Sample records for muon solenoid cms

  1. Superconducting solenoids for the Muon collider

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    muon collider has superconducting solenoids as an integralLBNL-44303 SCMAG-690 Superconducting Solenoids for the MuonDE-AC03-76SFOOO98. J Superconducting Solenoids for the Muon

  2. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  3. A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Lakdawala, Samir

    2013-05-02T23:59:59.000Z

    Compact Muon Solenoid (CMS) is one of the flagship experiments in particle physics operating at the Large Hadron Collider (LHC). CMS was built to search for signatures of Higgs bosons, supersymmetry, and other new phenomena. The coming upgrade...

  4. Search for new physics in the Compact Muon Solenoid (CMS) experiment and the response of the CMS calorimeters to particles and jets

    SciTech Connect (OSTI)

    Gumus, Kazim Ziya; /Texas Tech.

    2008-08-01T23:59:59.000Z

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E{sub 6} diquark, excited quark, W{prime}, Z{prime}, and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5{sigma} significance or to exclude at 95% confidence level for integrated luminosities of 100 pb{sup -1}, 1 fb{sup -1}, and 10 fb{sup -1} is evaluated. It is shown that a 5{sigma} discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E{sub 6} diquark. However, a 5{sigma} discovery can not be projected with confidence for a W{prime}, Z{prime} and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters response to a variety of beam particles in a wide momenta range (1 to 350 GeV/c) is measured. Furthermore, using these beam data, the expected performance of the barrel calorimeters to jets is predicted.

  5. Improvement of the Track-based Alignment Procedure of the CMS Muon System

    E-Print Network [OSTI]

    Amin, Nick Jogesh

    2013-12-02T23:59:59.000Z

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is used to explore subatomic interactions through proton-proton collisions. The resulting out- burst of particles from these high energy collisions is then tracked...

  6. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A. [Purdue University, West Lafayette, IN, 47906 (United States)

    2010-02-10T23:59:59.000Z

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  7. HIGH FIELD SOLENOID FOR MUON COOLING.

    SciTech Connect (OSTI)

    KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.

    2006-06-26T23:59:59.000Z

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.

  8. The Solenoid Muon Capture System for the MELC Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    calculation of the magnetic field for the MELC setup are presented. Production of muon from pion decay as low as --~2 Tesla. In the vicinity of the solenoid axis there are targets, consisting of thin tungsten production backward is determined by the location of targets along the solenoid axis and by spacing of target

  9. Radiation Testing of Electronics for the CMS Endcap Muon System

    E-Print Network [OSTI]

    B. Bylsma; D. Cady; A. Celik; L. S. Durkin; J. Gilmore; J. Haley; V. Khotilovich; S. Lakdawala; J. Liu; M. Matveev; B. P. Padley; J. Roberts; J. Roe; A. Safonov; I. Suarez; D. Wood; I. Zawisza

    2012-08-20T23:59:59.000Z

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  10. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; /FERMILAB; Sadovskiy, Y.; /Moscow Phys. Eng. Inst.; Zlobin, Alexander V; /Fermilab

    2007-08-01T23:59:59.000Z

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  11. Muon Collider Final Cooling in 30-50 T Solenoids

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow, R.C.; Lederman, J.

    2011-03-28T23:59:59.000Z

    Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

  12. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect (OSTI)

    Kashikhin, Vladimir S.; Andreev, Nikolai; /Fermilab; Johnson, Rolland P.; /MUONS Inc., Batavia; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01T23:59:59.000Z

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  13. Jet quenching in the compact muon solenoid at the LHC

    E-Print Network [OSTI]

    López Mateos, David

    2005-01-01T23:59:59.000Z

    In this thesis we perform analyses on simulated data that allow us to demonstrate the sensitivity of the CMS experiment to certain jet quenching observables. In particular, two theoretical scenarios which mimic RHIC data ...

  14. Measuring Higgs self-coupling at CMS

    E-Print Network [OSTI]

    Pasterski, Sabrina Gonzalez

    2013-01-01T23:59:59.000Z

    This study evaluates the Compact Muon Solenoid (CMS) experiment's ability to characterize Higgs self-coupling through the ... channel. The effective cross-section for detecting ... events is computed by finding the fraction ...

  15. Design and performance of the alignment system for the CMS muon endcaps

    SciTech Connect (OSTI)

    Hohlmann, Marcus; Baksay, Gyongyi; Browngold, Max; Dehmelt, Klaus; Guragain, Samir; Andreev, Valery; Yang, Xiaofeng; Bellinger, James; Carlsmith, Duncan; Feyzi, Farshid; Loveless, Richard J.; /Florida Inst. Tech. /UCLA /Wisconsin U., Madison /UC, Davis /Fermilab /St. Petersburg, INP /UC, Riverside

    2006-12-01T23:59:59.000Z

    The alignment system for the CMS Muon Endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large Cathode Strip Chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4T field is switched on and off. The Muon Endcap alignment system is required to monitor chamber positions with 75-200 {micro}m accuracy in the R? plane, {approx}400 {micro}m in the radial direction, and {approx}1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations.

  16. The Development of the CMS Zero Degree Calorimeters to Derive the Centrality of AA Collisions

    E-Print Network [OSTI]

    Wood, Jeffrey Scott

    2013-05-31T23:59:59.000Z

    The centrality of PbPb collisions is derived using correlations from the zero degree calorimeter (ZDC) signal and pixel multiplicity at the Compact Muon Solenoid (CMS) Experiment using data from the heavy ion run in 2010. ...

  17. Measurement of the Charge Ratio of Cosmic Muons using CMS Data

    E-Print Network [OSTI]

    M. Aldaya; P. Garcia-Abia

    2008-10-20T23:59:59.000Z

    We have performed the measurement of the cosmic ray muon charge ratio, as a function of the muon momentum, using data collected by the CMS experiment, exploiting the capabilities of the muon barrel drift tube (DT) chambers. The cosmic muon charge ratio is defined as the ratio of the number of positive- to negative-charge muons. Cosmic ray muons result from the interaction of high-energy cosmic-ray particles (mainly protons and nuclei), entering the upper layers of the atmosphere, with air nuclei. Since these collisions favour positive meson production, there is an asymmetry in the charge composition and more positive muons are expected. The data samples were collected at the \\textit{Magnet Test and Cosmic Challenge} (MTCC). While the MTCC itself was a crucial milestone in the CMS detector construction, not having physics studies among its primary goals, it provided the first opportunity to obtain physics results and test the full analysis chain using real data in CMS before the LHC startup, together with a complementary check of the detector performance.

  18. in2p3-00142647,version1-25Apr2007 Available on CMS information server CMS NOTE 2006/110

    E-Print Network [OSTI]

    Boyer, Edmond

    2007 Search for a neutral Higgs boson with WH / ZH, H channel with the CMS detector at the LHC M for the discovery of a light Higgs boson in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is presented. The associated production channels WH and ZH of a Higgs boson decaying

  19. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01T23:59:59.000Z

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  20. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute (Aremenia); et al.,

    2010-03-01T23:59:59.000Z

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  1. Status and Commissioning of the CMS Experiment

    E-Print Network [OSTI]

    O. Buchmueller; F. -P. Schilling

    2007-01-11T23:59:59.000Z

    After a brief overview of the Compact Muon Solenoid (CMS) experiment, the status of construction and installation is described in the first part of the note. The second part of the document is devoted to a discussion of the general commissioning strategy of the CMS experiment, with a particular emphasis on trigger, calibration and alignment. Aspects of b-physics, as well as examples for early physics with CMS are also presented. CMS will be ready for data taking in time for the first collisions in the Large Hadron Collider (LHC) at CERN in late 2007.

  2. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    E-Print Network [OSTI]

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01T23:59:59.000Z

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  3. The alignment of the CMS silicon tracker Methods of alignment

    E-Print Network [OSTI]

    at CERN: proton-proton interaction high luminosity Compact Muon Solenoid: large purpose detector Track- based methods use in CMS Global alignment algorithm ("Millepede II") - simultaneous fit in sequence (local on top of global) - combines strengths of both algorithms V. Karimaki, T. Lampen, and F. P

  4. A Software Suite for Testing the Performance of the Optical Trigger Motherboard Electronics System for the CMS Experiment at the LHC

    E-Print Network [OSTI]

    Schneider, Austin William

    2013-09-28T23:59:59.000Z

    on testing. 2 NOMENCLATURE CERN European Organization for Nuclear Research (Organisation europenne pour la recherche nuclaire) LHC Large Hadron Collider CMS Compact Muon Solenoid, also refers to the CMS detector system Muon An elementary particle similar... Organization of Nuclear Research (CERN), performs proton-proton collisions at high energy. Proton bunches are accelerated to near the speed of light through a series of booster rings until they reach the 27 km (circumference) LHC ring where protons...

  5. Search for Heavy Stable Charged Particles at CMS Using Tracker dE/dx Measurement

    E-Print Network [OSTI]

    Chen, Jie

    2008-07-23T23:59:59.000Z

    on searching for these particles. The main content of this dissertation is discussing the physics potential of the compact muon solenoid (CMS) detector at the large hadron collider (LHC) in detecting such high-mass particles, primarily using dE/dx information...

  6. The CMS conductor

    E-Print Network [OSTI]

    Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S

    2000-01-01T23:59:59.000Z

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...

  7. The CMS High Level Trigger

    E-Print Network [OSTI]

    Adam, W; Deldicque, C; Ero, J; Frühwirth, R; Jeitler, Manfred; Kastner, K; Köstner, S; Neumeister, N; Porth, M; Padrta P; Rohringer, H; Sakulinb, H; Strauss, J; Taurok, A; Walzel, G; Wulz, C E; Lowette, S; Van De Vyver, B; De Lentdecker, G; Vanlaer, P; Delaere, C; Lemaître, V; Ninane, A; van der Aa, O; Damgov, J; Karimäki, V; Kinnunen, R; Lampen, T; Lassila-Perini, K M; Lehti, S; Nysten, J; Tuominiemi, J; Busson, P; Todorov, T; Schwering, G; Gras, P; Daskalakis, G; Sfyrla, A; Barone, M; Geralis, T; Markou, C; Zachariadou, K; Hidas, P; Banerjee, S; Mazumdara, K; Abbrescia, M; Colaleoa, A; D'Amato, N; De Filippis, N; Giordano, D; Loddo, F; Maggi, M; Silvestris, L; Zito, G; Arcelli, S; Bonacorsi, D; Capiluppi, P; Dallavalle, G M; Fanfani, A; Grandi, C; Marcellini, S; Montanari, A; Odorici, F; Travaglini, R; Costa, S; Tricomi, A; Ciulli, a V; Magini, N; Ranieri, R; Berti, L; Biasotto, M; Gulminia, M; Maron, G; Toniolo, N; Zangrando, L; Bellato, M; Gasparini, U; Lacaprara, S; Parenti, A; Ronchese, P; Vanini, S; Zotto, S; Ventura P L; Perugia; Benedetti, D; Biasini, M; Fano, L; Servoli, L; Bagliesi, a G; Boccali, T; Dutta, S; Gennai, S; Giassi, A; Palla, F; Segneri, G; Starodumov, A; Tenchini, R; Meridiani, P; Organtini, G; Amapane, a N; Bertolino, F; Cirio, R; Kim, J Y; Lim, I T; Pac, Y; Joo, K; Kim, S B; Suwon; Choi, Y I; Yu, I T; Cho, K; Chung, J; Ham, S W; Kim, D H; Kim, G N; Kim, W; CKim, J; Oh, S K; Park, H; Ro, S R; Son, D C; Suh, J S; Aftab, Z; Hoorani, H; Osmana, A; Bunkowski, K; Cwiok, M; Dominik, Wojciech; Doroba, K; Kazana, M; Królikowski, J; Kudla, I; Pietrusinski, M; Pozniak, Krzysztof T; Zabolotny, W M; Zalipska, J; Zych, P; Goscilo, L; Górski, M; Wrochna, G; Zalewski, P; Alemany-Fernandez, R; Almeida, C; Almeida, N; Da Silva, J C; Santos, M; Teixeira, I; Teixeira, J P; Varelaa, J; Vaz-Cardoso, N; Konoplyanikov, V F; Urkinbaev, A R; Toropin, A; Gavrilov, V; Kolosov, V; Krokhotin, A; Oulianov, A; Stepanov, N; Kodolova, O L; Vardanyan, I; Ilic, J; Skoro, G P; Albajar, C; De Troconiz, J F; Calderón, A; López-Virto, M A; Marco, R; Martínez-Rivero, C; Matorras, F; Vila, I; Cucciarelli, S; Konecki, M; Ashby, S; Barney, D; Bartalini, P; Benetta, R; Brigljevic, V; Bruno, G; Cano, E; Cittolin, S; Della Negra, M; de Roeck, A; Favre, P; Frey, A; Funk, W; Futyan, D; Gigi, D; Glege, F; Gutleber, J; Hansen, M; Innocente, V; Jacobs, C; Jank, W; Kozlovszky, Miklos; Larsen, H; Lenzi, M; Magrans, I; Mannelli, M; Meijers, F; Meschi, E; Mirabito, L; Murray, S J; Oh, A; Orsini, L; Palomares-Espiga, C; Pollet, L; Rácz, A; Reynaud, S; Samyn, D; Scharff-Hansen, P; Schwick, C; Sguazzoni, G; Sinanis, N; Sphicas, P; Spiropulu, M; Strandlie, A; Taylor, B G; Van Vulpen, I; Wellisch, J P; Winkler, M; Villigen; Kotlinski, D; Zurich; Prokofiev, K; Speer, T; Dumanoglu, I; Bristol; Bailey, S; Brooke, J J; Cussans, D; Heath, G P; Machin, D; Nash, S J; Newbold, D; Didcot; Coughlan, A; Halsall, R; Haynes, W J; Tomalin, I R; Marinelli, N; Nikitenko, A; Rutherford, S; Seeza, C; Sharif, O; Antchev, G; Hazen, E; Rohlf, J; Wu, S; Breedon, R; Cox, P T; Murray, P; Tripathi, M; Cousins, R; Erhan, S; Hauser, J; Kreuzer, P; Lindgren, M; Mumford, J; Schlein, P E; Shi, Y; Tannenbaum, B; Valuev, V; Von der Mey, M; Andreevaa, I; Clare, R; Villa, S; Bhattacharya, S; Branson, J G; Fisk, I; Letts, J; Mojaver, M; Paar, H P; Trepagnier, E; Litvine, V; Shevchenko, S; Singh, S; Wilkinson, R; Aziz, S; Bowden, M; Elias, J E; Graham, G; Green, D; Litmaath, M; Los, S; O'Dell, V; Ratnikova, N; Suzuki, I; Wenzel, H; Acosta, D; Bourilkov, D; Korytov, A; Madorsky, A; Mitselmakher, G; Rodríguez, J L; Scurlock, B; Abdullin, S; Baden, D; Eno, S; Grassi, T; Kunori, S; Pavlon, S; Sumorok, K; Tether, S; Cremaldi, L M; Sanders, D; Summers, D; Osborne, I; Taylor, L; Tuura, L; Fisher,W C; Mans6, J; Stickland, D P; Tully, C; Wildish, T; Wynhoff, S; Padley, B P; Chumney, P; Dasu, S; Smith, W H; CMS Trigger Data Acquisition Group

    2006-01-01T23:59:59.000Z

    At the Large Hadron Collider at CERN the proton bunches cross at a rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent factor of O(1000) data reduction is obtained by a software-implemented High Level Trigger (HLT) selection that is executed on a multi-processor farm. In this review we present in detail prototype CMS HLT physics selection algorithms, expected trigger rates and trigger performance in terms of both physics efficiency and timing.

  8. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    E-Print Network [OSTI]

    V. I. Klyukhin; N. Amapane; A. Ball; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; M. Mulders; R. Loveless

    2012-12-06T23:59:59.000Z

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

  9. Jet Analysis in Heavy Ion Collisions in CMS

    E-Print Network [OSTI]

    M. B. Tonjes; for the CMS collaboration

    2008-10-17T23:59:59.000Z

    At the Relativistic Heavy Ion Collider, jets have been a useful tool to probe the properties of the hot, dense matter created. At the Large Hadron Collider, collisions of Pb+Pb at $\\sqrt{s_{NN}}$ = 5.5 TeV will provide a large cross section of jets at high $E_T$ above the minimum bias heavy ion background. Simulations of the Compact Muon Solenoid (CMS) experiment's capability to measure jets in heavy ion collisions are presented. In particular, $\\gamma$-jet measurements can estimate the amount of energy lost by a jet interacting strongly with the medium, since the tagged photon passes through unaffected.

  10. Solenoid magnet system for the Fermilab Mu2e experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M J [Fermilab; Andreev, N [Fermilab /Boston U.; Ambrosio, G [Fermilab; Brandt, J [Fermilab; Coleman, R [CERN; Evbota, D [Fermilab; Kashikhin, V V [City Coll., N.Y.; Lopes, M [Fermilab; Miller, J [Fermilab; Nicol, T [KEK; Ostojic, R [Tsukuba

    2012-06-08T23:59:59.000Z

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  11. Measurement of the muon charge asymmetry in inclusive $pp \\rightarrow W + X$ production at $\\sqrt{s} = 7$ TeV at CMS and an improved determination of light parton distribution functions

    E-Print Network [OSTI]

    Ghosh, Saranya

    2015-01-01T23:59:59.000Z

    Measurements of the muon charge asymmetry in inclusive $pp \\rightarrow WX$ production at $\\sqrt{s}=7$ TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 $\\mathrm{fb^{-1}}$ recorded with the CMS detector at the LHC. With a sample of more than twenty million $W \\rightarrow \\mu\

  12. Measurement of the muon charge asymmetry in inclusive $pp \\rightarrow W + X$ production at $\\sqrt{s} = 7$ TeV at CMS and an improved determination of light parton distribution functions

    E-Print Network [OSTI]

    Saranya Ghosh; for the CMS Collaboration

    2015-02-18T23:59:59.000Z

    Measurements of the muon charge asymmetry in inclusive $pp \\rightarrow WX$ production at $\\sqrt{s}=7$ TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 $\\mathrm{fb^{-1}}$ recorded with the CMS detector at the LHC. With a sample of more than twenty million $W \\rightarrow \\mu\

  13. Mu2e production solenoid cryostat conceptual design

    SciTech Connect (OSTI)

    Nicol, T.H.; Kashikhin, V.V.; Page, T.M.; Peterson, T.J.; /Fermilab

    2011-06-01T23:59:59.000Z

    Mu2e is a muon-to-electron conversion experiment being designed by an international collaboration of more than 65 scientists and engineers from more than 20 research institutions for installation at Fermilab. The experiment is comprised of three large superconducting solenoid magnet systems, production solenoid (PS), transport solenoid (TS) and detector solenoid (DS). A 25 kW, 8 GeV proton beam strikes a target located in the PS creating muons from the decay of secondary particles. These muons are then focused in the PS and the resultant muon beam is transported through the TS towards the DS. The production solenoid presents a unique set of design challenges as the result of high radiation doses, stringent magnetic field requirements, and large structural forces. This paper describes the conceptual design of the PS cryostat and will include discussions of the vacuum vessel, thermal shield, multi-layer insulation, cooling system, cryogenic piping, and suspension system.

  14. Solenoid magnet system for the Fermilab Mu2e experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M J; Andreev, N; Ambrosio, G; Brandt, J; Coleman, R; Evbota, D; Kashikhin, V V; Lopes, M; Miller, J; Nicol, T; et al

    2012-06-08T23:59:59.000Z

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore »at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  15. An outlook of the user support model to educate the users community at the CMS Experiment

    E-Print Network [OSTI]

    Sudhir Malik; Kati Lassila-Perini

    2011-10-03T23:59:59.000Z

    The CMS (Compact Muon Solenoid) experiment is one of the two large general-purpose particle physics detectors built at the LHC (Large Hadron Collider) at CERN in Geneva, Switzerland. The diverse collaboration combined with a highly distributed computing environment and Petabytes/year of data being collected makes CMS unlike any other High Energy Physics collaborations before. This presents new challenges to educate and bring users, coming from different cultural, linguistics and social backgrounds, up to speed to contribute to the physics analysis. CMS has been able to deal with this new paradigm by deploying a user support structure model that uses collaborative tools to educate about software, computing an physics tools specific to CMS. To carry out the user support mission worldwide, an LHC Physics Centre (LPC) was created few years back at Fermilab as a hub for US physicists. The LPC serves as a "brick and mortar" location for physics excellence for the CMS physicists where graduate and postgraduate scientists can find experts in all aspects of data analysis and learn via tutorials, workshops, conferences and gatherings. Following the huge success of LPC, a centre at CERN itself called LHC Physics Centre at CERN (LPCC) and Terascale Analysis Centre at DESY have been created with similar goals. The CMS user support model would also facilitate in making the non-CMS scientific community learn about CMS physics. A good example of this is the effort by HEP experiments, including CMS, to focus on data preservation efforts. In order to facilitate its use by the future scientific community, who may want to re-visit our data, and re-analyze it, CMS is evaluating the resources required. A detailed, good quality and well-maintained documentation by the user support group about the CMS computing and software may go a long way to help in this endeavour.

  16. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    E-Print Network [OSTI]

    Vami, Tamas Almos

    2015-01-01T23:59:59.000Z

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  17. The Results of Tests of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2009-10-19T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  18. solenoid_web.DVI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Solenoidal Spectrometer to Study Reactions with Short-Lived Beams A. H. Wuosmaa 1 , B. B. Back 2 , C. J. Lister 2 , K. E. Rehm 2 , J. P. Schiffer 2 , and S. J. Freeman 3 1...

  19. Conceptual design of the Mu2e production solenoid cold mass

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Lamm, M.; Mokhov, N.V.; Nicol, T.H.; Page, T.M.; Pronskikh, V.; /Fermilab

    2011-06-01T23:59:59.000Z

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.

  20. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUONDE-AC03-76SF00098. Green SUPERCONDUCTING MAGNETS FOR MUONet ai, "The Use of Superconducting Solenoids in a Muon

  1. The CMS forward calorimeter prototype design studies and Omega(c)0 search at E781 experiment at Fermilab

    SciTech Connect (OSTI)

    Ayan, Ahmet Sedat

    2004-05-01T23:59:59.000Z

    In the fit part, the Compact Muon Solenoid (CMS) forward calorimeter design studies are presented. The forward calorimeter consists of quartz fibers embedded in a steel absorber. Radiation damage studies of the quartz fiber and the absorber as well as the results of the first pre-production prototype PPP-I are presented. In the second part, the {Omega}{sub c}{sup 0}search studies at the SELEX (E781) experiment at FermiLab are presented. 107 {+-} 22 {Omega}{sub c}{sup 0} events are observed in three decay modes. The relative branching ratio ({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) is measured as 2.00 {+-} 0.45(stat) {+-} 0.32(sys).

  2. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, Donna J. (Idaho Falls, ID); Richardson, John G. (Idaho Falls, ID); Albano, Richard K. (Idaho Falls, ID); Morrison, Jr., John L. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  3. LCLS Gun Solenoid Design Considerations

    SciTech Connect (OSTI)

    Schmerge, John

    2010-12-10T23:59:59.000Z

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  4. Measurements of the Higgs boson mass and width in the four-lepton final state and electron reconstruction in the CMS experiment at the LHC

    E-Print Network [OSTI]

    Dalchenko, Mykhailo; Charlot, Claude

    This thesis document reports measurements of the mass and width of the new boson re- cently discovered at the Large Hadron Collider (LHC), candidating to be the Standard Model Higgs boson. The analysis uses proton-proton collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC, corresponding to integrated luminosities of $5.1~fb^{?1}$ at $7~$TeV center of mass energy and $19.7~fb^{?1}$ at $8~$TeV center of mass energy. Set of events selecting Higgs boson via the $H\\to ZZ$ decay channel, where both $Z$ bosons decay to electron or muon lepton pairs, is used for the Higgs boson properties measurements. A precise measurement of its mass has been performed and gives $125.6\\pm0.4\\mbox{(stat)}\\pm0.2\\mbox{(syst)}~$GeV. Constraints on the Higgs boson width were established using its off-shell production and decay to a pair of $Z$ bosons, where one $Z$ boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The obtained result is an upper limit on the Hi...

  5. Search for the Higgs boson in its decay into tau leptons at CMS

    E-Print Network [OSTI]

    Chan, Matthew Hans

    2013-01-01T23:59:59.000Z

    A search for the Standard Model Higgs boson in the H --> rr channel is presented. The search is performed on proton collision data collected by the Compact Muon Solenoid at the Large Hadron Collider. The data corresponds ...

  6. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01T23:59:59.000Z

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  7. Helical channel design and technology for cooling of muon beams

    SciTech Connect (OSTI)

    Yonehara, K; /Fermilab; Derbenev, Y.S.; /Jefferson Lab; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01T23:59:59.000Z

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  8. Hollow Plasma in a Solenoid

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-11-30T23:59:59.000Z

    A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

  9. Diborane Electrode Response in 3D Silicon Sensors for the CMS and ATLAS Experiments

    SciTech Connect (OSTI)

    Brown, Emily R.; /Reed Coll. /SLAC

    2011-06-22T23:59:59.000Z

    Unusually high leakage currents have been measured in test wafers produced by the manufacturer SINTEF containing 3D pixel silicon sensor chips designed for the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) experiments. Previous data has shown the CMS chips as having a lower leakage current after processing than ATLAS chips. Some theories behind the cause of the leakage currents include the dicing process and the usage of copper in bump bonding, and with differences in packaging and handling between the ATLAS and CMS chips causing the disparity between the two. Data taken at SLAC from a SINTEF wafer with electrodes doped with diborane and filled with polysilicon, before dicing, and with indium bumps added contradicts this past data, as ATLAS chips showed a lower leakage current than CMS chips. It also argues against copper in bump bonding and the dicing process as main causes of leakage current as neither were involved on this wafer. However, they still display an extremely high leakage current, with the source mostly unknown. The SINTEF wafer shows completely different behavior than the others, as the FEI3s actually performed better than the CMS chips. Therefore this data argues against the differences in packaging and handling or the intrinsic geometry of the two as a cause in the disparity between the leakage currents of the chips. Even though the leakage current in the FEI3s overall is lower, the current is still significant enough to cause problems. As this wafer was not diced, nor had it any copper added for bump bonding, this data argues against the dicing and bump bonding as causes for leakage current. To compliment this information, more data will be taken on the efficiency of the individual electrodes of the ATLAS and CMS chips on this wafer. The electrodes will be shot perpendicularly with a laser to test the efficiency across the width of the electrode. A mask with pinholes has been made to focus the laser to a beam smaller than the width of an electrode in order to properly scan it. This will provide more information on whether something in the electrodes, such as the polysilicon filling, is contributing to the leakage current or if there is another cause to be found. It will also reveal whether the diborane doping method and the new polysilicon filling has increased the electrode efficiency as expected. Thus, the cause of these leakage currents on the wafers from SINTEF has yet to be definitively found.

  10. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    E-Print Network [OSTI]

    Pöttgens, Michael

    2007-01-01T23:59:59.000Z

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  11. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    E-Print Network [OSTI]

    Apyan, Aram

    Results are presented from searches for the standard model Higgs boson in proton–proton collisions at ?s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated ...

  12. Modeling the high-field section of a muon helical cooling channel

    SciTech Connect (OSTI)

    Zlobin, A.V.; Barzi, E.; Kashikhin, V.S.; Lamm, M.J.; Lombardo, V.; Lopes, M.L.; Yu, M.; /Fermilab; Johnson, R.P.; Flanagan, G.; Kahn, S.A.; Turenne, M.; /MUONS Inc., Batavia

    2010-05-01T23:59:59.000Z

    This paper describes the conceptual design and parameters of a short model of a high-field helical solenoid for muon beam cooling. Structural materials choices, fabrication techniques and first test results are discussed.

  13. atmospheric muon charge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CMS detector HEP - Experiment (arXiv) Summary: A measurement is presented of the flux ratio of positive and negative muons from cosmic ray interactions in the atmosphere,...

  14. The Sector Collector of the CMS DT Trigger system: Installation and Performance

    E-Print Network [OSTI]

    Travaglini, R

    2008-01-01T23:59:59.000Z

    Drift Tubes chambers are used for muon detection in the central region of the CMS experiment at LHC. Custom electronics is used for reconstructing muon track segments and for triggering the CMS readout. The trigger Sector Collector modules collect muon segments identified by the on-chamber devices, synchronize the data received from different chambers and convert from LVDS to Optical for transmission to the off-detector electronics. Installation and integration tests were developed for tuning both firmware and hardware of the Sector Collector system: results are reviewed. The system performance during CMS data taking with cosmic rays is discussed.

  15. Progress on the Fabrication and Testing of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, Steve; Green, M.A.; Li, Derun; Zisman, Michael

    2009-05-19T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) is an international collaboration that will demonstrate ionization cooling in a section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. At each end of the cooling channel a spectrometer solenoid magnet consisting of five superconducting coils will provide a 4 tesla uniform field region. The scintillating fiber tracker within the magnet bore will measure the muon beam emittance as it enters and exits the cooling channel. The 400 mm diameter warm bore, 3 meter long magnets incorporate a cold mass consisting of two coil sections wound on a single aluminum mandrel: a three-coil spectrometer magnet and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The fabrication of the first of two spectrometer solenoids has been completed, and preliminary testing of the magnet is nearly complete. The key design features of the spectrometer solenoid magnets are presented along with a summary of the progress on the training and testing of the first magnet.

  16. ANGULAR MEASUREMENTS OF HTS CRITICAL CURRENT FOR HIGH FIELD SOLENOIDS

    SciTech Connect (OSTI)

    Turrioni, D.; Barzi, E.; Lamm, M.; Lombardo, V.; Zlobin, A. V. [Fermi National Accelerator Laboratory Batavia, Illinois, 60510 (United States); Thieme, C. [American Superconductor (AMSC) Westborough, MA, 01581 (United States)

    2008-03-03T23:59:59.000Z

    An experiment is in the works at Fermilab to confirm that ionization cooling is an efficient way to shrink the size of a muon beam. This would pave the way for Muon Collider machines, which however require in their last stages of acceleration very high field solenoids. The use of high temperature superconducting materials (HTS) is being considered for these magnets using Helium or higher temperature refrigeration. A sample holder was designed to perform critical current (I{sub c}) measurements of HTS conductors under externally applied magnetic fields varying from zero to 90 degree with respect to the c-axis. This was performed in an ample range of temperatures and magnetic field values. A description of the test setup and results for (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO-2223) tapes, and Second Generation HTS in the form of 348 superconductor are presented.

  17. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  18. Thermal Design of the Mu2e Detector Solenoid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhanaraj, Nandhini; Wands, Bob; Buehler, Marc; Feher, Sandor; Page, Thomas M; Peterson, Thomas; Schmitt, Richard L

    2015-06-01T23:59:59.000Z

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniformmore »magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.« less

  19. Thermal Design of the Mu2e Detector Solenoid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhanaraj, Nandhini [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wands, Bob [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Buehler, Marc [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Feher, Sandor [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Page, Thomas M [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Peterson, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Schmitt, Richard L [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2015-06-01T23:59:59.000Z

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

  20. Thermal Design of the Mu2e Detector Solenoid

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Wands, Bob; Buehler, Marc; Feher, Sandor; Page, Thomas M; Peterson, Thomas; Schmitt, Richard L

    2014-12-18T23:59:59.000Z

    The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

  1. Commissioning of Particle ID at ATLAS and CMS with Early LHC Data

    E-Print Network [OSTI]

    T. Berger-Hryn'ova; for the ATLAS; CMS collaborations

    2008-08-28T23:59:59.000Z

    This paper describes latest results on lepton (electron, muon and tau) and photon particle identification at the ATLAS and CMS experiments, with emphasis on how the particle identification can be validated and its performance determined using early LHC data.

  2. Study of Drell-Yan process in CMS experiment at Large Hadron Collider

    E-Print Network [OSTI]

    Jindal, Monika

    The proton-proton collisions at the Large Hadron Collider (LHC) is the begining of a new era in the high energy physics. It enables the possibility of the discoveries at high-energy frontier and also allows the study of Standard Model physics with high precision. The new physics discoveries and the precision measurements can be achieved with highly efficient and accurate detectors like Compact Muon Solenoid. In this thesis, we report the measurement of the differential production cross-section of the Drell-Yan process, $q ar{q} ightarrow Z/gamma^{*} ightarrowmu^{+}mu^{-}$ in proton-proton collisions at the center-of-mass energy $sqrt{s}=$ 7 TeV using CMS experiment at the LHC. This measurement is based on the analysis of data which corresponds to an integrated luminosity of $intmath{L}dt$ = 36.0 $pm$ 1.4 pb$^{-1}$. The measurement of the production cross-section of the Drell-Yan process provides a first test of the Standard Model in a new energy domain and may reveal exotic physics processes. The Drell...

  3. Integrating and automating the software environment for the Beam and Radiation Monitoring for CMS

    E-Print Network [OSTI]

    Filyushkina, Olga; Juslin, J

    2010-01-01T23:59:59.000Z

    The real-time online visualization framework used by the Beam and Radiation Monitoring group at the Compact Muon Solenoid at Large Hadron Collider, CERN. The purpose of the visualization framework is to provide real-time diagnostic of beam conditions, which defines the set of the requirements to be met by the framework. Those requirements include data quality assurance, vital safety issues, low latency, data caching, etc. The real-time visualization framework is written in the Java programming language and based on JDataViewer--a plotting package developed at CERN. At the current time the framework is run by the Beam and Radiation Monitoring, Pixel, Tracker groups, Run Field Manager and others. It contributed to real-time data analysis during 2009-2010 runs as a stable monitoring tool. The displays reflect the beam conditions in a real-time with the low latency level, thus it is the first place at the CMS detector where the beam collisions are observed.

  4. Jet measurements by the CMS experiment in pp and PbPb collisions

    E-Print Network [OSTI]

    Christof Roland for the CMS Collaboration

    2011-07-15T23:59:59.000Z

    The energy loss of fast partons traversing the strongly interacting matter produced in high-energy nuclear collisions is one of the most interesting observables to probe the nature of the produced medium. The multipurpose Compact Muon Solenoid (CMS) detector is well designed to measure these hard scattering processes with its high resolution calorimeters and high precision silicon tracker. Analyzing data from pp and PbPb collisions at a center-of-mass energy of 2.76 TeV parton energy loss is observed as a significant imbalance of dijet transverse momentum. To gain further understanding of the parton energy loss mechanism the redistribution of the quenched jet energy was studied using the transverse momentum balance of charged tracks projected onto the direction of the leading jet. In contrast to pp collisions, a large fraction the momentum balance for asymmetric jets is found to be carried by low momentum particles at large angular distance to the jet axis. Further, the fragmentation functions for leading and subleading jets were reconstructed and were found to be unmodified compared to measurements in pp collisions. The results yield a detailed picture of parton propagation in the hot QCD medium.

  5. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  6. The Engineering Design of the 1.5 m Diameter Solenoid for the MICERFCC Modules

    SciTech Connect (OSTI)

    Wang, L.; Green, M.A.; Xu, F.Y.; Wu, H.; Li, L.K.; Gou, C.S.; Liu, C.S.; Han, G.; Jia, L.X.; Li, D.; Prestemon, S.O.; Virostek, S.P.

    2007-08-27T23:59:59.000Z

    The RF coupling coil (RFCC) module of MICE is where muonsthat have been cooled within the MICE absorber focus (AFC) modules arere-accelerated to their original longitudinal momentum. The RFCC moduleconsists of four 201.25 MHz RF cavities in a 1.4 meter diameter vacuumvessel. The muons are kept within the RF cavities by the magnetic fieldgenerated by a superconducting coupling solenoid that goes around the RFcavities. The coupling solenoid will be cooled using a pair of 4 K pulsetube cooler that will generate 1.5 W of cooling at 4.2 K. The magnet willbe powered using a 300 A two-quadrant power supply. This report describesthe ICST engineering design of the coupling solenoid forMICE.

  7. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07T23:59:59.000Z

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  8. Radiation and thermal analysis of production solenoid for Mu2e experimental setup

    SciTech Connect (OSTI)

    Pronskikh, V.S.; Kashikhin, V.V.; Mokhov, N.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The Muon-to-Electron (Mu2e) experiment at Fermilab, will seek the evidence of direct muon to electron conversion at the sensitivity level where it cannot be explained by the Standard Model. An 8-GeV 25-kW proton beam will be directed onto a tilted gold target inside a large-bore superconducting Production Solenoid (PS) with the peak field on the axis of {approx}5T. The negative muons resulting from the pion decay will be captured in the PS aperture and directed by an S-shaped Transport Solenoid towards the stopping target inside the Detector Solenoid. In order for the superconducting magnets to operate reliably and with a sufficient safety margin, the peak neutron flux entering the coils must be reduced by 3 orders of magnitude that is achieved by means of a sophisticated absorber placed in the magnet aperture. The proposed absorber, consisting of W- and Cu-based alloy parts, is optimized for the performance and cost. Results of MARS15 simulations of energy deposition and radiation are reported. The results of the PS magnet thermal analysis, coordinated with the coil cooling scheme, are reported as well for the selected absorber design.

  9. Single Top production at CMS

    E-Print Network [OSTI]

    Thomas Speer

    2011-10-11T23:59:59.000Z

    A first measurement of the cross section of single top quark production in the t channel in pp collision at sqrt(s)=7 TeV is presented. The measurement is performed on a data sample corresponding to an integrated luminosity of 35.9 pb^-1 recorded at the LHC with the CMS detector. Leptonic decay channels with an electron or a muon in the final state are considered. After a selection optimized for the t-channel mode, two different and complementary analyses have been performed. Both analyses confirm the Tevatron's observation of single top, and their combination measures a cross section of sigma = 83.6 +/- 29.8(stat.+syst.) +/- 3.3 (lumi.) pb, which is consistent with the Standard Model prediction.

  10. Central Solenoid Insert Technical Specification

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01T23:59:59.000Z

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by the Company and ITER. The Fabrication Specifications may reflect some national requirements and regulations that are not fully provided here. This document presents the ITER CSI specifications.

  11. Study of HTS Insert Coils for High Field Solenoids

    SciTech Connect (OSTI)

    Lombardo, Vito; /Fermilab

    2009-09-01T23:59:59.000Z

    Fermilab is currently working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting materials (HTS) is being considered for these solenoids using Helium refrigeration. Several studies have been performed on insert coils made of BSCCO-2223 tapes and second generation (2G) YBCO coated conductors, which are tested at various temperatures and at external fields of up to 14 T. Critical current (I{sub c}) measurements of YBCO short samples are presented as a function of bending stress, magnetic field and field orientation with respect to the sample surface. An analytical fit of critical current data as a function of field and field orientation is also presented. Results from several single-layer and double-layer pancake coils are also discussed.

  12. R&D ERL: HTS Solenoid

    SciTech Connect (OSTI)

    Gupta, R.; Muratore, J.; Plate, S.

    2010-01-01T23:59:59.000Z

    An innovative feature of the ERL project is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The HTS solenoid design offers many advantages because of several unique design features. Typically the solenoid is placed outside the cryostat which means that the beam gets significantly defused before a focusing element starts. In the current design, the solenoid is placed inside the cryostat which provides an early focusing structure and thus a significant reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at {approx}77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre-tests which would have been prohibitively expensive at 4 K in liquid helium because of the additional requirements of cryostat and associated facilities.

  13. Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

    SciTech Connect (OSTI)

    Wang, Li; Xu, FengYu; Wu, Hong; Liu, XiaoKum; Li, LanKai; Guo, XingLong; Chen, AnBin; Green, Michael A; Li, D.R.; Virostek, Steve; Pan, H.

    2008-08-02T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory in the UK. The coupling magnet is a superconducting solenoid mounted around four 201MHz RF cavities, which produces magnetic field up to 2.6 T on the magnet centerline to keep muons within the iris of RF cavities windows. The coupling coil with inner radius of 750mm, length of 285mm and thickness of 102.5mm will be cooled by a pair of 1.5 W at 4.2 K small coolers. This paper will introduce the updated engineering design of the coupling magnet made by ICST in China. The detailed analyses on magnetic fields, stresses induced during the processes of winding, cool down and charging, and cold mass support assembly are presented as well.

  14. Search for Supersymmetry in the Jets + Met + TAUS Final State Using the CMS Detector at the LHC 

    E-Print Network [OSTI]

    Montalvo, Roy Joaquin

    2013-02-28T23:59:59.000Z

    of Particle Physics . . . . . . . . . . . . . . . . 3 2.2 Beyond The Standard Model . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Motivation for SUSY Searches at the LHC... of muon going trough the CMS detector. . . . . . . . . . . 21 3.14 Quarter panel view of the CMS detector. . . . . . . . . . . . . . . . . 22 3.15 Architecture of the Level-1 Trigger [11]. . . . . . . . . . . . . . . . . . 22 3.16 Architecture...

  15. Commissioning of CMS and early standard model measurements with jets, missing transverse energy and photons at the LHC

    E-Print Network [OSTI]

    T. Christiansen

    2008-05-13T23:59:59.000Z

    We report on the status and history of the CMS commissioning, together with selected results from cosmic-ray muon data. The second part focuses on strategies for optimizing the reconstruction of jets, missing transverse energy and photons for early standard model measurements at ATLAS and CMS with the first collision data from the Large Hadron Collider at CERN.

  16. Experimental studies of helical solenoid model based on YBCO tape-bridge joints

    SciTech Connect (OSTI)

    Yu, M.; Lombardo, V.; Turrioni, D.; Zlobin, A.V.; /Fermilab; Flangan, G.; /MUONS Inc., Batavia; Lopes, M.L.; /Fermilab; Johnson, R.P.; /Fermilab

    2011-06-01T23:59:59.000Z

    Helical solenoids that provide solenoid, helical dipole and helical gradient field components are designed for a helical cooling channel (HCC) proposed for cooling of muon beams in a muon collider. The high temperature superconductor (HTS), 12 mm wide and 0.1 mm thick YBCO tape, is used as the conductor for the highest-field section of HCC due to certain advantages, such as its electrical and mechanical properties. To study and address the design, and technological and performance issues related to magnets based on YBCO tapes, a short helical solenoid model based on double-pancake coils was designed, fabricated and tested at Fermilab. Splicing joints were made with Sn-Pb solder as the power leads and the connection between coils, which is the most critical element in the magnet that can limit the performance significantly. This paper summarizes the test results of YBCO tape and double-pancake coils in liquid nitrogen and liquid helium, and then focuses on the study of YBCO splices, including the soldering temperatures and pressures, and splice bending test.

  17. A Software Suite for Testing the Performance of the Optical Trigger Motherboard Electronics System for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Schneider, Austin William

    2013-09-28T23:59:59.000Z

    in turn decay into other lighter particles that can be identified as they pass through the surrounding detector. The two largest experiments at the LHC, CMS [2] and ATLAS [3], announced the discovery of the Higgs boson in July of 2012. This discovery has... system trigger electronics The muon system is a key detector sub-system of CMS; it detects muons, a product of one of the main decay channels of the Higgs boson and critical for triggering at CMS. Monte-Carlo simulations of the CMS experiment show...

  18. A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER

    E-Print Network [OSTI]

    O'Donnell, Tom

    A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

  19. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28T23:59:59.000Z

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  20. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  1. D0 Solenoid Commissioning September 1998

    SciTech Connect (OSTI)

    Rucinski, R.; /Fermilab

    1998-10-12T23:59:59.000Z

    D-Zero installed a new 2 Tesla superconducting solenoid magnet into the central tracking region of the D-Zero detector. This report documents the cryogenic performance of the superconducting solenoid during its first cryogenic operation at Fermilab. By necessity, the liquid helium refrigerator was also operated. This was the second time the refrigerator plant has been operated. The refrigerator's performance is also documented herein.

  2. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley; ,

    2012-04-05T23:59:59.000Z

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  3. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect (OSTI)

    Yonehara, Katsuya; /Fermilab

    2010-07-30T23:59:59.000Z

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  4. SIMULATIONS OF A MUON LINAC FOR A NEUTRINO FACTORY

    SciTech Connect (OSTI)

    Kevin Beard, Alex Bogacz ,Slawomir Bogacz, Vasiliy Morozov, Yves Roblin

    2011-04-01T23:59:59.000Z

    The Neutrino Factory baseline design involves a complex chain of accelerators including a single-pass linac, two recirculating linacs and an FFAG. The first linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV. It must accept a high emittance beam about 30 cm wide with a 10% energy spread. This linac uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities. Simulations have been carried out using several codes including Zgoubi, OptiM, GPT, Elegant and G4beamline, both to determine the optics and to estimate the radiation loads on the elements due to beam loss and muon decay.

  5. Large-acceptance linac for accelerating l9w-energy muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory; Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We propose a high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field. The acceleration starts immediately after collection of pions from a target by solenoidal magnets and brings muons to a kinetic energy of about 200 MeV over a distance of the order of 10 m. At this energy, both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. The project presents unique challenges - a very large energy spread in a highly divergent beam, as well as pion and muon decays - requiring large longitudinal and transverse acceptances. One potential solution incorporates a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. While the primary applications of such a linac are for homeland defense and industry, it can provide muon fluxes high enough to be of interest for physics experiments.

  6. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  7. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect (OSTI)

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27T23:59:59.000Z

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  8. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect (OSTI)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  9. Helmholtz Capture Solenoid Update Peter Loveridge

    E-Print Network [OSTI]

    McDonald, Kirk

    mechanical design with lateral target entry/exit slots · Start with min slot size 20 mm x 200 mm, -an design for a capture solenoid with lateral target entry/exit slots (200 mm x 20 mm) ­ Includes a basic

  10. Emittance control in rf cavities and solenoids

    E-Print Network [OSTI]

    Eshraqi, Mohammad; Lombardi, Alessandra M

    2009-01-01T23:59:59.000Z

    We study emittance growth for transport of uniform and Gaussian beams of particles in rf cavities and solenoids and show analytically its dependence on initial beam parameters. Analytical results are confirmed with simulation studies over a broad range of different initial beams.

  11. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  12. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided bymore »a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  13. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN, Saitama (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan). Research Lab. for Nuclear Reactors; Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  14. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN, Saitama (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan). Research Lab. for Nuclear Reactors; Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-11-10T23:59:59.000Z

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  15. Muon Cooling and Future Muon Facilities

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2006-11-24T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for achieving the highest lepton-antilepton collision energies and the most precise measurements of the parameters of the neutrino mixing matrix. The performance and cost of these future facilities depends sensitively on how well a beam of muons can be cooled. The recent progress of muon-cooling prototype tests and design studies nourishes the hope that such facilities can be built during the next decade.

  16. KT McDonald Muon Accelerator Program Advisory Committee Review (FNAL) July 11, 2012 1 Target and Absorbers

    E-Print Network [OSTI]

    McDonald, Kirk

    Advisory Committee Review (FNAL) July 11, 2012 2 Mission Target: · Maximum production of ± of energies particles in He-gas-cooled tungsten beads ­ inside solenoid magnets. · Low-Z solid/liquid muon absorbers includes the production target and the magnetized pion-decay channel. This system is about 50 m long

  17. Muon Acceleration - RLA and FFAG

    SciTech Connect (OSTI)

    Alex Bogacz

    2011-10-01T23:59:59.000Z

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  18. Using XDAQ in Application Scenarios of the CMS Experiment

    E-Print Network [OSTI]

    Berti, L; Bruno, G; Cano, E; Csilling, A; Cittolin, Sergio; Drouhin, F; Erhan, S; Gigi, D; Glege, F; Gulmini, M; Gutleber, J; Jacobs, C; Kozlovskii, Miroslaw P; Larsen, H; Magrans, I; Maron, G; Meijers, F; Meschi, E; Mirabito, L; Murray, S; Dell, V O; Oh, A; Orsini, L; Pollet, L; Rácz, A; Samyn, D; Scharff-Hansen, P; Sphicas, Paris; Schwick, C; Suzuki, I; Toniolo, N; Ventura, Sandro; Zangrando, L

    2003-01-01T23:59:59.000Z

    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.

  19. Using XDAQ in Application Scenarios of the CMS Experiment

    E-Print Network [OSTI]

    L. Berti; V. Brigljevic; G. Bruno; E. Cano; A. Csilling; S. Cittolin; F. Drouhin; S. Erhan; D. Gigi; F. Glege; M. Gulmini; J. Gutleber; C. Jacobs; M. Kozlowski; H. Larsen; I. Magrans; G. Maron; F. Meijers; E. Meschi; L. Mirabito; S. Murray; V. O? Dell; A. Oh; L. Orsini; L. Pollet; A. Racz; D. Samyn; P. Scharff-Hansen; P. Sphicas; C. Schwick; I. Suzuki; N. Toniolo; S. Ventura; L. Zangrando

    2003-05-26T23:59:59.000Z

    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.

  20. Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)

    E-Print Network [OSTI]

    Morrison, F.

    2012-01-01T23:59:59.000Z

    following observations: 1) A ferrite-cored solenoidal coilthe same order as L. 2) A ferrite-cored solenoidal coil canstable response. 4) Feedback ferrite-cored solenoidal coils

  1. Status of neutrino factory and muon collider R and D

    SciTech Connect (OSTI)

    Zisman, M.S.

    2001-06-17T23:59:59.000Z

    A significant worldwide R and D effort is presently directed toward solving the technical challenges of producing, cooling, accelerating, storing, and eventually colliding beams of muons. Its primary thrust is toward issues critical to a Neutrino Factory, for which R and D efforts are under way in the U.S., via the Neutrino Factory and Muon Collider Collaboration (MC); in Europe, centered at CERN; and in Japan, at KEK. Under study and experimental development are production targets handling intense proton beams (1-4 MW), phase rotation systems to reduce beam energy spread, cooling channels to reduce transverse beam emittance for the acceleration system, and storage rings where muon decays in a long straight section provide a neutrino beam for a long-baseline (3000 km) experiment. Critical experimental activities include development of very high gradient normal conducting RF (NCRF) and superconducting RF (SCRF) cavities, high-power liquid-hydrogen absorbers, and high-field superconducting solenoids. Components and instrumentation that tolerate the intense decay products of the muon beam are being developed for testing. For a high-luminosity collider, muons must be cooled longitudinally as well as transversely, requiring an emittance exchange scheme. In addition to the experimental R and D effort, sophisticated theoretical and simulation tools are needed for the design. Here, the goals, present status, and future R and D plans in these areas will be described.

  2. Design and performance testing of the read-out boards for the CMS-DT chambers

    E-Print Network [OSTI]

    Fernández, C; Marin, J; Oller, J C; Willmott, C

    2002-01-01T23:59:59.000Z

    Read-out boards (ROB) are one of the key elements of readout system for CMS barrel muon drift chambers. To insure proper and reliable operation under all detector environmental conditions an exhaustive set of tests have been developed and performed on the 30 pre-series ROB's before production starts. These tests include operation under CMS radiation conditions to detect and estimate SEU rates, validation with real chamber signals and trigger rates, studies of time resolution and linearity, crosstalk analysis, track pattern generation for calibration and on-line tests, and temperature cycling to uncover marginal conditions. We present the status of the ROB and tests results. (5 refs).

  3. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L. [University of Mississippi-Oxford, University, MS 38677 (United States)

    2010-03-30T23:59:59.000Z

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  4. ITER Central Solenoid Coil Insulation Qualification

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials

    2010-01-01T23:59:59.000Z

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  5. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    SciTech Connect (OSTI)

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11T23:59:59.000Z

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  6. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.; The MEGA Collaboration

    1993-05-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  7. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.

    1993-01-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  8. G-2 and CMS Fast Optical Calorimetry

    SciTech Connect (OSTI)

    Winn, David R

    2012-08-07T23:59:59.000Z

    Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter.

  9. Note: A simple model for thermal management in solenoids

    SciTech Connect (OSTI)

    McIntosh, E. M., E-mail: emb56@cam.ac.uk; Ellis, J. [The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2013-11-15T23:59:59.000Z

    We describe a model of the dynamical temperature evolution in a solenoid winding. A simple finite element analysis is calibrated by accurately measuring the thermally induced resistance change of the solenoid, thus obviating the need for accurate knowledge of the mean thermal conductivity of the windings. The model predicts quasi thermal runaway for relatively modest current increases from the normal operating conditions. We demonstrate the application of this model to determine the maximum current that can be safely applied to solenoids used for helium spin-echo measurements.

  10. Exotic Physics Searches at CMS

    E-Print Network [OSTI]

    Bryan Dahmes for the CMS Collaboration

    2012-02-07T23:59:59.000Z

    We summarize the results of several searches for evidence of new physics phenomena using proton-proton collisions at 7 TeV delivered by the Large Hadron Collider at CERN and recorded by the CMS detector in 2011.

  11. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29T23:59:59.000Z

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  12. Precision Muon Physics

    E-Print Network [OSTI]

    Gorringe, T P

    2015-01-01T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiment...

  13. CMS kinematic edge from s-bottoms

    E-Print Network [OSTI]

    Peisi Huang; Carlos E. M. Wagner

    2015-02-05T23:59:59.000Z

    We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS collaboration. In both scenarios, s-bottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell s-leptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the s-bottoms, neutralinos, and s-leptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for Dark Matter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC.

  14. SolenoidSolenoid--free Startfree Start--up and Rampup and Ramp--upup Progress and Plans for 2009Progress and Plans for 2009--1313

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    in solenoid-free plasma startup research · NSTX has so far explored CHI and Outer PF startup for plasma

  15. A search for excited electrons with the Compact Muon Solenoid detector

    E-Print Network [OSTI]

    Sudano, Elizabeth Jane Dusinberre

    2012-01-01T23:59:59.000Z

    various sums of trigger tower energies are computed for theof the transverse energy of the tower and a bit denoting thethe ratio of energy in the hadronic towers behind the shower

  16. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  17. ATLAS Muon Detector Commissioning

    E-Print Network [OSTI]

    E. Diehl; for the ATLAS muon collaboration

    2009-10-15T23:59:59.000Z

    The ATLAS muon spectrometer consists of several major components: Monitored Drift Tubes (MDTs) for precision measurements in the bending plane of the muons, supplemented by Cathode Strip Chambers (CSC) in the high eta region; Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) for trigger and second coordinate measurement in the barrel and endcap regions, respectively; an optical alignment system to track the relative positions of all chambers; and, finally, the world's largest air-core magnetic toroid system. We will describe the status and commissioning of the muon system with cosmic rays and plans for commissioning with early beams.

  18. The LHCb Muon System

    E-Print Network [OSTI]

    Lenzi, Michela

    2005-01-01T23:59:59.000Z

    The ability to provide fast muon triggering and efficient offline muon identification is an essential feature of the LHCb experiment. The muon detector is required to have a high efficiency over a large area and an appropriate time resolution to identify the bunch crossing for level–0 triggers. The LHCb muon detector consists of five stations equipped with 1368 Multi Wire Proportional Chambers and 12 Gas Electron Multiplier chambers. The technical design of the chambers is briefly presented and the Quality Control procedures during the various construction steps are described. The method developed for gas gain uniformity measurement is also described together with the results on efficiency of detectors fully equipped with the front–end electronics, obtained from tests with cosmic rays.

  19. Muon-proton Scattering

    E-Print Network [OSTI]

    E. Borie

    2013-02-05T23:59:59.000Z

    A recent proposal to measure the proton form factor by means of muon-proton scattering will use muons which are not ultrarelativistic (and also not nonrelativistic). The usual equations describing the scattering cross section use the approximation that the scattered lepton (usually an electron) is ultrarelativistic, with v/c approximately equal to 1. Here the cross section is calculated for all values of the energy. It agrees with the standard result in the appropriate limit.

  20. Measurement of the Top Quark Mass From Dileptonic $t\\bar{t}$ Decays With 2012 CMS Data

    E-Print Network [OSTI]

    Richard Nally; for the CMS Collaboration

    2014-11-26T23:59:59.000Z

    We present a measurement of the top quark mass using 19.7 $\\pm$ 0.5 fb$^{-1}$ of $\\sqrt{s} = 8$ TeV CMS data. In particular, we study dileptonic $t\\bar{t}$ decays, in which a top-antitop pair decays to a final state containing two electrons or muons. We use the Analytical Matrix Weighting Technique (AMWT), and have performed the first blind top mass measurement at CMS. The mass of the top quark is measured as $m_t = 172.47 \\pm 0.17(\\text{stat}) \\pm 1.40(\\text{syst})$ GeV.

  1. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30T23:59:59.000Z

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  2. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S. Y.; Zheng, S. X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-05-30T23:59:59.000Z

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  3. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20T23:59:59.000Z

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  4. VBS/VBF from CMS

    E-Print Network [OSTI]

    Andrea Massironi

    2014-09-10T23:59:59.000Z

    Vector Boson Scattering (VBS) and Vector Boson Fusion (VBF) studies in pp collisions at 7 and 8 TeV center of mass energy based on data recorded by the CMS detector at the LHC in 2011 and 2012 are reported.

  5. The Results of Recent MICE Superconducting Spectrometer Solenoid Test

    SciTech Connect (OSTI)

    Green, Michael A; Virostek, Steve P.; Zisman, Michael S.

    2010-10-15T23:59:59.000Z

    The MICE spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The MICE spectrometer solenoids may be the largest magnets that have been cooled using small two stage coolers. During the previous test of this magnet, the cooler first stage temperatures were too high. The causes of some of the extra first stage heat load has been identified and corrected. The rebuilt magnet had a single stage GM cooler in addition to the three pulse tube coolers. The added cooler reduces the temperature of the top of the HTS leads, the shield and of the first stage of the pulse tube coolers.

  6. Precision Muon Physics

    E-Print Network [OSTI]

    T. P. Gorringe; D. W. Hertzog

    2015-06-04T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  7. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  8. Heavy neutrinos and the $pp\\to lljj$ CMS data

    E-Print Network [OSTI]

    Gluza, J

    2015-01-01T23:59:59.000Z

    We show that the excess in the $pp \\to ee jj$ CMS data can be naturally interpreted within the Minimal Left Right Symmetric model (MLRSM), keeping $g_L = g_R$, if CP phases and non-degenerate masses of heavy neutrinos are taken into account. As an additional benefit, a natural interpretation of the reported ratio (14:1) of the opposite-sign (OS) $pp\\to l^\\pm l^\\mp jj$ to the same-sign (SS) $pp\\to l^\\pm l^\\pm jj$ lepton signals is possible. Finally, a suppression of muon pairs with respect to electron pairs in the $pp \\to lljj$ data is obtained, in accordance with experimental data. If the excess in the CMS data survives in the future, it would be a first clear hint towards presence of heavy neutrinos in right-handed charged currents with specific CP phases, mixing angles and masses, which will have far reaching consequences for particle physics directions.

  9. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  10. Progress Towards Completion of the MICE Demonstration of Muon Ionization Cooling

    E-Print Network [OSTI]

    ,

    2013-01-01T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) at the Rutherford Appleton Laboratory aims to demonstrate $\\approx$ 10% ionization cooling of a muon beam by its interaction with low-Z absorber materials followed by restoration of longitudinal momentum in RF linacs. MICE Step IV, including the first LH2 or LiH absorber cell sandwiched between two particle tracking spectrometers, is the collaboration's near-term goal. Two large superconducting spectrometer solenoids and one focus coil solenoid will provide a magnetic field of $\\approx$4 T in the tracker and absorber-cell volumes. The status of these components is described, as well as progress towards Steps V and VI, including the eight RF cavities to provide the required 8 MV/m gradient in a strong magnetic field; this entails an RF drive system to deliver 2 MW, 1 ms pulses of 201 MHz frequency at 1 Hz repetition rate, the distribution network to deliver 1 MW to each cavity with correct RF phasing, diagnostics to determine the gradient and the muon transit phase...

  11. Beam Dynamical Evolutions in a Solenoid Channel: A Review

    E-Print Network [OSTI]

    H. F. Kisoglu; M. Yilmaz

    2014-09-15T23:59:59.000Z

    Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. This solenoid channel transports the proton beam ejected by a proton source, and matches it with the Radio Frequency Quadrupole (RFQ) that is a subcomponent just after the LEBT. These solenoid magnets are used as focusing element to get the beam divergence and emittance growth under control. This paper includes settings of the LEBT solenoids with regard to beam dynamics, which investigates the beam particles motion in particle accelerators, for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER. Furthermore, the simulation results have been interpreted analytically.

  12. Virtual data in CMS production

    SciTech Connect (OSTI)

    Arbree, A. et al.

    2004-08-26T23:59:59.000Z

    Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: (1) a Virtual Data Language, which is used to describe virtual data products, (2) a Virtual Data Catalog, which is used to store virtual data entries, (3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence independent plan, (4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as WorkRunner, is used to schedule the instantiation of virtual data products across a grid.

  13. The CMS integration grid testbed

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26T23:59:59.000Z

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  14. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  15. The CMS Journey to LHC Physics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    An overview of the design, the construction and physics of CMS will be given. A history of construction, encompassing the R&D; and challenges faced over the last decade and a half, will be recalled using selected examples. CMS is currently in the final stages of installation and commissioning is gathering pace. After a short status report of where CMS stands today some of the expected (great) physics to come will be outlined. * Tea & coffee will be served at 16:00.

  16. Description and performance of track and primary-vertex reconstruction with the CMS tracker

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei; et al.,

    2014-10-01T23:59:59.000Z

    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |?| more »inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |?| « less

  17. Muon Cooling and Future Muon Facilities: The Coming Decade

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2009-10-21T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the neutrino mixing matrix. The performance and cost of these depend sensitively on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built in the decade to come.

  18. Muon capture for the front end of a muon collider

    SciTech Connect (OSTI)

    Neuffer, D.; /Fermilab; Yoshikawa, C.; /MUONS Inc., Batavia

    2011-03-01T23:59:59.000Z

    We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

  19. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01T23:59:59.000Z

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  20. Certification of Superconducting Solenoid-Based Focusing Lenses

    SciTech Connect (OSTI)

    DiMarco, E.Joseph; Hemmati, Ali M.; Orris, Darryl F.; Page, Thomas M.; Rabehl, Roger H.; Tartaglia, Michael A.; Terechkine, Iouri; Tompkins, John C.

    2010-07-29T23:59:59.000Z

    The first production focusing lens for the HINS beam line at Fermilab has been assembled into a cryostat and tested. A total of 5 devices will be tested before they are installed in the low energy section of the HINS beam line, which uses copper Crossbar-H (CH) style RF cavities. One of the tested CH-section lens assemblies includes a pair of weak orthogonal steering dipoles nested within a strong focusing solenoid, and has six vapor cooled power leads. The other device has only the strong focusing solenoid, and utilizes a single pair of HTS power leads. The production test program is designed to measure the thermal performance of the cryostat, minimum cooling requirements for the HTS leads, quench performance of all superconducting components, and precise determination of the magnetic axis and field angles. Results and future plans for the first production device tests are presented.

  1. Top Quark Measurements in CMS

    E-Print Network [OSTI]

    Efe Yazgan; for the CMS Collaboration

    2014-09-12T23:59:59.000Z

    Measurements involving top quarks provide important tests of QCD. A selected set of top quark measurements in CMS including the strong coupling constant, top quark pole mass, constraints on parton distribution functions, top quark pair differential cross sections, ttbar+0 and >0 jet events, top quark mass studied using various kinematic variables in different phase-space regions, and alternative top quark mass measurements is presented. The evolution of expected uncertainties in future LHC runs for the standard and alternative top quark mass measurements is also presented.

  2. Muon capture at PSI

    E-Print Network [OSTI]

    Peter Winter

    2010-12-17T23:59:59.000Z

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calculate related processes such as solar pp-fusion or neutrino-deuteron scattering. The MuSun experiment will deduce Lambda_d to better than 1.5%. The experiment uses the MuCap detection setup with a new time projection chamber operated with deuterium at 30K and several hardware upgrades. The system is currently fully commissioned and the main physics data taking will start in 2011.

  3. First Generation Final Focusing Solenoid For NDCX-I

    SciTech Connect (OSTI)

    Seidl, P. A.; Waldron, W.

    2011-11-09T23:59:59.000Z

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

  4. Analytical Study of Stress State in HTS Solenoids

    SciTech Connect (OSTI)

    Barzi, E.; Terzini, E.; /Fermilab

    2009-01-01T23:59:59.000Z

    A main challenge for high field solenoids made of in High Temperature Superconductor (HTS) is the large stress developed in the conductor. This is especially constraining for BSCCO, a brittle and strain sensitive ceramic material. To find parametric correlations useful in magnet design, analytical models can be used. A simple model is herein proposed to obtain the radial, azimuthal and axial stresses in a solenoid as a function of size, i.e. self-field, and of the engineering current density for a number of different constraint hypotheses. The analytical model was verified against finite element modeling (FEM) using the same hypotheses of infinite rigidity of the constraints and room temperature properties. FEM was used to separately evaluate the effect of thermal contractions at 4.2 K for BSCCO and YBCO coils. Even though the analytical model allows for a finite stiffness of the constraints, it was run using infinite stiffness. For this reason, FEM was again used to determine how much stresses change when considering an outer stainless steel skin with finite rigidity for both BSCCO and YBCO coils. For a better understanding of the actual loads that high field solenoids made of HTS will be subject to, we have started some analytical studies of stress state in solenoids for a number of constraint hypotheses. This will hopefully show what can be achieved with the present conductor in terms of self-field. The magnetic field (B) exerts a force F = B x J per unit volume. In superconducting magnets, where the field and current density (J) are both high, this force can be very large, and it is therefore important to calculate the stresses in the coil.

  5. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect (OSTI)

    A. C. Crawford et al.

    2003-10-02T23:59:59.000Z

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  6. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01T23:59:59.000Z

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  7. Studies of high-field sections of a muon helical cooling channel with coil separation

    SciTech Connect (OSTI)

    Lopes, M.L.; Kashikhin, V.S.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling discussed. The paper also describes methods for field corrections and their practical limits. The magnetic performance of the helical solenoid with coil separation was discussed in this work. The separation could be done in three different ways and the performances could be very different which is important and should be carefully described during the beam cooling simulations. The design that is currently being considered is the one that has the poorest magnetic performance because it presents ripples in all three components, in particular in the helical gradient which could be quite large. Moreover, the average gradient could be off, which could affect the cooling performance. This work summarized methods to tune the gradient regarding the average value and the ripple. The coil longitudinal thickness and the helix period can be used to tune G. Thinner coils tend to reduce the ripples and also bring G to its target value. However, this technique reduces dramatically the operational margin. Wider coils can also reduce the ripple (not as much as thinner coils) and also tune the gradient to its target value. Longer helix periods reduce ripple and correct the gradient to the target value.

  8. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  9. CONSTRUCTION AND TESTING OF THE TWO METER DIAMETER TPC THIN SUPERCONDUCTING SOLENOID

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01T23:59:59.000Z

    DIAMETER TPC THIN SUPERCONDUCTING SOLENOID . 'i.A. Green,an Aluminum Stabilized Superconductor", Cryogenics 17, Vol.and Construction of a Superconducting Stabilized Aluminum

  10. Solenoidal Fields for Ion Beam Transport and Focusing

    SciTech Connect (OSTI)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01T23:59:59.000Z

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some numerical results obtained with it are also presented. Details of design, fabrication, installation, and operation of magnet systems are not included; here we are concerned with calculations that precede or supplement detailed design. Mathematical derivations are presented with only a moderate number of steps. While there is no claim of originality, except for various numerical approximations and a conceptual induction module design in section 20, many of the results and discussions are not readily available elsewhere. Our primary topic is axisymmetric solenoidal systems with no magnetic materials. These simplifying features allow useful analytical calculations, which occupy sections 2-13. Deviations from axisymmetry are considered in sections 14, 15, 21, 22, and 23 and the effects of magnetic materials are treated in sections 16-20. Since magnetic aberrations are mixed with geometric aberrations in computing ion orbits, section 22 on the ion equations of motion in an arbitrary field is included.

  11. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Daniel M. Kaplan on behalf of the MAP; MICE collaborations

    2013-07-15T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  12. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2013-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  13. Stochastic cooling in muon colliders

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01T23:59:59.000Z

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

  14. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  15. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2014-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  16. Muon ID - taking care of lower momenta muons

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01T23:59:59.000Z

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  17. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01T23:59:59.000Z

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  18. Muon catalyzed fusion

    SciTech Connect (OSTI)

    Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

    1986-01-01T23:59:59.000Z

    This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

  19. 26 July 2000 TESLA Report 2000-13 Compensation of Solenoid Effects at the TESLA

    E-Print Network [OSTI]

    26 July 2000 TESLA Report 2000-13 Compensation of Solenoid Effects at the TESLA Interaction Point at the TESLA interaction point is 5 nm. The long solenoid encompassing the detector introduces coupling effects along the beam line. This is a concern for a linear collider such as TESLA, where the vertical beam size

  20. Optical solenoid beams Sang-Hyuk Lee,1 Yohai Roichman,2 and David G. Grier2

    E-Print Network [OSTI]

    Grier, David

    Optical solenoid beams Sang-Hyuk Lee,1 Yohai Roichman,2 and David G. Grier2 1Department York, NY 10003 Abstract: We introduce optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction-limited in-plane intensity peak spirals around the optical axis

  1. Method and apparatus for monitoring armature position in direct-current solenoids

    DOE Patents [OSTI]

    Moyers, John C. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN)

    1996-12-10T23:59:59.000Z

    A method for determining the position of an armature of a dc-powered solenoid. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature's position.

  2. Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection F-acting solenoid valves to meet the demands of pulsed detonation fuel injection and other high-frequency devices is presented. The micro-valve was found to performance well above the manufacturer's rated frequency under no

  3. Virtual data in CMS analysis

    SciTech Connect (OSTI)

    A. Arbree et al.

    2003-10-01T23:59:59.000Z

    The use of virtual data for enhancing the collaboration between large groups of scientists is explored in several ways: by defining ''virtual'' parameter spaces which can be searched and shared in an organized way by a collaboration of scientists in the course of their analysis; by providing a mechanism to log the provenance of results and the ability to trace them back to the various stages in the analysis of real or simulated data; by creating ''check points'' in the course of an analysis to permit collaborators to explore their own analysis branches by refining selections, improving the signal to background ratio, varying the estimation of parameters, etc.; by facilitating the audit of an analysis and the reproduction of its results by a different group, or in a peer review context. We describe a prototype for the analysis of data from the CMS experiment based on the virtual data system Chimera and the object-oriented data analysis framework ROOT. The Chimera system is used to chain together several steps in the analysis process including the Monte Carlo generation of data, the simulation of detector response, the reconstruction of physics objects and their subsequent analysis, histogramming and visualization using the ROOT framework.

  4. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Yagmur Tourun

    2010-01-08T23:59:59.000Z

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  5. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A. [JLAB; Creel, Jonathan D. [JLAB; Dixon, Kelly d. [JLAB; Ganni, Venkatarao [JLAB; Martin, Floyd D. [JLAB; Norton, Robert O. [JLAB; Radovic, Sasa [JLAB

    2014-01-01T23:59:59.000Z

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  6. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    E-Print Network [OSTI]

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01T23:59:59.000Z

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  7. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute(Armenia)

    2011-07-01T23:59:59.000Z

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  8. Novel linac structures for low-beta ions and for muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  9. Measurements of Heavy Flavour Production at ATLAS and CMS

    E-Print Network [OSTI]

    Gladilin, Leonid; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    New and updated (after the previous Moriond QCD) ATLAS and CMS results on heavy flavour production are reviewed.

  10. Low-energy muons via frictional cooling

    E-Print Network [OSTI]

    Yu Bao; Allen Caldwell; Daniel Greenwald; Guoxing Xia

    2010-01-18T23:59:59.000Z

    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes.

  11. The MICE Muon Beam Line

    SciTech Connect (OSTI)

    Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

    2011-10-06T23:59:59.000Z

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  12. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  13. Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-07-01T23:59:59.000Z

    A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

  14. A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC

    E-Print Network [OSTI]

    Lakdawala, Samir

    2013-05-02T23:59:59.000Z

    showing the electronics readout elements. The horizontal rows represent GEM chamber "partitions", each partition being served by 3 VFAT chips, each reading out 128 strips. GEM pads are defined as combinations of groups of strips, which in this study have... been taken as 16 strips per pad. Therefore, each GEM chamber partition is divided into 24 pads. 14 The first step is to understand the geometry and coordinate systems of both the GEM and the CSC. As mentioned previously, the CSC is a 6-layer...

  15. Design and Energetic Characterization of a Solenoid Injected Liquid Monopropellant Powered Actuator for

    E-Print Network [OSTI]

    Design and Energetic Characterization of a Solenoid Injected Liquid Monopropellant Powered Actuator tracking performance. Experimental results characterizing the energetic performance of the system that of battery- powered servomotors. Index Terms ­ Actuators, human-scale robot, hydrogen peroxide

  16. Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility

    E-Print Network [OSTI]

    Becchetti, Fred

    Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2010 Doctoral

  17. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    E-Print Network [OSTI]

    Barton, T. J.

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K.?R. Samokhvalova, J. Zhou and C. Chen ...

  18. Non-inductive Solenoid-less Plasma Current Start-up in NSTX Using Transient CHI

    SciTech Connect (OSTI)

    Raman, R; Jarboe, T R; Nelson, B A; Bell, M G; Ono, M; Bigelow, T; Kaita, R; LeBlanc, B; Lee, K C; Maqueda, R; Menard, J; Paul, S

    2007-05-23T23:59:59.000Z

    Coaxial Helicity Injection (CHI) has been successfully used in the National Spherical Torus Experiment (NSTX) for a demonstration of closed flux current generation without the use of the central solenoid. The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. CHI is a promising candidate for solenoid-free plasma startup in a ST. The method has now produced closed flux current up to 160 kA verifying the high current capability of this method in a large ST built with conventional tokamak components.

  19. Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2013-01-01T23:59:59.000Z

    updated calculations confirmed the measured heat load of ~6of these calculations was the direct heat load into the coldcalculations was carried out in order to characterize the spectrometer solenoid heat loads

  20. Jet Studies at CMS and ATLAS

    E-Print Network [OSTI]

    Konstantinos Kousouris

    2009-06-11T23:59:59.000Z

    The jet reconstruction and jet energy calibration strategies adopted by the CMS and ATLAS experiments are presented. Jet measurements that can be done with early data to confront QCD at the highest transverse momentum scale and search for new physics are described.

  1. MC & Tuning at CMS December 16, 2008

    E-Print Network [OSTI]

    Field, Richard

    Rick Field ­ Florida/CDF/CMS Page 5 JIMMY at CDFJIMMY at CDF The Energy in the "Underlying Event "Leading Jet" JIMMY Default JM325 "Transverse" ETsum Density: dET/dd 0.0 1.0 2.0 3.0 4.0 0 100 200 300 400 Tune A MidPoint R = 0.7 |(jet)| JIMMY

  2. The Fractal Density Structure in Supersonic Isothermal Turbulence: Solenoidal versus Compressive Energy Injection

    E-Print Network [OSTI]

    Christoph Federrath; Ralf S. Klessen; Wolfram Schmidt

    2009-02-03T23:59:59.000Z

    In a systematic study, we compare the density statistics in high resolution numerical experiments of supersonic isothermal turbulence, driven by the usually adopted solenoidal (divergence-free) forcing and by compressive (curl-free) forcing. We find that for the same rms Mach number, compressive forcing produces much stronger density enhancements and larger voids compared to solenoidal forcing. Consequently, the Fourier spectra of density fluctuations are significantly steeper. This result is confirmed using the Delta-variance analysis, which yields power-law exponents beta~3.4 for compressive forcing and beta~2.8 for solenoidal forcing. We obtain fractal dimension estimates from the density spectra and Delta-variance scaling, and by using the box counting, mass size and perimeter area methods applied to the volumetric data, projections and slices of our turbulent density fields. Our results suggest that compressive forcing yields fractal dimensions significantly smaller compared to solenoidal forcing. However, the actual values depend sensitively on the adopted method, with the most reliable estimates based on the Delta-variance, or equivalently, on Fourier spectra. Using these methods, we obtain D~2.3 for compressive and D~2.6 for solenoidal forcing, which is within the range of fractal dimension estimates inferred from observations (D~2.0-2.7). The velocity dispersion to size relations for both solenoidal and compressive forcing obtained from velocity spectra follow a power law with exponents in the range 0.4-0.5, in good agreement with previous studies.

  3. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect (OSTI)

    The STAR Collaboration

    1992-06-15T23:59:59.000Z

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  4. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect (OSTI)

    Not Available

    1992-06-15T23:59:59.000Z

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  5. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  6. Description and performance of track and primary-vertex reconstruction with the CMS tracker

    SciTech Connect (OSTI)

    Chatrchyan, Serguei [Yerevan Physics Institute (Armenia); et al.,

    2014-10-01T23:59:59.000Z

    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |?| < 0.9 and 85% for 0.9 < |?| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |?| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10?m and 30?m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12?m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

  7. Description and performance of track and primary-vertex reconstruction with the CMS tracker

    E-Print Network [OSTI]

    CMS Collaboration

    2014-10-28T23:59:59.000Z

    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For ttbar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pt > 0.9 GeV is 94% for pseudorapidities of abs(eta) nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pt = 100 GeV emitted at abs(eta) impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 microns in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

  8. Efficiency measurement of b-tagging algorithms developed by the CMS experiment

    E-Print Network [OSTI]

    Saptaparna Bhattacharya; for the CMS collaboration

    2011-10-20T23:59:59.000Z

    Identification of jets originating from b quarks (b-tagging) is a key element of many physics analyses at the LHC. Various algorithms for b-tagging have been developed by the CMS experiment to identify b-tagged jets with a typical efficiency between 40% and 70% while keeping the rate of misidentified light quark jets between 0.1% and 10%. An important step, in order to be able to use these tools in physics analysis, is the determination of the efficiency for tagging b-jets. Several methods to measure the efficiencies of the lifetime based b-tagging algorithms are presented. Events that have jets with muons are used to enrich a jet sample in heavy flavor content. The efficiency measurement relies on the transverse momentum of the muon relative to the jet axis or on solving a system of equations which incorporate two uncorrelated taggers. Another approach uses the number of b-tagged jets in top pair events to estimate the efficiency. The results obtained in 2010 data and the uncertainties obtained with the different techniques are reported. The rate of misidentified light quarks have been measured using the "negative" tagging technique.

  9. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL] [ORNL; Irick, David Kim [ORNL] [ORNL; Kenney, Steven J [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  10. Inclusive W/Z Production at CMS

    E-Print Network [OSTI]

    P. Tan

    2009-10-12T23:59:59.000Z

    At the LHC, the production cross sections of W/Z bosons are tens to hundreds of nanobarns. The production mechanism of these processes is well established in the Standard Model and these processes can be used as "standard candles" to help commission the CMS detector for physics. Leptonic decays of W/Z bosons are expected to have very high trigger efficiency and signal to background ratio. Therefore they are ideal channels to study the properties of W/Z bosons in detail, such as cross sections and charge asymmetry. In this paper early CMS results on inclusive W/Z production at 10 TeV center-of-mass energy are discussed.

  11. Quarkonium Production with the CMS Experiment

    E-Print Network [OSTI]

    Keith Ulmer; on behalf of the CMS Collaboration

    2013-01-20T23:59:59.000Z

    Results from studies of quarkonium production are presented from the CMS experiment at the LHC in proton-proton collisions at sqrt(s) = 7 TeV. We report measurements of the ratio of chi_c2/chi_c1 production versus transverse momentum and Upsilon(nS) production vs rapidity and transverse momentum for the 1S, 2S and 3S states. Reconstruction of Bc mesons is also presented in two decay channels.

  12. Precision Muon Reconstruction in Double Chooz

    E-Print Network [OSTI]

    Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

    2014-08-15T23:59:59.000Z

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  13. Introduction to Mini Muon Tracker

    SciTech Connect (OSTI)

    Borozdin, Konstantin N. [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  14. Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator

    SciTech Connect (OSTI)

    Geynisman, Michael; /Fermilab

    2010-05-01T23:59:59.000Z

    MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

  15. Commissioning of the ATLAS Muon Trigger Selection

    E-Print Network [OSTI]

    Elisa Musto

    2010-09-30T23:59:59.000Z

    The performance of the three-level ATLAS muon trigger as evaluated by using LHC data is presented. Events have been selected by using only the hardware-based Level-1 trigger in order to commission and to subsequently enable the (software-based) selections of the High Level Trigger. Studies aiming at selecting prompt muons from J/{\\psi} and at reducing non prompt muon contamination have been performed. A brief overview on how the muon triggers evolve with increasing luminosity is given.

  16. LHC/CMS Journal Club November 30, 2005

    E-Print Network [OSTI]

    Field, Richard

    Rick Field - Florida/CMS/CDF Page 4 TheThe ""Underlying EventUnderlying Event"" inin High PHigh PTT Jet

  17. Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)

    SciTech Connect (OSTI)

    Morrison, F.; Becker, A.; Conti, U.; Gasperikova, E.

    2011-06-15T23:59:59.000Z

    We have designed and lab tested a new ferrite cored induction coil sensor for measuring the secondary fields from metallic UXO with the BUD system. The objective was to replace the 5-inch diameter air-cored coils in the BUD system with smaller sensors that would allow the placement of multiple sensors in the smaller package of the new BUD hand-held system. A ferrite-cored solenoidal coil of length L can easily be made to have sensitivity and noise level roughly the same as an air-cored coil of a diameter on the same order as L. A ferrite-cored solenoidal coil can easily have a feedback configuration to achieve critical damping. The feedback configuration leads to a very stable response. Feedback ferrite-cored solenoidal coils show very little interaction as long as they are separated by one half their length.

  18. Optimization of a Mu2e production solenoid heat and radiation shield using MARS15

    SciTech Connect (OSTI)

    Pronskikh, V.S.; Mokhov, N.V.; /Fermilab

    2011-02-01T23:59:59.000Z

    A Monte-Carlo study of several Mu2e Production Solenoid (PS) absorber (heat shield) versions using the MARS15 code has been performed. Optimizations for material as well as cost (amount of tungsten) have been carried out. Studied are such quantities as the number of displacements per atom (DPA) in the helium-cooled solenoid superconducting coils, power density and dynamic heat load in various parts of the PS and its surrounding structures. Prompt dose, residual dose, secondary particle flux are also simulated in the PS structures and the experimental hall. A preliminary choice of the PS absorber design is made on the ground of these studies.

  19. The Program in Muon and Neutrino Physics Super Beams, Cold Muon Beams, Neutrino Factory and the Muon Collider

    E-Print Network [OSTI]

    Raja, R; Gallardo, J; Geer, S; Kaplan, D; McDonald, K F; Palmer, R; Sessler, Andrew M; Skrinsky, A N; Summers, D; Tigner, Maury; Tollestrup, Alvin V; Wurtele, J S; Zisman, M S; Raja, Rajendran

    2001-01-01T23:59:59.000Z

    We outline in detail a staging scenario for realizing the Neutrino Factory and the Muon Collider. As a first stage we envisage building an intense proton source that can be used to perform high intensity conventional neutrino beam experiments ("Superbeams"). While this is in progress, we perform R&D in collecting, cooling and accelerating muons which leads to the next two stages of "Cold Muon Beams" and the Neutrino Factory. Further progress in Muon Cooling especially in the area of emittance exchange will lead us to the Muon Collider. A staged scenario such as this opens up new physics avenues at each step and will provide a long range base program for particle physics.

  20. CMS Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries Jump to:CMR Fuel Cells LtdCMS

  1. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

  2. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab'sSpace andFermilabMuons

  3. B8 Page 1 B8. Using CMS-Wave

    E-Print Network [OSTI]

    US Army Corps of Engineers

    B8 ­ Page 1 B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: · Full-plane wind-generation of waves · Automatic wave run-up calculation · Infra-gravity wave calculation · Nonlinear wave-wave interaction · Muddy

  4. Over Voltage in a Multi-sectioned Solenoid during a Quenching

    SciTech Connect (OSTI)

    Guo, Xinglong; Wang, Li; Pan, Heng; Wu, Hong; Liu, Xiaokun; Chen, Anbin; Green, M.A.; Xu, F.Y.

    2009-06-21T23:59:59.000Z

    Accurate analysis of over voltage in the superconducting solenoid during a quench is one of the bases for quench protection system design. Classical quench simulation methods can only give rough estimation of the over voltage within a magnet coil. In this paper, for multi-sectioned superconducting solenoid, based on the classical assumption of ellipsoidal normal zone, three-dimension al temperature results are mapped to the one-dimension of the wire, the temperature distribution along the wire and the resistances of each turn are obtained. The coil is treated as circuit comprised of turn resistances, turn self and mutual inductances. The turn resistive voltage, turn inductive voltage, and turn resultant voltage along the wire are calculated. As a result, maximum internal voltages, the layer-to-layer voltages and the turn-to-turn voltages are better estimated. Utilizing this method, the over voltage of a small solenoid and a large solenoid during quenching have been studied. The result shows that this method can well improve the over voltage estimate, especially when the coil is larger.

  5. Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction

    E-Print Network [OSTI]

    Ji, Hantao

    Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction S. P FRC formation technique is described, where a spheromak transitions to a FRC with inductive current are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal

  6. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect (OSTI)

    R. Raja et al.

    2001-08-08T23:59:59.000Z

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  7. A Detector Scenario for the MuonCollider Cooling Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    : Meson Lab at Fermilab: Power Supplies (two floors) Cooling Apparatus Muon Beamline shielding shieldingA Detector Scenario for the Muon­Collider Cooling Experiment C. Lu, K.T. McDonald and E.J. Prebys the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus. 1 #12; Possible site

  8. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  9. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  10. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    C. L. Morris; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; E. Guardincerri; A. Hecht; E. C. Milner; H. Miyadera; J. O. Perry; D. Poulson

    2014-06-04T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  11. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    Morris, C L; Borodzin, K; Durham, J M; Fabritius, J M; Guardincerri, E; Hecht, A; Milner, E C; Miyadera, H; Perry, J O; Poulson, D

    2014-01-01T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  12. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15T23:59:59.000Z

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  13. $B^0_{(s)} \\rightarrow ?^+?^-$ at CMS

    E-Print Network [OSTI]

    Franco Ligabue

    2014-10-23T23:59:59.000Z

    The search for the rare \\BMuMu and \\BsMuMu decays in pp collisions at $\\sqrt s = 7$~GeV and $\\sqrt s = 8$~GeV, collected at the LHC in 2011 and 2012, is briefly reviewed. The data analyzed by CMS correspond to a total integrated luminosity of 5 and 20 $\\rm fb^{-1}$, respectively. The time-integrated average branching fraction $\\left$ has been measured to be $(3.0 ^{+1.0}_{-0.9})\\times 10^{-9}$ in accordance with the Standard Model predictions, while an upper limit $\\left < 1.1\\times 10^{-9}) $ has been placed on the other investigated decay at 95% CL. A preliminary combination with the results from LHCb is also presented for both channels, and prospects for the future are briefly discussed.

  14. Early Top Physics at CMS Experiment

    E-Print Network [OSTI]

    Jesus Manuel Vizan

    2008-10-17T23:59:59.000Z

    The top quark was discovered at the Tevatron in 1995. For the last decade the study of its properties has been a major theme in the worldwide experimental high energy physics program. The advent of the LHC opens up a new era in top quark physics; because of the large $t\\bar{t}$ cross-section and the high luminosity, the LHC can be thought of as a top factory. Here we present the prospects and plans for ttbar physics at CMS at an early stage of the experiment, covering from the initial establishment of the top signal, to the first measurements that become possible for an integrated luminosity of 100 $pb^{-1}$, considering a realistic detector performance.

  15. Calibration of Muon Reconstruction Algorithms Using an External Muon Tracking System at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2011-05-06T23:59:59.000Z

    To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6 degrees.

  16. TPE-CMS: A Comfort Measuring System for Public Bus Service in Taipei City

    E-Print Network [OSTI]

    Chen, Ling-Jyh

    TPE-CMS: A Comfort Measuring System for Public Bus Service in Taipei City Cheng-Yu Lin and Ling Measuring System (CMS) for public transportation systems in Taipei city, called TPE-CMS. TPE-CMS exploits the GPS and G-sensor of modern smart phones to measure the comfort level of vehicle rides. Then, it mashes

  17. Muon capture rates within the projected QRPA

    E-Print Network [OSTI]

    Danilo Sande Santos; Arturo R. Samana; Francisco Krmpoti?; Alejandro J. Dimarco

    2012-03-03T23:59:59.000Z

    The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

  18. Theoretical survey of muon catalyzed fusion

    SciTech Connect (OSTI)

    Leon, M.

    1988-01-01T23:59:59.000Z

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H/sub 2/ densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec./sup 1/ The muon spends essentially all of its time in either the (d..mu..) ground state, waiting for transfer to a (t..mu..) ground state to occur, or in the (t..mu..) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs.

  19. Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Benelli, Gabriele; Kenny, R. P. III; Murray, Michael J.; Noonan, Danny; Sanders, Stephen J.; Stringer, Robert W.; Wood, Jeffrey Scott; Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö , J.; Fabjan, C.

    2013-05-28T23:59:59.000Z

    return yoke outside the solenoid. The first level of the CMS trigger system, composed of custom hardware proces- sors, is designed to select the most interesting events in less than 3µs using information from the calorimeters and muon detectors. The high...

  20. Observation and studies of jet quenching in PbPb collisions at ?sNN=2.76 TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the Compact Muon Solenoid (CMS) detector at the LHC, using a data sample corresponding to an integrated luminosity ...

  1. Development of a Portable Muon Witness System

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01T23:59:59.000Z

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.

  2. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  3. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Suerfu, Burkhant

    2015-01-01T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  4. Using Plain Writing at CMS Meeting the Requirements of

    E-Print Network [OSTI]

    Bandettini, Peter A.

    1 Using Plain Writing at CMS Meeting the Requirements of the Plain Writing Act of 2010 #12;The Plain Writing Act of 2010 All Federal agencies must use plain writing in any document that

  5. Study of thermosiphon cooling scheme for the production solenoid of the Mu2e experiment at Fermilab

    SciTech Connect (OSTI)

    Dhanaraj, N.; Kashikhin, V.; Peterson, T.; Pronskikh, V.; Nicol, T. [Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    A thermosiphon cooling scheme is envisioned for the Production Solenoid of the Mu2e experiment at Fermi National Accelerator Laboratory. The thermosiphon cooling is achieved by indirect cooling with helium at 4.7 K. The siphon tubes are welded to the solenoid outer structure. The anticipated heat loads in the solenoid is presented as well as the cooling scheme design. A thermal model using ANSYS to simulate the temperature gradient is presented. The thermal analysis also makes provisions for including the heat load generated in the coils and structures by the secondary radiation simulated using the MARS 15 code. The impact of the heat loads from supports on the solenoid cooling is studied. The thermosiphon cooling scheme is also validated using pertinent correlations to study flow reversals and the cooling regime.

  6. Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

    SciTech Connect (OSTI)

    Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Molvik, A. W.; Vay, J.-L.; Seidl, P. A.; Roy, P. K.; Coleman, J. E.; Haber, I.

    2007-06-20T23:59:59.000Z

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

  7. CMS experiment at the LHC: Commissioning and early physics

    E-Print Network [OSTI]

    A. Safonov

    2010-03-21T23:59:59.000Z

    The CMS collaboration used the past year to greatly improve the level of detector readiness for the first collisions data. The acquired operational experience over this year, large gains in understanding the detector and improved preparedness for early physics will be instrumental in minimizing the time from the first collisions to first LHC physics. The following describes the status of the CMS experiment and outlines early physics plans with the first LHC data.

  8. Measurement of the Top Quark Mass With 2012 CMS Data

    E-Print Network [OSTI]

    Richard Nally

    2014-09-01T23:59:59.000Z

    The mass of the top quark was an active topic of research at CMS using 2011 data, and remains so as the 2012 data analysis campaign proceeds. Here we discuss some of the earliest results on the top mass using 2012 sqrt(s) = 8 TeV CMS data, including measurements of the top mass from semileptonic t\\bar{t} decays and the lifetime of the B-hadron, as well as a measurement of the top-antitop mass difference.

  9. The run control and monitoring system of the CMS experiment

    SciTech Connect (OSTI)

    Bauer, Gerry; /MIT; Boyer, Vincent; /CERN; Branson, James; /UCLA; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; /CERN; O'Dell, Vivian; /Fermilab; Erhan, Samim; /CERN /UC, San Diego; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01T23:59:59.000Z

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  10. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12T23:59:59.000Z

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  11. EXPERIMENT E951 POWER SUPPLY TO PULSE A 14.5 TESLA SOLENOID MAGNET

    E-Print Network [OSTI]

    McDonald, Kirk

    .1 15.2 Cases 2 and 3 require the same power supply, but differ in the magnet cooling scheme. #12;0 4 8EXPERIMENT E951 POWER SUPPLY TO PULSE A 14.5 TESLA SOLENOID MAGNET IOANNIS MARNERIS BOOSTER supply. #12;0 4 8 12 16 20 24 28 32 36 40 0 2 4 6 8 10 -500 -400 -300 -200 -100 0 100 200 300 400 500

  12. Cryogenics for a 5 Tesla Superconducting Solenoid with Large Aperture at DESY

    SciTech Connect (OSTI)

    Gadwinkel, E.; Lierl, H.; Notz, D.; Schaffran, J.; Schoeneburg, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg, 22607 (Germany); Herzog, H. [Deutsches Elektronen-Synchrotron, DESY, Hamburg, 22607 (Germany); Linde Kryotechnik A.G., plant operation section at DESY, Pfungen, 8422 (Switzerland)

    2004-06-23T23:59:59.000Z

    A large aperture superconducting solenoid-magnet with fields up to 5.25 Tesla is being set up as high field test facility at DESY. It is used to measure prototype time projection chambers foreseen as detectors for a future high energy physics collider experiment. The new cryogenic supply of this magnet within the existing HERA cryogenic helium system is described. The cryogenic control, operation and results are outlined.

  13. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M. [comp.

    1994-01-01T23:59:59.000Z

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  14. The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams,

    E-Print Network [OSTI]

    The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams, Neutrino Factory.1 Neutrino Oscillation Physics . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.1.1 Evidence-oscillation physics at a Neutrino Factory . . . . . . . . . . . . . . . 3 - 16 iii #12;3.4 Physics that can be done

  15. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect (OSTI)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe [Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700 (Israel)

    2014-07-15T23:59:59.000Z

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93?°C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  16. A nonintrusive method for measuring the operating temperature of a solenoid-operated valve

    SciTech Connect (OSTI)

    Kryter, R.C.

    1990-01-01T23:59:59.000Z

    Experimental data are presented to show that the in-service operating temperature of a solenoid-operated valve (SOV) can be interred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include (a) there is no need for an add-on temperature sensor, (b) the true temperature of a critical --- and likely the hottest --- part of the SOV (namely, the electrical coil) is measured directly, (c) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (d) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (e) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40{degree}C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system. 5 refs., 7 figs.

  17. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    SciTech Connect (OSTI)

    Roger Raman; Thomas R. Jarboe; Michael G. Bell; Dennis Mueller; Brian A. Nelson; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-03T23:59:59.000Z

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX.

  18. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    E-Print Network [OSTI]

    Ming-Xia Huo; Nie Wei; David A. W. Hutchinson; Leong Chuan Kwek

    2014-08-11T23:59:59.000Z

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  19. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20T23:59:59.000Z

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  20. Electrons from Muon Decay in Bound State

    E-Print Network [OSTI]

    Rashid M. Djilkibaev; Rostislav V. Konoplich

    2009-02-12T23:59:59.000Z

    We present results of a study of the muon decay in orbit (DIO) contribution to the signal region of muon - electron conversion. Electrons from DIO are the dominant source of background for muon - electron conversion experiments because the endpoint of DIO electrons is the same as the energy of electrons from elastic muon - electron conversion. The probability of DIO contribution to the signal region was considered for a tracker with Gaussian resolution function and with a realistic resolution function obtained in the application of pattern recognition and momentum reconstruction Kalman filter based procedure to GEANT simulated DIO events. It is found that the existence of non Gaussian tails in the realistic resolution function does not lead to a significant increase in DIO contribution to the signal region. The probability of DIO contribution to the calorimeter signal was studied in dependence on the resolution, assuming a Gaussian resolution function of calorimeter. In this study the geometrical acceptance played an important role, suppressing DIO contribution of the intermediate range electrons from muon decay in orbit.

  1. Muon Emittance Exchange with a Potato Slicer

    E-Print Network [OSTI]

    Summers, D J; Acosta, J G; Cremaldi, L M; Oliveros, S J; Perera, L P; Neuffer, D V

    2015-01-01T23:59:59.000Z

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long ...

  2. Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities

    SciTech Connect (OSTI)

    Heffner, R.H.

    1980-01-01T23:59:59.000Z

    The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

  3. Use of dielectric material in muon accelerator RF cavities

    E-Print Network [OSTI]

    French, Katheryn Decker

    2011-01-01T23:59:59.000Z

    The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

  4. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect (OSTI)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11T23:59:59.000Z

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  5. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect (OSTI)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10T23:59:59.000Z

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  6. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D. [NSTec; Dreesen, W. [NSTec; Green, J. A. [NSTec; Tibbitts, A. [NSTec; Schotik, G. [NSTec; Borozdin, K. [LANL; Bacon, J. [LANL; Midera, H. [LANL; Milner, C. [LANL; Morris, C. [LANL; Perry, J. [LANL; Barrett, S. [UW; Perry, K. [UW; Scott, A. [UW; Wright, C. [UW; Aberle, D. [NSTec

    2013-03-18T23:59:59.000Z

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  7. Muon (g-2) Technical Design Report

    E-Print Network [OSTI]

    J. Grange; V. Guarino; P. Winter; K. Wood; H. Zhao; R. M. Carey; D. Gastler; E. Hazen; N. Kinnaird; J. P. Miller; J. Mott; B. L. Roberts; J. Benante; J. Crnkovic; W. M. Morse; H. Sayed; V. Tishchenko; V. P. Druzhinin; B. I. Khazin; I. A. Koop; I. Logashenko; Y. M. Shatunov; E. Solodov; M. Korostelev; D. Newton; A. Wolski; R. Bjorkquist; N. Eggert; A. Frankenthal; L. Gibbons; S. Kim; A. Mikhailichenko; Y. Orlov; D. Rubin; D. Sweigart; D. Allspach; G. Annala; E. Barzi; K. Bourland; G. Brown; B. C. K. Casey; S. Chappa; M. E. Convery; B. Drendel; H. Friedsam; T. Gadfort; K. Hardin; S. Hawke; S. Hayes; W. Jaskierny; C. Johnstone; J. Johnstone; V. Kashikhin; C. Kendziora; B. Kiburg; A. Klebaner; I. Kourbanis; J. Kyle; N. Larson; A. Leveling; A. L. Lyon; D. Markley; D. McArthur; K. W. Merritt; N. Mokhov; J. P. Morgan; H. Nguyen; J-F. Ostiguy; A. Para; C. C. Polly M. Popovic; E. Ramberg; M. Rominsky; D. Schoo; R. Schultz; D. Still; A. K. Soha; S. Strigonov; G. Tassotto; D. Turrioni; E. Villegas; E. Voirin; G. Velev; D. Wolff; C. Worel; J-Y. Wu; R. Zifko; K. Jungmann; C. J. G. Onderwater; P. T. Debevec; S. Ganguly; M. Kasten; S. Leo; K. Pitts; C. Schlesier; M. Gaisser; S. Haciomeroglu; Y-I. Kim; S. Lee; M-J Lee; Y. K. Semertzidis; K. Giovanetti; V. A. Baranov; V. N. Duginov; N. V. Khomutov; V. A. Krylov; N. A. Kuchinskiy; V. P. Volnykh; C. Crawford; R. Fatemi; W. P. Gohn; T. P. Gorringe; W. Korsch; B. Plaster; A. Anastasi; D. Babusci; S. Dabagov; C. Ferrari; A. Fioretti; C. Gabbanini; D. Hampai; A. Palladino; G. Venanzoni; T. Bowcock; J. Carroll; B. King; S. Maxfield; K. McCormick; A. Smith; T. Teubner; M. Whitley; M. Wormald; R. Chislett; S. Kilani; M. Lancaster; E. Motuk; T. Stuttard; M. Warren; D. Flay; D. Kawall; Z. Meadows; T. Chupp; R. Raymond; A. Tewlsey-Booth; M. J. Syphers; D. Tarazona; C. Ankenbrandt; M. A. Cummings; R. P. Johnson; C. Yoshikawa; S. Catalonotti; R. Di Stefano; M. Iacovacci; S. Mastroianni; S. Chattopadhyay; M. Eads; M. Fortner; D. Hedin; N. Pohlman; A. de Gouvea; H. Schellman; L. Welty-Rieger; T. Itahashi; Y. Kuno; K. Yai; F. Azfar; S. Henry; G. D. Alkhazov; V. L. Golovtsov; P. V. Neustroev; L. N. Uvarov; A. A. Vasilyev; A. A. Vorobyov; M. B. Zhalov; L. Cerrito; F. Gray; G. Di Sciascio; D. Moricciani; C. Fu; X. Ji; L. Li; H. Yang; D. Stöckinger; G. Cantatore; D. Cauz; M. Karuza; G. Pauletta; L. Santi; S. Bae\\ssler; M. Bychkov; E. Frlez; D. Pocanic; L. P. Alonzi; M. Fertl; A. Fienberg; N. Froemming; A. Garcia; D. W. Hertzog J. Kaspar; P. Kammel; R. Osofsky; M. Smith; E. Swanson; T. van Wechel; K. Lynch

    2015-01-27T23:59:59.000Z

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  8. Progress in Absorber R&D for Muon Cooling

    E-Print Network [OSTI]

    D. M. Kaplan; E. L. Black; M. Boghosian; K. W. Cassel; R. P. Johnson; S. Geer; C. J. Johnstone; M. Popovic; S. Ishimoto; K. Yoshimura; L. Bandura; M. A. Cummings; A. Dyshkant; D. Hedin; D. Kubik; C. Darve; Y. Kuno; D. Errede; M. Haney; S. Majewski; M. Reep; D. Summers

    2001-08-17T23:59:59.000Z

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  9. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    E-Print Network [OSTI]

    Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

    2013-01-01T23:59:59.000Z

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  10. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

    2012-05-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  11. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  12. Cosmic-ray Muon Flux In Belgrade

    SciTech Connect (OSTI)

    Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

  13. Data Quality Monitoring of the CMS Silicon Strip Tracker Detector

    E-Print Network [OSTI]

    Leonardo Benucci

    2009-07-21T23:59:59.000Z

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  14. Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion

    E-Print Network [OSTI]

    Sachie Kimura; Aldo Bonasera

    2006-07-31T23:59:59.000Z

    We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

  15. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    SciTech Connect (OSTI)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac; Bruno R. Autin; Valeri I. Balbekov; Vernon D. Barger; Odette Benary; J. Bennett; Michael S. Berger; J. Scott Berg; Martin Berz; Edgar Black; Alain Blondel; S. Alex Bogacz; M. Bonesini; Stephen B. Bracker; Alan D. Bross; Luca Bruno; Elizabeth J. Buckley-Geer; Allen Caldwell; Mario Campanelli; Kevin W. Cassel; Swapan Chattopadhyay; Weiren Chou; David B. Cline; Linda R. Coney; Janet M. Conrad; John N. Corlett; Lucien Cremaldi; Mary Anne Cummings; Christine Darve; Fritz DeJongh; et. al.

    2003-08-01T23:59:59.000Z

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  16. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect (OSTI)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01T23:59:59.000Z

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  17. Performance of ?q-lepton reconstruction and identification in CMS

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-01-01T23:59:59.000Z

    The performance of tau-lepton reconstruction and identification algorithms is studied using a data sample of proton-proton collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns collected with the CMS detector at the LHC. The tau leptons that decay into one or three charged hadrons, zero or more short-lived neutral hadrons, and a neutrino are identified using final-state particles reconstructed in the CMS tracker and electromagnetic calorimeter. The reconstruction efficiency of the algorithms is measured using tau leptons produced in Z-boson decays. The tau-lepton misidentification rates for jets and electrons are determined.

  18. BNL -66968 CAP-265-Muon-99C

    E-Print Network [OSTI]

    Harilal, S. S.

    stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system on the Be window. We describe beam optics, the liquid lithium pressure vessel, pump options, power supplies stages of 1 cooling is obtained by passing the beam though a conducting light metal rod which acts

  19. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03T23:59:59.000Z

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  20. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-07-15T23:59:59.000Z

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  1. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect (OSTI)

    Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

    2012-02-15T23:59:59.000Z

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  2. Measurements of the hadronic activity and the electroweak production in events with a Z boson and two jets in proton-proton collisions with the CMS experiment

    E-Print Network [OSTI]

    Paolo Azzurri; for the CMS Collaboration

    2014-11-13T23:59:59.000Z

    The observation of the electroweak production of a Z boson with two jets in pp collisions at $\\sqrt{s} = 8$ TeV with the CMS experiment at the CERN LHC is presented, based on a data sample with an integrated luminosity of 19.7 fb$^{-1}$. The cross section measurement, combining the muon and electron channels, is in agreement with the theoretical expectations. Radiation patterns of selected Z plus two jets events, and the hadronic activity in the rapidity interval between the jets are also measured. These results are of substantial importance in the more general study of vector boson fusion processes, of relevance for Higgs boson searches and for measurements of electroweak gauge couplings and vector boson scattering.

  3. MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM , M. Anerella, W. Fischer, G. Ganetis, X. Gu, A. Ghosh, A. Jain, P. Kovach, A. Marone,

    E-Print Network [OSTI]

    Gupta, Ramesh

    MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM FOR RHIC* R. Gupta# , M. Anerella, W of the main solenoid are listed in Table 1. The design was optimized to use many existing magnet components. Fischer, G. Ganetis, X. Gu, A. Ghosh, A. Jain, P. Kovach, A. Marone, S. Plate, A. Pikin, and P. Wanderer

  4. Commissioning of the CMS zero degree calorimeter using LHC beam

    E-Print Network [OSTI]

    O. Grachov; M. Murray; J. Wood; Y. Onel; S. Sen; T. Yetkin

    2010-08-06T23:59:59.000Z

    This paper reports on the commissioning and first running experience of the CMS Zero Degree Calorimeters during December 2009. All channels worked correctly. The ZDCs were timed into the data acquisition system using beam splash events. These data also allowed us to make a first estimate of channel-by-channel variations in gain.

  5. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Burkhant Suerfu; Christopher G. Tully

    2015-01-28T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials.

  6. Dimuon Results in Pb+Pb and ppp+++ ppp Collisions in CMS M. Caldern de la Barca Snchez, on behalf of the CMS Collaboration 1

    E-Print Network [OSTI]

    Calderón de la Barca Sánchez, Manuel

    Dimuon Results in Pb+Pb and ppp+++ ppp Collisions in CMS M. Calderón de la Barca Sánchez, on behalf

  7. Relativistic QRPA calculation of muon capture rates

    E-Print Network [OSTI]

    T. Marketin; N. Paar; T. Niksic; D. Vretenar

    2009-03-30T23:59:59.000Z

    The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  8. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  9. Progress in Muon Cooling Research and Development

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MuCool Collaboration

    2003-01-29T23:59:59.000Z

    The MuCool R&D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the U.S. and abroad. The intended schedule of work will lead to ionization cooling being well enough established that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation.

  10. An update of muon capture on hydrogen

    E-Print Network [OSTI]

    S. Pastore; F. Myhrer; K. Kubodera

    2014-05-06T23:59:59.000Z

    The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $\\mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.

  11. Recent results from COMPASS muon scattering measurements

    SciTech Connect (OSTI)

    Capozza, Luigi [Irfu/SPhN - CEA Saclay, 91190 Gif-sur-Yvette (France); Collaboration: COMPASS Collaboration

    2012-10-23T23:59:59.000Z

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  12. Inductor is a device used to produce and store a desired B field (e.g. solenoid)

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    the same E t Not suitable for most applications Can use to charge batteries Commercial dc gen. use out, in an inductor with N turns produces a magnetic flux, B, in its central region Inductance, L is defined as SI unit is henry, H i N L B = AmTH /2 = Inductance (units) #12;What is inductance of a solenoid? First

  13. Impacts of the Mountain-Plains Solenoid and Cold Pool1 Dynamics on the Diurnal Variation of Precipitation over2

    E-Print Network [OSTI]

    ) model are performed to examine the impact of a thermally-driven mountain-plains12 solenoid (MPS for the lateral boundary16 conditions. Despite differences in rainfall intensity and location, the control subsequently propagates downslope and southeastward along21 the steering-level mean flow, reaching the central

  14. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    SciTech Connect (OSTI)

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01T23:59:59.000Z

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

  15. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    SciTech Connect (OSTI)

    Caspi, S.; Dietderich, D. R.; Ferracin, P.; Finney, N. R.; Fuery, M. J.; Gourlay, S. A.; Hafalia, A. R.

    2007-06-01T23:59:59.000Z

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especially suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.

  16. Refurbishment and Testing of the 1970's Era LASS Solenoid Coils for JLab's Hall D

    SciTech Connect (OSTI)

    Anumagalla, Ravi; Biallas, George; Brindza, Paul; Carstens, Thomas; Creel, Jonathan; Egiyan, Hovanes; Martin, Floyd; Qiang, Yi; Spiegel, Scot; Stevens, Mark; Wissmann, Mark

    2012-07-01T23:59:59.000Z

    JLab refurbished the LASS1, 1.85 m bore Solenoid, consisting of four superconducting coils to act as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The coils, built in 1971 at Stanford Linier Accelerator Center and used a second time at the MEGA Experiment at Los Alamos, had electrical shorts and leaks to the insulating vacuum along with deteriorated superinsulation & instrumentation. Root cause diagnosis of the problems and the repair methods are described along with the measures used to qualify the vessels and piping within the Laboratory's Pressure Safety Program (mandated by 10CFR851). The extraordinary refrigerator operational methods used to utilize the obsolete cryogenic apparatus gathered for the off-line, single coil tests are described.

  17. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    E-Print Network [OSTI]

    Rob Roy Fletcher; Linda Coney; Gail Hanson

    2011-05-03T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  18. atmospheric muon generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As...

  19. atlas muon endcap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon pt determination...

  20. Status of the International Muon Ionization Cooling Experiment (MICE)

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01T23:59:59.000Z

    target mechanism in the ISIS ring. MUON BEAM LINE Althoughthose located within the ISIS shielded enclosure are beingdelay installation until the next ISIS shutdown (planned for

  1. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07T23:59:59.000Z

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  2. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    E-Print Network [OSTI]

    M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

    2014-04-30T23:59:59.000Z

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  3. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    SciTech Connect (OSTI)

    Abdullin, S.; /Moscow, ITEP; Abramov, V.; /Serpukhov, IHEP; Acharya, B.; /Tata Inst.; Adam, N.; /Princeton U.; Adams, M.; /Illinois U., Chicago; Adzic, P.; /Belgrade U.; Akchurin, N.; /Texas Tech.; Akgun, U.; Albayrak, E.; /Iowa U.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01T23:59:59.000Z

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  4. Prospects for the Higgs Boson Searches with CMS

    E-Print Network [OSTI]

    Matteo Sani

    2010-12-01T23:59:59.000Z

    An overview on the prospects for Higgs Boson searches with the CMS detector is presented. Projections have been made to estimate the potential to a possible discovery or exclusion of the Higgs Boson during the run at a center of mass energy of 7 TeV at the LHC, with a recorded integrated luminosity of approximately 1 fb-1, conditions expected by the end of 2011

  5. LHC(ATLAS, CMS, LHCb) Run 2 commissioning status

    E-Print Network [OSTI]

    Zimmermann, Stephanie; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    After a very successful run-1, the LHC accelerator and the LHC experiments had undergone intensive consolidation, maintenance and upgrade activities during the last 2 years in what has become known as Long-Shutdown-1 (LS1). LS1 ended in February this year, with beams back in the LHC since Easter. This talk will give a summary on the major shutdown activities of ATLAS, CMS and LHCb and review the status of commissioning for run-2 physics data taking.

  6. CMS physics highlights in the LHC Run 1

    E-Print Network [OSTI]

    David d'Enterria for the CMS Collaboration

    2015-05-18T23:59:59.000Z

    The main physics results obtained by the CMS experiment during the first three years of operation of the CERN Large Hadron Collider (2010--2013, aka. Run 1) are summarized. The advances in our understanding of the fundamental particles and their interactions are succinctly reviewed under the following physics topics: (i) Quantum Chromodynamics, (ii) Quark Gluon Plasma, (iii) Electroweak interaction, (iv) Top quark, (v) Higgs boson, (vi) Flavour, (vii) Supersymmetry, (viii) Dark Matter, and (ix) other searches of physics beyond the Standard Model.

  7. Jet Reconstruction with charged tracks only in CMS

    E-Print Network [OSTI]

    Paolo Azzurri

    2009-01-12T23:59:59.000Z

    The performance of jet finding using only charged tracks in CMS has been investigated. Different jet algorithms have been applied to QCD di-jet events, to hadronic tt multi-jet events and on Z+jets events. Results using jets made with tracks only or calorimeter towers are compared for energy response, angular resolution and jet matching to the leading partons. The jet reconstruction performance in the presence of pile-up interactions is presented for the Z+jets sample.

  8. Juraj Bracink, Hadron Structure, Modra, September 2007 Physics with eP collisions at highest Q2

    E-Print Network [OSTI]

    ) Solenoidal magnet Muon system Depleted uranium calorimeter #12;Juraj BracinĂ­k, Hadron Structure, Modra

  9. Muons for a Muon-Collider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    . ­ LANL has experience with superconductng magnets in high radiation areas. · Other Radiological Issues951 Long Term: Provide a facility to test key components of the front-end of a muon collider-term radiological issues. 6 #12;Why BNL? The BNL AGS has proton beam parameters conditions closest to those

  10. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20T23:59:59.000Z

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  11. Muon Figures: 2001/04/19 Chris Waltham

    E-Print Network [OSTI]

    Learned, John

    wall is a less dense mix of gabbro and granite. The depths of various parts of the detector are given environment around SNO. The solid curved line is the hanging wall - foot wall interface at the level of SNO) and replaced with back#12;ll. The grid is 1000' (#25;300m) square. p Muon Track Light from Muon Xf PSUP Impact

  12. Magnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c;2 K. Fujimoto b J. Haba c;1

    E-Print Network [OSTI]

    ­0043, Japan e Department of Applied Physics, Faculty of Technology, Tokyo University of Agriculture at the solenoid center is 1.5 Tesla at 1 E­mail: junji.haba@kek.jp 2 Present address: Krakow Inst. of Nuclear

  13. Neutrinos from STORed Muons - nuSTORM

    SciTech Connect (OSTI)

    Bross, Alan [Fermilab

    2013-02-27T23:59:59.000Z

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicate that this experimental approach can provide well over 5 s confirmation or rejection of the LSND/MinBooNE results. In addition I will explain how the facility can be used to make neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments and, in general, add significantly to the study of neutrino interactions. The unique n beam available at the nuSTORM facility has the potential to be transformational in our approach to n interaction physics, offering a “n light source” to physicists from a number of disciplines. Finally, I will describe how nuSTORM can be used to facilitate accelerator R&D for future muon-based accelerator facilities.

  14. SEARCH FOR CONTACT INTERACTIONS IN THE DIELECTRON CHANNEL IN P-P COLLISIONS AT \\sqrt{s} = 8 TeV AT CMS

    SciTech Connect (OSTI)

    Lamichhane, Pramod

    2013-01-01T23:59:59.000Z

    A possible explanation of mass hierarchy, which is not explained by the Standard Model, is that quarks and leptons are composite objects made of more fundamental particles known as preons. The existence of preons will be manifest as a four fermion contact interaction in the annihilation of a quark and anti-quark, in a p-p collision, producing positron-electron pairs. At high mass, such pairs are also produced from off-shell Z and \\gamma bosons. This thesis provides a detailed discussion of the analysis strategy to study these processes using the Compact Muon Solenoid Experiment at the Large Hadron Collider. The study utilizes data recorded in 2012 at \\sqrt{s} = 8 TeV, corresponding to an integrated luminosity of 19.6 fb^{-1}. The dielectron mass spectrum above 300 GeV shows no significant deviation from the prediction of the Standard Model. In the framework of the left-left iso-scalar model of eeqq contact interactions, 95\\% CL lower limits on the energy scale parameter are found for destructive (13.1 TeV) and constructive (18.3 TeV) interference between the contact and standard model amplitudes. These limits are the most stringent to date.

  15. A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

    2008-01-01T23:59:59.000Z

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  16. Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ

    E-Print Network [OSTI]

    Alfred Tang; Glenn Horton-Smith; Vitaly A. Kudryavtsev; Alessandra Tonazzo

    2006-08-25T23:59:59.000Z

    Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.

  17. Photon production from the scattering of axions out of a solenoidal magnetic field

    SciTech Connect (OSTI)

    Guendelman, Eduardo I.; Shilon, Idan [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Cantatore, Giovanni [Universitŕ and INFN Trieste, via Valerio 2, 34127 Trieste (Italy); Zioutas, Konstantin, E-mail: guendel@bgu.ac.il, E-mail: silon@bgu.ac.il, E-mail: cantatore@trieste.infn.it, E-mail: Konstantin.Zioutas@cern.ch [Physics Department, University of Patras, Rio, 26504 Patras (Greece)

    2010-06-01T23:59:59.000Z

    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D ?-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. Comparison between the 2D conversion probabilities for QCD inspired axions and those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect is made using an averaging prescription procedure of the 1D case. We also consider scattering at a resonance E{sub axion} ? m{sub axion}, which corresponds to the scattering from a ?-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.

  18. Results on SUSY and Higgs searches at CMS

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    We present the results of searches for Supersymmetry and the Higgs boson performed using data collected in 2010 by the CMS experiment at the LHC in pp-collisions at a centre-of-mass energy of 7 TeV. Searches for Supersymmetry are performed in all-hadronic final states with jets and missing transverse energy and in final states including one or more isolated leptons or photons. No evidence for new physics is observed and limits are set on the predictions of a range of Supersymmetric scenarios. The results of searches for the Higgs boson are presented and limits set.

  19. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect (OSTI)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01T23:59:59.000Z

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  20. Optimising a Muon Spectrometer for Measurements at the ISIS Pulsed Muon Source

    E-Print Network [OSTI]

    Giblin, S R; King, P J C; Tomlinson, S; Jago, S J S; Randall, L J; Roberts, M J; Norris, J; Howarth, S; Mutamba, Q B; Rhodes, N J; Akeroyd, F

    2014-01-01T23:59:59.000Z

    This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.

  1. The muon system of the Daya Bay Reactor antineutrino experiment

    E-Print Network [OSTI]

    Daya Bay Collaboration

    2014-11-28T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  2. Positive muon and the positron as probes of defects

    SciTech Connect (OSTI)

    Lynn, K G

    1980-01-01T23:59:59.000Z

    The positive muon and the positron are each being used nowadays to investigate defects in condensed matter. A brief summary of the experimental methods employed with each particle is given in this paper. Similarities and differences between the behavior of the two leptons when implanted in consensed matter are pointed out, and by means of a comparison between muon and positron data in Al it is shown that the combination of muon and positron experiments can serve as a useful new probe of defects in solids.

  3. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-02-01T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  4. Final Technical Report �¢���� CMS FAST OPTICAL CALORIMETRY

    SciTech Connect (OSTI)

    David R Winn

    2012-07-12T23:59:59.000Z

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  5. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  6. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    E-Print Network [OSTI]

    MICE Collaboration

    2012-03-23T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  7. Muon Acceleration in Cosmic-ray Sources

    E-Print Network [OSTI]

    Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

    2012-08-09T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

  8. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P [Fermilab; Andreopoulos, C [Rutherford; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Bishai, M [Brookhaven; Blake, A [Cambridge U.; Bock, G J [Fermilab; Boehnlein, D J [/Fermilab; Bogert, D [Fermilab; Harvard U., Phys. Dept.

    2011-07-05T23:59:59.000Z

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ??? production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ??? events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3?. The best fit to oscillation yields |?m?2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 ??) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS ?? and ??? measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  9. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    E-Print Network [OSTI]

    Riggi, S; Bandieramonte, M; Becciani, U; Costa, A; La Rocca, P; Massimino, P; Petta, C; Pistagna, C; Riggi, F; Sciacca, E; Vitello, F

    2013-01-01T23:59:59.000Z

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are here discussed. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full Geant4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  10. atmospheric muon flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

  11. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2010-08-02T23:59:59.000Z

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  12. R&D Toward a Neutrino Factory and Muon Collider

    E-Print Network [OSTI]

    Zisman, Michael S

    2011-01-01T23:59:59.000Z

    the need for a future 6D cooling experiment. A community-and planning for a future 6D muon cooling experiment. Tablepossible 6D cooling experiment at some future time. However,

  13. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

  14. Interpretation of the atmospheric muon charge ratio in MINOS

    E-Print Network [OSTI]

    Philip Schreiner; Maury Goodman

    2007-06-04T23:59:59.000Z

    MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

  15. CMS tracking performance results from early LHC operation

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-11-24T23:59:59.000Z

    The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays.

  16. Simulation of the Dynamic Inefficiency of the CMS Pixel Detector

    E-Print Network [OSTI]

    Márton Bartók

    2015-01-22T23:59:59.000Z

    The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2\\% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.

  17. Measurement of cosmic muon charge ratio with the Large Volume Detector

    E-Print Network [OSTI]

    N. Yu. Agafonova; M. Aglietta; P. Antonioli; G. Bari; R. Bertoni; V. V. Boyarkin; E. Bressan; G. Bruno; V. L. Dadykin; E. A. Dobrynina; R. I. Enikeev; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; E. Kemp; A. S. Malgin; B. Miguez; A. Molinario; R. Persiani; I. A. Pless; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; M. Selvi; G. C. Trinchero; C. Vigorito; V. F. Yakushev; A. Zichichi

    2015-02-14T23:59:59.000Z

    The charge ratio ${k \\equiv \\mu^+/\\mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the sea level greater than 1.3 TeV. The muon charge ratio was defined using the number of the decays of stopping positive muons in the LVD iron structure and the decays of positive and negative muons in scintillator. We have obtained the value of the muon charge ratio ${k}$ ${= 1.26 \\pm 0.04(stat) \\pm 0.11(sys)}$.

  18. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    SciTech Connect (OSTI)

    Armijo, Julien

    2006-10-01T23:59:59.000Z

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

  19. Mechanical Behavior Analysis of a Test Coil for MICE Coupling Solenoid during Quench

    SciTech Connect (OSTI)

    Pan, Heng; Wang, Li; Guo, Xinglong; Wu, Hong; Green, M.A.

    2009-10-28T23:59:59.000Z

    The coupling magnet for the Muon Ionization Cooling Experiment has a self-inductance of 592 H and the magnet stored energy of 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The high level of stored energy in the magnet can cause high peak temperature during a quench and induce considerable impact of stresses. One test coil was built in order to validate the design method and to practice the stress and strain situation to occur in the coupling coil. In this study, the analysis on stress redistribution during a quench with sub-divided winding was performed. The stress variation may bring about failure of impregnating material such as epoxy resin, which is the curse of a new normal zone arising. Spring models for impregnating epoxy and fiber-glass cloth in the coil were used to evaluate the mechanical disturbance by impregnated materials failure. This paper presents the detailed dynamic stress and stability analysis to assess the stress distribution during the quench process and to check whether the transient loads are acceptable for the magnet.

  20. Muon transfer from hydrogen to helium

    SciTech Connect (OSTI)

    Bystritskii, V.M.; Dzhelepov, V.P.; Petrukhin, V.I.; Rudenko, A.I.; Suvorov, V.M.; Filchenkov, V.V.; Khovanskii, N.N.; Khomenko, B.A.

    1983-04-01T23:59:59.000Z

    It is found that ..mu../sup -/ mesons stopped in a gas mixture of hydrogen, helium, and xenon (hydrogen pressure about 20 atmospheres, helium and xenon densities relative to hydrogen 0.05--2 and approx.10/sup -4/ respectively) are transferred from the p..mu.. atoms in the ground state to helium atoms at a rate lambda/sub He/ = (3.6 +- 1.0)x10/sup 8/ sec/sup -1/. The result is in good agreement with the calculations in which a novel mesic-molecular mechanism of p..mu..-atom charge exchange with helium nuclei is taken into account. The dependence of the probability for p..mu..-atom formation in the ground state on the helium density is measured. An analysis of this dependence and a comparison of it with the corresponding data for ..pi../sup -/ mesons indicate that muons can also be transferred from excited levels of p..mu.. atoms at a rate higher than in the case of p..pi.. atoms (transfer constant ..lambda../sub ..mu../ = 3.8 +- 0.3 compared with ..lambda../sub ..pi../ = 1.84 +- 0.09).

  1. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    SciTech Connect (OSTI)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-10-19T23:59:59.000Z

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  2. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  3. Muon density enhancement with a tapered capillary method

    SciTech Connect (OSTI)

    Tomono, D.; Ishida, K.; Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kojima, T. M.; Ikeda, T.; Iwai, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Tokuda, M. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kanazawa, Y. [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Iwasaki, M. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Yamazaki, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan)

    2011-10-06T23:59:59.000Z

    The focusing effect of a muon beam with a tapered capillary method has been investigated in a range from 4.2 MeV to 9.2 MeV (i.e. from 30 MeV/c to 45 MeV/c in momentum). We injected the muon beam into a pair of narrowing (tapered) plates and tubes made of glass, copper and gold-coated copper, and measured the energy distribution of the muon leaving from the outlet. The plates were tilted from an inlet of 40 mm to an outlet of 20 mm. The density enhancement was more prominent with the plates made of heavier elements. The largest beam density enhancement at 10 mm downstream of the outlet was 1.3 with the gold-coated copper narrowing plates. The enhancement was composed of muons scattered with a small angle. Their energy was slightly less than that of the initial beam. This effect did not depend on the surface roughness. The result strongly suggests a simple and effective way to increase the muon beam density for a small target.

  4. Commissioning and early physics analysis with the ATLAS and CMS experiments

    E-Print Network [OSTI]

    Andreas Hoecker

    2010-02-15T23:59:59.000Z

    These lecture notes for graduate students and young postdocs introduce the commissioning and early physics programme of the high-transverse-momentum experiments ATLAS and CMS, operating at the Large Hadron Collider (LHC) at CERN.

  5. E-Print Network 3.0 - affecting cms tracking Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aldo Moro 2, 00185 Roma... and prop- erties measurement of the Standard Model Higgs boson with the CMS ex- periment at the LHC... -section. The discovery potential of the...

  6. Search for Dijet Resonances in 7 TeV pp Collisions at CMS

    E-Print Network [OSTI]

    Alver, Burak Han

    A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9??pb-1 [pb superscript -1] collected by the CMS experiment at the Large Hadron Collider. ...

  7. Forward detectors around the CMS interaction point at LHC and their physics potential

    E-Print Network [OSTI]

    Monika Grothe

    2008-07-11T23:59:59.000Z

    Forward physics with CMS at the LHC covers a wide range of physics subjects, including very low-x QCD, underlying event and multiple interactions characteristics, gamma-mediated processes, shower development at the energy scale of primary cosmic ray interactions with the atmosphere, diffraction in the presence of a hard scale and even MSSM Higgs discovery in central exclusive production. We describe the forward detector instrumentation around the CMS interaction point and present selected feasibility studies to illustrate their physics potential.

  8. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    E-Print Network [OSTI]

    The CMS Electromagnetic Calorimeter Group; P. Adzic; N. Almeida; D. Andelin; I. Anicin; Z. Antunovic; R. Arcidiacono; M. W. Arenton; E. Auffray; S. Argiro; A. Askew; S. Baccaro; S. Baffioni; M. Balazs; D. Bandurin; D. Barney; L. M. Barone; A. Bartoloni; C. Baty; S. Beauceron; K. W. Bell; C. Bernet; M. Besancon; B. Betev; R. Beuselinck; C. Biino; J. Blaha; P. Bloch; A. Borisevitch; A. Bornheim; J. Bourotte; R. M. Brown; M. Buehler; P. Busson; B. Camanzi; T. Camporesi; N. Cartiglia; F. Cavallari; A. Cecilia; P. Chang; Y. H. Chang; C. Charlot; E. A. Chen; W. T. Chen; Z. Chen; R. Chipaux; B. C. Choudhary; R. K. Choudhury; D. J. A. Cockerill; S. Conetti; S. Cooper; F. Cossutti; B. Cox; D. G. Cussans; I. Dafinei; D. R. Da Silva Di Calafiori; G. Daskalakis; A. David; K. Deiters; M. Dejardin; A. De Benedetti; G. Della Ricca; D. Del Re; D. Denegri; P. Depasse; J. Descamps; M. Diemoz; E. Di Marco; G. Dissertori; M. Dittmar; L. Djambazov; M. Djordjevic; L. Dobrzynski; A. Dolgopolov; S. Drndarevic; G. Drobychev; D. Dutta; M. Dzelalija; A. Elliott-Peisert; H. El Mamouni; I. Evangelou; B. Fabbro; J. L. Faure; J. Fay; A. Fedorov; F. Ferri; D. Franci; G. Franzoni; K. Freudenreich; W. Funk; S. Ganjour; S. Gascon; M. Gataullin; F. X. Gentit; A. Ghezzi; A. Givernaud; S. Gninenko; A. Go; B. Gobbo; N. Godinovic; N. Golubev; P. Govoni; N. Grant; P. Gras; M. Haguenauer; G. Hamel de Monchenault; M. Hansen; J. Haupt; H. F. Heath; B. Heltsley; W. Hintz; R. Hirosky; P. R. Hobson; A. Honma; G. W. S. Hou; Y. Hsiung; M. Huhtinen; B. Ille; Q. Ingram; A. Inyakin; P. Jarry; C. Jessop; D. Jovanovic; K. Kaadze; V. Kachanov; S. Kailas; S. K. Kataria; B. W. Kennedy; P. Kokkas; T. Kolberg; M. Korjik; N. Krasnikov; D. Krpic; Y. Kubota; C. M. Kuo; P. Kyberd; A. Kyriakis; M. Lebeau; P. Lecomte; P. Lecoq; A. Ledovskoy; M. Lethuillier; S. W. Lin; W. Lin; V. Litvine; E. Locci; E. Longo; D. Loukas; P. D. Luckey; W. Lustermann; Y. Ma; M. Malberti; J. Malclčs; D. Maletic; N. Manthos; Y. Maravin; C. Marchica; N. Marinelli; A. Markou; C. Markou; M. Marone; V. Matveev; C. Mavrommatis; P. Meridiani; P. Milenovic; P. Miné; O. Missevitch; A. K. Mohanty; F. Moortgat; P. Musella; Y. Musienko; A. Nardulli; J. Nash; P. Nedelec; P. Negri; H. B. Newman; A. Nikitenko; F. Nessi-Tedaldi; M. M. Obertino; G. Organtini; T. Orimoto; M. Paganoni; P. Paganini; A. Palma; L. Pant; A. Papadakis; I. Papadakis; I. Papadopoulos; R. Paramatti; P. Parracho; N. Pastrone; J. R. Patterson; F. Pauss; J-P. Peigneux; E. Petrakou; D. G. Phillips II; P. Piroué; F. Ptochos; I. Puljak; A. Pullia; T. Punz; J. Puzovic; S. Ragazzi; S. Rahatlou; J. Rander; P. A. Razis; N. Redaelli; D. Renker; S. Reucroft; P. Ribeiro; C. Rogan; M. Ronquest; A. Rosowsky; C. Rovelli; P. Rumerio; R. Rusack; S. V. Rusakov; M. J. Ryan; L. Sala; R. Salerno; M. Schneegans; C. Seez; P. Sharp; C. H. Shepherd-Themistocleous; J. G. Shiu; R. K. Shivpuri; P. Shukla; C. Siamitros; D. Sillou; J. Silva; P. Silva; A. Singovsky; Y. Sirois; A. Sirunyan; V. J. Smith; F. Stöckli; J. Swain; T. Tabarelli de Fatis; M. Takahashi; V. Tancini; O. Teller; K. Theofilatos; C. Thiebaux; V. Timciuc; C. Timlin; M. Titov; A. Topkar; F. A. Triantis; S. Troshin; N. Tyurin; K. Ueno; A. Uzunian; J. Varela; P. Verrecchia; J. Veverka; T. Virdee; M. Wang; D. Wardrope; M. Weber; J. Weng; J. H. Williams; Y. Yang; I. Yaselli; R. Yohay; A. Zabi; S. Zelepoukine; J. Zhang; L. Y. Zhang; K. Zhu; R. Y. Zhu

    2009-12-22T23:59:59.000Z

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  9. Measurement of the inclusive W and Z production cross sections in pp collisions at $ \\sqrt {s} = 7 $ TeV with the CMS experiment

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-10-01T23:59:59.000Z

    A measurement of inclusive W and Z production cross sections in pp collisions at sqrt(s)=7 TeV is presented. The electron and muon decay channels are analyzed in a data sample collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 inverse picobarns. The measured inclusive cross sections are sigma(pp-> WX) B(W-> l nu) = 10.30 +/- 0.02 (stat.) +/- 0.10 (syst.) +/- 0.10 (th.) +/- 0.41 (lumi.) nb and sigma(pp -> ZX) B(Z-> l^+l^-) = 0.974 +/- 0.007 (stat.) +/- 0.007 (syst.) +/- 0.018 (th.) +/- 0.039 (lumi.) nb, limited to the dilepton invariant mass range 60 to 120 GeV. The luminosity-independent cross section ratios are [sigma(pp->WX) B(W-> l nu)]/[sigma(pp-> ZX) B(Z->l^+l^-)] = 10.54 +/- 0.07 (stat.) +/- 0.08 (syst.) +/- 0.16 (th.) and [sigma(pp->W^+X) B(W^+ -> l^+nu)] / [sigma(pp->W^- X) B(W^- -> l^- nu)] = 1.421 +/- 0.006 (stat.) +/- 0.014 (syst.) +/- 0.029 (th.). The measured values agree with next-to-next-to-leading order QCD cross section calculations based on recent parton distribution functions.

  10. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01T23:59:59.000Z

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  11. Improvements to the LC Muon tracking and identification software

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.

    2005-03-01T23:59:59.000Z

    This note summarizes the evolution of the Muon-ID package originally written by R. Markeloff at NIU. The original method used a helical swimmer to extrapolate the tracks from the interaction point and to collect hits in all sub-detectors: the electromagnetic and hadronic calorimeters and muon detector. The package was modified to replace the swimmer by a stepper which does account for both the effects of the magnetic field and for the losses by ionization in the material encountered by the particle. The modified package shows a substantial improvement in the efficiency of muon identification. Further improvement should be reached by accounting for stochastic processes via the utilization of a Kalman filter.

  12. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N. [Institute of Theoretical and Experimental Physics, State Scientific Center of Russian Federation (Russian Federation); Bom, V. R. [Delft University of Technology (Netherlands); Demin, A. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Demin, D. L. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Eijk, C. W. E. van [Delft University of Technology (Netherlands); Filchagin, S. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Filchenkov, V. V.; Grafov, N. N. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)], E-mail: grafov@nusun.jinr.ru; Grishechkin, S. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Gritsaj, K. I.; Konin, A. D. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Kuryakin, A. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Medved', S. V. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Musyaev, R. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Rudenko, A. I. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Yukhimchuk, S. A.; Zinov, V. G. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)] (and others)

    2009-02-15T23:59:59.000Z

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  13. A Staged Muon Accelerator Facility For Neutrino and Collider Physics

    E-Print Network [OSTI]

    Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

    2015-01-01T23:59:59.000Z

    Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

  14. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Annarita Margiotta

    2006-02-01T23:59:59.000Z

    A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

  15. MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York)

    E-Print Network [OSTI]

    McDonald, Kirk

    MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York) Abstract A complete scheme for muon production, cooling, ac- celeration and storage in a collider ring is presented. Pa and phase rotation yields bunch trains of both muon signs. Six di- mensional cooling reduces

  16. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  17. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  18. Underground Muon Counters as a Tool for Composition Analyses

    E-Print Network [OSTI]

    A. D. Supanitsky; A. Etchegoyen; G. Medina-Tanco; I. Allekotte; M. Gómez Berisso; M. C. Medina

    2008-10-13T23:59:59.000Z

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above $3 \\times 10^{18}$ eV and, even if the hybrid mode can extend this range below $10^{18}$ eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to $\\sim 10^{17}$ eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle ($30^\\circ-58^\\circ$) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  19. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung [W& M

    2014-11-01T23:59:59.000Z

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  20. Doped H(2)-Filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Johnson, R.P.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia; Rose, D.V.; /Voss Sci., Albuquerque

    2009-05-01T23:59:59.000Z

    RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants.

  1. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06T23:59:59.000Z

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  2. Lowest Order Hadronic Contribution to the Muon g-2

    E-Print Network [OSTI]

    Christopher Aubin; Tom Blum

    2005-09-20T23:59:59.000Z

    We present the most recent lattice results for the lowest-order hadronic contribution to the muon anomalous magnetic moment using 2+1 flavor improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory with the inclusion of the vector particles as resonances, to evaluate the vacuum polarization. We discuss the preliminary fit results and attendant systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons.

  3. Searches for the Standard Model Higgs Boson at CMS

    E-Print Network [OSTI]

    Marco Pieri; for the CMS Collaboration

    2012-05-13T23:59:59.000Z

    We searched for the standard model Higgs boson in many different channels using approximately 5 fb-1 of 7 TeV pp collisions data collected with the CMS detector at LHC. Combining the results of the different searches we exclude at 95% confidence level a standard model Higgs boson with mass between 127.5 and 600 GeV. The expected 95% confidence level exclusion if the Higgs boson is not present is from 114.5 and 543 GeV. The observed exclusion is weaker than expected at low mass because of some excess that is observed below about 128 GeV. The most significant excess is found at 125 GeV with a local significance of 2.8 sigma. It has a global significance of 0.8 sigma when evaluated in the full search range and of 2.1 sigma when evaluated in the range 110-145 GeV. The excess is consistent both with background fluctuation and a standard model Higgs boson with mass of about 125 GeV, and more data are needed to investigate its origin.

  4. Controlling charge and current neutralization of an ion beam pulse in a background plasma by application of a solenoidal magnetic field

    E-Print Network [OSTI]

    Kaganovich, Igor

    . This condition typically holds for relatively small magnetic fields about 100 G . Analytical formulas are derived,8 magnetic fusion based on field reversed configura- tions fueled by energetic ion beams,9 the physics by application of a solenoidal magnetic field: Weak magnetic field limit I. D. Kaganovich, E. A. Startsev, A. B

  5. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    SciTech Connect (OSTI)

    Dorf, Mikhail A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A. [Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-05-15T23:59:59.000Z

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B {approx} 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  6. Computational Needs for Muon Accelerators J. Scott Berg a

    E-Print Network [OSTI]

    Berg, J. Scott

    Computational Needs for Muon Accelerators J. Scott Berg a a Brookhaven National Laboratory that are transported can have energy spreads of ±30% or more. The required emittances necessitate accurate tracking or a model which includes end fields; and accurately design and simulate a beam line where the transported

  7. A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS

    E-Print Network [OSTI]

    McDonald, Kirk

    856 A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS David Cline University of Wisconsin, Madison, Wl 53706 David Neuffer Fermilab,* Batavia, IL 60510 ABSTRACT · + decay in a ~- Storage Ring can as a possible first ~ storage ring. INTRODUCTION Recent experimental reports 1'2 of a non-zero ~ mass and of e

  8. Radiative corrections to real and virtual muon Compton scattering revisited

    E-Print Network [OSTI]

    N. Kaiser

    2010-03-04T23:59:59.000Z

    We calculate in closed analytical form the one-photon loop radiative corrections to muon Compton scattering $\\mu^- \\gamma \\to \\mu^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Infrared finiteness of the (virtual) radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. We find that the anomalous magnetic moment $\\alpha/2\\pi$ provides only a very small portion of the full radiative corrections. Furthermore, we extend our calculation of radiative corrections to the muon-nucleus bremsstrahlung process (or virtual muon Compton scattering $\\mu^-\\gamma_0^* \\to \\mu^- \\gamma $). These results are particularly relevant for analyzing the COMPASS experiment at CERN in which muon-nucleus bremsstrahlung serves to calibrate the Primakoff scattering of high-energy pions off a heavy nucleus with the aim of measuring the pion electric and magnetic polarizabilities. We find agreement with an earlier calculation of these radiative corrections based on a different method.

  9. Integration and commissioning of the ATLAS Muon spectrometer

    E-Print Network [OSTI]

    Alberto Belloni; for the ATLAS collaboration

    2008-10-16T23:59:59.000Z

    The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is currently waiting to record the first collision data in spring 2009. Its muon spectrometer is designed to achieve a momentum resolution of 10% pT(mu) = 1 TeV/c. The spectrometer consists of a system of three superconducting air-core toroid magnets and is instrumented with three layers of Monitored Drift Tube chambers (Cathode Strip Chambers in the extreme forward region) as precision detectors. Resistive Plate Chambers in the barrel and Thin Gap Chambers in the endcap regions provide a fast trigger system. The spectrometer passed important milestones in the last year. The most notable milestone was the installation of the inner layer of endcap muon chambers, which constituted the last big piece of the ATLAS detector to be lowered in the ATLAS cavern. In addition, during the last two years most of the muon detectors were commissioned with cosmic rays while being assembled in the underground experimental cavern. We will report on our experience with the precision and trigger chambers, the optical spectrometer alignment system, the level-1 trigger, and the ATLAS data acquisition system. Results of the global performance of the muon system from data with magnetic field will also be presented.

  10. Neutrino-induced upward stopping muons in Super-Kamiokande

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration

    1999-12-01T23:59:59.000Z

    A total of 137 upward stopping muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 516 detector live days. The measured muon flux is 0.39+/-0.04(stat.)+/-0.02(syst.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 0.73+/-0.16(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. Using our previously-published measurement of the upward through-going muon flux, we calculate the stopping/through-going flux ratio R}, which has less theoretical uncertainty. The measured value of R=0.22+/-0.02(stat.)+/-0.01(syst.) is significantly smaller than the value 0.37^{+0.05}_{-0.04}(theo.) expected using the best theoretical information (the probability that the measured R is a statistical fluctuation below the expected value is 0.39%). A simultaneous fitting to zenith angle distributions of upward stopping and through-going muons gives a result which is consistent with the hypothesis of neutrino oscillations with the parameters sin^2 2\\theta >0.7 and 1.5x10^{-3} Super-Kamiokande using the contained atmospheric neutrino events.

  11. Design of the Muon Lifetime Experiment By Steve Kliewer

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the lifetime of the Muon particle. This planned device will use 4, low voltage, classroom safe scintillator detectors and a data acquisition electronics board developed by Quarknet of FermiLab. Analysis, low voltage, classroom safe, detectors 2. DAQ: use the electronics developed by Quarknet (QNET2) 3

  12. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  13. AMIGA, Auger Muons and Infill for the Ground Array

    E-Print Network [OSTI]

    Etchegoyen, A

    2007-01-01T23:59:59.000Z

    The Pierre Auger Observatory is planned to be upgraded so that the energy spectrum of cosmic rays can be studied down to 0.1 EeV and the muon component of showers can be determined. The former will lead to a spectrum measured by one technique from 0.1 EeV to beyond 100 EeV while the latter will aid identification of the primary particles. These enhancements consist of three high elevation telescopes (HEAT) and an infilled area having both surface detectors and underground muon counters (AMIGA). The surface array of the Auger Observatory will be enhanced over a 23.5 km2 area by 85 detector pairs laid out as a graded array of water-Cherenkov detectors and 30 m2 buried muon scintillator counters. The spacings in the array will be 433 and 750 m. The muon detectors will comprise highly segmented scintillators with optical fibres ending on multi-anode phototubes. The AMIGA complex will be centred 6.0 km away from the fluorescence detector installation at Coihueco and will be overlooked by the HEAT telescopes. We de...

  14. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  15. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  16. Muon Performance in the Presence of High Pile-up in ATLAS

    E-Print Network [OSTI]

    Tülin Varol

    2012-12-03T23:59:59.000Z

    In 2012, the LHC is operated at sqrt(s) = 8 TeV in a mode leading up to 40 inelastic pp collisions per bunch crossing. The identification and reconstruction of muons produced in hard collisions is difficult in this challenging environment. Di-muon decays of Z bosons have been used to study the muon momentum resolution as well as the muon identification and reconstruction efficiencies of the ATLAS detector as a function of the muon transverse momentum from 15 GeV to 100 GeV and the number of inelastic collisions per event. These studies show that the muon momentum resolution, muon identification and reconstruction efficiencies are independent of the amount of pile-up present in an event.

  17. Search for Supersymmetry in Hadronic Final States using MT2 in pp collisions at ?s = 8 TeV and Evolution Studies of the CMS Electromagnetic Calorimeter Endcap Signals

    E-Print Network [OSTI]

    Weber, Hannsjörg Artur

    Over the past decades, the standard model of particle physics has been proven to accurately describe the vast majority of the experimental observations within particle physics. The discovery of a boson at a mass of about 125 GeV seems to provide the last missing piece of the standard model, the Higgs boson. Despite this success, there are some phenomena, for which the description of the standard model is insufficient. In order to surmount these shortcomings, new-physics models have been advanced. One popular model is supersymmetry, which solves several of the deficiencies of the standard model. Supersymmetry extends the description of the standard model by adding a symmetry between fermions and bosons: the elementary particle spectrum is at least doubled. In this dissertation, a search for supersymmetry in fully hadronic final states is presented. The search analyzes proton-proton collision data, collected at $\\sqrt{s} = 8\\,\\text{TeV}$ with the Compact Muon Solenoid experiment at the Large Hadron Coll...

  18. Top Quark Results Using CMS Data at 7 TeV

    E-Print Network [OSTI]

    Karl M. Ecklund; for the CMS Collaboration

    2011-10-10T23:59:59.000Z

    I give an overview of recent results on top quark properties and interactions, obtained using data collected with the CMS experiment during the years 2010--2011 at sqrt(s)= 7 TeV. Measurements are presented for the inclusive top pair production cross section, using the dilepton, lepton plus jets, and hadronic channels. The mass of the top quark is measured using the dilepton and lepton plus jets samples. CMS also measures the cross section for electroweak production of single top quarks and constrains the CKM matrix element V_tb. Top quark results are compared with Standard Model predictions and used to search for possible presence of new physics. In particular, measurements of the top-pair invariant mass distribution are used to search for new particles decaying to top pairs. CMS has also investigated the top-pair charge asymmetry to search for possible new physics contributions.

  19. Measurement of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV and an improved determination of light parton distribution functions

    E-Print Network [OSTI]

    CMS Collaboration

    2014-08-22T23:59:59.000Z

    Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

  20. The scattering of muons in low Z materials

    SciTech Connect (OSTI)

    D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-03T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionization cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionization cooling will work better than would be predicted by Geant 4.7.0p01.

  1. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01T23:59:59.000Z

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  2. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17T23:59:59.000Z

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  3. A Pionic Hadron Explains the Muon Magnetic Moment Anomaly

    E-Print Network [OSTI]

    Rainer W. Schiel; John P. Ralston

    2007-10-01T23:59:59.000Z

    A significant discrepancy exists between experiment and calculations of the muon's magnetic moment. We find that standard formulas for the hadronic vacuum polarization term have overlooked pionic states known to exist. Coulomb binding alone guarantees $\\pi^+ \\pi^-$ states that quantum mechanically mix with the $\\rho$ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for a mixing angle of order $\\alpha \\sim 10^{-2}$. The relevant physical state is predicted to give a tiny observable bump in the ratio R(s) of $e^+ e^-$ annihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon's anomalous moment.

  4. A search for two body muon decay signals

    E-Print Network [OSTI]

    R. Bayes; J. Bueno; Yu. I. Davydov; P. Depommier; W. Faszer; M. C. Fujiwara; C. A. Gagliardi; A. Gaponenko; D. R. Gill; A. Grossheim; P. Gumplinger; M. D. Hasinoff; R. S. Henderson; A. Hillairet; J. Hu; D. D. Koetke; R. P. MacDonald; G. M. Marshall; E. L. Mathie; R. E. Mischke; K. Olchanski; A. Olin; R. Openshaw; J. -M. Poutissou; R. Poutissou; V. Selivanov; G. Sheffer; B. Shin; T. D. S. Stanislaus; R. Tacik; R. E. Tribble

    2015-03-10T23:59:59.000Z

    Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$ are obtained for bosons with masses of 13 - 80 MeV/c$^2$ and with different decay asymmetries. For bosons with masses less than 13 MeV/c$^{2}$ the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

  5. The scattering of muons in low Z materials

    E-Print Network [OSTI]

    MuScat Collaboration; D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-02T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

  6. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30T23:59:59.000Z

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  7. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  8. Measurement of the nucleon structure function using high energy muons

    SciTech Connect (OSTI)

    Meyers, P.D.

    1983-12-01T23:59:59.000Z

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  9. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Creswick, R. J.; Domizio, S. Di; Dolinski, M. J.; Ejzak, L.; Faccini, R.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Kadel, R.; Kazkaz, K.; Kraft, S.; Kogler, L.; Kolomensky, Yu. G.; Maiano, C.; Maruyama, R. H.; Martinez, C.; Martinez, M.; Mizouni, L.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Tomei, C.; Ventura, G.; Vignati, M.

    2010-04-15T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.

  10. Optical Alignment System for the PHENIX Muon Tracking Chambers

    E-Print Network [OSTI]

    J. Murata; A. Al-Jamel; R. L. Armendariz; M. L. Brooks; T. Horaguchi; N. Kamihara; H. Kobayashi; D. M. Lee; T. -A. Shibata; W. E. Sondheim

    2002-12-26T23:59:59.000Z

    A micron-precision optical alignment system (OASys) for the PHENIX muon tracking chambers is developed. To ensure the required mass resolution of vector meson detection, the relative alignment between three tracking station chambers must be monitored with a precision of 25$\\mu$m. The OASys is a straightness monitoring system comprised of a light source, lens and CCD camera, used for determining the initial placement as well as for monitoring the time dependent movement of the chambers on a micron scale.

  11. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    E-Print Network [OSTI]

    D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

    2011-01-24T23:59:59.000Z

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

  12. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect (OSTI)

    Beall, Erik B; /Minnesota U.

    2005-12-01T23:59:59.000Z

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub {mu}{sup +}}/N{sub {mu}{sup -}}) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is R{sub eff} = 1.346 {+-} 0.002 (stat) {+-} 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 {+-} 0.008 (stat) {+-} 0.016 (syst) + (1.8 {+-} 0.3) x 10{sup -5} x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  13. Lateral Distribution for Aligned Events in Muon Groups Deep Underground

    E-Print Network [OSTI]

    A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

    2007-01-09T23:59:59.000Z

    The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

  14. Open-Midplane Dipoles for a Muon Collider

    SciTech Connect (OSTI)

    Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

    2011-03-28T23:59:59.000Z

    For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

  15. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-04-11T23:59:59.000Z

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  16. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science...

  17. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01T23:59:59.000Z

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  18. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01T23:59:59.000Z

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  19. A Search For the Higgs Boson in CMS in the Two Photon Decay Channel

    E-Print Network [OSTI]

    Christopher Palmer

    2011-09-30T23:59:59.000Z

    We report on a search for SM Higgs Boson in the two photon decay mode conducted by the CMS experiment with the data accumulated during the 2010 & 2011 running of the LHC at center of mass collision energy of 7 TeV.

  20. Search for a light charged Higgs boson decaying into $c\\bar{s}$ at CMS

    E-Print Network [OSTI]

    Gouranga Kole

    2014-11-30T23:59:59.000Z

    We present results on the search for a light charged Higgs boson that can be produced in the decay of a top quark and later decays into a charm and an antistrange quark. The analysis is performed using $19.7\\invfb$ pp collison data recorded with the CMS detector at LHC.

  1. LC-PHSM-2000-037 CMS NOTE 2000/046

    E-Print Network [OSTI]

    LC-PHSM-2000-037 CMS NOTE 2000/046 IEKP-KA/2000-15 EPJdirect Comparison of Higgs Boson Mass of Karlsruhe Abstract Two important properties of a Higgs boson are its mass and width. They may distinguish the Standard Model (SM) Higgs boson from Higgs bosons of extended models. We show results from a direct mass

  2. Resonant slepton production yields CMS eejj and epTjj excesses

    E-Print Network [OSTI]

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-13T23:59:59.000Z

    % confidence level with a 2.8? eejj excess in a recent CMS WR search, while being compatible with other direct search constraints. Phase II of the GERDA neutrinoless double beta decay (0???) experiment will probe a sizable portion of the good-fit region....

  3. Radiation-Hard Quartz Cerenkov Calorimeters U. Akgun and Y. Onel (for CMS Collaboration)

    E-Print Network [OSTI]

    Akgun, Ugur

    collection efficiencies. RADIATION DAMAGE STUDIES ON QUARTZ FIBERS The simulations show that the CMS HF) Attenuation for seven groups of fibers. Initial radiation damage studies on quartz fibers were performed irradiation seems to have generated a similar type of optical damage as neutron irradiation at fluence of 1015

  4. Search for Gluino-Mediated Supersymmetry in Events With Bottom-Quark Jets and Missing Transverse Energy With the Compact Muon Solenoid Detector at the Large Hadron Collider With Proton-Proton Collisions at 8 TeV

    E-Print Network [OSTI]

    Nguyen, Harold

    2013-01-01T23:59:59.000Z

    calorimeters. These energy deposit towers are clustered byof the energies in the clustered towers, and the directionare reconstructed from energy depositions, or towers, in the

  5. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-11-10T23:59:59.000Z

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  6. Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

  7. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2013-05-23T23:59:59.000Z

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  8. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01T23:59:59.000Z

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  9. Nuclear Instruments and Methods in Physics Research A 538 (2005) 159177 Muon acceleration in FFAG rings

    E-Print Network [OSTI]

    Keil, Eberhard

    2005-01-01T23:59:59.000Z

    Nuclear Instruments and Methods in Physics Research A 538 (2005) 159­177 Muon acceleration in FFAG August 2004 Available online 3 November 2004 Abstract Muon acceleration from 6 or 10 to 20 GeV in fixed-field alternating gradient (FFAG) rings is considered. The novel physics issues associated with non-scaling FFAG

  10. Semi-analytic approximations for production of atmospheric muons and neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2001-04-19T23:59:59.000Z

    Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.

  11. Evidence for a Higgs boson in tau decays with the CMS detector

    E-Print Network [OSTI]

    Dutta, Valentina

    2014-01-01T23:59:59.000Z

    In this thesis, I describe the search for a Higgs boson through its decay to a pair of tan leptons with the tau-pair subsequently decaying to ail electron, a muon, and neutrinos. The search is performed using data collected ...

  12. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2009-11-16T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

  13. Holographic calculation of hadronic contributions to muon g-2

    SciTech Connect (OSTI)

    Hong, Deog Ki; Matsuzaki, Shinya [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Doyoun [Frontier Physics Research Division and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2010-04-01T23:59:59.000Z

    Using the gauge-gravity duality, we compute the leading order hadronic (HLO) contribution to the anomalous magnetic moment of muon, a{sub {mu}}{sup HLO}. Holographic renormalization is used to obtain a finite vacuum polarization. We find a{sub {mu}}{sup HLO}=470.5x10{sup -10} in anti-de Sitter/QCD with two light flavors, which is compared with the currently revised BABAR data estimated from e{sup +}e{sup -{yields}{pi}+{pi}-} events, a{sub {mu}}{sup HLO}[{pi}{pi}]=(514.1{+-}3.8)x10{sup -10}.

  14. The New Muon g-2 Experiment at Fermilab

    E-Print Network [OSTI]

    J. Grange for the E989 collaboration

    2015-01-28T23:59:59.000Z

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  15. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31T23:59:59.000Z

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  16. Compact Muon Production and Collection Scheme for High-Energy Physics Experiments

    E-Print Network [OSTI]

    Stratakis, Diktys

    2015-01-01T23:59:59.000Z

    The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

  17. Passport Scanning: Quick guide First enter the passport number on CMS (Personal Details form) if not already present.

    E-Print Network [OSTI]

    Sussex, University of

    Passport Scanning: Quick guide First enter the passport number on CMS (Personal Details form) if not already present. Before scanning the passport, make sure that the `Category' option (1) is set to `Passport'. Scan the image

  18. A mAnuAl for CAsCAde server Content mAnAgement system (Cms)

    E-Print Network [OSTI]

    Fraden, Seth

    A mAnuAl for CAsCAde server Content mAnAgement system (Cms) CMS USer GUide #12;#12;A mAnuAl for CAs to Create an email Address Link 74 how to Upload Multiple Files at Once CHapTeR 9 77 BeST PrACTICeS 78 the Mozilla Firefox browser and navigate to webedit.brandeis.edu. Best practice: We recommend using Mozilla

  19. High Level Trigger Configuration and Handling of Trigger Tables in the CMS Filter Farm

    SciTech Connect (OSTI)

    Bauer, G; Behrens, U; Boyer, V; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; O'dell, V; Erhan, S; Gigi, D; Glege, F; Gomez-Reino, R; Gulmini, M; Gutleber, J; Hollar, J; Lange, D; Kim, J C; Klute, M; Lipeles, E; Perez, J L; Maron, G; Meijers, F; Meschi, E; Moser, R; Mlot, E G; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Racz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2009-11-22T23:59:59.000Z

    The CMS experiment at the CERN Large Hadron Collider is currently being commissioned and is scheduled to collect the first pp collision data in 2008. CMS features a two-level trigger system. The Level-1 trigger, based on custom hardware, is designed to reduce the collision rate of 40 MHz to approximately 100 kHz. Data for events accepted by the Level-1 trigger are read out and assembled by an Event Builder. The High Level Trigger (HLT) employs a set of sophisticated software algorithms, to analyze the complete event information, and further reduce the accepted event rate for permanent storage and analysis. This paper describes the design and implementation of the HLT Configuration Management system. First experiences with commissioning of the HLT system are also reported.

  20. Resonant Slepton Production Yields CMS $eejj$ and $ejj$ Missing $p_T$ Excesses

    E-Print Network [OSTI]

    Allanach, B C; Mondal, S; Mitra, M

    2014-01-01T23:59:59.000Z

    Recent CMS searches for di-leptoquark production report local excesses of 2.4$\\sigma$ in a $eejj$ channel and 2.6$\\sigma$ in a $ejj$ missing $p_T$ channel. Here, we simultaneously explain both excesses with resonant slepton production in ${\\mathcal R}-$parity violating supersymmetry (SUSY). We consider resonant slepton production, which decays to a lepton and a chargino/neutralino, followed by three-body decays of the neutralino/chargino via an $\\mathcal{R}-$parity violating coupling. There are regions of parameter space which are also compatible at the 95% confidence level (CL) with a 2.8$\\sigma$ $eejj$ excess in a recent CMS $W_R$ search, while being compatible with other direct search constraints. Phase-II of the GERDA neutrinoless double beta decay ($0\

  1. Parametric-resonance ionization cooling of muon beams

    SciTech Connect (OSTI)

    Morozov, V. S.; Derbenev, Ya. S.; Afanasev, A.; Johnson, R. P.; Erdelyi, B.; Maloney, J. A. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Muons, Inc., Batavia, Illinois 60510 (United States) and George Washington University, Washington, D.C. 20052 (United States); Muons, Inc., Batavia, Illinois 60510 (United States); Northern Illinois University, DeKalb, Illinois 60115 (United States)

    2012-12-21T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel's free oscillations. Thin absorbers placed at the focal points then cool the beam's angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/G4beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread.

  2. Top properties in $t\\bar{t}$ events at CMS (includes mass)

    E-Print Network [OSTI]

    V. Adler; on behalf of the CMS Collaboration

    2013-02-12T23:59:59.000Z

    Selected results from the following topics are presented: Measurements of several top quark properties are obtained from the CMS data collected in 2011 at a center-of-mass energy of 7 TeV. The results include measurements of the top quark mass, the W helicity in top decays, the top quark charge, and of the $t\\bar{t}$ spin correlation and the search for anomalous couplings.

  3. A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice

    E-Print Network [OSTI]

    M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

    2009-10-22T23:59:59.000Z

    In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

  4. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    E-Print Network [OSTI]

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2015-01-01T23:59:59.000Z

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5-8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  5. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01T23:59:59.000Z

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  6. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Aberle, Derek; Green, J. Andrew; McDuff, George G. [National Security Technologies, Los Alamos, NM 87544 (United States)] [National Security Technologies, Los Alamos, NM 87544 (United States); Luki?, Zarija [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States)] [Southern Methodist University, Dallas, TX 75205 (United States)

    2013-08-15T23:59:59.000Z

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  7. Muon decays in the Earth's atmosphere, time dilatation and relativity of simultaneity

    E-Print Network [OSTI]

    J. H. Field

    2009-01-22T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere decaying simultaneously are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames, whereas the decays of muons with different proper frames show relativity of simultaneity when observed from different inertial frames.

  8. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

    2014-01-01T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  9. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

    2014-10-27T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  10. CP-safe Gravity Mediation and Muon g-2

    E-Print Network [OSTI]

    Sho Iwamoto; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-02-03T23:59:59.000Z

    We propose a CP-safe gravity mediation model, where the phases of the Higgs B parameter, scalar trilinear couplings and gaugino mass parameters are all aligned. Since all dangerous CP violating phases are suppressed, we are now safe to consider low-energy SUSY scenarios. As an application, we consider a gravity mediation model explaining the observed muon $g-2$ anomaly. The CP-safe property originates in two simple assumptions: SUSY breaking in the K\\"ahler potential and a shift symmetry of a SUSY breaking field $Z$. As a result of the shift symmetry, the imaginary part of $Z$ behaves as a QCD axion, leading to an intriguing possibility: the strong CP problem in QCD and the SUSY CP problem are solved simultaneously.

  11. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J. [Imperial College London, Department of Physics, London (United Kingdom); STFC/RAL/ISIS, Chilton, Didcot, Oxon (United Kingdom); Aslaninejad, M. [Imperial College London, Department of Physics, London (United Kingdom); Berg, J. Scott [BNL, Upton, Long Island, New York (United States); Kelliher, D. J.; Machida, S. [STFC/ASTeC/RAL, Chilton, Didcot, Oxon (United Kingdom)

    2010-03-30T23:59:59.000Z

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  12. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01T23:59:59.000Z

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  13. Research Activities at Fermilab for Big Data Movement

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01T23:59:59.000Z

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  14. A Search for Higgs Boson in $H\\rightarrow W^+W^-$

    E-Print Network [OSTI]

    Kevin Sung; for the CMS Collaboration

    2011-09-12T23:59:59.000Z

    A search for the Higgs boson decaying to $W^+W^-$ has been performed on $1.1\\:$fb$^{-1}$ of pp collision data at $\\sqrt{s}=7\\:$TeV collected with the Compact Muon Solenoid (CMS) detector in 2011. No significant excess above Standard Model background expectation is observed, and upper limits on Higgs boson cross section production are derived, excluding the presence of a Higgs boson with mass in the range of $[150, 193]\\:$GeV$/c^{2}$ at 95% confidence level.

  15. STUDY OF RARE PROCESSES INDUCED BY 209-GeV MUONS

    E-Print Network [OSTI]

    Smith, W.H.

    2010-01-01T23:59:59.000Z

    the Chicago cyclotron magnet (CCM) just upstream of thethe Chicago cyclo­ tron magnet (CCM) for targetting on theshield V» A M Q Neutrino beam CCM P Muon Laboratory XBL80I0-

  16. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01T23:59:59.000Z

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  17. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C. [Muons, Inc.; Ankenbrandt, Charles M. [Muons, Inc.; Johnson, Rolland P. [Muons, Inc.; Derbenev, Yaroslav [JLAB; Morozov, Vasiliy [JLAB; Neuffer, David [FNAL; Yonehara, K. [FNAL

    2013-12-01T23:59:59.000Z

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  18. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

    2005-07-19T23:59:59.000Z

    Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

  19. 20 - 50 GeV muon storage rings for a neutrino factory

    SciTech Connect (OSTI)

    Rees, G.H.; /Rutherford; Johnstone, C.; /Fermilab; Meot, F.; /DAPNIA, Saclay

    2006-07-01T23:59:59.000Z

    Muon decay rings are under study as part of an International Scoping Study (ISS) for a future Neutrino Factory. Both isosceles triangle- and racetrack-shaped rings are being considered for a 20 GeV muon energy, but with upgrade potentials of 40 or 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from muon decay pass to one or two distant detectors; the racetrack ring has one very long production straight aligned with one detector while the triangular ring has two straights which can be aligned with two detectors. Decay ring specifications and lattice studies are the primary topic of this paper. Injection, collimation, and the RF system are covered in a second contribution to these proceedings.

  20. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1993-12-01T23:59:59.000Z

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  1. A magnetic spectrometer measurement of the charge ratio of energetic cosmic ray muons

    E-Print Network [OSTI]

    Bateman, Benjamin Jefferson

    1967-01-01T23:59:59.000Z

    A MAGNETIC SPECTROIIETER MEASUREPIENT OF THE CHARGE PATIO OF ENEIFGFTIC COSMIC RAY MUONS A Thesis BENJAMIN JEF1'EIHSON BATFIKN, JR. Submdtted to the Graduate College of the Texas AAM University in Daltial full'Ills, 'ent of the requirellents... magnet ~ 2 Schematic representation of the magnets, counters and spark chambers to form a spectrometer-telescope. A typical muon trajectory is shown. . . . . . . . ~ 3 End view of the eighteen-lamina magnet. 4 The winding process 5 The complete...

  2. High-energy electrons from the muon decay in orbit: radiative corrections

    E-Print Network [OSTI]

    Szafron, Robert

    2015-01-01T23:59:59.000Z

    We determine the $\\mathcal{O}(\\alpha)$ correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. The correction suppresses the background by about 20\\%.

  3. Collecting and analysing data at high pile-up with ATLAS and CMS

    E-Print Network [OSTI]

    Styles, Nicholas Adam; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    Detector layouts for the Phase 2 upgrades of ATLAS and CMS, designed for operation at the High-Luminosity LHC (HL-LHC) under conditions with pile-up of 140 and beyond, will be presented and discussed. The event reconstruction performance and techniques implied by these detectors and experimental conditions will be demonstrated, and possibilities for further developments will be explored. The physics reach obtainable with the upgraded detectors at HL-LHC will be shown for a selection of possible HL-LHC measurements.

  4. Search for New Physics with Monojet plus missing transverse energy at CMS

    E-Print Network [OSTI]

    Sarah Alam Malik

    2011-10-07T23:59:59.000Z

    Results are presented for the search for new physics in the monojet plus missing transverse energy channel using pp collision data at a centre-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36 pb-1. The number of observed events is found to be in good agreement with Standard Model predictions and limits are placed on parameters in the framework of the ADD model and unparticles.

  5. Results on the search for the standard model Higgs boson at CMS

    SciTech Connect (OSTI)

    Fabozzi, Francesco [INFN Sezione di Napoli, Complesso Univ. di Monte S. Angelo Via Cintia - 80126 Napoli (Italy) and Universita della Basilicata, Viale dell'Ateneo Lucano 10 - 85100 Potenza (Italy); Collaboration: CMS Collaboration

    2012-10-23T23:59:59.000Z

    A summary of the results from searches for the Standard Model Higgs Boson in the CMS experiment at LHC with data collected from proton-proton collisions at {radical}(s) = 7TeV is presented. The Higgs boson is searched in a multiplicity of decay channels using data samples corresponding to integrated luminosities in the range 4.6 - 4.8 fb{sup -1}. The investigated mass range is 110 - 600 GeV. Results are reported for each channel as well as for their combination.

  6. EA-223-A CMS Marketing, Services and Trading Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFinding ofMulti-FamilyEA-212 Coral220-B NRGEA-223-A CMS

  7. EA-223-A CMS Marketing, Services and Trading Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPower Marketing, Inc to export-A CMS

  8. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High-Energy Upward-Going Muons in Super-Kamiokande I

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; M. E. C. Swanson

    2007-02-07T23:59:59.000Z

    Many astrophysical models predict a diffuse flux of high-energy neutrinos from active galactic nuclei and other extra-galactic sources. At muon energies above 1 TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found one extremely high energy upward-going muon event, compared with an expected atmospheric neutrino background of 0.46 plus or minus 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward-going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV.

  9. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect (OSTI)

    Reichhart, L.; Ghag, C. [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom)] [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom); Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal)] [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom)] [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); and others

    2013-08-08T23:59:59.000Z

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub ?0.28}{sup +0.21})×10{sup ?3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  10. Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1), T.R. Jarboe 1), B.A. Nelson 1), D. Mueller 2), M.G. Bell 2), R. Bell 1),

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    1 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1), T.R. Jarboe 1), B sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating

  11. WEB PUBLISHING APPLICATION FORM: REGISTRATION AS OPENTEXT CMS CONTRIBUTOR This form should be printed and completed by members of staff of the University who wish to

    E-Print Network [OSTI]

    Howie, Jim

    WEB PUBLISHING APPLICATION FORM: REGISTRATION AS OPENTEXT CMS CONTRIBUTOR This form should of entering and updating web information using OpenText CMS [Content Management System]. A contributor may only edit an existing web site and create or edit content ready for approval. If you require to approve

  12. WEB PUBLISHING APPLICATION FORM: REGISTRATION AS OPENTEXT CMS APPROVER This form should be printed and completed by members of staff of the University who wish to

    E-Print Network [OSTI]

    Howie, Jim

    WEB PUBLISHING APPLICATION FORM: REGISTRATION AS OPENTEXT CMS APPROVER This form should be printed and updating web information using OpenText CMS [Content Management System]. An Approver has the ability.e. the navigation or information architecture. If you only need to edit an existing web site and create or edit

  13. Explaining the CMS $eejj$ Excess With $\\mathcal{R}-$parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Allanach, Ben; Mondal, Subhadeep; Mitra, Manimala

    2014-01-01T23:59:59.000Z

    The recent CMS searches for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown an excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider the resonant slepton and sneutrino production, followed by the three body decays of neutralino and chargino via R-parity violating coupling. These fit the excess for slepton and sneutrino masses around 2 TeV. This scenario can further be tested in neutrinoless double beta decay experiment ($0\

  14. Explaining the CMS eejj Excess With R?parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01T23:59:59.000Z

    IPPP/14/78, DCPT/14/156 Explaining the CMS eejj Excess With R?parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay Ben Allanach,1 Sanjoy Biswas,2 Subhadeep Mondal,3 and Manimala Mitra4 1DAMTP, CMS, Wilberforce Road... production, followed by the three body decays of neutralino and chargino via R-parity violating coupling. These fit the excess for slepton and sneutrino masses around 2 TeV. This scenario can further be tested in neutrinoless double beta decay experiment (0...

  15. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    E-Print Network [OSTI]

    Daniel Abercrombie; Nural Akchurin; Ece Akilli; Juan Alcaraz Maestre; Brandon Allen; Barbara Alvarez Gonzalez; Jeremy Andrea; Alexandre Arbey; Georges Azuelos; Patrizia Azzi; Mihailo Backovi?; Yang Bai; Swagato Banerjee; James Beacham; Alexander Belyaev; Antonio Boveia; Amelia Jean Brennan; Oliver Buchmueller; Matthew R. Buckley; Giorgio Busoni; Michael Buttignol; Giacomo Cacciapaglia; Regina Caputo; Linda Carpenter; Nuno Filipe Castro; Guillelmo Gomez Ceballos; Yangyang Cheng; John Paul Chou; Arely Cortes Gonzalez; Chris Cowden; Francesco D'Eramo; Annapaola De Cosa; Michele De Gruttola; Albert De Roeck; Andrea De Simone; Aldo Deandrea; Zeynep Demiragli; Anthony DiFranzo; Caterina Doglioni; Tristan du Pree; Robin Erbacher; Johannes Erdmann; Cora Fischer; Henning Flaecher; Patrick J. Fox; Benjamin Fuks; Marie-Helene Genest; Bhawna Gomber; Andreas Goudelis; Johanna Gramling; John Gunion; Kristian Hahn; Ulrich Haisch; Roni Harnik; Philip C. Harris; Kerstin Hoepfner; Siew Yan Hoh; Dylan George Hsu; Shih-Chieh Hsu; Yutaro Iiyama; Valerio Ippolito; Thomas Jacques; Xiangyang Ju; Felix Kahlhoefer; Alexis Kalogeropoulos; Laser Seymour Kaplan; Lashkar Kashif; Valentin V. Khoze; Raman Khurana; Khristian Kotov; Dmytro Kovalskyi; Suchita Kulkarni; Shuichi Kunori; Viktor Kutzner; Hyun Min Lee; Sung-Won Lee; Seng Pei Liew; Tongyan Lin; Steven Lowette; Romain Madar; Sarah Malik; Fabio Maltoni; Mario Martinez Perez; Olivier Mattelaer; Kentarou Mawatari; Christopher McCabe; Théo Megy; Enrico Morgante; Stephen Mrenna; Siddharth M. Narayanan; Andy Nelson; Sérgio F. Novaes; Klaas Ole Padeken; Priscilla Pani; Michele Papucci; Manfred Paulini; Christoph Paus; Jacopo Pazzini; Björn Penning; Michael E. Peskin; Deborah Pinna; Massimiliano Procura; Shamona F. Qazi; Davide Racco; Emanuele Re; Antonio Riotto; Thomas G. Rizzo; Rainer Roehrig; David Salek; Arturo Sanchez Pineda; Subir Sarkar; Alexander Schmidt; Steven Randolph Schramm; William Shepherd; Gurpreet Singh; Livia Soffi; Norraphat Srimanobhas; Kevin Sung; Tim M. P. Tait; Timothee Theveneaux-Pelzer; Marc Thomas; Mia Tosi; Daniele Trocino; Sonaina Undleeb; Alessandro Vichi; Fuquan Wang; Lian-Tao Wang; Ren-Jie Wang; Nikola Whallon; Steven Worm; Mengqing Wu; Sau Lan Wu; Hongtao Yang; Yong Yang; Shin-Shan Yu; Bryan Zaldivar; Marco Zanetti; Zhiqing Zhang; Alberto Zucchetta

    2015-07-03T23:59:59.000Z

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.

  16. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC (Superconducting Super Collider)

    SciTech Connect (OSTI)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-09-15T23:59:59.000Z

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs.

  17. The Role of Quench-back in the Passive Quench Protection of Uncoupled Solenoids in Series with and without Coil Sub-division

    SciTech Connect (OSTI)

    Guo, Xing Long; Green, Michael A; Wang, Li; Wu, Hong; Pan, Heng

    2010-10-15T23:59:59.000Z

    This paper is the final paper in a series of papers that discusses passive quench protection for high inductance solenoid magnets. This report describes how passive quench protection system may be applied to superconducting magnets that are connected in series but not inductively coupled. Previous papers have discussed the role of magnet sub-division and quench back from a conductive mandrel in reducing the hot-spot temperature and the peak coil voltages to ground. When magnets are connected in series, quench-back from a conductive mandrel can cause other magnets in a string to quench even without inductive coupling between magnets. The magnet mandrels must be well coupled to the magnet circuit that is being quenched. When magnet circuit sub-division is employed to reduce the voltages-to-ground within magnets, the resistance across the subdivision becomes the most important factor in the successful quenching of the magnet string.

  18. Deploying perfSONAR-based End-2-End monitoring for production US CMS networking

    SciTech Connect (OSTI)

    Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Petravick, Don; /Fermilab

    2007-09-01T23:59:59.000Z

    Fermilab is the US Tier-1 Center for CMS data storage and analysis. End-2-End (E2E) circuits are utilized to support high impact data movement into and out of the Tier-1 Center. E2E circuits have been implemented to facilitate the movement of raw experiment data from the Tier-0 Center at CERN, as well as processed data to a number of the US Tier-2 sites. Troubleshooting and monitoring of those circuits presents a significant challenge, since the circuits typically cross multiple research & education networks, each with its own management domain and customized monitoring capabilities. The perfSONAR Monitoring Project was established to facilitate development and deployment of a common monitoring infrastructure across multiple network management domains. Fermilab has deployed perfSONAR across its E2E circuit infrastructure and enhanced the product with several tools that ease the monitoring and management of those circuits. This paper will present the current state of perfSONAR monitoring at Fermilab and detail our experiences using perfSONAR to manage our current E2E circuit infrastructure. We will describe how production network circuits are monitored by perfSONAR E2E Monitoring Points (MPs), and the benefits it has brought to production US CMS networking support.

  19. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT?s of 1-3GeV/c, 2.0< |??|<4.8 and ?f?0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  20. Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision

    E-Print Network [OSTI]

    Gennai, S; Kalinowski, A; Kinnunen, R; Lethi, S; Nikitenko, A; Weiglein, G

    2007-01-01T23:59:59.000Z

    The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of $\\mu$ can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we...

  1. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    SciTech Connect (OSTI)

    Green, M. A.; Pan, H. [Lawrence Berkeley Laboratory, Berkeley CA 94720 (United States); Preece, R. M. [STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom)

    2014-01-29T23:59:59.000Z

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ?1.4 meters and the cryostat length is ?2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, the shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was ?1.5 W with first-stage temperatures of the four coolers at ?42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from ?1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (?40 K) and reducing the heat loads from all sources on both the shield and the cold mass.

  2. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  3. Muon Catalyzed Fusion in 3 K Solid Deuterium

    E-Print Network [OSTI]

    P. E. Knowles; A. Adamczak; J. M. Bailey; G. A. Beer; J. L. Beveridge; M. C. Fujiwara; T. M. Huber; R. Jacot-Guillarmod; P. Kammel; S. K. Kim; A. R. Kunselman; G. M. Marshall; C. J. Martoff; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

    1997-02-20T23:59:59.000Z

    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \\mu/s$, and $\\tilde{\\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \\mu /s$. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

  4. Muon spin rotation studies of niobium for superconducting RF applications

    E-Print Network [OSTI]

    Grassellino, A; Kolb, P; Laxdal, R; Lockyer, N S; Longuevergne, D; Sonier, J E

    2013-01-01T23:59:59.000Z

    In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.

  5. Neutrino factory and muon collider collaboration R and D activities

    SciTech Connect (OSTI)

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaborat

    2001-03-22T23:59:59.000Z

    The Neutrino Factory and Muon Collider Collaboration (MC) comprises about 140 U.S. and non-U.S. accelerator and particle physicists. The MC is carrying out an R and D program aimed at validating the critical design concepts required for the construction of such machines. We are committed to encouraging international cooperation and coordination of the R and D effort. Main activities of the MC include a Targetry program, a MUCOOL program, a component development program, and a theory and simulation effort. Moreover, the MC has participated in several feasibility studies for a complete Neutrino Factory facility, with the aim of identifying any additional R and D activities needed to prepare a Zeroth-order Design Report (ZDR) in about two years and a Conceptual Design report (CDR) about two years thereafter. In this paper, the R and D goals in each area will be indicated, and the present status and future plans of the R and D program will be described.

  6. Anomalous Lagrangians and the radiative muon capture in hydrogen

    E-Print Network [OSTI]

    J. Smejkal; E. Truhlik; F. C. Khanna

    2005-04-29T23:59:59.000Z

    The structure of an anomalous Lagrangian of the pi-rho-omega-a_1 system is investigated within the hidden local SU(2)_R x SU(2)_L symmetry approach. The interaction of the external electromagnetic and weak vector and axial-vector fields with the above hadron system is included. The Lagrangian of interest contains the anomalous Wess-Zumino term following from the well known Wess-Zumino-Witten action and six independent homogenous terms. It is characterized by four constants that are to be determined from a fit to the data on various elementary reactions. Present data allows one to extract the constants with a good accuracy. The homogenous part of the Lagrangian has been applied in the study of anomalous processes that could enhance the high energy tail of the spectrum of photons, produced in the radiative muon capture in hydrogen. It should be noted that recently, an intensive search for such enhancement processes has been carried in the literature, in an attempt to resolve the so called "g_P puzzle": an about 50 % difference between the theoretical prediction of the value of the induced pseudoscalar constant g_P and its value extracted from the high energy tail of the photon spectrum, measured in the precision TRIUMF experiment. Here, more details on the studied material are presented and new results, obtained by using the Wess-Zumino term, are provided.

  7. Measurement of the charged-hadron multiplicity in proton-proton collisions at LHC with the CMS detector

    E-Print Network [OSTI]

    Lee, Yen-Jie

    2011-01-01T23:59:59.000Z

    Charged-hadron pseudorapidity densities and multiplicity distributions in protonproton collisions at [the square root of sigma] = 0.9, 2.36, 7.0 TeV were measured with the inner tracking system of the CMS detector at the ...

  8. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N., E-mail: yuvavil@mail.ru; Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation); Takibaev, J. S. [Al-Farabi Kazakh National University (Kazakhstan)

    2009-11-15T23:59:59.000Z

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  9. CMS High mass WW and ZZ Higgs search with the complete LHC Run1 statistics

    E-Print Network [OSTI]

    Pelliccioni, Mario

    2015-01-01T23:59:59.000Z

    A search for the decay of a heavy Higgs boson in the H$\\to$ZZ and H$\\to$WW channels is reported, analyzing several final states of the H$\\to$ZZ and H$\\to$WW decays. The search used proton-proton collision data corresponding to an integrated luminosity of up to 5.1 fb$^{-1}$ at $\\sqrt{s} = 7$ TeV and up to 19.7 fb$^{-1}$ at $\\sqrt{s} = 8$ TeV recorded with the CMS experiment at the CERN LHC. A Higgs boson with Standard Model-like coupling and decays in the mass range of 145 $< m_H <$ 1000 GeV is excluded at 95\\% confidence level, based on the limit on the product of cross section and branching fraction. An interpretation of the results in the context of an electroweak singlet extension of the standard model is reported.

  10. MUON CAPTURE IN THE FRONT END OF THE IDS NEUTRINO D. Neuffer, Fermilab, Batavia, IL 60510, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    paper discusses the muon capture and cooling system. In this system we follow ref. [2], and set 201 to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high the scope of a future neutrino Factory facility. INTRODUCTION The goal of the IDS Neutrino Factory

  11. Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

    E-Print Network [OSTI]

    Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

    2014-01-01T23:59:59.000Z

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

  12. Compact storage ring to search for the muon electric dipole moment

    E-Print Network [OSTI]

    A. Adelmann; K. Kirch; C. J. G. Onderwater; T. Schietinger

    2009-06-25T23:59:59.000Z

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment of the muon ($d_\\mu$) by adapting the "frozen spin" method. At existing muon facilities a statistics limited sensitivity of $d_\\mu \\sim 5 \\times 10^{-23} \\ecm$ can be achieved within one year of data taking. Reaching this precision would demonstrate the viability of this novel technique to directly search for charged particle EDMs and already test a number of Standard Model extensions. At a future, high-power muon facility a statistical reach of $d_\\mu \\sim 5 \\times 10^{-25} \\ecm$ seems realistic with this setup.

  13. ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning

    E-Print Network [OSTI]

    Shawn McKee

    2009-10-15T23:59:59.000Z

    Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

  14. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    E-Print Network [OSTI]

    The MACRO Collaboration; M. Ambrosio et al

    1998-07-09T23:59:59.000Z

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  15. Measurement of helium-3 and deuterium stopping power ratio for negative muons

    E-Print Network [OSTI]

    V. M. Bystritsky; V. V. Gerasimov; J. Wozniak

    2006-07-07T23:59:59.000Z

    The measurement method and results measuring of the stopping power ratio of helium-3 and deuterium atoms for muons slowed down in the D/$^3$He mixture are presented. Measurements were performed at four values of pure $^3$He gas target densities, $\\phi_{He} = 0.0337, 0.0355, 0.0359, 0.0363$ (normalized to the liquid hydrogen density) and at a density 0.0585 of the D/$^3$He mixture. The experiment was carried out at PSI muon beam $\\mu$E4 with the momentum P$\\mu =34.0$ MeV/c. The measured value of the mean stopping ratio $S_{^3He/D}$ is $1.66\\pm 0.04$. This value can also be interpreted as the value of mean reduced ratio of probabilities for muon capture by helium-3 and deuterium atoms.

  16. Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision

    E-Print Network [OSTI]

    S. Gennai; S. Heinemeyer; A. Kalinowski; R. Kinnunen; S. Lethi; A. Nikitenko; G. Weiglein

    2007-04-04T23:59:59.000Z

    The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of $\\mu$ can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1-4% should be achievable, which could make it possible in favourable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.

  17. Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele, Department of Physics, University of California, Berkeley;

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele National Labs, Berkeley, CA 94720 Abstract Ionization cooling of muon beams is a crucial component of the proposed muon collider and neutrino factory. Cur- rent studies of cooling channels predominantly use simula

  18. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-04-28T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6--18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  19. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27T23:59:59.000Z

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  20. On the study of the Higgs properties at a muon collider

    E-Print Network [OSTI]

    Mario Greco

    2015-03-17T23:59:59.000Z

    The discovery of the Higgs particle at 125 GeV is demanding a detailed knowledge of the properties of this fundamental component of the Standard Model. To that aim various proposals of electron and muon colliders have been put forward for precision studies of the partial widths of the various decay channels. It is shown that in the case of a Higgs factory through a muon collider, sizeable radiative effects - of order of 50% - must be carefully taken into account for a precise measurement of the leptonic and total widths of the Higgs particle. Similar effects do not apply in the case of Higgs production in electron-positron colliders.

  1. Prompt muon-induced fission: a probe for nuclear energy dissipation

    E-Print Network [OSTI]

    Volker E. Oberacker

    1999-05-04T23:59:59.000Z

    We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

  2. Track fitting by Kalman Filter method for a prototype cosmic ray muon detector

    E-Print Network [OSTI]

    Tapasi Ghosh; Subhasis Chattopadhyay

    2009-08-06T23:59:59.000Z

    We have developed a track fitting procedure based on Kalman Filter technique for an Iron Calorimeter (ICAL) prototype detector when the detector is flushed with single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. This paper discusses the design of the prototype detector, its geometry simulation by Geant4, and the detector response with the cosmic ray muons. Finally we show the resolution of reconstructed momenta and also the charge identification efficiency of $\\mu^+$ and $\\mu^-$ events in the magnetized ICAL.

  3. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    E-Print Network [OSTI]

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01T23:59:59.000Z

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  4. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x$_{Bj}$

    E-Print Network [OSTI]

    Adams, M R; Anthony, P L; Averill, D A; Baker, M D; Baller, B R; Banerjee, A; Bhatti, A A; Bratzler, U; Braun, H M; Breidung, H; Busza, W; Carroll, T J; Clark, H L; Conrad, J M; Davisson, R; Derado, I; Dhawan, S K; Dietrich, F S; Dougherty, W; Dreyer, T; Eckardt, V; Ecker, U; Erdmann, M; Fang, G Y; Figiel, J; Finlay, R W; Gebauer, H J; Geesaman, D F; Griffioen, K A; Guo, R S; Haas, J; Halliwell, C; Hantke, D; Hicks, K H; Hughes, V W; Jackson, H E; Jaffe, D E; Jancso, G; Jansen, D M; Jin, Z; Kaufman, S; Kennedy, R D; Kinney, E R; Kirk, T; Kobrak, H G E; Kotwal, A V; Kunori, S; Lord, J J; Lubatti, H J; McLeod, D; Madden, P; Magill, S; Manz, A; Melanson, H; Michael, D G; Montgomery, H E; Morfín, J G; Nickerson, R B; Novák, J; O'Day, S; Olkiewicz, K; Osborne, L; Otten, R; Papavassiliou, V; Pawlik, B; Pipkin, F M; Potterveld, D H; Ramberg, E J; Röser, A; Ryan, J J; Salgado, C W; Salvarani, A; Schellman, H; Schmitt, M; Schmitz, N; Schüler, K P; Siegert, G; Skuja, A; Snow, G A; Soldner, S; Rembold, U; Spentzouris, P; Stier, H E; Stopa, P; Swanson, R A; Venkataramania, H; Wilhelm, M; Wilson, R; Wittek, W; Wolbers, S A; Zghiche, A; Zhao, T

    1995-01-01T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  5. Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    E-Print Network [OSTI]

    Fermilab E665 Collaboration

    1995-05-10T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  6. Muon decays in the Earth's atmosphere, differential aging and the paradox of the twins

    E-Print Network [OSTI]

    J. H. Field

    2009-02-05T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere, decaying simultaneously, are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames. The analysis of this example reveals the underlying physics of the differential aging effect in Langevin's travelling-twin thought experiment.

  7. Flesh and Blood, or Merely Ghosts? Some Comments on the Multi-Muon Study at CDF

    E-Print Network [OSTI]

    Matthew J. Strassler

    2008-11-17T23:59:59.000Z

    A recent paper by the CDF collaboration suggests (but does not claim) an anomalous event sample containing muons produced with large impact parameter, often with high multiplicity and at small angles from one another. This curious hint of a signal is potentially consistent with the hidden valley scenario, as well as with some other classes of models. Despite its tenuous nature, this hint highlights the experimental difficulties raised by such signals, and merits some consideration. Some of the simplest interpretations of the data, such as a light neutral particle decaying to muon and/or tau pairs, are largely disfavored; three-body decays to $\\tau\\tau\

  8. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01T23:59:59.000Z

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  9. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas [Univ. of Connecticut, Storrs, CT (United States); Brookhaven National Lab., Upton, NY (United States); Chowdhury, Saumitra [Univ. of Connecticut, Storrs, CT (United States); Hayakawa, Masashi [Nagoya Univ. (Japan); Nishina Center, RIKEN, Wako, Saitama (Japan); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  10. Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

    E-Print Network [OSTI]

    The AMANDA collaboration; M. Ackermann

    2005-08-24T23:59:59.000Z

    A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

  11. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    E-Print Network [OSTI]

    S. Aiello; F. Ameli; M. Anghinolfi; G. Barbarino; E. Barbarito; F. Barbato; N. Beverini; S. Biagi; B. Bouhadef; C. Bozza; G. Cacopardo; M. Calamai; C. Calě; A. Capone; F. Caruso; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Costa; G. Cuttone; C. D'Amato; A. D'Amico; G. De Bonis; V. De Luca; N. Deniskina; G. De Rosa; F. Di Capua; C. Distefano; P. Fermani; L. A. Fusco; F. Garufi; V. Giordano; A. Gmerk; R. Grasso; G. Grella; C. Hugon; M. Imbesi; V. Kulikovskiy; G. Larosa; D. Lattuada; K. P. Leismueller; E. Leonora; P. Litrico; A. Lonardo; F. Longhitano; D. Lo Presti; E. Maccioni; A. Margiotta; A. Martini; R. Masullo; P. Migliozzi; E. Migneco; A. Miraglia; C. M. Mollo; M. Mongelli; M. Morganti; P. Musico; M. Musumeci; C. A. Nicolau; A. Orlando; R. Papaleo; C. Pellegrino; M. G. Pellegriti; C. Perrina; P. Piattelli; C. Pugliatti; S. Pulvirenti; A. Orselli; F. Raffaelli; N. Randazzo; G. Riccobene; A. Rovelli; M. Sanguineti; P. Sapienza; V. Sciacca; I. Sgura; F. Simeone; V. Sipala; F. Speziale; M. Spina; A. Spitaleri; M. Spurio; S. M. Stellacci; M. Taiuti; G. Terreni; L. Trasatti; A. Trovato; C. Ventura; P. Vicini; S. Viola; D. Vivolo

    2014-12-03T23:59:59.000Z

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  12. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13T23:59:59.000Z

    A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  13. Measurements of differential jet cross sections in proton-proton collisions at s?=7??TeV with the CMS detector

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Benelli, Gabriele; Kenny, R. P. III; Murray, Michael J.; Noonan, Danny; Sanders, Stephen J.; Stringer, Robert W.; Tinti, Gemma; Wood, Jeffrey Scott; Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.

    2013-06-03T23:59:59.000Z

    Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at s?=7??TeV, corresponding to 5.0??fb(?1) of integrated luminosity, have been collected with the CMS ...

  14. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27T23:59:59.000Z

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  15. Neutrino Radiation Challenges and Proposed Solutions for Many-TeV Muon Colliders

    E-Print Network [OSTI]

    B. J. King

    2000-05-03T23:59:59.000Z

    Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

  16. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31T23:59:59.000Z

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  17. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    SciTech Connect (OSTI)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570 (Japan); Faculty of Software and Information Technology, Aomori University, 2-3-1 Kobata, Aomori, Aomori 030-0943 (Japan)

    2007-02-15T23:59:59.000Z

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the {pi}-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The {mu}{sup +}+{mu}{sup -} data show good agreement in the 1{approx}30 GeV/c range, but a large disagreement above 30 GeV/c. The {mu}{sup +}/{mu}{sup -} ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).].

  18. Identification problems of muon and electron events in the Super-Kamiokande detector

    E-Print Network [OSTI]

    K Mitsui; T Kitamura; T Wada; K Okei

    2002-09-18T23:59:59.000Z

    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.

  19. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

  20. Search for Dark Matter WIMPs using Upward-Going Muons in

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Dark Matter WIMPs using Upward-Going Muons in Super{Kamiokande S. Desai, for the Super{Kamiokande searches for Weakly Interacting Massive Particles (WIMPs) with the Super-Kamiokande detector using neutrino, for the Super{Kamiokande Collaboration the Universe as a cosmological relic from the Big Bang. The most likely

  1. Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande ( ) 9 #12;Acknowledgments.Totsuka, spokesman of Kamiokande and Super-Kamiokande ex- periments. His deep insight into physics and experiments was indispensable to Kamiokande and Super-Kamiokande experiments. I also thank to ICRR stas, Prof. Y.Suzuki, Prof. T

  2. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_?$: Quo vadis? Workshop. Mini proceedings

    E-Print Network [OSTI]

    Maurice Benayoun; Johan Bijnens; Tom Blum; Irinel Caprini; Gilberto Colangelo; Henryk Czy?; Achim Denig; Cesareo A. Dominguez; Simon Eidelman; Christian S. Fischer; Paolo Gauzzi; Yuping Guo; Andreas Hafner; Masashi Hayakawa; Gregorio Herdoiza; Martin Hoferichter; Guangshun Huang; Karl Jansen; Fred Jegerlehner; Benedikt Kloss; Bastian Kubis; Zhiqing Liu; William Marciano; Pere Masjuan; Harvey B. Meyer; Tsutomu Mibe; Andreas Nyffeler; Vladimir Pascalutsa; Vladyslav Pauk; Michael R. Pennington; Santiago Peris; Christoph F. Redmer; Pablo Sanchez-Puertas; Boris Shwartz; Evgeny Solodov; Dominik Stoeckinger; Thomas Teubner; Marc Unverzagt; Marc Vanderhaeghen; Magnus Wolke

    2014-07-21T23:59:59.000Z

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  3. Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

    2012-01-01T23:59:59.000Z

    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

  4. Neutron production by cosmic-ray muons at shallow depth J. Busenitz,1

    E-Print Network [OSTI]

    Piepke, Andreas G.

    neutrino and proton decay experiments, as well as dark matter searches even though often at greater depth for cold dark matter 3 , and is presently at shallow depth; muon-induced neutrons repre- sent a major at a shallow depth of 32 meters of water equivalent has been measured. The Palo Verde neutrino detector

  5. Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider

    E-Print Network [OSTI]

    Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

    2015-01-01T23:59:59.000Z

    Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

  6. Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier

    E-Print Network [OSTI]

    Boyer, Edmond

    Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier IN2P3, LPSC designs have been done and tracking studies are on their way using codes such as MAD, S-Code or Zgoubi. In order to cross-check results so obtained, we have performed comparisons between S-Code and Zgoubi

  7. A Theory of Pattern Recognition for the Discrimination between Muon and Electron in the Super-Kamiokande

    E-Print Network [OSTI]

    V. I. Galkin; A. M. Anokhina; E. Konishi; A. Misaki

    2007-03-29T23:59:59.000Z

    The standard Super-Kamiokande analysis uses an estimator for particle identification by which it discriminates electrons (electron nutrinos) from muons (muon nutrinos). Use of this estimator has led to the claim of a significant deficiency of muons (muon nutrinos), suggesting the existence of neutrino oscillations. We investigate three areas of concern for the Super-Kamiokande estimator: the separation of the spatial part from the angular part in the probability functions, the neglect of fluctuations in the Cherenkov light in different physical processes due to the charged particles concerned, and the point-like approximation for the emission of Cherenkov light. We show that the first two factors are important for the consideration of stochastic processes in the generation of the Cherenkov light, and that the point-like assumption oversimplifies the estimation of the Cherenkov light quantities. We develop a new discrimination procedure for separating electron neutrinos from muon neutrinos, based on detailed simulations carried out with GEANT~3.21 and with newly derived mean angular distribution functions for the charged particles concerned (muons and electrons/positrons), as well as the corresponding functions for the relative fluctuations. These angular distribution functions are constructed introducing a ``moving point'' approximation. The application of our procedure between the discrimination between electron and muon to the analysis of the experimental data in SK will be made in a subsequent paper.

  8. Explaining the CMS $eejj$ and $e \\slashed {p}_T jj$ Excess and Leptogenesis in Superstring Inspired $E_6$ Models

    E-Print Network [OSTI]

    Dhuria, Mansi; Rangarajan, Raghavan; Sarkar, Utpal

    2015-01-01T23:59:59.000Z

    We show that superstring inspired $E_6$ models can explain both the recently detected excess $eejj$ and $e \\slashed p_T jj$ signals at CMS, and also allow for leptogenesis. Working in a R-parity conserving low energy supersymmetric effective model, we show that the excess CMS events can be produced via the decay of exotic sleptons in alternative left-right symmetric models of $E_6$, which can also accommodate leptogenesis at a high scale. On the other hand, either the $eejj$ excess or the $e \\slashed p_T jj$ excess can be produced via the decays of right handed gauge bosons, but some of these scenarios may not accommodate letptogenesis as there will be strong $B-L$ violation at low energy, which, along with the anomalous fast electroweak $B+L$ violation, will wash out all baryon asymmetry. Baryogenesis below the electroweak scale may then need to be implemented in these models.

  9. Explaining a CMS $eejj$ Excess With $\\mathcal{R}-$parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Ben Allanach; Sanjoy Biswas; Subhadeep Mondal; Manimala Mitra

    2014-12-01T23:59:59.000Z

    A recent CMS search for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown a 2.8$\\sigma$ excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an $\\mathcal{R}-$parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay ($0\

  10. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01T23:59:59.000Z

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  11. Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    E-Print Network [OSTI]

    D. Sprenger; M. Weber; R. Adolphi; R. Brauer; L. Feld; K. Klein; A. Ostaptchuk; S. Schael; B. Wittmer

    2010-03-29T23:59:59.000Z

    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.

  12. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26T23:59:59.000Z

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  13. Progress on Superconducting Magnets for the MICE Cooling Channel

    E-Print Network [OSTI]

    Green, Michael A

    2010-01-01T23:59:59.000Z

    274 Progress on the Superconducting Magnets for the MICEM. A Green and J. M. Rey, “Superconducting Solenoids for anG, “Supercritically Cooled Superconducting Muon Channel,”

  14. Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

  15. Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)

    E-Print Network [OSTI]

    Marcipar, Lital

    Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

  16. Muon Reconstruction Efficiency, Momentum Scale and Resolution in $pp$ Collisions at 8 TeV with ATLAS

    E-Print Network [OSTI]

    Maximilian Goblirsch-Kolb; for the ATLAS Collaboration

    2014-08-29T23:59:59.000Z

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This paper summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to the simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution observed in experimental data, and to assess systematic uncertainties on these quantities. The dataset analysed corresponds to an integrated luminosity of $20.4$ $\\text{fb}^{\\text{-1}}$ from $pp$ collisions at $\\sqrt{s}$ = 8 TeV recorded in 2012.

  17. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Jourde, Kevin; Marteau, Jacques; d'Ars, Jean de Bremond; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe

    2015-01-01T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring...

  18. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  19. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08T23:59:59.000Z

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  20. Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics

    E-Print Network [OSTI]

    Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

    2004-03-30T23:59:59.000Z

    Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p -> 1s and the 3d -> 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 - 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission.