmed. In such a case, the baselines ~2500 km (~1500 km) may be expected to lead to hierarchy determination (\\delta_{CP} discovery) with the minimum exposure.

Amol Dighe; Srubabati Goswami; Shamayita Ray

2012-10-05T23:59:59.000Z

431

Radiation effects in a muon collider ring and dipole magnet protection  

SciTech Connect (OSTI)

The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

2011-03-01T23:59:59.000Z

432

Combined factor analysis of the WISC-III and CMS: does the resulting factor structure discriminate among children with and without clinical disorders?  

E-Print Network [OSTI]

of the four-factor structure of the WISC-III has been questioned, particularly in terms of its utility in the diagnosis of ADHD based on the Freedom from Distractibility Index (FFD). A combined confirmatory factor analysis was conducted on the WISC-III and CMS...

Siekierski, Becky Mayes

2006-10-30T23:59:59.000Z

433

STUDY OF GRAPHITE TARGETS INTERACTING WITH THE 24 GeV PROTON BEAM OF THE BNL MUON TARGET EXPERIMENT*  

E-Print Network [OSTI]

experiment, graphite and carbon-carbon composite targets were exposed to the AGS beam and their response materials for the future muon collider/neutrino factory carbon-based solid targets have been considered for the experiment are ATJ graphite and the anisotropic carbon-carbon composite. Each target consists of a pair of 16

McDonald, Kirk

434

y Vacuum Polarization in Low Energy Physics: g -2 1. g -2 introduction, history, muon properties, lepton moments  

E-Print Network [OSTI]

y Vacuum Polarization in Low Energy Physics: g - 2 1. g - 2 introduction, history, muon properties ; F2(0) = aµ aµ responsible for the Larmor precession directly proportional at magic energy 3.1 Ge theory at tree level aµ is a pure "quantum correction" effect: a finite model-specific prediction in any

Röder, Beate

435

Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ?(1S)  

E-Print Network [OSTI]

We search for di-muon decays of a low-mass Higgs boson (A[superscript 0]) produced in radiative ?(1S) decays. The ?(1S) sample is selected by tagging the pion pair in the ?(2S,3S)??[superscript +]?[superscript -]?(1S) ...

Cowan, Ray Franklin

436

An Emulator of Timing, Trigger and Control (TTC) System for the ATLAS End cap Muon Trigger Electronics  

E-Print Network [OSTI]

An Emulator of Timing, Trigger and Control (TTC) System for the ATLAS End cap Muon Trigger and their sequences needed for the ATLAS TGC electronics. Almost all functionalities are packed in an FPGA chip, which of the mother board electronics system. I. INTRODUCTION In general a facility for TTC signal generation

Fukunaga, Chikara

437

B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 -p. 1/66 Muon (g-2) Past and Future  

E-Print Network [OSTI]

B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 1/66 Muon (g-2) Past and Future Beam@bu.edu http://physics.bu.edu/roberts.html #12;B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 2 Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 3/66B. L. Roberts, Fermilab , 3 September 2008 - p

Roberts, B. Lee

438

ccsd-00000318(version1):29Apr2003 Calculation of muon transfer from muonic hydrogen to atomic oxygen  

E-Print Network [OSTI]

oxygen Arnaud Dupays, Bruno Lepetit, J. Alberto Beswick, Carlo Rizzo Laboratoire Collisions, Agrgats and an oxygen atom are calculated in a constrained geometry one dimensional model for collision energies between energy dependence of muon transfer from the muonic hydrogen to an oxygen molecule, has been proposed [3

Boyer, Edmond

439

The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision  

SciTech Connect (OSTI)

We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment itself is based on the solid foundation of E821 at BNL, with modest improvements related to systematic error control. We outline the motivation, conceptual plans, and details of the tasks, anticipated budget, and timeline in this proposal.

Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

2009-02-01T23:59:59.000Z

440

Evolution studies of the CMS ECAL endcap response and upgrade design options for High-Luminosity LHC  

E-Print Network [OSTI]

High-Luminosity running at the LHC, which is planned for 2022 and beyond, will imply an order of magnitude increase in radiation levels and particle fluences with respect to the present LHC running conditions. The performance evolution of the CMS electromagnetic calorimeter (ECAL), comprising 75,848 scintillating lead tungstate crystals, indicates that an upgrade of its endcaps will be needed for HL-LHC running, to ensure an adequate performance. Results from LHC collision periods, beam tests and laboratory measurements of proton-irradiated crystals are combined to predict the performance of the current detector at the HL-LHC. In addition, an overview is given of various R and D studies towards a replacement of the ECAL endcaps for the HL-LHC running period.

Andrea Massironi

2014-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Observation of the rare $B^0_s\\to?^+?^-$ decay from the combined analysis of CMS and LHCb data  

E-Print Network [OSTI]

A joint measurement is presented of the branching fractions $B^0_s\\to\\mu^+\\mu^-$ and $B^0\\to\\mu^+\\mu^-$ in proton-proton collisions at the LHC by the CMS and LHCb experiments. The data samples were collected in 2011 at a centre-of-mass energy of 7 TeV, and in 2012 at 8 TeV. The combined analysis produces the first observation of the $B^0_s\\to\\mu^+\\mu^-$ decay, with a statistical significance exceeding six standard deviations, and the best measurement of its branching fraction so far, and three standard deviation evidence for the $B^0\\to\\mu^+\\mu^-$ decay. The measurements are statistically compatible with SM predictions and impose stringent constraints on several theories beyond the SM.

The CMS; LHCb Collaborations; :; V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; M. Friedl; R. Frühwirth; V. M. Ghete; C. Hartl; N. Hörmann; J. Hrubec; M. Jeitler; W. Kiesenhofer; V. Knünz; M. Krammer; I. Krätschmer; D. Liko; I. Mikulec; D. Rabady; B. Rahbaran; H. Rohringer; R. Schöfbeck; J. Strauss; W. Treberer-Treberspurg; W. Waltenberger; C. -E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; S. Alderweireldt; S. Bansal; T. Cornelis; E. A. De Wolf; X. Janssen; A. Knutsson; J. Lauwers; S. Luyckx; S. Ochesanu; R. Rougny; M. Van De Klundert; H. Van Haevermaet; P. Van Mechelen; N. Van Remortel; A. Van Spilbeeck; F. Blekman; S. Blyweert; J. D'Hondt; N. Daci; N. Heracleous; J. Keaveney; S. Lowette; M. Maes; A. Olbrechts; Q. Python; D. Strom; S. Tavernier; W. Van Doninck; P. Van Mulders; G. P. Van Onsem; I. Villella; C. Caillol; B. Clerbaux; G. De Lentdecker; D. Dobur; L. Favart; A. P. R. Gay; A. Grebenyuk; A. Léonard; A. Mohammadi; L. Perniè; A. Randle-conde; T. Reis; T. Seva; L. Thomas; C. Vander Velde; P. Vanlaer; J. Wang; F. Zenoni; V. Adler; K. Beernaert; L. Benucci; A. Cimmino; S. Costantini; S. Crucy; S. Dildick; A. Fagot; G. Garcia; J. Mccartin; A. A. Ocampo Rios; D. Ryckbosch; S. Salva Diblen; M. Sigamani; N. Strobbe; F. Thyssen; M. Tytgat; E. Yazgan; N. Zaganidis; S. Basegmez; C. Beluffi; G. Bruno; R. Castello; A. Caudron; L. Ceard; G. G. Da Silveira; C. Delaere; T. du Pree; D. Favart; L. Forthomme; A. Giammanco; J. Hollar; A. Jafari; P. Jez; M. Komm; V. Lemaitre; C. Nuttens; D. Pagano; L. Perrini; A. Pin; K. Piotrzkowski; A. Popov; L. Quertenmont; M. Selvaggi; M. Vidal Marono; J. M. Vizan Garcia; N. Beliy; T. Caebergs; E. Daubie; G. H. Hammad; W. L. Aldá Júnior; G. A. Alves; L. Brito; M. Correa Martins Junior; T. Dos Reis Martins; C. Mora Herrera; M. E. Pol; P. Rebello Teles; W. Carvalho; J. Chinellato; A. Custódio; E. M. Da Costa; D. De Jesus Damiao; C. De Oliveira Martins; S. Fonseca De Souza; H. Malbouisson; D. Matos Figueiredo; L. Mundim; H. Nogima; W. L. Prado Da Silva; J. Santaolalla; A. Santoro; A. Sznajder; E. J. Tonelli Manganote; A. Vilela Pereira; C. A. Bernardes; S. Dogra; T. R. Fernandez Perez Tomei; E. M. Gregores; P. G. Mercadante; S. F. Novaes; Sandra S. Padula; A. Aleksandrov; V. Genchev; R. Hadjiiska; P. Iaydjiev; A. Marinov; S. Piperov; M. Rodozov; G. Sultanov; M. Vutova; A. Dimitrov; I. Glushkov; L. Litov; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; M. Chen; T. Cheng; R. Du; C. H. Jiang; R. Plestina; F. Romeo; J. Tao; Z. Wang; C. Asawatangtrakuldee; Y. Ban; Q. Li; S. Liu; Y. Mao; S. J. Qian; D. Wang; Z. Xu; W. Zou; C. Avila; A. Cabrera; L. F. Chaparro Sierra; C. Florez; J. P. Gomez; B. Gomez Moreno; J. C. Sanabria; N. Godinovic; D. Lelas; D. Polic; I. Puljak; Z. Antunovic; M. Kovac; V. Brigljevic; K. Kadija; J. Luetic; D. Mekterovic; L. Sudic; A. Attikis; G. Mavromanolakis; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; M. Bodlak; M. Finger; M. Finger Jr.; Y. Assran; A. Ellithi Kamel; M. A. Mahmoud; A. Radi; M. Kadastik; M. Murumaa; M. Raidal; A. Tiko; P. Eerola; G. Fedi; M. Voutilainen; J. Härkönen; V. Karimäki; R. Kinnunen; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; T. Peltola; E. Tuominen; J. Tuominiemi; E. Tuovinen; L. Wendland; J. Talvitie; T. Tuuva; M. Besancon; F. Couderc; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; C. Favaro; F. Ferri; S. Ganjour; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; J. Rander; A. Rosowsky; M. Titov; S. Baffioni; F. Beaudette; P. Busson; C. Charlot; T. Dahms; M. Dalchenko; L. Dobrzynski; N. Filipovic; A. Florent; R. Granier de Cassagnac; L. Mastrolorenzo; P. Miné; C. Mironov; I. N. Naranjo; M. Nguyen; C. Ochando; G. Ortona; P. Paganini; S. Regnard; R. Salerno; J. B. Sauvan; Y. Sirois; C. Veelken; Y. Yilmaz; A. Zabi; J. -L. Agram; J. Andrea; A. Aubin; D. Bloch; J. -M. Brom; E. C. Chabert; C. Collard; E. Conte; J. -C. Fontaine; D. Gelé; U. Goerlach; C. Goetzmann; A. -C. Le Bihan; K. Skovpen; P. Van Hove; S. Gadrat; S. Beauceron; N. Beaupere; G. Boudoul; E. Bouvier; S. Brochet; C. A. Carrillo Montoya; J. Chasserat; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; J. Fan; J. Fay; S. Gascon; M. Gouzevitch; B. Ille; T. Kurca; M. Lethuillier; L. Mirabito; S. Perries; J. D. Ruiz Alvarez; D. Sabes; L. Sgandurra; V. Sordini; M. Vander Donckt; P. Verdier; S. Viret; H. Xiao; Z. Tsamalaidze; C. Autermann; S. Beranek; M. Bontenackels; M. Edelhoff; L. Feld; A. Heister; O. Hindrichs; K. Klein; A. Ostapchuk; F. Raupach; J. Sammet; S. Schael; J. F. Schulte; H. Weber; B. Wittmer; V. Zhukov; M. Ata; M. Brodski; E. Dietz-Laursonn; D. Duchardt; M. Erdmann; R. Fischer; A. Güth; T. Hebbeker; C. Heidemann; K. Hoepfner; D. Klingebiel

2014-11-17T23:59:59.000Z

442

Performance of the online track reconstruction and impact on hadronic triggers at the CMS High Level Trigger  

E-Print Network [OSTI]

The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with the detector readout, offline storage and analysis capabilities. The CMS experiment has been designed with a two-level trigger system: the Level 1 (L1) Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS reconstruction and analysis software running on a computer farm. The software-base HLT requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. This is going to be even more challenging during Run II, with a higher centre-of-mass energy, a higher instantaneous luminosity and pileup, and the impact of out-of-time pileup due to the 25 ns bunch spacing. The online algorithms need to be optimised for such a complex environment in order to keep the output rate under control without impacting the physics efficiency of the online selection. Tracking, for instance, will play an even more important role in the event reconstruction. In this poster we will present the performance of the online track and vertex reconstruction algorithms, and their impact on the hadronic triggers that make use of b-tagging and of jets reconstructed with the Particle Flow technique. We will show the impact of these triggers on physics performance of the experiment, and the latest plans for improvements in view of the Run II data taking in 2015.

Valentina Gori

2014-09-09T23:59:59.000Z

443

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network [OSTI]

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2007-01-24T23:59:59.000Z

444

A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.  

SciTech Connect (OSTI)

This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

2003-03-01T23:59:59.000Z

445

A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker  

SciTech Connect (OSTI)

This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

1999-03-29T23:59:59.000Z

446

First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section  

SciTech Connect (OSTI)

A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

2010-02-01T23:59:59.000Z

447

Study of ?(1385) and ?(1321) hyperon and antihyperon production in deep inelastic muon scattering  

E-Print Network [OSTI]

Large samples of \\Lambda, \\Sigma(1385) and \\Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \\Sigma(1385)^+, \\Sigma(1385)^-, \\bar{\\Sigma}(1385)^-, \\bar{\\Sigma}(1385)^+, \\Xi(1321)^-, and \\bar{\\Xi}(1321)^+ hyperons decaying into \\Lambda(\\bar{\\Lambda})\\pi were measured. The heavy hyperon to \\Lambda and heavy antihyperon to \\bar{\\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

C. Adolph; M. Alekseev; V. Yu. Alexakhin; Yu. Alexandrov; G. D. Alexeev; A. Amoroso; A. Austregesilo; B. Badelek; F. Balestra; J. Barth; G. Baum; Y. Bedfer; A. Berlin; J. Bernhard; R. Bertini; K. Bicker; J. Bieling; R. Birsa; J. Bisplinghoff; P. Bordalo; F. Bradamante; C. Braun; A. Bravar; A. Bressan; M. Buechele; E. Burtin; L. Capozza; M. Chiosso; S. U. Chung; A. Cicuttin; M. L. Crespo; S. Dalla Torre; S. S. Dasgupta; S. Dasgupta; O. Yu. Denisov; S. V. Donskov; N. Doshita; V. Duic; W. Duennweber; M. Dziewiecki; A. Efremov; C. Elia; P. D. Eversheim; W. Eyrich; M. Faessler; A. Ferrero; A. Filin; M. Finger; M. Finger jr.; H. Fischer; C. Franco; N. du Fresne von Hohenesche; J. M. Friedrich; V. Frolov; R. Garfagnini; F. Gautheron; O. P. Gavrichtchouk; S. Gerassimov; R. Geyer; M. Giorgi; I. Gnesi; B. Gobbo; S. Goertz; S. Grabmueller; A. Grasso; B. Grube; R. Gushterski; A. Guskov; T. Guthoerl; F. Haas; D. von Harrach; F. H. Heinsius; F. Herrmann; C. Hess; F. Hinterberger; Ch. Hoeppner; N. Horikawa; N. d'Hose; S. Huber; S. Ishimoto; Yu. Ivanshin; T. Iwata; R. Jahn; V. Jary; P. Jasinski; R. Joosten; E. Kabuss; D. Kang; B. Ketzer; G. V. Khaustov; Yu. A. Khokhlov; Yu. Kisselev; F. Klein; K. Klimaszewski; J. H. Koivuniemi; V. N. Kolosov; K. Kondo; K. Koenigsmann; I. Konorov; V. F. Konstantinov; A. M. Kotzinian; O. Kouznetsov; M. Kraemer; Z. V. Kroumchtein; N. Kuchinski; F. Kunne; K. Kurek; R. P. Kurjata; A. A. Lednev; A. Lehmann; S. Levorato; J. Lichtenstadt; A. Maggiora; A. Magnon; N. Makke; G. K. Mallot; A. Mann; C. Marchand; A. Martin; J. Marzec; H. Matsuda; T. Matsuda; G. Meshcheryakov; W. Meyer; T. Michigami; Yu. V. Mikhailov; Y. Miyachi; A. Morreale; A. Nagaytsev; T. Nagel; F. Nerling; S. Neubert; D. Neyret; V. I. Nikolaenko; J. Novy; W. -D. Nowak; A. S. Nunes; A. G. Olshevsky; M. Ostrick; R. Panknin; D. Panzieri; B. Parsamyan; S. Paul; G. Piragino; S. Platchkov; J. Pochodzalla; J. Polak; V. A. Polyakov; J. Pretz; M. Quaresma; C. Quintans; S. Ramos; G. Reicherz; E. Rocco; V. Rodionov; E. Rondio; N. S. Rossiyskaya; D. I. Ryabchikov; V. D. Samoylenko; A. Sandacz; M. G. Sapozhnikov; S. Sarkar; I. A. Savin; G. Sbrizzai; P. Schiavon; C. Schill; T. Schlueter; A. Schmidt; K. Schmidt; L. Schmitt; H. Schmieden; K. Schoenning; S. Schopferer; M. Schott; O. Yu. Shevchenko; L. Silva; L. Sinha; S. Sirtl; S. Sosio; F. Sozzi; A. Srnka; L. Steiger; M. Stolarski; M. Sulc; R. Sulej; H. Suzuki; P. Sznajder; S. Takekawa; J. Ter Wolbeek; S. Tessaro; F. Tessarotto; F. Thibaud; S. Uhl; I. Uman; M. Vandenbroucke; M. Virius; L. Wang; T. Weisrock; M. Wilfert; R. Windmolders; W. Wislicki; H. Wollny; K. Zaremba; M. Zavertyaev; E. Zemlyanichkina; N. Zhuravlev; M. Ziembicki

2013-10-16T23:59:59.000Z

448

Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach  

SciTech Connect (OSTI)

Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh [Physics Department, School of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)] [Physics Department, School of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

2013-11-15T23:59:59.000Z

449

Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics  

SciTech Connect (OSTI)

In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

2012-05-01T23:59:59.000Z

450

Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider  

E-Print Network [OSTI]

We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

2005-07-26T23:59:59.000Z

451

Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron  

SciTech Connect (OSTI)

A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

2012-05-01T23:59:59.000Z

452

Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron  

E-Print Network [OSTI]

A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

D. J. Summers; L. M. Cremaldi; T. L. Hart; L. P. Perera; M. Reep; H. Witte; S. Hansen; M. L. Lopes; J. Reidy, Jr.

2012-07-28T23:59:59.000Z

453

A comprehensive comparison for simulations of cosmic-ray muons underground  

SciTech Connect (OSTI)

The two leading simulation frameworks used for the simulation of cosmic-ray muons underground are FLUKA and Geant4. There have been in the past various questions raised as to the equivalence of these codes regarding cosmogenically produced neutrons and radioactivity in an underground environment. Many experiments choose one of these frameworks, and because they typically have different geometries or locations, the issues relating to code comparison are compounded. We report on an effort to compare the results of each of these codes in simulations which have simple geometry that is consistent between the two codes. It is seen that in terms of integrated neutron flux and neturon capture statistics the codes agree well in a broad sense. There are, however, differences that will be subject of further study. Comparisons of the simulations to available data are considered and the difficulties of such comparisons are pointed out.

Villano, A. N.; Cushman, P.; Kennedy, A. [University of Minnesota, Minneapolis MN 55455 (United States)] [University of Minnesota, Minneapolis MN 55455 (United States); Empl, A.; Lindsay, S. [University of Arkansas at Little Rock, Little Rock AR 72204 (United States)] [University of Arkansas at Little Rock, Little Rock AR 72204 (United States)

2013-08-08T23:59:59.000Z

454

Front-end Electronics Test for the LHCb Muon Wire Chambers  

E-Print Network [OSTI]

This document describes the apparatus and procedures implemented to test Multi Wire Proportional Chambers (MWPC) after front-end assembly for the LHCb Muon Detector. Results of measurements of key noise parameters are also described. Given a fully equipped chamber, this system is able to diagnose every channel performing an analysis of front-end output drivers’ response and noise rate versus threshold. Besides, it allows to assess if the noise rate at the experiment threshold region is within appropriate limits. Aiming at an automatic, fast and user-friendly system for mass production tests of MWPC, the project has foreseen as well electronic identification of every chamber and front-end board, and data archiving in such a way to make it available to the Experiment Control System (ECS) while in operation.

Nobrega, R; Carboni, G; Massafferri, A; Santovetti, E

2007-01-01T23:59:59.000Z

455

Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. Our final result involving an estimate of the systematic uncertainty a ?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY, Cyprus; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

2014-02-01T23:59:59.000Z

456

A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron  

SciTech Connect (OSTI)

All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + light jets (W{sup {+-}}jj) (and the corresponding backgrounds with a Z boson), t{bar t}, single top production, and QCD multijet background.

Anastasoaie, Carmen Miruna; /Nijmegen U.

2008-02-01T23:59:59.000Z

457

The Design and Performance of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers  

E-Print Network [OSTI]

Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons are increasingly being exploited for the non-destructive assay of shielded containers in a wide range of applications. One such application is the characterisation of legacy nuclear waste materials stored within industrial containers. The design, assembly and performance of a prototype muon tomography system developed for this purpose are detailed in this work. This muon tracker comprises four detection modules, each containing orthogonal layers of Saint-Gobain BCF-10 2mm-pitch plastic scintillating fibres. Identification of the two struck fibres per module allows the reconstruction of the incoming and Coulomb-scattered muon trajectories. These allow the container content, with respect to the atomic number Z of the scattering material, to be determined through reconstruction of the scattering location and magnitude. On each detection layer, the light emitted by the fibre is detected by a single Hamamatsu H8500 MAPMT with two fibre...

Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

2013-01-01T23:59:59.000Z

458

Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years  

SciTech Connect (OSTI)

We present a new dataset analysis of the neutrino experiment at the Baksan Underground Scintillator Telescope with muon energy threshold about 1 GeV for the longest exposure time toward the Sun. In search for a signal from self-annihilations of dark matter particles in the center of the Sun we use an updated sample of upward through-going muons for 24.12 years of live time. No observable excess has been found in measured muons relative to expected background from neutrinos of atmospheric origin. We present an improved data analysis procedure and describe it in detail. We set the 90% C.L. new upper limits on expected neutrino and muon fluxes from dark matter annihilations in the Sun, on the corresponding annihilation rates and cross sections of their elastic scattering off proton.

Boliev, M.M. [Institute for Nuclear Research of Russian Academy of Sciences, Baksan Neutrino Observatory, Kabardino-Balkariya 400900 (Russian Federation); Demidov, S.V.; Mikheyev, S.P.; Suvorova, O.V., E-mail: boliev2005@yandex.ru, E-mail: demidov@ms2.inr.ac.ru, E-mail: mikheyev@pcbai10.inr.ruhep.ru, E-mail: suvorova@cpc.inr.ac.ru [Institute for Nuclear Research of Russian Academy of Sciences, prospect 60-th October 7A, Moscow 117312 (Russian Federation)

2013-09-01T23:59:59.000Z

459

Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

460

$B_s \\to ?^+ ?^-$ and the upward-going muon flux from the WIMP annihilation in the sun or the earth  

E-Print Network [OSTI]

We consider the upward-going muon flux due to the WIMP annihilations in the cores of the sun and the earth, including the upper bound on the branching ratio for $B_s \\to \\mu^+ \\mu^-$ decay. We find that the constraint from $B_s \\to \\mu^+ \\mu^-$ is very strong in most parameter space, and exclude the supergravity parameter space regions where the expected upward-going muon fluxes are within the expected reach of AMANDA II.

Seungwon Baek; Yeong Gyun Kim; P. Ko

2005-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "muon solenoid cms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Search for new physics in final states with low transverse energy photon and missing transverse energy  

E-Print Network [OSTI]

We present a search for new physics in the final state of a low transverse energy photon and missing transverse energy using 7.3 $fb^{-1}$ of $\\sqrt{s} = 8$ TeV LHC proton-proton collisions collected with the Compact Muon Solenoid (CMS) detector. This analysis extends the high-energy single-photon searches to a lower-energy regime. In the absence of deviations from the standard model predictions, limits are set on the production cross section of exotic decays of the Higgs boson. We have also analyzed the phase space consisting of a photon with a transverse energy of at least $45$ GeV and missing transverse energy in a model independent way by varying the selection requirements on the missing transverse energy and transverse mass. We set upper limits at the 95$\\%$ confidence level on the production cross section of possible processes appearing in this final state.

CMS Collaboration

2015-01-01T23:59:59.000Z

462

Talking the Higgs Boson with Dr. Joseph Incandela: Third Lecture in the DOE Science Speaker Series (includes opening remarks from Dr. Bill Brinkman and introduction by Energy Secretary, Dr. Steven Chu)  

SciTech Connect (OSTI)

In July of 2012, scientists leading two different research teams, working independently of each other, announced that they had almost certain proof of the long-sought Higgs boson. Though Cern did not call the discovery "official", many physicists conceded the evidence was now so compelling they had surely found the missing particle. The formal confirmation will come over the next few months of further investigation. The experiments are taking place at the Large Hadron Collider (LHC), and this third lecture in the DOE Science Speaker Series is given by one of those announcing scientists in July. He is Dr. Joseph Incandela, the current spokesperson for the Compact Muon Solenoid (CMS) Experiment at CERN. He was heavily involved in the search for the top quark at Fermi and is from the University of California, Santa Barbara. The title he gives his presentation is "Searching for the genetic code of our universe: Discovery at the LHC."

Incandela, Joseph (Spokesperon for the Compact Muon Solenoid Experiment at Large Hadron Collider) [Spokesperon for the Compact Muon Solenoid Experiment at Large Hadron Collider

2012-09-14T23:59:59.000Z

463

Equipment and methods for rapid analysis of PWO full-sized scintillation crystal radiation hardness during mass production  

E-Print Network [OSTI]

The mass production of lead tungstate crystals (PWO) for the Compact Muon Solenoid (CMS) Project at CERN began at the Bogoroditsk Techno- Chemical Plant (BTCP, Tula Region, Russia) in 2000. Mass production technology, developed in recent years, is based on a set of methods and instrumentation for crystal growth and machining, as well as quality control and certification of crystals. One of the most crucial categories of tolerances is the radiation hardness of crystals. Control of the PWO radiation hardness during the mass production phase requires a reliable, easy-to-use measuring tool with high productivity. A semiautomatic spectrometric setup for PWO radiation hardness monitoring was developed and tested at CERN. After final crosschecks, the setup was put into operation at BTCP. (13 refs).

Drobychev, G Yu; Fedorov, A; Korzhik, M V; Lecoq, P; Lopatik, A; Missevitch, O V; Peigneux, J P; Singovsky, A V; Zouevski, R F

2001-01-01T23:59:59.000Z

464

Shell model study of $^{40}$Ca muon capture and the $(0^+, 0)$$\\to$$(0^-, 2626)$ axial charge transition  

E-Print Network [OSTI]

We report results from shell model studies of muon capture on $^{40}$Ca to low-lying levels of $^{40}$K. We discuss the comparison between calculated capture rates, measured capture rates and analogous transitions in ($e$,$e^{\\prime}$) scattering in terms of the particle-hole structure of the $^{40}$Ca-$^{40}$K nuclei. We highlight the $^{40}$Ca$(0^+, 0)$$\\to$$^{40}$K$(0^-, 2626)$ axial charge transition and its sensitivity to the induced pseudoscalar coupling $g_p$ of the proton's weak interaction. In addition, we address the hindrance of unique first-forbidden transitions due to particle-hole interactions and the emergence of allowed Gamow-Teller transitions due to ground state correlations. Lastly, we examine the longitudinal alignment of $^{40}$K recoils following muon capture, and discuss this possibility for independently determining the induced coupling $g_p$.

T. P. Gorringe

2006-06-14T23:59:59.000Z

465

Multi Leptons in ep Collisions at HERA Analyses of multi-muon & and multi-electron production  

E-Print Network [OSTI]

Multi Leptons in ep Collisions at HERA Analyses of multi-muon & and multi-electron production Boris Lei�ner, RWTH Aachen on behalf of the and collaborations B. Lei�ner, Multi Leptons in ep Collisions - 1 for additional leptons e e e p · Conclusions B. Lei�ner, Multi Leptons in ep Collisions - 2 #12;Outline · How

466

Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model  

E-Print Network [OSTI]

We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

Rodriguez, Lien; Rodriguez, Oscar

2013-01-01T23:59:59.000Z

467

Measurement of the Michel Parameter xi" in Polarized Muon Decay and Implications on Exotic Couplings of the Leptonic Weak Interaction  

E-Print Network [OSTI]

The Michel parameter xi" has been determined from a measurement of the longitudinal polarization of positrons emitted in the decay of polarized and depolarized muons. The result, xi" = 0.981 +- 0.045stat +- 0.003syst, is consistent with the Standard Model prediction of unity, and provides an order of magnitude improvement in the relative precision of this parameter. This value sets new constraints on exotic couplings beyond the dominant V-A description of the leptonic weak interaction.

R. Prieels; O. Naviliat-Cuncic; P. Knowles; P. Van Hove; X. Morelle; J. Egger; J. Deutsch; J. Govaerts; W. Fetscher; K. Kirch; J. Lang

2014-08-07T23:59:59.000Z

468

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data  

E-Print Network [OSTI]

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

IceCube Collaboration; M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; F. Bos; D. Bose; S. Böser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; J. Brunner; N. Buzinsky; J. Casey; M. Casier; E. Cheung; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de André; C. De Clercq; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. Díaz-Vélez; M. Dunkman; R. Eagan; B. Eberhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; K. Frantzen; T. Fuchs; T. K. Gaisser; R. Gaior; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Góra; D. Grant; P. Gretskov; J. C. Groh; A. Groß; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; K. Jero; O. Jlelati; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; A. Keivani; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kläs; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; A. Koob; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; M. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; J. L. Lanfranchi; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Lünemann; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; R. Maunu; F. McNally; K. Meagher; M. Medici; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; Ö. Penek; J. A. Pepper; C. Pérez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Pütz; M. Quinnan; L. Rädel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; M. Relich; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; J. Sandroos; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; N. L. Strotjohann; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; A. Tepe; S. Ter-Antonyan; A. Terliuk; G. Teši?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; M. Zoll

2014-10-27T23:59:59.000Z

469

First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande  

E-Print Network [OSTI]

When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiokande measurements of the total background to within a factor of 2, which is good given that the isotope yields vary by orders of magnitude and that some details of the experiment are unknown to us at this level. Our results break aggregate data into component isotopes, reveal their separate production mechanisms, and preserve correlations between them. We outline how to implement more effective background rejection techniques using this information. Reducing backgrounds in solar and DSNB studies by even a factor of a few could help lead to important new discoveries.

Shirley Weishi Li; John F. Beacom

2014-04-13T23:59:59.000Z

470

Proposal for the award of a contract for the supply and installation of a double-loop fluorocarbon cooling plant for CMS  

E-Print Network [OSTI]

This document concerns the award of a contract for the supply and installation of a double-loop fluorocarbon cooling plant for the CMS tracker and preshower detectors. Following a market survey carried out among 48 firms in eighteen Member States, a call for tenders (IT-3230/TS/CMS) was sent on 5 January 2004 to four firms and one consortium in two Member States. By the closing date, CERN had received two tenders from one firm and one consortium in two Member States. The Finance Committee is invited to agree to the negotiation of a contract with DATE (FR), the lowest bidder, for the supply and installation of a double- loop fluorocarbon cooling plant for the CMS tracker and preshower detectors for a total amount of 2 183 578 euros (3 397 666 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - 100%.

2004-01-01T23:59:59.000Z

471

Facility Safety Plan CMS Complexes CMS410  

SciTech Connect (OSTI)

Laboratory management requires that the controls specified in this Facility Safety Plan (FSP) be applied to efficiently and safely perform operations within these facilities. Any operation conducted in these facilities that involves activities not commonly performed by the public, requires an Integrated Work Sheet to determine the appropriate level of safety documentation.

Cooper, G

2007-06-14T23:59:59.000Z

472

Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider  

SciTech Connect (OSTI)

One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

Bruce, R.; et al.,

2013-11-21T23:59:59.000Z

473

EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors  

SciTech Connect (OSTI)

The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

2006-06-06T23:59:59.000Z

474

An atmospheric muon neutrino disappearance measurement with the MINOS far detector  

SciTech Connect (OSTI)

It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 {+-} 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin{sup 2} 2{theta}{sub 23} = 0.95{sub -0.32} and {Delta}m{sub 23}{sup 2} = 0.93{sub -0.44}{sup +3.94} x 10{sup -3} eV{sup 2}. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

Gogos, Jeremy Peter; /Minnesota U.; ,

2007-12-01T23:59:59.000Z

475

Muon spin rotation in heavy-electron pauli-limit superconductors  

SciTech Connect (OSTI)

The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.

Michal, V. P., E-mail: vincent.michal@cea.fr [INAC/SPSMS, Commissariat a l'Energie Atomique (France)

2012-11-15T23:59:59.000Z

476

Neutral long-living kaon and muon system of the Belle II detector  

E-Print Network [OSTI]

The Belle detector operated at KEKb B-factory in 1999-2010 was one of the most remarkable experiments in the field of elementary particle physics of the last decades. The Belle successor, Belle II collaboration, is aimed to operate the Belle II detector at SuperKEKb factory at 40 times higher luminosity. Increased luminosity imposes new requirements on the detector elements: they have to survive at higher radiation levels, to operate at higher loads and at higher backgrounds. The Belle K_L and muon system based on the resistive plate chambers (RPC) technology worked well during all data taking period, however at Belle II environments its performance decreases to negligible level due to increasing load and high neutron background. To sustain detector operation it will be replaced by the new system based on the scintillation strips read-out by silicon photomultipliers. The latter technology allows not only to reach time resolution at level of 1 ns but also perform the amplitude measurements. Nowadays the production of the new EKLM system's elements are under way. The assembly at KEK is started this fall.

Timofey Uglov

2013-10-08T23:59:59.000Z

477

Neutral long-living kaon and muon system of the Belle II detector  

E-Print Network [OSTI]

The Belle detector operated at KEKb B-factory in 1999-2010 was one of the most remarkable experiments in the field of elementary particle physics of the last decades. The Belle successor, Belle II collaboration, is aimed to operate the Belle II detector at SuperKEKb factory at 40 times higher luminosity. Increased luminosity imposes new requirements on the detector elements: they have to survive at higher radiation levels, to operate at higher loads and at higher backgrounds. The Belle K_L and muon system based on the resistive plate chambers (RPC) technology worked well during all data taking period, however at Belle II environments its performance decreases to negligible level due to increasing load and high neutron background. To sustain detector operation it will be replaced by the new system based on the scintillation strips read-out by silicon photomultipliers. The latter technology allows not only to reach time resolution at level of 1 ns but also perform the amplitude measurements. Nowadays the produc...

Uglov, Timofey

2013-01-01T23:59:59.000Z

478

Calculation of Doublet Capture Rate for Muon Capture in Deuterium within Chiral Effective Field Theory  

E-Print Network [OSTI]

The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant d^R will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.