Sample records for muon decay parameters

  1. Electrons from Muon Decay in Bound State

    E-Print Network [OSTI]

    Rashid M. Djilkibaev; Rostislav V. Konoplich

    2009-02-12T23:59:59.000Z

    We present results of a study of the muon decay in orbit (DIO) contribution to the signal region of muon - electron conversion. Electrons from DIO are the dominant source of background for muon - electron conversion experiments because the endpoint of DIO electrons is the same as the energy of electrons from elastic muon - electron conversion. The probability of DIO contribution to the signal region was considered for a tracker with Gaussian resolution function and with a realistic resolution function obtained in the application of pattern recognition and momentum reconstruction Kalman filter based procedure to GEANT simulated DIO events. It is found that the existence of non Gaussian tails in the realistic resolution function does not lead to a significant increase in DIO contribution to the signal region. The probability of DIO contribution to the calorimeter signal was studied in dependence on the resolution, assuming a Gaussian resolution function of calorimeter. In this study the geometrical acceptance played an important role, suppressing DIO contribution of the intermediate range electrons from muon decay in orbit.

  2. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27T23:59:59.000Z

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  3. A search for two body muon decay signals

    E-Print Network [OSTI]

    R. Bayes; J. Bueno; Yu. I. Davydov; P. Depommier; W. Faszer; M. C. Fujiwara; C. A. Gagliardi; A. Gaponenko; D. R. Gill; A. Grossheim; P. Gumplinger; M. D. Hasinoff; R. S. Henderson; A. Hillairet; J. Hu; D. D. Koetke; R. P. MacDonald; G. M. Marshall; E. L. Mathie; R. E. Mischke; K. Olchanski; A. Olin; R. Openshaw; J. -M. Poutissou; R. Poutissou; V. Selivanov; G. Sheffer; B. Shin; T. D. S. Stanislaus; R. Tacik; R. E. Tribble

    2015-03-10T23:59:59.000Z

    Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$ are obtained for bosons with masses of 13 - 80 MeV/c$^2$ and with different decay asymmetries. For bosons with masses less than 13 MeV/c$^{2}$ the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

  4. Precision muon decay measurements and improved constraints on the weak interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hillairet, A.; Bayes, R.; Bueno, J. F.; Davydov, Yu. I.; Depommier, P.; Faszer, W.; Gagliardi, C. A.; Gaponenko, A.; Gill, D. R.; Grossheim, A.; Gumplinger, P.; Hasinoff, M. D.; Henderson, R. S.; Hu, J.; Koetke, D. D.; MacDonald, R. P.; Marshall, G. M.; Mathie, E. L.; Mischke, R. E.; Olchanski, K.; Olin, A.; Openshaw, R.; Poutissou, J.-M.; Poutissou, R.; Selivanov, V.; Sheffer, G.; Shin, B.; Stanislaus, T. D. S.; Tacik, R.; Tribble, R. E.; TWIST Collaboration

    2012-05-01T23:59:59.000Z

    The TWIST Collaboration has completed its measurement of the three muon decay parameters ? , ? , and P? ? . This paper describes our determination of ? , which governs the shape of the overall momentum spectrum, and ? , which controls the momentum dependence of the parity-violating decay asymmetry. The results are ?=0.749?77±0.000?12(stat)±0.000?23(syst) and ?=0.750?49±0.000?21(stat)±0.000?27(syst) . These are consistent with the value of 3/4 given for both parameters in the standard model, and each is over a factor of 10 more precise than the measurements published prior to TWIST. Our final results on ? , ? , and P? ? have been incorporated into a new global analysis of all available muon decay data, resulting in improved model-independent constraints on the possible weak interactions of right-handed particles.

  5. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute(Armenia)

    2011-07-01T23:59:59.000Z

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  6. Muon decays in the Earth's atmosphere, time dilatation and relativity of simultaneity

    E-Print Network [OSTI]

    J. H. Field

    2009-01-22T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere decaying simultaneously are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames, whereas the decays of muons with different proper frames show relativity of simultaneity when observed from different inertial frames.

  7. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01T23:59:59.000Z

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  8. Muon decays in the Earth's atmosphere, differential aging and the paradox of the twins

    E-Print Network [OSTI]

    J. H. Field

    2009-02-05T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere, decaying simultaneously, are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames. The analysis of this example reveals the underlying physics of the differential aging effect in Langevin's travelling-twin thought experiment.

  9. High-energy electrons from the muon decay in orbit: radiative corrections

    E-Print Network [OSTI]

    Szafron, Robert

    2015-01-01T23:59:59.000Z

    We determine the $\\mathcal{O}(\\alpha)$ correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. The correction suppresses the background by about 20\\%.

  10. Measurement of the Michel parameter rho in muon decay 

    E-Print Network [OSTI]

    Musser, James Raymond

    2006-04-12T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . 20 E. TWIST Measurement . . . . . . . . . . . . . . . . . . . . . 21 II APPARATUS : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22 A. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 B. Beam Line... . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. Production Target . . . . . . . . . . . . . . . . . . . . 22 2. M13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3. M13 Simulation . . . . . . . . . . . . . . . . . . . . . 24 4. Beam Measurement...

  11. Measurement of the Michel parameter rho in muon decay

    E-Print Network [OSTI]

    Musser, James Raymond

    2006-04-12T23:59:59.000Z

    provides the momentum selection with a 1% acceptance. The slit settings were unchanged between surface and cloud beams and are shown in Table VIII. 3. M13 Simulation The M13 beamline has been simulated with GEANT3 and ZGOUBI to study beam tune optimization...

  12. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-06-19T23:59:59.000Z

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  13. Uncertainty evaluation of delayed neutron decay parameters

    E-Print Network [OSTI]

    Wang, Jinkai

    2009-05-15T23:59:59.000Z

    .......... 80 Figure 6.1 Fitted E2 from Different Algorithms (Saturation Mode)................... 85 Figure 6.2 Standard Deviations of Fitted Parameter Ratios (Saturation Mode). 92 Figure 6.3 Standard Deviations of Fitted Parameter Ratios (Pulse Mode...)......... 92 Figure 6.4 Standard Deviations of Fitted Parameter Ratios with Group-1 Fixed (Pulse Mode) ........................................................................... 93 Figure 6.5 The Ratios of Different Data Sets to Keepin?s Values...

  14. Search for Proton Decay into Muon plus Neutral Kaon in Super-Kamiokande I, II, and III

    E-Print Network [OSTI]

    Regis, C; Hayato, Y; Iyogi, K; Kameda, J; Koshio, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueno, K; Yokozawa, T; Kaji, H; Kajita, T; Kaneyuki, K; Lee, K P; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R A; Wongjirad, T; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ieki, K; Ikeda, M; Kubo, H; Minamino, A; Murakami, A; Nakaya, T; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Miyake, M; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mori, T; Sakuda, M; Takeuchi, J; Kuno, Y; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Vagins, M R; Chen, S; Sui, H; Yang, Z; Zhang, H; Connolly, K; Dziomba, M; Wilkes, R J

    2012-01-01T23:59:59.000Z

    We have searched for proton into muon plus neutral kaon using data from a 91.7 kiloton-year exposure of Super-Kamiokande-I, a 49.2 kiloton-year exposure of Super-Kamiokande-II, and a 31.9 kiloton-year exposure of Super-Kamiokande-III. The number of candidate events in the data was consistent with the atmospheric neutrino background expectation and no evidence for proton decay in this mode was found. We set a partial lifetime lower limit of 1.6x10^33 years at the 90% confidence level.

  15. Search for Proton Decay into Muon plus Neutral Kaon in Super-Kamiokande I, II, and III

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; C. Regis; K. Abe; Y. Hayato; K. Iyogi; J. Kameda; Y. Koshio; Ll. Marti; M. Miura; S. Moriyama; M. Nakahata; S. Nakayama; Y. Obayashi; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; Y. Takenaga; K. Ueno; T. Yokozawa; H. Kaji; T. Kajita; K. Kaneyuki; K. P. Lee; K. Okumura; T. McLachlan; L. Labarga; E. Kearns; J. L. Raaf; J. L. Stone; L. R. Sulak; M. Goldhaber; K. Bays; G. Carminati; W. R. Kropp; S. Mine; A. Renshaw; M. B. Smy; H. W. Sobel; K. S. Ganezer; J. Hill; W. E. Keig; J. S. Jang; J. Y. Kim; I. T. Lim; J. B. Albert; K. Scholberg; C. W. Walter; R. A. Wendell; T. Wongjirad; T. Ishizuka; S. Tasaka; J. G. Learned; S. Matsuno; S. N. Smith; T. Hasegawa; T. Ishida; T. Ishii; T. Kobayashi; T. Nakadaira; K. Nakamura; K. Nishikawa; Y. Oyama; K. Sakashita; T. Sekiguchi; T. Tsukamoto; A. T. Suzuki; Y. Takeuchi; K. Ieki; M. Ikeda; H. Kubo; A. Minamino; A. Murakami; T. Nakaya; Y. Fukuda; K. Choi; Y. Itow; G. Mitsuka; M. Miyake; P. Mijakowski; J. Hignight; J. Imber; C. K. Jung; I. Taylor; C. Yanagisawa; H. Ishino; A. Kibayashi; T. Mori; M. Sakuda; J. Takeuchi; Y. Kuno; S. B. Kim; H. Okazawa; Y. Choi; K. Nishijima; M. Koshiba; Y. Totsuka; M. Yokoyama; K. Martens; M. R. Vagins; S. Chen; H. Sui; Z. Yang; H. Zhang; K. Connolly; M. Dziomba; R. J. Wilkes

    2012-05-30T23:59:59.000Z

    We have searched for proton into muon plus neutral kaon using data from a 91.7 kiloton-year exposure of Super-Kamiokande-I, a 49.2 kiloton-year exposure of Super-Kamiokande-II, and a 31.9 kiloton-year exposure of Super-Kamiokande-III. The number of candidate events in the data was consistent with the atmospheric neutrino background expectation and no evidence for proton decay in this mode was found. We set a partial lifetime lower limit of 1.6x10^33 years at the 90% confidence level.

  16. Search for Heavy Bottomlike Quarks Decaying to an Electron or Muon and Jets in pp? Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We report the most sensitive direct search for pair production of fourth-generation bottomlike chiral quarks (b?)[(b prime)] each decaying promptly to tW. We search for an excess of events with an electron or muon, at least ...

  17. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearlymore »isotropic.« less

  18. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  19. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  20. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    E-Print Network [OSTI]

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Brunner, J; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01T23:59:59.000Z

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  1. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    E-Print Network [OSTI]

    IceCube Collaboration; M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; F. Bos; D. Bose; S. Böser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; J. Brunner; N. Buzinsky; J. Casey; M. Casier; E. Cheung; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de André; C. De Clercq; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. Díaz-Vélez; M. Dunkman; R. Eagan; B. Eberhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; K. Frantzen; T. Fuchs; T. K. Gaisser; R. Gaior; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Góra; D. Grant; P. Gretskov; J. C. Groh; A. Groß; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; K. Jero; O. Jlelati; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; A. Keivani; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kläs; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; A. Koob; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; M. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; J. L. Lanfranchi; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Lünemann; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; R. Maunu; F. McNally; K. Meagher; M. Medici; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; Ö. Penek; J. A. Pepper; C. Pérez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Pütz; M. Quinnan; L. Rädel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; M. Relich; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; J. Sandroos; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; N. L. Strotjohann; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; A. Tepe; S. Ter-Antonyan; A. Terliuk; G. Teši?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; M. Zoll

    2014-10-27T23:59:59.000Z

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  2. Muon Cooling and Future Muon Facilities

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2006-11-24T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for achieving the highest lepton-antilepton collision energies and the most precise measurements of the parameters of the neutrino mixing matrix. The performance and cost of these future facilities depends sensitively on how well a beam of muons can be cooled. The recent progress of muon-cooling prototype tests and design studies nourishes the hope that such facilities can be built during the next decade.

  3. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley; ,

    2012-04-05T23:59:59.000Z

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  4. Search for single production of scalar leptoquarks in p anti-p collisions decaying into muons and quarks with the D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de

    2006-12-01T23:59:59.000Z

    We report on a search for second generation leptoquarks (LQ{sub 2}) which decay into a muon plus quark in p{bar p} collisions at a center-of-mass energy of {radical}s = 1.96 TeV in the D0 detector using an integrated luminosity of about 300 pb{sup -1}. No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction {beta} into a quark and a muon was determined for second generation scalar leptoquarks as a function of the leptoquark mass. This result has been combined with a previously published D0 search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, {lambda}. Assuming {lambda} = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m{sub LQ{sub 2}} > 274 GeV and m{sub LQ{sub 2}} > 226 GeV for {beta} = 1 and {beta} = 1/2, respectively.

  5. Discovery potential for the MSSM H/A bosons decaying to two muons at ATLAS

    SciTech Connect (OSTI)

    Milosavljevic, M. [Institute of Physics, Belgrade, Serbia (Serbia and Montenegro); Kourkoumelis, C.; Fassouliotis, D.; Nikolopoulos, K. [University of Athens, Athens (Greece)

    2007-04-23T23:59:59.000Z

    The ATLAS sensitivity for the H/A{yields} {mu}{mu} decay (mA =300 GeV/c2 and tan{beta} =30) for the initial detector setup has been estimated using the full simulation. The selection criteria have been optimized for both the direct and the associated production (bbH/A) of the Higgs bosons. The irreducible Drell-Yan background dominates in the direct production case and overwhelms the signal in such a way that the direct production has lower signal significance. In the associated production case, the Zb b-bar background is the irreducible one, but the most abundant is the tt-bar background and the selection criteria applied were optimized for its reduction. The signal significance was calculated for both analyses separately and for their combination.

  6. Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-07-01T23:59:59.000Z

    A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

  7. Precision Muon Physics

    E-Print Network [OSTI]

    Gorringe, T P

    2015-01-01T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiment...

  8. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  9. Measurement of the asymmetry parameter for the decay {Lambda}{yields}p{pi}{sup +}

    SciTech Connect (OSTI)

    Ablikim, M.; Bai, J. Z.; Bai, Y.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fu, C. D.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; He, K. L.; Heng, Y. K.; Hu, H. M. [Institute of High Energy Physics, Beijing 100049 (China)

    2010-01-01T23:59:59.000Z

    Based on a sample of 58x10{sup 6}J/{psi} decays collected with the BESII detector at the BEPC, the {Lambda} decay parameter {alpha}{sub {Lambda}}for {Lambda}{yields}p{pi}{sup +} is measured using about 9000 J/{psi}{yields}{Lambda}{Lambda}{yields}pp{pi}{sup +{pi}-} decays. A fit to the joint angular distributions yields {alpha}{sub {Lambda}({Lambda}{yields}p{pi}{sup +})}=-0.755{+-}0.083{+-}0.063, where the first error is statistical, and the second systematic.

  10. Muon capture for the front end of a muon collider

    SciTech Connect (OSTI)

    Neuffer, D.; /Fermilab; Yoshikawa, C.; /MUONS Inc., Batavia

    2011-03-01T23:59:59.000Z

    We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

  11. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung [W& M

    2014-11-01T23:59:59.000Z

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  12. A measurement of the Michel parameters in leptonic decays of the tau

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1997-06-01T23:59:59.000Z

    We have measured the spectral shape Michel parameters rho and eta using leptonic decays of the tau, recorded by the CLEO II detector. Assuming e-mu universality in the vectorlike couplings, we find rho(e mu) = 0.735 +/- 0.013 +/- 0.008 and eta(e mu...

  13. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  14. Updated Parameters for the Decaying Neutrino Theory and EURD Observations of the Diffuse UV Background

    E-Print Network [OSTI]

    D. W. Sciama

    1998-05-13T23:59:59.000Z

    Various recent observational developments are here used to make a more critical analysis of the parameter space of the decaying neutrino theory for the ionisation of the interstellar medium. These developments involve phenomena inside our Galaxy, outside the Galaxy but at essentially zero red shift, and at large red shifts. This new analysis leads to a viable theory with a decay lifetime of $2{\\pm}1\\times 10^{23}$ sec, a decay photon energy of $13.7{\\pm}0.1$ eV, and a mass for the decaying neutrino of $27.4 {\\pm}0.2$ eV. These parameters, when combined with some known astronomical quantities, lead to predictions for the intensity, the wavelength and the width of the decay line produced by neutrinos lying within one optical depth of the sun $({\\sim} 1/2 pc)$. One finds an intensity in the line of $350^{+350}_{-117}$ photons $cm^{-2} sec^{-1}$, a wavelength of $905\\pm7\\AA$, and a width $\\sim1\\AA$. These predictions are relevant for the observations about to be made by the EURD ultra-violet detector which is currently in Earth orbit on board the Spanish MINISAT 01 satellite.

  15. An Investigation of the Neutral Cascade Muon Semileptonic Decay and its Observation at KTeV, Fermilab

    SciTech Connect (OSTI)

    Gomes, Ricardo Avelino

    2005-07-01T23:59:59.000Z

    The authors report an investigation of the semileptonic decay {Xi}{sup 0} {yields} {sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}}. This decay was observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the {Xi}{sup 0} beta decay mode and yields a value for the ratio of decay rates {Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +} {mu}{sup -}{bar {nu}}{sub {mu}})/{Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +}e{sup -}{bar {nu}}{sub e}) of (1.8{sub -0.5}{sup +0.7}(stat.) {+-} 0.2(syst.)) x 10{sup -2} at the 68.27% confidence level, being the official measurement of KTeV Collaboration. They also used the dominant decay {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) as normalization mode in an independent analysis which corroborated with the main result. In addition, a new measurement of the {Xi}{sup 0} {yields} {Sigma}{sup +} e{sup -}{bar {nu}}{sub e} branching ratio is presented, based on 1139 events and normalized to the {Xi}{sup 0} {yields} {Lambda}{pi}{sup 0}({Lambda} {yields} p{pi}{sup -}) decay mode. The results are in agreement with the SU(3) flavor symmetric quark model.

  16. On the Capability Of Super-Kamiokande Detector To Define the Primary Parameters Of Muon And Electron Events

    E-Print Network [OSTI]

    V. I. Galkin; A. M. Anokhina; E. Konishi; A. Misaki

    2008-08-06T23:59:59.000Z

    We develop a new discrimination procedure for separating electron neutrinos from muon neutrinos, based on detailed simulations carried out with GEANT3.21 and with mean angular distribution functions and their relative fluctuations. Using our procedure we are able to discriminate muons from electrons in Fully Contained Events in Super-Kamioknade Experiment with a probability of error ofless than several %. Also we have checked geometrical resolution on both cases, considering only the ring-like structure of the Cherenkov image and a geometrical reconstruction procedure utilizing the full distribution. Even the methodologically correct approach we have adopted, we cannot reproduce the accuracies for particle discrimination, momentum resolution, interaction vertex location, and angular resolution obtained by the Super-Kamiokande Collaboration.

  17. $B_s \\to ?^+ ?^-$ and the upward-going muon flux from the WIMP annihilation in the sun or the earth

    E-Print Network [OSTI]

    Seungwon Baek; Yeong Gyun Kim; P. Ko

    2005-06-13T23:59:59.000Z

    We consider the upward-going muon flux due to the WIMP annihilations in the cores of the sun and the earth, including the upper bound on the branching ratio for $B_s \\to \\mu^+ \\mu^-$ decay. We find that the constraint from $B_s \\to \\mu^+ \\mu^-$ is very strong in most parameter space, and exclude the supergravity parameter space regions where the expected upward-going muon fluxes are within the expected reach of AMANDA II.

  18. A Monte Carlo study of the distribution of parameter estimators in a dual exponential decay model

    E-Print Network [OSTI]

    Garcia, Raul

    1969-01-01T23:59:59.000Z

    of an estimate of the reliability of the parameter estimates calculated. In 1965, Bell and Garcia [2] developed a computer program which permits a solution of the parameters without the time-consuming effort of manual calcu- lations. The same year, Rossing [3...A MONTE CARLO STUDY OF THE DISTRIBUTION OF PARAMETER ESTIMATORS IN A DUAL EXPONENTIAL DECAY MODEL A Thesis by SAUL GARCIA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree...

  19. Flesh and Blood, or Merely Ghosts? Some Comments on the Multi-Muon Study at CDF

    E-Print Network [OSTI]

    Matthew J. Strassler

    2008-11-17T23:59:59.000Z

    A recent paper by the CDF collaboration suggests (but does not claim) an anomalous event sample containing muons produced with large impact parameter, often with high multiplicity and at small angles from one another. This curious hint of a signal is potentially consistent with the hidden valley scenario, as well as with some other classes of models. Despite its tenuous nature, this hint highlights the experimental difficulties raised by such signals, and merits some consideration. Some of the simplest interpretations of the data, such as a light neutral particle decaying to muon and/or tau pairs, are largely disfavored; three-body decays to $\\tau\\tau\

  20. Search for High Mass Resonances Decaying to Muon Pairs in ?s=1.96??TeV pp? Collisions

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present a search for a new narrow, spin-1, high mass resonance decaying to ?+?-+X [mu superscript + mu superscript - + X], using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and ...

  1. A photon detector system for the search for the rare muon decay {mu} {yields} e{gamma}

    SciTech Connect (OSTI)

    Van Ausdeln, L.A.

    1993-11-01T23:59:59.000Z

    An innovative and state of the art pair spectrometer system to measure the photon component of {mu}{sup +} decay to obtain an improved branching ratio limit for the decay {mu} {yields} e{gamma} is investigated. Analysis algorithms are developed and an experimental inner bremsstrahlung spectrum is obtained and agrees well with Monte Carlo simulations. Background sources are investigated and found to be highly suppressed at various stages of acquisition and analysis.

  2. Muon Cooling and Future Muon Facilities: The Coming Decade

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2009-10-21T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the neutrino mixing matrix. The performance and cost of these depend sensitively on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built in the decade to come.

  3. Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay

    E-Print Network [OSTI]

    Sabin Stoica; Andrei Neacsu

    2014-05-02T23:59:59.000Z

    The study of the neutrinoless double beta ($0 \\beta\\beta$) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the $0 \\beta\\beta$ decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with di?erent methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date image on the present neutrino mass sensitivities associated with $0 \\beta\\beta$ measurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.

  4. Precision Muon Physics

    E-Print Network [OSTI]

    T. P. Gorringe; D. W. Hertzog

    2015-06-04T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  5. Measurement of W + gamma Production in the W to Muon Decay Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Tanimoto, Naho

    2005-03-01T23:59:59.000Z

    The production cross section and the kinematic properties of the decay products of W{gamma} in the W {yields} {mu}{nu} decay channel from p{bar p} collisions at {radical}s = 1.96 TeV are presented. The measurement use the high p{sub T} muon data from the upgraded Collider Detector at Fermilab (CDF). The data were collected between March 2002 and September 2003. The total integrated luminosities are 192 pb{sup -1} with the muon detector which covers the pseudorapidity region of |{eta}| {le} 0.6 and 175 pb{sup -1} with the muon detector covering the region 0.6 {le} |{eta}| {le} 1.0. In the Standard Model the {mu}{nu}{gamma} final states occur due to W{gamma} {yields} {mu}{nu}{gamma} production and via muon Bremsstrahlung, W {yields} {mu}{nu} {yields} {mu}{nu}{gamma}. W bosons are selected in their muon decay mode. Additionally, photons with transverse energy above 7 GeV, pseudorapidity in the central region (|{eta}| < 1.1) and muon-photon angular separation {Delta}R({mu},{gamma}) > 0.7 are selected. The author observes a total of 128 W{gamma} candidates, whereas the Standard Model expectation is 142.4 {+-} 9.5 events. The W{gamma} production cross section is found to be {sigma}(p{bar p} {yields} {mu}{nu}{gamma}) = 16.3 {+-} 2.3(stat.) {+-} 1.8(syst.) {+-} 1.2(lum.) [pb]. The theoretical prediction for this cross section is {sigma}(p{bar p} {yields} l{nu}{gamma}) = 19.3 {+-} 1.4(th.) [pb]. The Standard Model predictions for several kinematic + variables are compared with data for E{sub T}{sup {gamma}} > 7 GeV and {Delta}R({mu},{gamma}) > 0.7. The measured cross section and the photon and W boson production kinematics are found to agree with the Standard Model predictions.

  6. Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay

    E-Print Network [OSTI]

    Stoica, Sabin

    2014-01-01T23:59:59.000Z

    The study of the neutrinoless double beta ($0 \\beta\\beta$) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the $0 \\beta\\beta$ decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with di?erent methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date ...

  7. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

  8. BARYON DECAY PARAMETERS Written 1996 by E.D. Commins (University of California, Berke-

    E-Print Network [OSTI]

    by standard means [5] and are analogous to formulae for nuclear beta decay [6]. We use the notation of Ref. 6 in the Listings for neutron beta decay. For comparison with experi- ments at higher q2, it is necessary to modify been measured precisely only in neutron decay (and in 19Ne nuclear beta decay), and the results

  9. Measurement of the parity-violating asymmetry parameter ?[subscript b] and the helicity amplitudes for the decay ?[0 over b] ? J/??[superscript 0] with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the parity-violating decay asymmetry parameter, ?[subscript b], and the helicity amplitudes for the decay ?[0 over b] ? J/?(?[superscript +]?[superscript ?])?[superscript 0](p?[superscript ?]) is reported. ...

  10. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Daniel M. Kaplan on behalf of the MAP; MICE collaborations

    2013-07-15T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  11. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2013-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  12. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  13. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2014-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  14. Muon capture at PSI

    E-Print Network [OSTI]

    Peter Winter

    2010-12-17T23:59:59.000Z

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calculate related processes such as solar pp-fusion or neutrino-deuteron scattering. The MuSun experiment will deduce Lambda_d to better than 1.5%. The experiment uses the MuCap detection setup with a new time projection chamber operated with deuterium at 30K and several hardware upgrades. The system is currently fully commissioned and the main physics data taking will start in 2011.

  15. Measurement of cosmic muon charge ratio with the Large Volume Detector

    E-Print Network [OSTI]

    N. Yu. Agafonova; M. Aglietta; P. Antonioli; G. Bari; R. Bertoni; V. V. Boyarkin; E. Bressan; G. Bruno; V. L. Dadykin; E. A. Dobrynina; R. I. Enikeev; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; E. Kemp; A. S. Malgin; B. Miguez; A. Molinario; R. Persiani; I. A. Pless; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; M. Selvi; G. C. Trinchero; C. Vigorito; V. F. Yakushev; A. Zichichi

    2015-02-14T23:59:59.000Z

    The charge ratio ${k \\equiv \\mu^+/\\mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the sea level greater than 1.3 TeV. The muon charge ratio was defined using the number of the decays of stopping positive muons in the LVD iron structure and the decays of positive and negative muons in scintillator. We have obtained the value of the muon charge ratio ${k}$ ${= 1.26 \\pm 0.04(stat) \\pm 0.11(sys)}$.

  16. Precise Measurement of the CP Violation Parameter sin2?1 in B??(cc?)K? Decays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A. M.; Bay, A.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bra?ko, M.; Browder, T. E.; Chen, P.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Choi, S.-K.; Choi, Y.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Gaur, V.; Gabyshev, N.; Garmash, A.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, K.; Hara, T.; Hayasaka, K.; Hayashii, H.; Higuchi, T.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Hyun, H. J.; Iijima, T.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kapusta, P.; Katayama, N.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Koblitz, S.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, S.-H.; Li, J.; Li, Y.; Liu, C.; Liu, Y.; Liu, Z. Q.; Liventsev, D.; Louvot, R.; Matvienko, D.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mizuk, R.; Mohanty, G. B.; Mori, T.; Muramatsu, N.; Nakano, E.; Nakao, M.; Nakazawa, H.; Neubauer, S.; Nishida, S.; Nishimura, K.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Onuki, Y.; Ozaki, H.; Pakhlov, P.; Pakhlova, G.; Park, H. K.; Park, K. S.; Pedlar, T. K.; Pestotnik, R.; Petri?, M.; Piilonen, L. E.; Poluektov, A.; Röhrken, M.; Rozanska, M.; Sahoo, H.; Sakai, K.; Sakai, Y.; Sanuki, T.; Sato, Y.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Senyo, K.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Singh, J. B.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stani?, S.; Stari?, M.; Sumihama, M.; Sumisawa, K.; Sumiyoshi, T.; Tanaka, S.; Tatishvili, G.; Teramoto, Y.; Tikhomirov, I.; Trabelsi, K.; Tsuboyama, T.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Ushiroda, Y.; Vahsen, S. E.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Vorobyev, V.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yabsley, B. D.; Yamamoto, H.; Yamashita, Y.; Yamauchi, M.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zupanc, A.; Zyukova, O.

    2012-04-01T23:59:59.000Z

    We present a precise measurement of the CP violation parameter sin2?1 and the direct CP violation parameter Af using the final data sample of 772×10? BB¯¯¯ pairs collected at the ?(4S) resonance with the Belle detector at the KEKB asymmetric-energy e?e? collider. One neutral B meson is reconstructed in a J/?K0S, ?(2S)K0S, ?c1K0S, or J/?K0L CP eigenstate and its flavor is identified from the decay products of the accompanying B meson. From the distribution of proper-time intervals between the two B decays, we obtain the following CP violation parameters: sin2?1=0.667±0.023(stat)±0.012(syst) and Af=0.006±0.016(stat)±0.012(syst).

  17. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  18. Search for excited and exotic muons in the mu gamma decay channel in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst.

    2006-06-01T23:59:59.000Z

    The authors present a search for excited and exotic muon states {mu}*, conducted using an integrated luminosity of 371 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV at the Tevatron with the CDF II detector. They search for associated production of {mu}{mu}* followed by the decay {mu}* {yields} {mu}{gamma}, resulting in the {mu}{mu}{gamma} final state. They compare the data to model predictions as a function of the mass of the excited muon M{sub {mu}*}, the compositeness energy scale {Lambda}, and the gauge coupling factor f. No signal above the standard model expectation is observed in the {mu}{gamma} mass spectrum. In the contact interaction model, they exclude 107 < M{sub {mu}*} < 853 GeV/c{sup 2} for {Lambda} = M{sub {mu}*}; in the gauge-mediated model, they exclude 100 < M{sub {mu}*} < 410 GeV/c{sup 2} for f/{Lambda} = 10{sup -2} GeV{sup -1}. These 95% confidence level exclusions extend previous limits and are the first hadron collider results on {mu}* production in the gauge-mediated model.

  19. was a decisive one as in the studies of hyperon rare decays at FNAL (E715 and E761 experi ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic

    E-Print Network [OSTI]

    Titov, Anatoly

    ­ ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic nuclei nuclear fusion reactions was successfully carried out in the muon channel of the SC. The muon beam is also intensity (1¯A) make this accelerator valuable even in the up­to­date nuclear studies. For example

  20. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect (OSTI)

    R. Raja et al.

    2001-08-08T23:59:59.000Z

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  1. Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in ?s=7??TeV pp collisions at the LHC

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents the first search for a heavy particle decaying into an e[superscript ±]?[superscript ?] final state in ?s=7??TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and ...

  2. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2013-11-01T23:59:59.000Z

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the ?+?? final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb?1 of proton–proton collisions at View the MathML source, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2

  3. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  4. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect (OSTI)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11T23:59:59.000Z

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  5. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Burkhant Suerfu; Christopher G. Tully

    2015-01-28T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials.

  6. Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the $\\mu$SR spectrometer

    E-Print Network [OSTI]

    Khaw, Kim Siang; Crivelli, Paolo; Kirch, Klaus; Morenzoni, Elvezio; Salman, Zaher; Suter, Andreas; Prokscha, Thomas

    2015-01-01T23:59:59.000Z

    The PSI low-energy $\\mu$SR spectrometer is an instrument dedicated to muon spin rotation and relaxation measurements. Knowledge of the muon beam parameters such as spatial, kinetic energy and arrival-time distributions at the sample position are important ingredients to analyze the $\\mu$SR spectra. We present here the measured energy losses in the thin carbon foil of the muon start detector deduced from time-of-flight measurements. Muonium formation in the thin carbon foil (10 nm thickness) of the muon start detector also affect the measurable decay asymmetry and therefore need to be accounted for. Muonium formation and energy losses in the start detector, whose relevance increase with decreasing muon implantation energy ($<10$ keV), have been implemented in Geant4 Monte Carlo simulation to reproduce the measured time-of-flight spectra. Simulated and measured time-of-flight and beam spot agrees only if a small fraction of so called "unmoderated" muons which contaminate the mono-energetic muon beam of the $...

  7. Measurement of CP-Violating Parameters in Fully Reconstructed B to D(*)+-pi-+ and B to D+-rho-+ Decays

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

    2005-07-27T23:59:59.000Z

    The authors present a preliminary measurement of the CP-violating parameters in fully reconstructed B{sup 0} {yields} D{sup (*){+-}}{pi}{sup {-+}} and B{sup 0} {yields} D{sup {+-}}{rho}{sup {-+}} decays in approximately 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC.

  8. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    E-Print Network [OSTI]

    Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

    2013-01-01T23:59:59.000Z

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  9. Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in s = 7 ? ? TeV p p collisions at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G [Albert-Ludwigs-Universitat, Freiburg (Germany). Fakultat fur Mathematik und Physik; Abbott, B. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J [Universitat Autonoma de Barcelona and ICREA, Barcelona (Spain). Institut de Fisica d' Altes Energies; Abdelalim, A. A. [Universite de Geneve, Geneva (Switzerland). Section de Physique; Abdesselam, A. [Oxford Univ., Oxford (United Kingdom). Dept. of Physics; Abdinov, B [Oklahoma State Univ., Stillwater, OK (United States). Dept. of Physics; Abolins, M [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Abramowicz, H. [Tel Aviv Univ., Tel Aviv (Israel). Raymond and Beverly Sackler School of Physics and Astronomy; Abreu, E. [Universita di Milano, Milano (Italy). Dipartimento di Fisica; INFN Sezione di Milano, Milano (Italy); Acharya, B. S. [Collegato di Udine (Italy). INFN Gruppo; ICTP, Trieste (Italy); Adams, D. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Physics Dept.; Addy, T. N. [Hampton Univ., Hampton, VA (United States); Dept. of Physics; Adelman, J. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Aderholz, M. [Werner-Heisenberg-Institut, Muchen (Germany). Max-Planck-Institut fur Physik; Adomeit, S. [Ludwig Maximilian Univ., Munich (Germany). Fakultat fur Physik; Adragna, P. [Queen Mary Univ. of London, London (United Kingdom). Dept. of Physics; Adye, T. [Rutherford Appleton Laboratory, Didcot (United Kingdom). Particle Physics Dept.; Aefsky, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Aguilar-Saavedra, J. A. [Universidad de Granada, Granada (Spain). Departamento de Fisica Teorica y del Cosmos and CAFPE; Siegrist, James L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-06-01T23:59:59.000Z

    This Letter presents the first search for a heavy particle decaying into an e±?? final state in ?s=7??TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35??pb?¹. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except ??311=0.11 and ?312=0.07. In a lepton flavor violating model, a Z?-like vector boson with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z’s than previous constraints from the Tevatron.

  10. Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in s = 7 ? ? TeV p p collisions at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G; Abbott, B.; Abdallah, J; Abdelalim, A. A.; Abdesselam, A.; Abdinov, B; Abolins, M; Abramowicz, H.; Abreu, E.; Acharya, B. S.; et al

    2011-06-01T23:59:59.000Z

    This Letter presents the first search for a heavy particle decaying into an e±?? final state in ?s=7??TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35??pb?¹. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except ??311=0.11 and ?312=0.07. In a lepton flavor violating model, a Z?-like vector bosonmore »with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z’s than previous constraints from the Tevatron.« less

  11. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.; The MEGA Collaboration

    1993-05-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  12. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.

    1993-01-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  13. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29T23:59:59.000Z

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  14. Muon Performance in the Presence of High Pile-up in ATLAS

    E-Print Network [OSTI]

    Tülin Varol

    2012-12-03T23:59:59.000Z

    In 2012, the LHC is operated at sqrt(s) = 8 TeV in a mode leading up to 40 inelastic pp collisions per bunch crossing. The identification and reconstruction of muons produced in hard collisions is difficult in this challenging environment. Di-muon decays of Z bosons have been used to study the muon momentum resolution as well as the muon identification and reconstruction efficiencies of the ATLAS detector as a function of the muon transverse momentum from 15 GeV to 100 GeV and the number of inelastic collisions per event. These studies show that the muon momentum resolution, muon identification and reconstruction efficiencies are independent of the amount of pile-up present in an event.

  15. Measurement of direct CP violation parameters in B(±)?J/?K(±) and B(±)?J/??(±) decays with 10.4??fb(?1) of Tevatron data

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Chen, G.; Clutter, Justace Randall; Sekaric, Jadranka; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.

    2013-06-12T23:59:59.000Z

    Measurement of direct CP violation parameters in B#1; ! J=cK#1; and B#1; ! J=c#1;#1; decays with 10:4 fb#2;1 of Tevatron data V.M. Abazov,31 B. Abbott,66 B. S. Acharya,25 M. Adams,45 T. Adams,43 J. P. Agnew,40 G.D. Alexeev,31 G. Alkhazov,35 A. Alton..., Seattle, Washington 98195, USA (Received 8 April 2013; published 12 June 2013) We present a measurement of the direct CP-violating charge asymmetry in B#1; mesons decaying to J=cK#1; and J=c#1;#1; where J=c decays to #2;þ#2;#2;, using the full run II data...

  16. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2013-05-23T23:59:59.000Z

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  17. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  18. ATLAS Muon Detector Commissioning

    E-Print Network [OSTI]

    E. Diehl; for the ATLAS muon collaboration

    2009-10-15T23:59:59.000Z

    The ATLAS muon spectrometer consists of several major components: Monitored Drift Tubes (MDTs) for precision measurements in the bending plane of the muons, supplemented by Cathode Strip Chambers (CSC) in the high eta region; Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) for trigger and second coordinate measurement in the barrel and endcap regions, respectively; an optical alignment system to track the relative positions of all chambers; and, finally, the world's largest air-core magnetic toroid system. We will describe the status and commissioning of the muon system with cosmic rays and plans for commissioning with early beams.

  19. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

    2012-05-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  20. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  1. Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction

    E-Print Network [OSTI]

    A. Cervera; A. Laing; J. Martin-Albo; F. J. P. Soler

    2010-04-02T23:59:59.000Z

    A Neutrino Factory producing an intense beam composed of nu_e(nubar_e) and nubar_mu(nu_mu) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, theta_13 and delta_CP . Using the `wrong-sign muon' signal to measure nu_e to nu_mu(nubar_e to nubar_mu) oscillations in a 50 ktonne Magnetised Iron Neutrino Detector (MIND) sensitivity to delta_CP could be maintained down to small values of theta_13. However, the detector efficiencies used in previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is re-assessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses.

  2. 20 - 50 GeV muon storage rings for a neutrino factory

    SciTech Connect (OSTI)

    Rees, G.H.; /Rutherford; Johnstone, C.; /Fermilab; Meot, F.; /DAPNIA, Saclay

    2006-07-01T23:59:59.000Z

    Muon decay rings are under study as part of an International Scoping Study (ISS) for a future Neutrino Factory. Both isosceles triangle- and racetrack-shaped rings are being considered for a 20 GeV muon energy, but with upgrade potentials of 40 or 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from muon decay pass to one or two distant detectors; the racetrack ring has one very long production straight aligned with one detector while the triangular ring has two straights which can be aligned with two detectors. Decay ring specifications and lattice studies are the primary topic of this paper. Injection, collimation, and the RF system are covered in a second contribution to these proceedings.

  3. The LHCb Muon System

    E-Print Network [OSTI]

    Lenzi, Michela

    2005-01-01T23:59:59.000Z

    The ability to provide fast muon triggering and efficient offline muon identification is an essential feature of the LHCb experiment. The muon detector is required to have a high efficiency over a large area and an appropriate time resolution to identify the bunch crossing for level–0 triggers. The LHCb muon detector consists of five stations equipped with 1368 Multi Wire Proportional Chambers and 12 Gas Electron Multiplier chambers. The technical design of the chambers is briefly presented and the Quality Control procedures during the various construction steps are described. The method developed for gas gain uniformity measurement is also described together with the results on efficiency of detectors fully equipped with the front–end electronics, obtained from tests with cosmic rays.

  4. Muon-proton Scattering

    E-Print Network [OSTI]

    E. Borie

    2013-02-05T23:59:59.000Z

    A recent proposal to measure the proton form factor by means of muon-proton scattering will use muons which are not ultrarelativistic (and also not nonrelativistic). The usual equations describing the scattering cross section use the approximation that the scattered lepton (usually an electron) is ultrarelativistic, with v/c approximately equal to 1. Here the cross section is calculated for all values of the energy. It agrees with the standard result in the appropriate limit.

  5. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  6. A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS

    E-Print Network [OSTI]

    McDonald, Kirk

    856 A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS David Cline University of Wisconsin, Madison, Wl 53706 David Neuffer Fermilab,* Batavia, IL 60510 ABSTRACT · + decay in a ~- Storage Ring can as a possible first ~ storage ring. INTRODUCTION Recent experimental reports 1'2 of a non-zero ~ mass and of e

  7. The Solenoid Muon Capture System for the MELC Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    calculation of the magnetic field for the MELC setup are presented. Production of muon from pion decay as low as --~2 Tesla. In the vicinity of the solenoid axis there are targets, consisting of thin tungsten production backward is determined by the location of targets along the solenoid axis and by spacing of target

  8. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  9. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A. [Purdue University, West Lafayette, IN, 47906 (United States)

    2010-02-10T23:59:59.000Z

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  10. Electron decay at IceCube

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01T23:59:59.000Z

    In this paper we apply the formalism of Accelerated Quantum Dynamics (AQD) to the radiative stopping of highly relativistic electrons in ice. We compute the lifetime of electrons to decay into muons as well as the spectrum of the emitted muons. The energy of the emitted muon depends on the deceleration of the electron and this correlation can be used to tag the event and confirm the prediction. The results predict the acceleration-induced decay of electrons at IceCube energies. This experimental setting has the potential to establish the existence of the Unruh effect as well investigate the role of high acceleration in particle physics.

  11. Muons for a Muon-Collider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    . ­ LANL has experience with superconductng magnets in high radiation areas. · Other Radiological Issues951 Long Term: Provide a facility to test key components of the front-end of a muon collider-term radiological issues. 6 #12;Why BNL? The BNL AGS has proton beam parameters conditions closest to those

  12. Status of neutrino factory and muon collider R and D

    SciTech Connect (OSTI)

    Zisman, M.S.

    2001-06-17T23:59:59.000Z

    A significant worldwide R and D effort is presently directed toward solving the technical challenges of producing, cooling, accelerating, storing, and eventually colliding beams of muons. Its primary thrust is toward issues critical to a Neutrino Factory, for which R and D efforts are under way in the U.S., via the Neutrino Factory and Muon Collider Collaboration (MC); in Europe, centered at CERN; and in Japan, at KEK. Under study and experimental development are production targets handling intense proton beams (1-4 MW), phase rotation systems to reduce beam energy spread, cooling channels to reduce transverse beam emittance for the acceleration system, and storage rings where muon decays in a long straight section provide a neutrino beam for a long-baseline (3000 km) experiment. Critical experimental activities include development of very high gradient normal conducting RF (NCRF) and superconducting RF (SCRF) cavities, high-power liquid-hydrogen absorbers, and high-field superconducting solenoids. Components and instrumentation that tolerate the intense decay products of the muon beam are being developed for testing. For a high-luminosity collider, muons must be cooled longitudinally as well as transversely, requiring an emittance exchange scheme. In addition to the experimental R and D effort, sophisticated theoretical and simulation tools are needed for the design. Here, the goals, present status, and future R and D plans in these areas will be described.

  13. Measurement of the CP-violation parameter of B0 mixing and decay with p anti-p ---> mu mu X data

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro,

    2006-09-01T23:59:59.000Z

    The authors measure the dimuon charge asymmetry A in p{bar p} collisions at a center of mass energy {radical}s 1960 GeV. The data was recorded with the D0 detector and corresponds to an integrated luminosity of approximately 1.0 fb{sup -1}. Assuming that the asymmetry A is due to asymmetric B{sup 0} {leftrightarrow} {bar B}{sup 0} mixing and decay, they extract the CP-violation parameter of B{sup 0} mixing and decay: R({epsilon}{sub B{sup 0}}/1) + |{epsilon}{sub B{sup 0}}|{sup 2} = A{sub B{sup 0}}/4 = -0.0023 {+-} 0.0011(stat) {+-} 0.0008(syst). A{sub B{sup 0}} is the dimuon charge asymmetry from decays of B{sup 0}{bar B}{sup 0} pairs. The general case, with CP violation in both B{sup 0} and B{sub s}{sup 0} systems, is also considered. Finally they obtain the forward-backward asymmetry that quantifies the tendency of {mu}{sup +} to go in the proton direction and {mu}{sup -} to go in the anti-proton direction. The results are consistent with the standard model and constrain new physics.

  14. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06T23:59:59.000Z

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  15. SIMULATIONS OF A MUON LINAC FOR A NEUTRINO FACTORY

    SciTech Connect (OSTI)

    Kevin Beard, Alex Bogacz ,Slawomir Bogacz, Vasiliy Morozov, Yves Roblin

    2011-04-01T23:59:59.000Z

    The Neutrino Factory baseline design involves a complex chain of accelerators including a single-pass linac, two recirculating linacs and an FFAG. The first linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV. It must accept a high emittance beam about 30 cm wide with a 10% energy spread. This linac uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities. Simulations have been carried out using several codes including Zgoubi, OptiM, GPT, Elegant and G4beamline, both to determine the optics and to estimate the radiation loads on the elements due to beam loss and muon decay.

  16. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01T23:59:59.000Z

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  17. Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

  18. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2010-08-02T23:59:59.000Z

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  19. Measurement of $J/\\psi\\to\\gamma\\eta_{\\rm c}$ decay rate and $\\eta_{\\rm c}$ parameters at KEDR

    E-Print Network [OSTI]

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Yu; Barnyakov, M Yu; Baru, S E; Basok, I Yu; Bedny, I V; Blinov, A E; Blinov, V E; Bobrov, A V; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Buzykaev, A R; Eidelman, S I; Glukhovchenko, Yu M; Gulevich, V V; Gusev, D V; Karnaev, S E; Karpov, G V; Karpov, S V; Kharlamova, T A; Kiselev, V A; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kulikov, V F; Kurkin, G Ya; Kuper, E A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Medvedko, A S; Meshkov, O I; Mishnev, S I; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Okunev, I N; Onuchin, A P; Oreshkin, S B; Orlov, I O; Osipov, A A; Peleganchuk, S V; Pivovarov, S G; Piminov, P A; Petrov, V V; Poluektov, A O; Pospelov, G E; Prisekin, V G; Rezanova, O L; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shwartz, B A; Simonov, E A; Sinyatkin, S V; Skrinsky, A N; Smaluk, V V; Sokolov, A V; Sukharev, A M; Starostina, E V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Yu; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Yushkov, A N; Zhilich, V N; Zhulanov, V V; Zhuravlev, A N

    2014-01-01T23:59:59.000Z

    Using the inclusive photon spectrum based on a data sample collected at the $J/\\psi$ peak with the KEDR detector at the VEPP-4M $e^+e^-$ collider, we measured the rate of the radiative decay $J/\\psi\\to\\gamma\\eta_{\\rm c}$ as well as $\\eta_{\\rm c}$ mass and width. Taking into account an asymmetric photon lineshape we obtained: $\\Gamma^0_{\\gamma\\eta_{\\rm c}}=2.98\\pm0.18 \\phantom{|}^{+0.15}_{-0.33}$ keV, $M_{\\eta_{\\rm c}} = 2983.5 \\pm 1.4 \\phantom{|}^{+1.6}_{-3.6}$ MeV/$c^2$, $\\Gamma_{\\eta_{\\rm c}} = 27.2 \\pm 3.1 \\phantom{|}^{+5.4}_{-2.6}$ MeV.

  20. Neutrinos from STORed Muons - nuSTORM

    SciTech Connect (OSTI)

    Bross, Alan [Fermilab

    2013-02-27T23:59:59.000Z

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicate that this experimental approach can provide well over 5 s confirmation or rejection of the LSND/MinBooNE results. In addition I will explain how the facility can be used to make neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments and, in general, add significantly to the study of neutrino interactions. The unique n beam available at the nuSTORM facility has the potential to be transformational in our approach to n interaction physics, offering a “n light source” to physicists from a number of disciplines. Finally, I will describe how nuSTORM can be used to facilitate accelerator R&D for future muon-based accelerator facilities.

  1. Study of ?(1385) and ?(1321) hyperon and antihyperon production in deep inelastic muon scattering

    E-Print Network [OSTI]

    C. Adolph; M. Alekseev; V. Yu. Alexakhin; Yu. Alexandrov; G. D. Alexeev; A. Amoroso; A. Austregesilo; B. Badelek; F. Balestra; J. Barth; G. Baum; Y. Bedfer; A. Berlin; J. Bernhard; R. Bertini; K. Bicker; J. Bieling; R. Birsa; J. Bisplinghoff; P. Bordalo; F. Bradamante; C. Braun; A. Bravar; A. Bressan; M. Buechele; E. Burtin; L. Capozza; M. Chiosso; S. U. Chung; A. Cicuttin; M. L. Crespo; S. Dalla Torre; S. S. Dasgupta; S. Dasgupta; O. Yu. Denisov; S. V. Donskov; N. Doshita; V. Duic; W. Duennweber; M. Dziewiecki; A. Efremov; C. Elia; P. D. Eversheim; W. Eyrich; M. Faessler; A. Ferrero; A. Filin; M. Finger; M. Finger jr.; H. Fischer; C. Franco; N. du Fresne von Hohenesche; J. M. Friedrich; V. Frolov; R. Garfagnini; F. Gautheron; O. P. Gavrichtchouk; S. Gerassimov; R. Geyer; M. Giorgi; I. Gnesi; B. Gobbo; S. Goertz; S. Grabmueller; A. Grasso; B. Grube; R. Gushterski; A. Guskov; T. Guthoerl; F. Haas; D. von Harrach; F. H. Heinsius; F. Herrmann; C. Hess; F. Hinterberger; Ch. Hoeppner; N. Horikawa; N. d'Hose; S. Huber; S. Ishimoto; Yu. Ivanshin; T. Iwata; R. Jahn; V. Jary; P. Jasinski; R. Joosten; E. Kabuss; D. Kang; B. Ketzer; G. V. Khaustov; Yu. A. Khokhlov; Yu. Kisselev; F. Klein; K. Klimaszewski; J. H. Koivuniemi; V. N. Kolosov; K. Kondo; K. Koenigsmann; I. Konorov; V. F. Konstantinov; A. M. Kotzinian; O. Kouznetsov; M. Kraemer; Z. V. Kroumchtein; N. Kuchinski; F. Kunne; K. Kurek; R. P. Kurjata; A. A. Lednev; A. Lehmann; S. Levorato; J. Lichtenstadt; A. Maggiora; A. Magnon; N. Makke; G. K. Mallot; A. Mann; C. Marchand; A. Martin; J. Marzec; H. Matsuda; T. Matsuda; G. Meshcheryakov; W. Meyer; T. Michigami; Yu. V. Mikhailov; Y. Miyachi; A. Morreale; A. Nagaytsev; T. Nagel; F. Nerling; S. Neubert; D. Neyret; V. I. Nikolaenko; J. Novy; W. -D. Nowak; A. S. Nunes; A. G. Olshevsky; M. Ostrick; R. Panknin; D. Panzieri; B. Parsamyan; S. Paul; G. Piragino; S. Platchkov; J. Pochodzalla; J. Polak; V. A. Polyakov; J. Pretz; M. Quaresma; C. Quintans; S. Ramos; G. Reicherz; E. Rocco; V. Rodionov; E. Rondio; N. S. Rossiyskaya; D. I. Ryabchikov; V. D. Samoylenko; A. Sandacz; M. G. Sapozhnikov; S. Sarkar; I. A. Savin; G. Sbrizzai; P. Schiavon; C. Schill; T. Schlueter; A. Schmidt; K. Schmidt; L. Schmitt; H. Schmieden; K. Schoenning; S. Schopferer; M. Schott; O. Yu. Shevchenko; L. Silva; L. Sinha; S. Sirtl; S. Sosio; F. Sozzi; A. Srnka; L. Steiger; M. Stolarski; M. Sulc; R. Sulej; H. Suzuki; P. Sznajder; S. Takekawa; J. Ter Wolbeek; S. Tessaro; F. Tessarotto; F. Thibaud; S. Uhl; I. Uman; M. Vandenbroucke; M. Virius; L. Wang; T. Weisrock; M. Wilfert; R. Windmolders; W. Wislicki; H. Wollny; K. Zaremba; M. Zavertyaev; E. Zemlyanichkina; N. Zhuravlev; M. Ziembicki

    2013-10-16T23:59:59.000Z

    Large samples of \\Lambda, \\Sigma(1385) and \\Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \\Sigma(1385)^+, \\Sigma(1385)^-, \\bar{\\Sigma}(1385)^-, \\bar{\\Sigma}(1385)^+, \\Xi(1321)^-, and \\bar{\\Xi}(1321)^+ hyperons decaying into \\Lambda(\\bar{\\Lambda})\\pi were measured. The heavy hyperon to \\Lambda and heavy antihyperon to \\bar{\\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

  2. Compact Muon Production and Collection Scheme for High-Energy Physics Experiments

    E-Print Network [OSTI]

    Stratakis, Diktys

    2015-01-01T23:59:59.000Z

    The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

  3. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  4. Superconducting solenoids for the Muon collider

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    muon collider has superconducting solenoids as an integralLBNL-44303 SCMAG-690 Superconducting Solenoids for the MuonDE-AC03-76SFOOO98. J Superconducting Solenoids for the Muon

  5. Measurement of B0(s) mixing parameters from the flavor-tagged decay B0(s) ---> J/psi phi

    SciTech Connect (OSTI)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Simon Fraser U.; Ahn, S.H.; /Korea U., KODEL; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP /Michigan U.

    2008-02-01T23:59:59.000Z

    From an analysis of the flavor-tagged decay B{sub s}{sup 0} {yields} J/{psi}{phi} they obtain the width difference between the B{sub s}{sup 0} light and heavy mass eigenstates, {Delta}{Lambda}{sub s} {triple_bond} {Lambda}{sub L} - {Lambda}{sub H} = 0.19 {+-} 0.07(stat){sub -0.01}{sup +0.02}(syst) ps{sup -1}, and the CP-violating phase, {phi}{sub s} = -0.57{sub -0.30}{sup +0.24}(stat){sub -0.02}{sup +0.07}(syst). The allowed 90% C.L. intervals of {Delta}{Lambda}{sub s} and {phi}{sub s} are 0.06 < {Delta}{Lambda}{sub s} < 0.30 ps{sup -1} and -1.20 < {phi}{sub s} < 0.06, respectively. The data sample corresponds to an integrated luminosity of 2.8 fb{sup -1} accumulated with the D0 detector at the Fermilab Tevatron collider.

  6. An update of muon capture on hydrogen

    E-Print Network [OSTI]

    S. Pastore; F. Myhrer; K. Kubodera

    2014-05-06T23:59:59.000Z

    The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $\\mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.

  7. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01T23:59:59.000Z

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  8. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  9. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  10. Sterile neutrino search with kaon decay at rest

    E-Print Network [OSTI]

    Spitz, Joshua B.

    Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay at rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, ...

  11. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Creswick, R. J.; Domizio, S. Di; Dolinski, M. J.; Ejzak, L.; Faccini, R.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Kadel, R.; Kazkaz, K.; Kraft, S.; Kogler, L.; Kolomensky, Yu. G.; Maiano, C.; Maruyama, R. H.; Martinez, C.; Martinez, M.; Mizouni, L.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Tomei, C.; Ventura, G.; Vignati, M.

    2010-04-15T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.

  12. Dark decay of Top quark

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kong, Kyoungchui; Lee, Hye-Sung; Park, Myeonhun

    2014-04-01T23:59:59.000Z

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 ? deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t ? b W + Z's. This is the same as the dominant topmore »quark decay (t ? b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.« less

  13. Dark decay of Top quark

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kong, Kyoungchui [Kansas; Lee, Hye-Sung [W&M, JLAB; Park, Myeonhun [Tokyo

    2014-04-01T23:59:59.000Z

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 ? deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t ? b W + Z's. This is the same as the dominant top quark decay (t ? b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  14. Stochastic cooling in muon colliders

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01T23:59:59.000Z

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

  15. Modeling the high-field section of a muon helical cooling channel

    SciTech Connect (OSTI)

    Zlobin, A.V.; Barzi, E.; Kashikhin, V.S.; Lamm, M.J.; Lombardo, V.; Lopes, M.L.; Yu, M.; /Fermilab; Johnson, R.P.; Flanagan, G.; Kahn, S.A.; Turenne, M.; /MUONS Inc., Batavia

    2010-05-01T23:59:59.000Z

    This paper describes the conceptual design and parameters of a short model of a high-field helical solenoid for muon beam cooling. Structural materials choices, fabrication techniques and first test results are discussed.

  16. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01T23:59:59.000Z

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  17. Muon ID - taking care of lower momenta muons

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01T23:59:59.000Z

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  18. Muon Acceleration in Cosmic-ray Sources

    E-Print Network [OSTI]

    Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

    2012-08-09T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

  19. Muon catalyzed fusion

    SciTech Connect (OSTI)

    Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

    1986-01-01T23:59:59.000Z

    This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

  20. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N. [Institute of Theoretical and Experimental Physics, State Scientific Center of Russian Federation (Russian Federation); Bom, V. R. [Delft University of Technology (Netherlands); Demin, A. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Demin, D. L. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Eijk, C. W. E. van [Delft University of Technology (Netherlands); Filchagin, S. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Filchenkov, V. V.; Grafov, N. N. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)], E-mail: grafov@nusun.jinr.ru; Grishechkin, S. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Gritsaj, K. I.; Konin, A. D. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Kuryakin, A. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Medved', S. V. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Musyaev, R. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Rudenko, A. I. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Yukhimchuk, S. A.; Zinov, V. G. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)] (and others)

    2009-02-15T23:59:59.000Z

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  1. A Staged Muon Accelerator Facility For Neutrino and Collider Physics

    E-Print Network [OSTI]

    Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

    2015-01-01T23:59:59.000Z

    Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

  2. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L. [University of Mississippi-Oxford, University, MS 38677 (United States)

    2010-03-30T23:59:59.000Z

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  3. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Yagmur Tourun

    2010-01-08T23:59:59.000Z

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  4. Open-Midplane Dipoles for a Muon Collider

    SciTech Connect (OSTI)

    Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

    2011-03-28T23:59:59.000Z

    For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

  5. Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector

    E-Print Network [OSTI]

    D0 Collaboration

    2013-02-22T23:59:59.000Z

    We present a search for Higgs bosons in multilepton final states in pp-bar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb-1. The multilepton states considered are two electron plus muon, electron with two muons, muon with two hadronic tau leptons, and like-charge electron-muon pairs. These channels directly probe the HVV (V=W,Z) coupling of the Higgs boson in production and decay. The muon with two hadronic tau lepton channel is also sensitive to H to tau lepton pair decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 Higgs boson model.

  6. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01T23:59:59.000Z

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  7. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-04-28T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6--18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  8. Neutron production by cosmic-ray muons at shallow depth J. Busenitz,1

    E-Print Network [OSTI]

    Piepke, Andreas G.

    neutrino and proton decay experiments, as well as dark matter searches even though often at greater depth for cold dark matter 3 , and is presently at shallow depth; muon-induced neutrons repre- sent a major at a shallow depth of 32 meters of water equivalent has been measured. The Palo Verde neutrino detector

  9. New limits for neutrinoless tau decays

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-05-01T23:59:59.000Z

    double beta decays, neutrino oscillations, Z!l11l22 decays, and other rare pro- cesses. In particular, there are strict limits on muon neutrino- less decays: B(m!eg),4.9310211 and B(m!eee),2.4 310212 at 90% confidence level @18#. However, lepton num- ber... particles and on the new coupling constants. The most optimistic branching fraction predictions are at the level of about 1026. Constraints on lepton flavor violation come from studies of rare and forbidden K , p, and m decays, e-m conversions, neutrinoless...

  10. Underground Muon Counters as a Tool for Composition Analyses

    E-Print Network [OSTI]

    A. D. Supanitsky; A. Etchegoyen; G. Medina-Tanco; I. Allekotte; M. Gómez Berisso; M. C. Medina

    2008-10-13T23:59:59.000Z

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above $3 \\times 10^{18}$ eV and, even if the hybrid mode can extend this range below $10^{18}$ eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to $\\sim 10^{17}$ eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle ($30^\\circ-58^\\circ$) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  11. Search for Lepton Flavour Violating Decays of Heavy Resonances and Quantum Black Holes to electron/muon Pairs in pp Collisions at a centre of mass energy of 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01T23:59:59.000Z

    A search for heavy states decaying into the e$\\mu$ final state has been performed using an integrated luminosity of $19.7~\\text{fb}^{-1}$ of $8\\,\\text{TeV}$ proton-proton collision data recorded with the CMS detector at the LHC. No evidence for physics beyond the Standard Model is observed in the invariant mass spectrum of selected e$\\mu$ pairs. 95$\\%$ CL upper limits are set on the cross section times branching ratio of different signals arising in theories of new physics with lepton flavour violation in interactions involving charged leptons. In the framework of TeV-scale quantum gravity from a renormalization of Newton's constant, exclusion limits are set on the production threshold of quantum black holes for threshold masses below $1.99\\,\\text{TeV}$, and in extra-dimensional models the bounds range from $2.36\\,\\text{TeV}$ for one extra dimension to $3.63\\,\\text{TeV}$ for six extra dimensions. Scenarios of resonant tau sneutrino LSP production in R-parity violating supersymmetry are excluded for LSP masses...

  12. Low-energy muons via frictional cooling

    E-Print Network [OSTI]

    Yu Bao; Allen Caldwell; Daniel Greenwald; Guoxing Xia

    2010-01-18T23:59:59.000Z

    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes.

  13. The MICE Muon Beam Line

    SciTech Connect (OSTI)

    Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

    2011-10-06T23:59:59.000Z

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  14. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  15. Large-acceptance linac for accelerating l9w-energy muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory; Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We propose a high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field. The acceleration starts immediately after collection of pions from a target by solenoidal magnets and brings muons to a kinetic energy of about 200 MeV over a distance of the order of 10 m. At this energy, both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. The project presents unique challenges - a very large energy spread in a highly divergent beam, as well as pion and muon decays - requiring large longitudinal and transverse acceptances. One potential solution incorporates a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. While the primary applications of such a linac are for homeland defense and industry, it can provide muon fluxes high enough to be of interest for physics experiments.

  16. New Physics from NSIs in charm Decays

    E-Print Network [OSTI]

    Shakeel Mahmood; Farida Tahir; Azeem Mir

    2014-11-04T23:59:59.000Z

    We study rare decays of Charm in NSIs. We calculate the NSIs Branching ratios of these decays. There is a strong dependence of these on new physics parameter. They provide, stringent constraints on free parameter in tau.

  17. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2009-11-16T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

  18. Neutrino-induced upward stopping muons in Super-Kamiokande

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration

    1999-12-01T23:59:59.000Z

    A total of 137 upward stopping muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 516 detector live days. The measured muon flux is 0.39+/-0.04(stat.)+/-0.02(syst.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 0.73+/-0.16(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. Using our previously-published measurement of the upward through-going muon flux, we calculate the stopping/through-going flux ratio R}, which has less theoretical uncertainty. The measured value of R=0.22+/-0.02(stat.)+/-0.01(syst.) is significantly smaller than the value 0.37^{+0.05}_{-0.04}(theo.) expected using the best theoretical information (the probability that the measured R is a statistical fluctuation below the expected value is 0.39%). A simultaneous fitting to zenith angle distributions of upward stopping and through-going muons gives a result which is consistent with the hypothesis of neutrino oscillations with the parameters sin^2 2\\theta >0.7 and 1.5x10^{-3} Super-Kamiokande using the contained atmospheric neutrino events.

  19. Measurement of direct CP violation parameters in B±?J/?K± and B±?J/??± decays with 10.4??fb-1 of Tevatron data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Beattie, M.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hart, B.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Holzbauer, J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Lamont, I.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; Mason, N.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.

    2013-06-01T23:59:59.000Z

    We present a measurement of the direct CP-violating charge asymmetry in B± mesons decaying to J/?K± and J/??± where J/? decays to ?+??, using the full run II data set of 10.4??fb?1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B? and B+ mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of AJ/?K=[0.59±0.37]%, which is the most precise measurement to date, and AJ/??=[?4.2±4.5]%. Both measurements are consistent with standard model predictions.

  20. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

  1. On the study of the Higgs properties at a muon collider

    E-Print Network [OSTI]

    Mario Greco

    2015-03-17T23:59:59.000Z

    The discovery of the Higgs particle at 125 GeV is demanding a detailed knowledge of the properties of this fundamental component of the Standard Model. To that aim various proposals of electron and muon colliders have been put forward for precision studies of the partial widths of the various decay channels. It is shown that in the case of a Higgs factory through a muon collider, sizeable radiative effects - of order of 50% - must be carefully taken into account for a precise measurement of the leptonic and total widths of the Higgs particle. Similar effects do not apply in the case of Higgs production in electron-positron colliders.

  2. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P [Fermilab; Andreopoulos, C [Rutherford; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Bishai, M [Brookhaven; Blake, A [Cambridge U.; Bock, G J [Fermilab; Boehnlein, D J [/Fermilab; Bogert, D [Fermilab; Harvard U., Phys. Dept.

    2011-07-05T23:59:59.000Z

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ??? production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ??? events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3?. The best fit to oscillation yields |?m?2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 ??) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS ?? and ??? measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  3. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

    2005-07-19T23:59:59.000Z

    Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

  4. Dark Decay of the Top Quark

    SciTech Connect (OSTI)

    Kong, Kyoungchul; Lee, Hye-Sung; Park, Myeonghun

    2014-04-01T23:59:59.000Z

    We suggest top quark decays as a venue to search for light dark force carriers. The top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6sigma deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t-->bW+Z's. This is the same as the dominant top quark decay (t-->bW) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  5. Precision Muon Reconstruction in Double Chooz

    E-Print Network [OSTI]

    Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

    2014-08-15T23:59:59.000Z

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  6. Introduction to Mini Muon Tracker

    SciTech Connect (OSTI)

    Borozdin, Konstantin N. [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  7. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2014-01-01T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiok...

  8. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01T23:59:59.000Z

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  9. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect (OSTI)

    Kashikhin, Vladimir S.; Andreev, Nikolai; /Fermilab; Johnson, Rolland P.; /MUONS Inc., Batavia; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01T23:59:59.000Z

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  10. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  11. Commissioning of the ATLAS Muon Trigger Selection

    E-Print Network [OSTI]

    Elisa Musto

    2010-09-30T23:59:59.000Z

    The performance of the three-level ATLAS muon trigger as evaluated by using LHC data is presented. Events have been selected by using only the hardware-based Level-1 trigger in order to commission and to subsequently enable the (software-based) selections of the High Level Trigger. Studies aiming at selecting prompt muons from J/{\\psi} and at reducing non prompt muon contamination have been performed. A brief overview on how the muon triggers evolve with increasing luminosity is given.

  12. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N., E-mail: yuvavil@mail.ru; Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation); Takibaev, J. S. [Al-Farabi Kazakh National University (Kazakhstan)

    2009-11-15T23:59:59.000Z

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  13. KT McDonald Muon Accelerator Program Advisory Committee Review (FNAL) July 11, 2012 1 Target and Absorbers

    E-Print Network [OSTI]

    McDonald, Kirk

    Advisory Committee Review (FNAL) July 11, 2012 2 Mission Target: · Maximum production of ± of energies particles in He-gas-cooled tungsten beads ­ inside solenoid magnets. · Low-Z solid/liquid muon absorbers includes the production target and the magnetized pion-decay channel. This system is about 50 m long

  14. The Program in Muon and Neutrino Physics Super Beams, Cold Muon Beams, Neutrino Factory and the Muon Collider

    E-Print Network [OSTI]

    Raja, R; Gallardo, J; Geer, S; Kaplan, D; McDonald, K F; Palmer, R; Sessler, Andrew M; Skrinsky, A N; Summers, D; Tigner, Maury; Tollestrup, Alvin V; Wurtele, J S; Zisman, M S; Raja, Rajendran

    2001-01-01T23:59:59.000Z

    We outline in detail a staging scenario for realizing the Neutrino Factory and the Muon Collider. As a first stage we envisage building an intense proton source that can be used to perform high intensity conventional neutrino beam experiments ("Superbeams"). While this is in progress, we perform R&D in collecting, cooling and accelerating muons which leads to the next two stages of "Cold Muon Beams" and the Neutrino Factory. Further progress in Muon Cooling especially in the area of emittance exchange will lead us to the Muon Collider. A staged scenario such as this opens up new physics avenues at each step and will provide a long range base program for particle physics.

  15. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab'sSpace andFermilabMuons

  16. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    E-Print Network [OSTI]

    D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

    2011-01-24T23:59:59.000Z

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

  17. Measurement of the nucleon structure function using high energy muons

    SciTech Connect (OSTI)

    Meyers, P.D.

    1983-12-01T23:59:59.000Z

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  18. A Detector Scenario for the MuonCollider Cooling Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    : Meson Lab at Fermilab: Power Supplies (two floors) Cooling Apparatus Muon Beamline shielding shieldingA Detector Scenario for the Muon­Collider Cooling Experiment C. Lu, K.T. McDonald and E.J. Prebys the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus. 1 #12; Possible site

  19. Evidence for a Higgs boson in tau decays with the CMS detector

    E-Print Network [OSTI]

    Dutta, Valentina

    2014-01-01T23:59:59.000Z

    In this thesis, I describe the search for a Higgs boson through its decay to a pair of tan leptons with the tau-pair subsequently decaying to ail electron, a muon, and neutrinos. The search is performed using data collected ...

  20. Search for a neutral Higgs boson in B-meson decay

    E-Print Network [OSTI]

    Baringer, Philip S.

    1989-08-01T23:59:59.000Z

    Using the CLEO detector at the Cornell Electron Storage Ring we have searched for neutral-Higgs-boson production in B decay, both through the exclusive modes B?H(0)K and B?H(0)K? using the decay of the H(0) into a pair of muons, pions, or kaons...

  1. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  2. Super-Kamiokande data and atmospheric neutrino decay

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Marrone; G. Scioscia

    1999-02-08T23:59:59.000Z

    Neutrino decay has been proposed as a possible solution to the atmospheric neutrino anomaly, in the light of the recent data from the Super-Kamiokande experiment. We investigate this hypothesis by means of a quantitative analysis of the zenith angle distributions of neutrino events in Super-Kamiokande, including the latest (45 kTy) data. We find that the neutrino decay hypothesis fails to reproduce the observed distributions of muons.

  3. The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters

    E-Print Network [OSTI]

    Kaur, Daljeet; Kumar, Sanjeev

    2014-01-01T23:59:59.000Z

    The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL) detector that will be able to detect muon tracks and hadron showers produced by Charged-Current muon neutrino interactions in the detector. The ICAL experiment will be able to determine the precision of atmospheric neutrino mixing parameters and neutrino mass hierarchy using atmospheric muon neutrinos through earth matter effect. In this paper, we report on the sensitivity for the atmospheric neutrino mixing parameters ($\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$) for the ICAL detector using the reconstructed neutrino energy and muon direction as observables. We apply realistic resolutions and efficiencies obtained by the ICAL collaboration with a GEANT4-based simulation to reconstruct neutrino energy and muon direction. Our study shows that using neutrino energy and muon direction as observables for a $\\chi^{2}$ analysis, ICAL detector can measure $\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$ with 13% and 4%...

  4. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    C. L. Morris; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; E. Guardincerri; A. Hecht; E. C. Milner; H. Miyadera; J. O. Perry; D. Poulson

    2014-06-04T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  5. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    Morris, C L; Borodzin, K; Durham, J M; Fabritius, J M; Guardincerri, E; Hecht, A; Milner, E C; Miyadera, H; Perry, J O; Poulson, D

    2014-01-01T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  6. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15T23:59:59.000Z

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  7. Track fitting by Kalman Filter method for a prototype cosmic ray muon detector

    E-Print Network [OSTI]

    Tapasi Ghosh; Subhasis Chattopadhyay

    2009-08-06T23:59:59.000Z

    We have developed a track fitting procedure based on Kalman Filter technique for an Iron Calorimeter (ICAL) prototype detector when the detector is flushed with single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. This paper discusses the design of the prototype detector, its geometry simulation by Geant4, and the detector response with the cosmic ray muons. Finally we show the resolution of reconstructed momenta and also the charge identification efficiency of $\\mu^+$ and $\\mu^-$ events in the magnetized ICAL.

  8. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    E-Print Network [OSTI]

    S. Aiello; F. Ameli; M. Anghinolfi; G. Barbarino; E. Barbarito; F. Barbato; N. Beverini; S. Biagi; B. Bouhadef; C. Bozza; G. Cacopardo; M. Calamai; C. Calì; A. Capone; F. Caruso; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Costa; G. Cuttone; C. D'Amato; A. D'Amico; G. De Bonis; V. De Luca; N. Deniskina; G. De Rosa; F. Di Capua; C. Distefano; P. Fermani; L. A. Fusco; F. Garufi; V. Giordano; A. Gmerk; R. Grasso; G. Grella; C. Hugon; M. Imbesi; V. Kulikovskiy; G. Larosa; D. Lattuada; K. P. Leismueller; E. Leonora; P. Litrico; A. Lonardo; F. Longhitano; D. Lo Presti; E. Maccioni; A. Margiotta; A. Martini; R. Masullo; P. Migliozzi; E. Migneco; A. Miraglia; C. M. Mollo; M. Mongelli; M. Morganti; P. Musico; M. Musumeci; C. A. Nicolau; A. Orlando; R. Papaleo; C. Pellegrino; M. G. Pellegriti; C. Perrina; P. Piattelli; C. Pugliatti; S. Pulvirenti; A. Orselli; F. Raffaelli; N. Randazzo; G. Riccobene; A. Rovelli; M. Sanguineti; P. Sapienza; V. Sciacca; I. Sgura; F. Simeone; V. Sipala; F. Speziale; M. Spina; A. Spitaleri; M. Spurio; S. M. Stellacci; M. Taiuti; G. Terreni; L. Trasatti; A. Trovato; C. Ventura; P. Vicini; S. Viola; D. Vivolo

    2014-12-03T23:59:59.000Z

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  9. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Aoki, Masato [Fermilab; Louisiana Tech. U.

    2011-09-12T23:59:59.000Z

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.

  10. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Aoki, Masato [Fermilab; Louisiana Tech. U.

    2011-09-12T23:59:59.000Z

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.

  11. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Alverson, George O; Alves, Gilvan Augusto; et al

    2011-09-12T23:59:59.000Z

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limitsmore »on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.« less

  12. Calibration of Muon Reconstruction Algorithms Using an External Muon Tracking System at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2011-05-06T23:59:59.000Z

    To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6 degrees.

  13. Search for pair production of scalar top quarks decaying to a tau lepton and a b quark in 1.96-tev ppbar collisions

    E-Print Network [OSTI]

    Khotilovich, Vadim Gennadyevich

    2009-05-15T23:59:59.000Z

    ~t1 decays into a tau lepton and a b quark, with branching ratio B, and search for final states containing either an electron or a muon from a leptonic tau decay, a hadronically decaying tau lepton, and two or more jets. Two candidate events pass my...

  14. Measurements of Time-Dependent CP-Asymmetry Parameters in B Meson Decays to \\eta^{\\prime} K^0 and of Branching Fractions of SU(3) Related Modes with BaBar Experiment at SLAC

    SciTech Connect (OSTI)

    Biassoni, Pietro; /Milan U.

    2009-01-22T23:59:59.000Z

    In this thesis work we have measured the following upper limits at 90% of confidence level, for B meson decays (in units of 10{sup -6}), using a statistics of 465.0 x 10{sup 6} B{bar B} pairs: {Beta}(B{sup 0} {yields} {eta}K{sup 0}) < 1.6 {Beta}(B{sup 0} {yields} {eta}{eta}) < 1.4 {Beta}(B{sup 0} {yields} {eta}{prime}{eta}{prime}) < 2.1 {Beta}(B{sup 0} {yields} {eta}{phi}) < 0.52 {Beta}(B{sup 0} {yields} {eta}{omega}) < 1.6 {Beta}(B{sup 0} {yields} {eta}{prime}{phi}) < 1.2 {Beta}(B{sup 0} {yields} {eta}{prime}{omega}) < 1.7 We have no observation of any decay mode, statistical significance for our measurements is in the range 1.3-3.5 standard deviation. We have a 3.5{sigma} evidence for B {yields} {eta}{omega} and a 3.1 {sigma} evidence for B {yields} {eta}{prime}{omega}. The absence of observation of the B{sup 0} {yields} {eta}K{sup 0} open an issue related to the large difference compared to the charged mode B{sup +} {yields} {eta}K{sup +} branching fraction, which is measured to be 3.7 {+-} 0.4 {+-} 0.1 [118]. Our results represent substantial improvements of the previous ones [109, 110, 111] and are consistent with theoretical predictions. All these results were presented at Flavor Physics and CP Violation (FPCP) 2008 Conference, that took place in Taipei, Taiwan. They will be soon included into a paper to be submitted to Physical Review D. For time-dependent analysis, we have reconstructed 1820 {+-} 48 flavor-tagged B{sup 0} {yields} {eta}{prime}K{sup 0} events, using the final BABAR statistic of 467.4 x 10{sup 6} B{bar B} pairs. We use these events to measure the time-dependent asymmetry parameters S and C. We find S = 0.59 {+-} 0.08 {+-} 0.02, and C = -0.06 {+-} 0.06 {+-} 0.02. A non-zero value of C would represent a directly CP non-conserving component in B{sup 0} {yields} {eta}{prime}K{sup 0}, while S would be equal to sin2{beta} measured in B{sup 0} {yields} J/{psi}K{sub s}{sup 0} [108], a mixing-decay interference effect, provided the decay is dominated by amplitudes of a single weak phase. The new measured value of S can be considered in agreement with the expectations of the 'Standard Model', inside the experimental and theoretical uncertainties. Inconsistency of our result for S with CP conservation (S = 0) has a significance of 7.1 standard deviations (statistical and systematics included). Our result for the direct-CP violation parameter C is 0.9 standard deviations from zero (statistical and systematics included). Our results are in agreement with the previous ones [18]. Despite the statistics is only 20% larger than the one used in previous measurement, we improved of 20% the error on S and of 14% the error on C. This error is the smaller ever achieved, by both BABAR and Belle, in Time-Dependent CP Violation Parameters measurement is a b {yields} s transition.

  15. Muon capture rates within the projected QRPA

    E-Print Network [OSTI]

    Danilo Sande Santos; Arturo R. Samana; Francisco Krmpoti?; Alejandro J. Dimarco

    2012-03-03T23:59:59.000Z

    The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

  16. Theoretical survey of muon catalyzed fusion

    SciTech Connect (OSTI)

    Leon, M.

    1988-01-01T23:59:59.000Z

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H/sub 2/ densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec./sup 1/ The muon spends essentially all of its time in either the (d..mu..) ground state, waiting for transfer to a (t..mu..) ground state to occur, or in the (t..mu..) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs.

  17. Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider

    E-Print Network [OSTI]

    Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

    2015-01-01T23:59:59.000Z

    Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

  18. Development of a Portable Muon Witness System

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01T23:59:59.000Z

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.

  19. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  20. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Suerfu, Burkhant

    2015-01-01T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  1. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M. [comp.

    1994-01-01T23:59:59.000Z

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  2. The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams,

    E-Print Network [OSTI]

    The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams, Neutrino Factory.1 Neutrino Oscillation Physics . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.1.1 Evidence-oscillation physics at a Neutrino Factory . . . . . . . . . . . . . . . 3 - 16 iii #12;3.4 Physics that can be done

  3. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20T23:59:59.000Z

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  4. Muon Acceleration - RLA and FFAG

    SciTech Connect (OSTI)

    Alex Bogacz

    2011-10-01T23:59:59.000Z

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  5. Radiation effects in a muon collider ring and dipole magnet protection

    E-Print Network [OSTI]

    Mokhov, N V; Novitski, I; Zlobin, A V

    2011-01-01T23:59:59.000Z

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 1034 cm-2s-1. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  6. A Decisive Disappearance Search at High-$?m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    S Axani; G Collin; JM Conrad; MH Shaevitz; J Spitz; T Wongjirad

    2015-06-18T23:59:59.000Z

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  7. A Decisive Disappearance Search at High-$\\Delta m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    Axani, S; Conrad, JM; Shaevitz, MH; Spitz, J; Wongjirad, T

    2015-01-01T23:59:59.000Z

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  8. CP-safe Gravity Mediation and Muon g-2

    E-Print Network [OSTI]

    Sho Iwamoto; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-02-03T23:59:59.000Z

    We propose a CP-safe gravity mediation model, where the phases of the Higgs B parameter, scalar trilinear couplings and gaugino mass parameters are all aligned. Since all dangerous CP violating phases are suppressed, we are now safe to consider low-energy SUSY scenarios. As an application, we consider a gravity mediation model explaining the observed muon $g-2$ anomaly. The CP-safe property originates in two simple assumptions: SUSY breaking in the K\\"ahler potential and a shift symmetry of a SUSY breaking field $Z$. As a result of the shift symmetry, the imaginary part of $Z$ behaves as a QCD axion, leading to an intriguing possibility: the strong CP problem in QCD and the SUSY CP problem are solved simultaneously.

  9. Muon Emittance Exchange with a Potato Slicer

    E-Print Network [OSTI]

    Summers, D J; Acosta, J G; Cremaldi, L M; Oliveros, S J; Perera, L P; Neuffer, D V

    2015-01-01T23:59:59.000Z

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long ...

  10. Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities

    SciTech Connect (OSTI)

    Heffner, R.H.

    1980-01-01T23:59:59.000Z

    The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

  11. Use of dielectric material in muon accelerator RF cavities

    E-Print Network [OSTI]

    French, Katheryn Decker

    2011-01-01T23:59:59.000Z

    The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

  12. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect (OSTI)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10T23:59:59.000Z

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  13. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D. [NSTec; Dreesen, W. [NSTec; Green, J. A. [NSTec; Tibbitts, A. [NSTec; Schotik, G. [NSTec; Borozdin, K. [LANL; Bacon, J. [LANL; Midera, H. [LANL; Milner, C. [LANL; Morris, C. [LANL; Perry, J. [LANL; Barrett, S. [UW; Perry, K. [UW; Scott, A. [UW; Wright, C. [UW; Aberle, D. [NSTec

    2013-03-18T23:59:59.000Z

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  14. Muon (g-2) Technical Design Report

    E-Print Network [OSTI]

    J. Grange; V. Guarino; P. Winter; K. Wood; H. Zhao; R. M. Carey; D. Gastler; E. Hazen; N. Kinnaird; J. P. Miller; J. Mott; B. L. Roberts; J. Benante; J. Crnkovic; W. M. Morse; H. Sayed; V. Tishchenko; V. P. Druzhinin; B. I. Khazin; I. A. Koop; I. Logashenko; Y. M. Shatunov; E. Solodov; M. Korostelev; D. Newton; A. Wolski; R. Bjorkquist; N. Eggert; A. Frankenthal; L. Gibbons; S. Kim; A. Mikhailichenko; Y. Orlov; D. Rubin; D. Sweigart; D. Allspach; G. Annala; E. Barzi; K. Bourland; G. Brown; B. C. K. Casey; S. Chappa; M. E. Convery; B. Drendel; H. Friedsam; T. Gadfort; K. Hardin; S. Hawke; S. Hayes; W. Jaskierny; C. Johnstone; J. Johnstone; V. Kashikhin; C. Kendziora; B. Kiburg; A. Klebaner; I. Kourbanis; J. Kyle; N. Larson; A. Leveling; A. L. Lyon; D. Markley; D. McArthur; K. W. Merritt; N. Mokhov; J. P. Morgan; H. Nguyen; J-F. Ostiguy; A. Para; C. C. Polly M. Popovic; E. Ramberg; M. Rominsky; D. Schoo; R. Schultz; D. Still; A. K. Soha; S. Strigonov; G. Tassotto; D. Turrioni; E. Villegas; E. Voirin; G. Velev; D. Wolff; C. Worel; J-Y. Wu; R. Zifko; K. Jungmann; C. J. G. Onderwater; P. T. Debevec; S. Ganguly; M. Kasten; S. Leo; K. Pitts; C. Schlesier; M. Gaisser; S. Haciomeroglu; Y-I. Kim; S. Lee; M-J Lee; Y. K. Semertzidis; K. Giovanetti; V. A. Baranov; V. N. Duginov; N. V. Khomutov; V. A. Krylov; N. A. Kuchinskiy; V. P. Volnykh; C. Crawford; R. Fatemi; W. P. Gohn; T. P. Gorringe; W. Korsch; B. Plaster; A. Anastasi; D. Babusci; S. Dabagov; C. Ferrari; A. Fioretti; C. Gabbanini; D. Hampai; A. Palladino; G. Venanzoni; T. Bowcock; J. Carroll; B. King; S. Maxfield; K. McCormick; A. Smith; T. Teubner; M. Whitley; M. Wormald; R. Chislett; S. Kilani; M. Lancaster; E. Motuk; T. Stuttard; M. Warren; D. Flay; D. Kawall; Z. Meadows; T. Chupp; R. Raymond; A. Tewlsey-Booth; M. J. Syphers; D. Tarazona; C. Ankenbrandt; M. A. Cummings; R. P. Johnson; C. Yoshikawa; S. Catalonotti; R. Di Stefano; M. Iacovacci; S. Mastroianni; S. Chattopadhyay; M. Eads; M. Fortner; D. Hedin; N. Pohlman; A. de Gouvea; H. Schellman; L. Welty-Rieger; T. Itahashi; Y. Kuno; K. Yai; F. Azfar; S. Henry; G. D. Alkhazov; V. L. Golovtsov; P. V. Neustroev; L. N. Uvarov; A. A. Vasilyev; A. A. Vorobyov; M. B. Zhalov; L. Cerrito; F. Gray; G. Di Sciascio; D. Moricciani; C. Fu; X. Ji; L. Li; H. Yang; D. Stöckinger; G. Cantatore; D. Cauz; M. Karuza; G. Pauletta; L. Santi; S. Bae\\ssler; M. Bychkov; E. Frlez; D. Pocanic; L. P. Alonzi; M. Fertl; A. Fienberg; N. Froemming; A. Garcia; D. W. Hertzog J. Kaspar; P. Kammel; R. Osofsky; M. Smith; E. Swanson; T. van Wechel; K. Lynch

    2015-01-27T23:59:59.000Z

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  15. Progress in Absorber R&D for Muon Cooling

    E-Print Network [OSTI]

    D. M. Kaplan; E. L. Black; M. Boghosian; K. W. Cassel; R. P. Johnson; S. Geer; C. J. Johnstone; M. Popovic; S. Ishimoto; K. Yoshimura; L. Bandura; M. A. Cummings; A. Dyshkant; D. Hedin; D. Kubik; C. Darve; Y. Kuno; D. Errede; M. Haney; S. Majewski; M. Reep; D. Summers

    2001-08-17T23:59:59.000Z

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  16. Cosmic-ray Muon Flux In Belgrade

    SciTech Connect (OSTI)

    Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

  17. Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion

    E-Print Network [OSTI]

    Sachie Kimura; Aldo Bonasera

    2006-07-31T23:59:59.000Z

    We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

  18. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    SciTech Connect (OSTI)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac; Bruno R. Autin; Valeri I. Balbekov; Vernon D. Barger; Odette Benary; J. Bennett; Michael S. Berger; J. Scott Berg; Martin Berz; Edgar Black; Alain Blondel; S. Alex Bogacz; M. Bonesini; Stephen B. Bracker; Alan D. Bross; Luca Bruno; Elizabeth J. Buckley-Geer; Allen Caldwell; Mario Campanelli; Kevin W. Cassel; Swapan Chattopadhyay; Weiren Chou; David B. Cline; Linda R. Coney; Janet M. Conrad; John N. Corlett; Lucien Cremaldi; Mary Anne Cummings; Christine Darve; Fritz DeJongh; et. al.

    2003-08-01T23:59:59.000Z

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  19. Search for a standard model Higgs boson in the H?ZZ??[superscript +]?[subscript ?]?[bar over ?] decay channel using 4.7 fb[superscript -1] of ?s = 7 TeV data with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for a Standard Model Higgs boson decaying via H?ZZ??[superscript +]?[superscript ?]?[bar over ?], where ? represents electrons or muons, is presented. It is based on proton–proton collision data at ?s = 7 TeV, ...

  20. BNL -66968 CAP-265-Muon-99C

    E-Print Network [OSTI]

    Harilal, S. S.

    stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system on the Be window. We describe beam optics, the liquid lithium pressure vessel, pump options, power supplies stages of 1 cooling is obtained by passing the beam though a conducting light metal rod which acts

  1. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03T23:59:59.000Z

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  2. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-07-15T23:59:59.000Z

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  3. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J. [Imperial College London, Department of Physics, London (United Kingdom); STFC/RAL/ISIS, Chilton, Didcot, Oxon (United Kingdom); Aslaninejad, M. [Imperial College London, Department of Physics, London (United Kingdom); Berg, J. Scott [BNL, Upton, Long Island, New York (United States); Kelliher, D. J.; Machida, S. [STFC/ASTeC/RAL, Chilton, Didcot, Oxon (United Kingdom)

    2010-03-30T23:59:59.000Z

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  4. Muon neutrino disappearance at MINOS

    SciTech Connect (OSTI)

    Armstrong, R.; /Indiana U.

    2009-08-01T23:59:59.000Z

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

  5. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    SciTech Connect (OSTI)

    Marshall, John Stuart; /Cambridge U.

    2008-06-01T23:59:59.000Z

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0.953 (68% confidence level). The models of neutrino decoherence and decay are disfavored at the 5.0{sigma} and 3.2{sigma} levels respectively, while the no oscillation model is excluded at the 9.4{sigma} level.

  6. Search for the Standard Model Higgs Boson in the Decay Channel H?ZZ?4l in pp Collisions at ?s=7??TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    A search for a Higgs boson in the four-lepton decay channel H?ZZ, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range of 110

  7. Cosmology with decaying particles

    SciTech Connect (OSTI)

    Turner, M.S.

    1984-09-01T23:59:59.000Z

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  8. CLNS 98/1575 An Update on CLEO's Study of B Meson Decays 1

    E-Print Network [OSTI]

    six to eight years, many general properties of B meson decay were measured at DORIS and CESR. In 1988 via the tree diagram. The listed branching fractions, for ex­ ample Br(B ! Xlš) = (10:4 \\Sigma 0 over electron, muon and tau semileptonic decay is 2:3 \\Theta (10:4 \\Sigma 0:4) = (23:9 \\Sigma 0

  9. Accumulating evidence for nonstandard leptonic decays of D_s mesons

    E-Print Network [OSTI]

    Bogdan A. Dobrescu; Andreas S. Kronfeld

    2008-07-14T23:59:59.000Z

    The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepancy with experiment may be explained by a charged Higgs boson or a leptoquark.

  10. Search for neutrinoless tau decays involving pi(0) or eta mesons

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1997-08-01T23:59:59.000Z

    We have searched for lepton flavor violating decays of the tau lepton using final states with an electron Or a muon and one or two pi(0) or eta mesons but no neutrinos. The data used in the search were collected with the CLEO II detector...

  11. The anomalous lepton magnetic moment, LFV decays and the fourth generation

    E-Print Network [OSTI]

    W. J. Huo; T. F. Feng

    2003-01-20T23:59:59.000Z

    We investigate the lepton flavor violation (LFV) decays, $\\tau\\to l\\gamma$ ($l=\\mu, e$) and $\\mu\\to e\\gamma$, and the newly observed muon $g-2$ anomaly in the framwork of a squential fourth generation model with a heavy fourth neutrino, $\

  12. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect (OSTI)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  13. Relativistic QRPA calculation of muon capture rates

    E-Print Network [OSTI]

    T. Marketin; N. Paar; T. Niksic; D. Vretenar

    2009-03-30T23:59:59.000Z

    The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  14. Progress in Muon Cooling Research and Development

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MuCool Collaboration

    2003-01-29T23:59:59.000Z

    The MuCool R&D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the U.S. and abroad. The intended schedule of work will lead to ionization cooling being well enough established that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation.

  15. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2014-04-13T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiokande measurements of the total background to within a factor of 2, which is good given that the isotope yields vary by orders of magnitude and that some details of the experiment are unknown to us at this level. Our results break aggregate data into component isotopes, reveal their separate production mechanisms, and preserve correlations between them. We outline how to implement more effective background rejection techniques using this information. Reducing backgrounds in solar and DSNB studies by even a factor of a few could help lead to important new discoveries.

  16. Recent results from COMPASS muon scattering measurements

    SciTech Connect (OSTI)

    Capozza, Luigi [Irfu/SPhN - CEA Saclay, 91190 Gif-sur-Yvette (France); Collaboration: COMPASS Collaboration

    2012-10-23T23:59:59.000Z

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  17. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  18. Fast Proton Decay

    E-Print Network [OSTI]

    Tianjun Li; Dimitri V. Nanopoulos; Joel W. Walker

    2010-09-10T23:59:59.000Z

    We consider proton decay in the testable flipped SU(5) X U(1)_X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p \\to e^+ \\pi^0 from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the most plausible parameter space within reach of the future Hyper-Kamiokande and DUSEL experiments. Because the TeV-scale vector-like particles can be produced at the LHC, we predict a strong correlation between the most exciting particle physics experiments of the coming decade.

  19. Search for dark photons from neutral meson decays in p+p and d+Au collisions at ?sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-03-01T23:59:59.000Z

    The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment (g-2)? deviates from SM calculations by 3.6?. Several theoretical models attribute this to the existence of a “dark photon,” an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, U, in ??, ? ? ?e?e? decays and obtained upper limits of O(2×10??) on U-? mixing at 90% CL for the mass range 30 U more »the remaining region in the U-? mixing parameter space that can explain the (g-2)? deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of 29 U « less

  20. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    E-Print Network [OSTI]

    Rob Roy Fletcher; Linda Coney; Gail Hanson

    2011-05-03T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  1. atmospheric muon generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As...

  2. atlas muon endcap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon pt determination...

  3. Status of the International Muon Ionization Cooling Experiment (MICE)

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01T23:59:59.000Z

    target mechanism in the ISIS ring. MUON BEAM LINE Althoughthose located within the ISIS shielded enclosure are beingdelay installation until the next ISIS shutdown (planned for

  4. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07T23:59:59.000Z

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  5. A Direct Measurement of the $W$ Decay Width

    SciTech Connect (OSTI)

    Vine, Troy; /University Coll. London

    2008-08-01T23:59:59.000Z

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at {radical}s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb{sup -1} is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 {+-} 0.072 GeV in agreement with the theoretical prediction of 2.093 {+-} 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  6. Search for excited muons in p anti-p collisions at s**(1/2) = 1.96- TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de

    2006-04-01T23:59:59.000Z

    We present the results of a search for the production of an excited state of the muon, {mu}*, in proton antiproton collisions at {radical}s = 1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb{sup -1}. We search for {mu}* in the process p{bar p} {yields} {mu}*{nu}, with the {mu}* subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes {mu}* production by four-fermion contact interactions and {mu}* decay via electroweak processes, we exclude production cross sections higher than 0.057 pb-0.112 pb at the 95% confidence level, depending on the mass of the excited muon. Choosing the scale for contact interactions to be {Lambda} = 1 TeV, excited muon masses below 618 GeV are excluded.

  7. Neutrino oscillations and neutrinoless double beta decay

    E-Print Network [OSTI]

    D. Falcone; F. Tramontano

    2001-03-16T23:59:59.000Z

    The relation between neutrino oscillation parameters and neutrinoless double beta decay is studied, assuming normal and inverse hierarchies for Majorana neutrino masses. For normal hierarchy the crucial dependence on U_{e3} is explored. The link with tritium beta decay is also briefly discussed.

  8. Neutron production by cosmicray muons at shallow depth F. Boehm, 3 J. Busenitz, 1 B. Cook, 3 G. Gratta, 4 H. Henrikson, 3 J. Kornis, 1 D. Lawrence, 2 K. B. Lee, 3 K. McKinny, 1

    E-Print Network [OSTI]

    Gratta, Giorgio

    . The CDMS experi­ ment, for instance, is searching for cold dark matter #3#, and is presently at shallow produced by cosmic ray muons at a shallow depth of 32 meters of water equivalent has been measured,2# must cope with this source of background. Other neutrino and proton decay experiments, as well as dark

  9. R-Axion: A New LHC Physics Signature Involving Muon Pairs

    SciTech Connect (OSTI)

    Goh, Hock-Seng; /UC, Berkeley /LBL, Berkeley; Ibe, Masahiro; /SLAC

    2012-04-12T23:59:59.000Z

    In a class of models with gauge mediated supersymmetry breaking, the existence of a light pseudo scalar particle, R-axion, with a mass in hundreds MeV range is predicted. The striking feature of such a light R-axion is that it mainly decays into a pair of muons and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. The one main goal of the LHC experiments is discovering supersymmetry which has been anticipated for a long time to solve the hierarchy problem. Once the supersymmetric standard model (SSM) is confirmed experimentally, the next question is how the supersymmetry is broken and how the effects of symmetry breaking are mediated to the SSM sector. In most cases, such investigations on 'beyond the SSM physics' rely on arguments based on extrapolations of the observed supersymmetry mass parameters to higher energies. However, there is one class of models of supersymmetry breaking where we can get a direct glimpse of the structure of the hidden sector with the help of the R-symmetry. The R-symmetry plays an important role in rather generic models of spontaneous supersymmetry breaking. At the same time, however, it must be broken in some way in order for the gauginos in the SSM sector to have non-vanishing masses. One possibility of the gaugino mass generation is to consider models where the gaugino masses are generated as a result of the explicit breaking of the R-symmetries. Unfortunately, in those models, the R-symmetry leaves little trace for the collider experiments, since the mass of the R-axion is typically heavy and beyond the reach of the LHC experiments. In this talk, instead, we consider a class of models with gauge mediation where the R-symmetry in the hidden/messenger sectors is exact in the limit of the infinite reduced Planck scale, i.e. M{sub PL} {yields} {infinity}. In this case, the gaugino masses are generated only after the R-symmetry is broken spontaneously. We also assume that the R-symmetry is respected by the SSM sector as well as the origin of the higgsino mass {mu} and the Higgs mass mixing B{mu} at the classical level. We call this scenario, the minimal R-symmetry breaking scenario.

  10. Measurement of the w boson mass at the Collider Detector at Fermilab from a fit to the transverse momentum spectrum of the muon

    SciTech Connect (OSTI)

    Vollrath, Ian Eberhard; /Toronto U.

    2007-01-01T23:59:59.000Z

    This thesis describes a measurement of the W boson mass from a fit to the transverse momentum spectrum of the muon in W decay. In past measurements this technique was used as a cross-check, however, now presents the best method in terms of systematic uncertainty. We discuss all sources of systematic uncertainty with emphasis on those to which the muon p{sub T} measurement is particularly sensitive, specifically, those associated with modeling the production and decay of W bosons. The data were collected with the CDF II detector between March 2002 and September 2003 and correspond to an integrated luminosity of (191 {+-} 11) pb{sup -1}. We measure the W mass to be (80.316 {+-} 0.066{sub stat.} {+-} 0.051{sub syst.}) GeV/c{sup 2} = (80.316 {+-} 0.083) GeV/c{sup 2}.

  11. Novel linac structures for low-beta ions and for muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  12. Global neutrino parameter estimation using Markov Chain Monte Carlo

    E-Print Network [OSTI]

    Steen Hannestad

    2007-10-10T23:59:59.000Z

    We present a Markov Chain Monte Carlo global analysis of neutrino parameters using both cosmological and experimental data. Results are presented for the combination of all presently available data from oscillation experiments, cosmology, and neutrinoless double beta decay. In addition we explicitly study the interplay between cosmological, tritium decay and neutrinoless double beta decay data in determining the neutrino mass parameters. We furthermore discuss how the inference of non-neutrino cosmological parameters can benefit from future neutrino mass experiments such as the KATRIN tritium decay experiment or neutrinoless double beta decay experiments.

  13. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20T23:59:59.000Z

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  14. Muon Figures: 2001/04/19 Chris Waltham

    E-Print Network [OSTI]

    Learned, John

    wall is a less dense mix of gabbro and granite. The depths of various parts of the detector are given environment around SNO. The solid curved line is the hanging wall - foot wall interface at the level of SNO) and replaced with back#12;ll. The grid is 1000' (#25;300m) square. p Muon Track Light from Muon Xf PSUP Impact

  15. Helical channel design and technology for cooling of muon beams

    SciTech Connect (OSTI)

    Yonehara, K; /Fermilab; Derbenev, Y.S.; /Jefferson Lab; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01T23:59:59.000Z

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  16. Muon-induced backgrounds in the CUORICINO experiment

    E-Print Network [OSTI]

    Andreotti, E.

    2010-01-01T23:59:59.000Z

    background in the neutrinoless double beta decay region ofis searching for neutrinoless double beta decay (0???), a

  17. Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ

    E-Print Network [OSTI]

    Alfred Tang; Glenn Horton-Smith; Vitaly A. Kudryavtsev; Alessandra Tonazzo

    2006-08-25T23:59:59.000Z

    Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.

  18. Measurement of the Inclusive Leptonic Asymmetry in Top-Quark Pairs that Decay to Two Charged Leptons at CDF

    SciTech Connect (OSTI)

    Aaltonen, Timo Antero; et al.,

    2014-07-23T23:59:59.000Z

    We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab.

  19. Optimising a Muon Spectrometer for Measurements at the ISIS Pulsed Muon Source

    E-Print Network [OSTI]

    Giblin, S R; King, P J C; Tomlinson, S; Jago, S J S; Randall, L J; Roberts, M J; Norris, J; Howarth, S; Mutamba, Q B; Rhodes, N J; Akeroyd, F

    2014-01-01T23:59:59.000Z

    This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.

  20. GUT-inspired supersymmetric model for h ? ? ? and the muon g - 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-01T23:59:59.000Z

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h??? decay channel. In order to accommodate these observations and mh?125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to R???1.1 is 100 GeV?m?˜?200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted to lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg˜?4.5 TeV and mt˜??3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.

  1. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect (OSTI)

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  2. Experimental Investigation of Muon-catalyzed dt Fusion in Wide Ranges of D/T Mixture Conditions

    SciTech Connect (OSTI)

    Bom, V.R.; Eijk, C.W.E. van [Delft University of Technology, 2629 JB Delft (Netherlands); Demin, A.M.; Golubkov, A.N.; Grishechkin, S.K.; Klevtsov, V.G.; Kuryakin, A.V.; Musyaev, R.K.; Perevozchikov, V.V.; Vinogradov, Yu.I.; Yukhimchuk, A.A.; Zlatoustovskii, S.V. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, 607200 (Russian Federation); Demin, D.L.; Filchenkov, V.V.; Grafov, N.N.; Gritsaj, K.I.; Konin, A.D.; Medved', S.V.; Rudenko, A.I.; Yukhimchuk, S.A. [Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 (Russian Federation)] [and others

    2005-04-01T23:59:59.000Z

    A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in a wide range of the D/T mixture conditions: temperatures of 20-800 K, densities of 0.2-1.2 of the liquid hydrogen density (LHD), and tritium concentrations of 15-86%. In this paper, the results obtained are summarized.

  3. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Keisuke Harigaya; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-01-29T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  4. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Harigaya, Keisuke; Yokozaki, Norimi

    2015-01-01T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  5. Muon Catalyzed Fusion in 3 K Solid Deuterium

    E-Print Network [OSTI]

    P. E. Knowles; A. Adamczak; J. M. Bailey; G. A. Beer; J. L. Beveridge; M. C. Fujiwara; T. M. Huber; R. Jacot-Guillarmod; P. Kammel; S. K. Kim; A. R. Kunselman; G. M. Marshall; C. J. Martoff; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

    1997-02-20T23:59:59.000Z

    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \\mu/s$, and $\\tilde{\\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \\mu /s$. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

  6. The muon system of the Daya Bay Reactor antineutrino experiment

    E-Print Network [OSTI]

    Daya Bay Collaboration

    2014-11-28T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  7. Positive muon and the positron as probes of defects

    SciTech Connect (OSTI)

    Lynn, K G

    1980-01-01T23:59:59.000Z

    The positive muon and the positron are each being used nowadays to investigate defects in condensed matter. A brief summary of the experimental methods employed with each particle is given in this paper. Similarities and differences between the behavior of the two leptons when implanted in consensed matter are pointed out, and by means of a comparison between muon and positron data in Al it is shown that the combination of muon and positron experiments can serve as a useful new probe of defects in solids.

  8. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-02-01T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  9. Predicting Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    M. Hirsch; Ernest Ma; J. W. F. Valle; A. Villanova del Moral

    2005-07-12T23:59:59.000Z

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A_4 family symmetry model. We show that there is a lower bound for the neutrinoless double beta decay amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |m_{ee}| >= 0.17 \\sqrt{\\Delta m^2_{ATM}}. This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, neutrinoless double beta decay may be accessible to the next generation of high sensitivity experiments.

  10. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  11. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    E-Print Network [OSTI]

    MICE Collaboration

    2012-03-23T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  12. Search for pair production of the scalar top quark in the electron+muon final state

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Altona, A.; Alverson, G.; Alves, G.A.

    2010-09-01T23:59:59.000Z

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ({tilde t}{sub 1}) in p{bar p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb{sup -1}. The scalar top quarks are assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) mass plane.

  13. HIGH FIELD SOLENOID FOR MUON COOLING.

    SciTech Connect (OSTI)

    KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.

    2006-06-26T23:59:59.000Z

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.

  14. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    E-Print Network [OSTI]

    Riggi, S; Bandieramonte, M; Becciani, U; Costa, A; La Rocca, P; Massimino, P; Petta, C; Pistagna, C; Riggi, F; Sciacca, E; Vitello, F

    2013-01-01T23:59:59.000Z

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are here discussed. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full Geant4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  15. Semileptonic Decays

    SciTech Connect (OSTI)

    Luth, Vera G.; /SLAC

    2012-10-02T23:59:59.000Z

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  16. atmospheric muon flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

  17. atmospheric muon charge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CMS detector HEP - Experiment (arXiv) Summary: A measurement is presented of the flux ratio of positive and negative muons from cosmic ray interactions in the atmosphere,...

  18. R&D Toward a Neutrino Factory and Muon Collider

    E-Print Network [OSTI]

    Zisman, Michael S

    2011-01-01T23:59:59.000Z

    the need for a future 6D cooling experiment. A community-and planning for a future 6D muon cooling experiment. Tablepossible 6D cooling experiment at some future time. However,

  19. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

  20. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUONDE-AC03-76SF00098. Green SUPERCONDUCTING MAGNETS FOR MUONet ai, "The Use of Superconducting Solenoids in a Muon

  1. Neutrino-induced upward-going muons in Super-Kamiokande

    E-Print Network [OSTI]

    A. Habig; for the Super-Kamiokande Collaboration

    1999-05-05T23:59:59.000Z

    Upward-going muons observed by the Super-Kamiokande detector are produced by high-energy atmospheric neutrinos which interact in rock around the detector. Those which pass completely through the detector have a mean parent neutrino energy of ~100 GeV, while those which range out inside the detector come from neutrinos of mean energy ~10 GeV. The neutrino baseline varies with the observed muon zenith angle, allowing for an independent test via nu-mu disappearance of the neutrino oscillations observed in the Super-Kamiokande contained events. 614 upward through-going and 137 upward stopping muons were observed over 537 (516) live days, resulting in a flux of Phi_t=1.74\\pm0.07(stat.)\\pm0.02(sys.), Phi_s=0.380\\pm0.038(stat.)^{+0.019}_{-0.016}(sys.) x10^{-13}cm^{-2}s^{-1}sr^{-1}. The observed stopping/through-going ratio R=0.218\\pm0.023(stat.)^{+0.014}_{-0.013}(syst.) is 2.9 sigma lower than the expectation of 0.368^{+0.049}_{-0.044}(theo.). Both the shape of the zenith angle distribution of the observed flux and this low ratio are inconsistent with the null oscillation hypothesis, but are compatible with the previously observed nu-mu nu-tau oscillations. Taken as a whole, the addition of these higher energy nu-mu data to the contained neutrino events provides a better measurement of the oscillation parameters, narrowing the allowed parameter range to sin^22theta >~0.9 and 1.5x10^{-3}eV^2 <~ \\Delta m^2 <~6x10^{-3} at 90% confidence.

  2. Interpretation of the atmospheric muon charge ratio in MINOS

    E-Print Network [OSTI]

    Philip Schreiner; Maury Goodman

    2007-06-04T23:59:59.000Z

    MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

  3. Search for Rare and Forbidden Charm Meson Decays at Fermilab E791

    E-Print Network [OSTI]

    Fermilab E791 Collaboration; D. J. Summers

    2000-10-01T23:59:59.000Z

    We report the results of a blind search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D+, D(s)+, and D0 mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, we examine the pi l l and K l l decay modes of D+ and D(s)+ and the l+ l- decay modes of D0. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.

  4. Strong effects in weak nonleptonic decays

    SciTech Connect (OSTI)

    Wise, M.B.

    1980-04-01T23:59:59.000Z

    In this report the weak nonleptonic decays of kaons and hyperons are examined with the hope of gaining insight into a recently proposed mechanism for the ..delta..I = 1/2 rule. The effective Hamiltonian for ..delta..S = 1 weak nonleptonic decays and that for K/sup 0/-anti K/sup 0/ mixing are calculated in the six-quark model using the leading logarithmic approximation. These are used to examine the CP violation parameters of the kaon system. It is found that if Penguin-type diagrams make important contributions to K ..-->.. ..pi pi.. decay amplitudes then upcoming experiments may be able to distinguish the six-quark model for CP violation from the superweak model. The weak radiative decays of hyperons are discussed with an emphasis on what they can teach us about hyperon nonleptonic decays and the ..delta..I = 1/2 rule.

  5. Physics and Outlook for Rare, All-neutral Eta Decays

    SciTech Connect (OSTI)

    Mack, David J. [JLAB

    2014-06-01T23:59:59.000Z

    The $\\eta$ meson provides a laboratory to study isospin violation and search for new flavor-conserving sources of C and CP violation with a sensitivity approaching $10^{-6}$ of the isospin-conserving strong amplitude. Some of the most interesting rare $\\eta$ decays are the neutral modes, yet the effective loss of photons from the relatively common decay $\\eta \\rightarrow 3\\pi^0 \\rightarrow 6\\gamma$ (33$\\%$) has largely limited the sensitivity for decays producing 3-5$\\gamma$'s. Particularly important relevant branches include the highly suppressed $\\eta \\rightarrow \\pi^0 2\\gamma \\rightarrow 4\\gamma$, which provides a rare window on testing models of $O(p^6)$ contributions in ChPTh, and $\\eta \\rightarrow 3\\gamma$ and $\\eta \\rightarrow 2\\pi^0 \\gamma \\rightarrow 5\\gamma$ which provide direct constraints on C violation in flavor-conserving processes. The substitution of lead tungstate in the forward calorimeter of the GluEx setup in Jefferson Lab's new Hall D would allow dramatically improved measurements. The main niche of this facility, which we call the JLab Eta Factory (JEF), would be $\\eta$ decay neutral modes. However, this could likely be expanded to rare $\\eta'(958)$ decays for low energy QCD studies as well as $\\eta$ decays involving muons for new physics searches.

  6. Non-standard semileptonic hyperon decays

    E-Print Network [OSTI]

    Hsi-Ming Chang; Martin González-Alonso; Jorge Martin Camalich

    2015-03-05T23:59:59.000Z

    We investigate the discovery potential of semileptonic hyperon decays in terms of searches of new physics at teraelectronvolt scales. These decays are controlled by a small $SU(3)$-flavor breaking parameter that allows for systematic expansions and accurate predictions in terms of a reduced dependence on hadronic form factors. We find that muonic modes are very sensitive to non-standard scalar and tensor contributions and demonstrate that these could provide a powerful synergy with direct searches of new physics at the LHC.

  7. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01T23:59:59.000Z

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  8. Neutrinoless Double Beta Decay and Lepton Flavor Violation

    E-Print Network [OSTI]

    V. Cirigliano; A. Kurylov; M. J. Ramsey-Musolf; P. Vogel

    2004-06-17T23:59:59.000Z

    We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \\mu -> e \\gamma and \\mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.

  9. Searches for the baryon- and lepton-number violating decays B 0 ? ? c + l ? , B ? ? ? l ? , and B ? ? ? ¯ l ?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.

    2011-05-01T23:59:59.000Z

    Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either ?c or ? and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2–520)×10?? are set on the branching fractions at the 90% confidence level.

  10. Muon transfer from hydrogen to helium

    SciTech Connect (OSTI)

    Bystritskii, V.M.; Dzhelepov, V.P.; Petrukhin, V.I.; Rudenko, A.I.; Suvorov, V.M.; Filchenkov, V.V.; Khovanskii, N.N.; Khomenko, B.A.

    1983-04-01T23:59:59.000Z

    It is found that ..mu../sup -/ mesons stopped in a gas mixture of hydrogen, helium, and xenon (hydrogen pressure about 20 atmospheres, helium and xenon densities relative to hydrogen 0.05--2 and approx.10/sup -4/ respectively) are transferred from the p..mu.. atoms in the ground state to helium atoms at a rate lambda/sub He/ = (3.6 +- 1.0)x10/sup 8/ sec/sup -1/. The result is in good agreement with the calculations in which a novel mesic-molecular mechanism of p..mu..-atom charge exchange with helium nuclei is taken into account. The dependence of the probability for p..mu..-atom formation in the ground state on the helium density is measured. An analysis of this dependence and a comparison of it with the corresponding data for ..pi../sup -/ mesons indicate that muons can also be transferred from excited levels of p..mu.. atoms at a rate higher than in the case of p..pi.. atoms (transfer constant ..lambda../sub ..mu../ = 3.8 +- 0.3 compared with ..lambda../sub ..pi../ = 1.84 +- 0.09).

  11. Lepton mixing under the lepton charge nonconservation, neutrino masses and oscillations and the 'forbidden' decay Micro-Sign {sup -} {yields} e{sup -} + {gamma}

    SciTech Connect (OSTI)

    Lyuboshitz, V. L.; Lyuboshitz, V. V., E-mail: Valery.Lyuboshitz@jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2013-08-15T23:59:59.000Z

    The lepton-charge (L{sub e}, L{sub {mu}}, L{sub {tau}}) nonconserving interaction leads to the mixing of the electron, muon, and tau neutrinos, which manifests itself in spatial oscillations of a neutrino beam, and also to the mixing of the electron, negative muon, and tau lepton, which, in particular, may be the cause of the 'forbidden' radiative decay of the negative muon into the electron and {gamma} quantum. Under the assumption that the nondiagonal elements of the mass matrices for neutrinos and ordinary leptons, connected with the lepton charge nonconservation, are the same, and by performing the joint analysis of the experimental data on neutrino oscillations and experimental restriction for the probability of the decay Micro-Sign {sup -} {yields} e{sup -} + {gamma} per unit time, the following estimate for the lower bound of neutrino mass has been obtained: m{sup ({nu})} > 1.5 eV/c{sup 2}.

  12. Muon density enhancement with a tapered capillary method

    SciTech Connect (OSTI)

    Tomono, D.; Ishida, K.; Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kojima, T. M.; Ikeda, T.; Iwai, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Tokuda, M. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kanazawa, Y. [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Iwasaki, M. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Yamazaki, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan)

    2011-10-06T23:59:59.000Z

    The focusing effect of a muon beam with a tapered capillary method has been investigated in a range from 4.2 MeV to 9.2 MeV (i.e. from 30 MeV/c to 45 MeV/c in momentum). We injected the muon beam into a pair of narrowing (tapered) plates and tubes made of glass, copper and gold-coated copper, and measured the energy distribution of the muon leaving from the outlet. The plates were tilted from an inlet of 40 mm to an outlet of 20 mm. The density enhancement was more prominent with the plates made of heavier elements. The largest beam density enhancement at 10 mm downstream of the outlet was 1.3 with the gold-coated copper narrowing plates. The enhancement was composed of muons scattered with a small angle. Their energy was slightly less than that of the initial beam. This effect did not depend on the surface roughness. The result strongly suggests a simple and effective way to increase the muon beam density for a small target.

  13. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  14. Decaying and kicked turbulence in a shell model

    E-Print Network [OSTI]

    Jan-Otto Hooghoudt; Detlef Lohse; Federico Toschi

    2000-12-06T23:59:59.000Z

    Decaying and periodically kicked turbulence are analyzed within the GOY shell model, to allow for sufficiently large scaling regimes. Energy is transfered towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ensemble averaged energy decay E(t) \\~t^{-2} or the parameter dependences for the ensemble averaged total energy in the kicked case. Within numerical precision, the inertial subrange intermittency remains the same, whether the system is forced or decaying.

  15. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01T23:59:59.000Z

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  16. Improvements to the LC Muon tracking and identification software

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.

    2005-03-01T23:59:59.000Z

    This note summarizes the evolution of the Muon-ID package originally written by R. Markeloff at NIU. The original method used a helical swimmer to extrapolate the tracks from the interaction point and to collect hits in all sub-detectors: the electromagnetic and hadronic calorimeters and muon detector. The package was modified to replace the swimmer by a stepper which does account for both the effects of the magnetic field and for the losses by ionization in the material encountered by the particle. The modified package shows a substantial improvement in the efficiency of muon identification. Further improvement should be reached by accounting for stochastic processes via the utilization of a Kalman filter.

  17. Baryon helicity in B decay

    SciTech Connect (OSTI)

    Suzuki, Mahiko

    2005-05-13T23:59:59.000Z

    We extend the perturbative argument of helicity amplitudes to the two-body baryonic decays of B decays.

  18. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Annarita Margiotta

    2006-02-01T23:59:59.000Z

    A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

  19. MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York)

    E-Print Network [OSTI]

    McDonald, Kirk

    MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York) Abstract A complete scheme for muon production, cooling, ac- celeration and storage in a collider ring is presented. Pa and phase rotation yields bunch trains of both muon signs. Six di- mensional cooling reduces

  20. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  1. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  2. A Coil Manufacturing Procedure for the ALICE Muon Arm Dipole Magnet

    E-Print Network [OSTI]

    Swoboda, D; CERN. Geneva

    1998-01-01T23:59:59.000Z

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment[1,2]. The main parameters and basic design options of the dipole magnet have been described in [3]. The coils of the magnet will be wound from hollow Aluminium conductor of 50x50 mm² cross-section with a 30 mm diameter cooling hole in the centre. Different manufacturing techniques may be envisaged for the fabrication of the excitation coils. In this note we propose a procedure to construct the coils from straight extruded bars of half turn length. The different steps necessary to bend a half turn are described. A method to form complete turns, pancakes and the total coil is explained. A possible insulation process is presented. Advantages and critical areas of the coil construction process are highlighted in the conclusions. References [1]ALICE TP, CERN/LHCC 95-71 [2]ALICE TP Addendum, CERN/LHCC 96-32 [3]A Warm Magnet for the ALICE Muon Arm, ALICE 96/24, W.Flegel, D.Swoboda, CERN List of Figures Figure 1 Coil ...

  3. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07T23:59:59.000Z

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  4. Doped H(2)-Filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Johnson, R.P.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia; Rose, D.V.; /Voss Sci., Albuquerque

    2009-05-01T23:59:59.000Z

    RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants.

  5. Lowest Order Hadronic Contribution to the Muon g-2

    E-Print Network [OSTI]

    Christopher Aubin; Tom Blum

    2005-09-20T23:59:59.000Z

    We present the most recent lattice results for the lowest-order hadronic contribution to the muon anomalous magnetic moment using 2+1 flavor improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory with the inclusion of the vector particles as resonances, to evaluate the vacuum polarization. We discuss the preliminary fit results and attendant systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons.

  6. Can Dark Matter Decay in Dark Energy?

    E-Print Network [OSTI]

    S. H. Pereira; J. F. Jesus

    2009-02-26T23:59:59.000Z

    We analyze the interaction between Dark Energy and Dark Matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from Dark Matter into Dark Energy, characterized by a negative parameter $Q$. We find that, if at least one of the fluids has non vanishing chemical potential, for instance $\\mu_x0$, the decay is possible, where $\\mu_x$ and $\\mu_{dm}$ are the chemical potentials of Dark Energy and Dark Matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the Dark Matter decay is favored with a probability of $\\sim 93%$ over the Dark Energy decay. This result comes from a likelihood analysis where only background evolution has been considered.

  7. Study of B??Xul?? decays in BB? events tagged by a fully reconstructed B-meson decay and determination of |Vub|

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Tackmann, K.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Prencipe, E.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va’vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Benitez, J. F.; Burchat, P. R.

    2012-08-01T23:59:59.000Z

    We report measurements of partial branching fractions for inclusive charmless semileptonic B decays B¯¯¯?Xul?¯ and the determination of the Cabibbo–Kobayashi–Maskawa (CKM) matrix element |Vub|. The analysis is based on a sample of 467×10? ?(4S)?BB¯¯¯ decays recorded with the BABAR detector at the PEP-II e?e? storage rings. We select events in which the decay of one of the B mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other B meson. We measure partial branching fractions ?B in several restricted regions of phase space and determine the CKM element |Vub| based on different QCD predictions. For decays with a charged lepton momentum p*l>1.0 GeV in the B meson rest frame, we obtain ?B=(1.80±0.13stat±0.15sys±0.02theo)×10?³ from a fit to the two-dimensional MX-q² distribution. Here, MX refers to the invariant mass of the final state hadron X and q² is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract |Vub|=(4.33±0.24exp?±0.15theo)×10?³ as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for B¯¯¯0 and B? decays and derive a limit on the isospin breaking in B¯¯¯?Xul?¯ decays.

  8. Study of B??Xul?? decays in BB? events tagged by a fully reconstructed B-meson decay and determination of |Vub|

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; et al

    2012-08-01T23:59:59.000Z

    We report measurements of partial branching fractions for inclusive charmless semileptonic B decays B¯¯¯?Xul?¯ and the determination of the Cabibbo–Kobayashi–Maskawa (CKM) matrix element |Vub|. The analysis is based on a sample of 467×10? ?(4S)?BB¯¯¯ decays recorded with the BABAR detector at the PEP-II e?e? storage rings. We select events in which the decay of one of the B mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other B meson. We measure partial branching fractions ?B in several restricted regions of phase space and determine the CKM element |Vub| based on different QCDmore »predictions. For decays with a charged lepton momentum p*l>1.0 GeV in the B meson rest frame, we obtain ?B=(1.80±0.13stat±0.15sys±0.02theo)×10?³ from a fit to the two-dimensional MX-q² distribution. Here, MX refers to the invariant mass of the final state hadron X and q² is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract |Vub|=(4.33±0.24exp?±0.15theo)×10?³ as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for B¯¯¯0 and B? decays and derive a limit on the isospin breaking in B¯¯¯?Xul?¯ decays.« less

  9. Computational Needs for Muon Accelerators J. Scott Berg a

    E-Print Network [OSTI]

    Berg, J. Scott

    Computational Needs for Muon Accelerators J. Scott Berg a a Brookhaven National Laboratory that are transported can have energy spreads of ±30% or more. The required emittances necessitate accurate tracking or a model which includes end fields; and accurately design and simulate a beam line where the transported

  10. Radiative corrections to real and virtual muon Compton scattering revisited

    E-Print Network [OSTI]

    N. Kaiser

    2010-03-04T23:59:59.000Z

    We calculate in closed analytical form the one-photon loop radiative corrections to muon Compton scattering $\\mu^- \\gamma \\to \\mu^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Infrared finiteness of the (virtual) radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. We find that the anomalous magnetic moment $\\alpha/2\\pi$ provides only a very small portion of the full radiative corrections. Furthermore, we extend our calculation of radiative corrections to the muon-nucleus bremsstrahlung process (or virtual muon Compton scattering $\\mu^-\\gamma_0^* \\to \\mu^- \\gamma $). These results are particularly relevant for analyzing the COMPASS experiment at CERN in which muon-nucleus bremsstrahlung serves to calibrate the Primakoff scattering of high-energy pions off a heavy nucleus with the aim of measuring the pion electric and magnetic polarizabilities. We find agreement with an earlier calculation of these radiative corrections based on a different method.

  11. Integration and commissioning of the ATLAS Muon spectrometer

    E-Print Network [OSTI]

    Alberto Belloni; for the ATLAS collaboration

    2008-10-16T23:59:59.000Z

    The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is currently waiting to record the first collision data in spring 2009. Its muon spectrometer is designed to achieve a momentum resolution of 10% pT(mu) = 1 TeV/c. The spectrometer consists of a system of three superconducting air-core toroid magnets and is instrumented with three layers of Monitored Drift Tube chambers (Cathode Strip Chambers in the extreme forward region) as precision detectors. Resistive Plate Chambers in the barrel and Thin Gap Chambers in the endcap regions provide a fast trigger system. The spectrometer passed important milestones in the last year. The most notable milestone was the installation of the inner layer of endcap muon chambers, which constituted the last big piece of the ATLAS detector to be lowered in the ATLAS cavern. In addition, during the last two years most of the muon detectors were commissioned with cosmic rays while being assembled in the underground experimental cavern. We will report on our experience with the precision and trigger chambers, the optical spectrometer alignment system, the level-1 trigger, and the ATLAS data acquisition system. Results of the global performance of the muon system from data with magnetic field will also be presented.

  12. Design of the Muon Lifetime Experiment By Steve Kliewer

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the lifetime of the Muon particle. This planned device will use 4, low voltage, classroom safe scintillator detectors and a data acquisition electronics board developed by Quarknet of FermiLab. Analysis, low voltage, classroom safe, detectors 2. DAQ: use the electronics developed by Quarknet (QNET2) 3

  13. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  14. AMIGA, Auger Muons and Infill for the Ground Array

    E-Print Network [OSTI]

    Etchegoyen, A

    2007-01-01T23:59:59.000Z

    The Pierre Auger Observatory is planned to be upgraded so that the energy spectrum of cosmic rays can be studied down to 0.1 EeV and the muon component of showers can be determined. The former will lead to a spectrum measured by one technique from 0.1 EeV to beyond 100 EeV while the latter will aid identification of the primary particles. These enhancements consist of three high elevation telescopes (HEAT) and an infilled area having both surface detectors and underground muon counters (AMIGA). The surface array of the Auger Observatory will be enhanced over a 23.5 km2 area by 85 detector pairs laid out as a graded array of water-Cherenkov detectors and 30 m2 buried muon scintillator counters. The spacings in the array will be 433 and 750 m. The muon detectors will comprise highly segmented scintillators with optical fibres ending on multi-anode phototubes. The AMIGA complex will be centred 6.0 km away from the fluorescence detector installation at Coihueco and will be overlooked by the HEAT telescopes. We de...

  15. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  16. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  17. Search for New Physics in Rare Top Decays

    E-Print Network [OSTI]

    Pratishruti Saha

    2014-11-27T23:59:59.000Z

    Top physics provides a fertile ground for new-physics searches. At present, most top observables appear to be in good agreement with the respective Standard Model predictions. However, in the case of decay modes that are suppressed in the Standard Model, new-physics contributions of comparable magnitude may exist and yet go unnoticed because their impact on the total decay width is small. Hence it is interesting to probe rare top decays. This analysis focuses on the decay $t \\to b \\bar b c$. Useful observables are identified and prospects for measuring new-physics parameters are examined.

  18. First measurement of top quark pair production cross-section in muon plus hadronic tau final states

    SciTech Connect (OSTI)

    Sumowidagdo, Suharyo; /Florida State U.

    2007-11-01T23:59:59.000Z

    This dissertation presents the first measurement of top quark pair production cross-section in events containing a muon and a tau lepton. The measurement was done with 1 fb{sup -1} of data collected during April 2002 through February 2006 using the D0 detector at the Tevatron proton-antiproton collider, located at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois. Events containing one isolated muon, one tau which decays hadronically, missing transverse energy, and two or more jets (at least one of which must be tagged as a heavy flavor jet) were selected. Twenty-nine candidate events were observed with an expected background of 9.16 events. The top quark pair production cross-section is measured to be {sigma}(t{bar t}) = 8.0{sub -2.4}{sup +2.8}(stat){sub -1.7}{sup +1.8}(syst) {+-} 0.5(lumi) pb. Assuming a top quark pair production cross-section of 6.77 pb for Monte Carlo signal top events without a real tau, the measured {sigma} x BR is {sigma}(t{bar t}) x BR(t{bar t} {yields} {mu} + {tau} + 2{nu} + 2b) = 0.18{sub -0.11}{sup +0.13}(stat){sub -0.09}{sup +0.09}(syst) {+-} 0.01(lumi) pb.

  19. Front-end Electronics Test for the LHCb Muon Wire Chambers

    E-Print Network [OSTI]

    Nobrega, R; Carboni, G; Massafferri, A; Santovetti, E

    2007-01-01T23:59:59.000Z

    This document describes the apparatus and procedures implemented to test Multi Wire Proportional Chambers (MWPC) after front-end assembly for the LHCb Muon Detector. Results of measurements of key noise parameters are also described. Given a fully equipped chamber, this system is able to diagnose every channel performing an analysis of front-end output drivers’ response and noise rate versus threshold. Besides, it allows to assess if the noise rate at the experiment threshold region is within appropriate limits. Aiming at an automatic, fast and user-friendly system for mass production tests of MWPC, the project has foreseen as well electronic identification of every chamber and front-end board, and data archiving in such a way to make it available to the Experiment Control System (ECS) while in operation.

  20. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    E-Print Network [OSTI]

    Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

    2005-07-26T23:59:59.000Z

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

  1. Double Beta Decay: Scintillators

    E-Print Network [OSTI]

    Mark C. Chen

    2008-10-20T23:59:59.000Z

    Scintillator detectors can be used in experiments searching for neutrinoless double beta decay. A wide variety of double beta decay candidate isotopes can be made into scintillators or can be loaded into scintillators. Experimental programs developing liquid xenon, inorganic crystals, and Nd-loaded liquid scintillator are described in this review. Experiments with 48Ca and 150Nd benefit from their high endpoint which places the neutrinoless double beta decay signal above most backgrounds from natural radioactivity.

  2. B decays and Supersymmetry

    E-Print Network [OSTI]

    Anirban Kundu

    2002-05-10T23:59:59.000Z

    I discuss how supersymmetry affects various observables in B decays, and point out the interesting channels in the context of B factories.

  3. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan; et al.,

    2014-09-01T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fitmore »to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] « less

  4. Double beta decay experiments

    E-Print Network [OSTI]

    A. S. Barabash

    2006-02-22T23:59:59.000Z

    The present status of double beta decay experiments are reviewed. The results of the most sensitive experiments, NEMO-3 and CUORICINO, are discussed. Proposals for future double beta decay experiments are considered. In these experiments sensitivity for the effective neutrino mass will be on the level of (0.1-0.01) eV.

  5. Double beta decay experiments

    E-Print Network [OSTI]

    A. S. Barabash

    2011-07-28T23:59:59.000Z

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  6. Rare B Decays and B Decay Dynamics

    E-Print Network [OSTI]

    William T. Ford

    2005-10-20T23:59:59.000Z

    I present some recent measurements of B meson decay rates to leptonic and charmless hadronic final states, as well as of CP-violation charge asymmetries and other features. I sketch the theoretical frameworks used to predict these, and indicate the level of agreement of the estimates with experiment.

  7. Measurement of the Top Quark Mass From Dileptonic $t\\bar{t}$ Decays With 2012 CMS Data

    E-Print Network [OSTI]

    Richard Nally; for the CMS Collaboration

    2014-11-26T23:59:59.000Z

    We present a measurement of the top quark mass using 19.7 $\\pm$ 0.5 fb$^{-1}$ of $\\sqrt{s} = 8$ TeV CMS data. In particular, we study dileptonic $t\\bar{t}$ decays, in which a top-antitop pair decays to a final state containing two electrons or muons. We use the Analytical Matrix Weighting Technique (AMWT), and have performed the first blind top mass measurement at CMS. The mass of the top quark is measured as $m_t = 172.47 \\pm 0.17(\\text{stat}) \\pm 1.40(\\text{syst})$ GeV.

  8. Measurement of the Forward-Backward Asymmetry in the B?K(*)????Decay and First Observation of the Bs0?????? Decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell’Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.

    2011-04-01T23:59:59.000Z

    We reconstruct the rare decays B??K?????, B??K*(892)?????, and Bs0??(1020)???? in a data sample corresponding to 4.4 fb?¹ collected in pp¯ collisions at ?s=1.96 TeV by the CDF II detector at the Tevatron Collider. Using 121±16 B??K????? and 101±12 B??K*????? decays we report the branching ratios. In addition, we report the differential branching ratio and the muon forward-backward asymmetry in the B? and B? decay modes, and the K*? longitudinal polarization fraction in the B? decay mode with respect to the squared dimuon mass. These are consistent with the predictions, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0?????? decay and measure its branching ratio BR(Bs0??????)=[1.44±0.33±0.46]×10?? using 27±6 signal events. This is currently the most rare Bs0 decay observed.

  9. The scattering of muons in low Z materials

    SciTech Connect (OSTI)

    D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-03T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionization cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionization cooling will work better than would be predicted by Geant 4.7.0p01.

  10. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17T23:59:59.000Z

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  11. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect (OSTI)

    Yonehara, Katsuya; /Fermilab

    2010-07-30T23:59:59.000Z

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  12. A Pionic Hadron Explains the Muon Magnetic Moment Anomaly

    E-Print Network [OSTI]

    Rainer W. Schiel; John P. Ralston

    2007-10-01T23:59:59.000Z

    A significant discrepancy exists between experiment and calculations of the muon's magnetic moment. We find that standard formulas for the hadronic vacuum polarization term have overlooked pionic states known to exist. Coulomb binding alone guarantees $\\pi^+ \\pi^-$ states that quantum mechanically mix with the $\\rho$ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for a mixing angle of order $\\alpha \\sim 10^{-2}$. The relevant physical state is predicted to give a tiny observable bump in the ratio R(s) of $e^+ e^-$ annihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon's anomalous moment.

  13. The scattering of muons in low Z materials

    E-Print Network [OSTI]

    MuScat Collaboration; D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-02T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

  14. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30T23:59:59.000Z

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  15. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  16. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; /FERMILAB; Sadovskiy, Y.; /Moscow Phys. Eng. Inst.; Zlobin, Alexander V; /Fermilab

    2007-08-01T23:59:59.000Z

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  17. Optical Alignment System for the PHENIX Muon Tracking Chambers

    E-Print Network [OSTI]

    J. Murata; A. Al-Jamel; R. L. Armendariz; M. L. Brooks; T. Horaguchi; N. Kamihara; H. Kobayashi; D. M. Lee; T. -A. Shibata; W. E. Sondheim

    2002-12-26T23:59:59.000Z

    A micron-precision optical alignment system (OASys) for the PHENIX muon tracking chambers is developed. To ensure the required mass resolution of vector meson detection, the relative alignment between three tracking station chambers must be monitored with a precision of 25$\\mu$m. The OASys is a straightness monitoring system comprised of a light source, lens and CCD camera, used for determining the initial placement as well as for monitoring the time dependent movement of the chambers on a micron scale.

  18. Proton decay in the super-world

    SciTech Connect (OSTI)

    Raby, S.

    1986-01-01T23:59:59.000Z

    Predictions are elaborated for nucleon decay in supersymmetric grand unified theories (SUSY GUT's). A minimal SU/sub 5/ SUSY GUT is described, as well as SU/sub 5/ breaking. The low energy theory and breaking of supersymmetry are discussed. It is concluded that nucleon decay in SUSY GUT's would be dominated by p ..-->.. K/sup +/anti nu/sub ..mu../ and n ..-->.. K/sup 0/anti nu/sub ..mu../. There are ranges in parameter space for which other decay modes may be significant or may even dominate, it is found. It is noted that minimal SUSY GUT's typically predict a value of sin/sup 2/theta/sub w/ of order .233. 20 refs., 7 figs. (LEW)

  19. GUT-inspired SUSY and the muon g-2 anomaly: prospects for LHC 14 TeV

    E-Print Network [OSTI]

    Kowalska, Kamila; Sessolo, Enrico Maria; Williams, Andrew J

    2015-01-01T23:59:59.000Z

    We consider the possibility that the muon g-2 anomaly, $\\delta(g-2)$, finds its origins in low energy supersymmetry (SUSY). In the general MSSM the parameter space consistent with $\\delta(g-2)$ and correct dark matter relic density of the lightest neutralino easily evades the present direct LHC limits on sparticle masses and also lies to a large extent beyond future LHC sensitivity. The situation is quite different in GUT-defined scenarios where input SUSY parameters are no longer independent. We analyze to what extent the LHC can probe a broad class of GUT-inspired SUSY models with gaugino non-universality that are currently in agreement with the bounds from $\\delta(g-2)$, as well as with the relic density and the Higgs mass measurement. To this end we perform a detailed numerical simulation of several searches for electroweakino and slepton production at the LHC and derive projections for the LHC 14 TeV run. We show that, within GUT-scale SUSY there is still plenty of room for the explanation of the muon an...

  20. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect (OSTI)

    Beall, Erik B; /Minnesota U.

    2005-12-01T23:59:59.000Z

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub {mu}{sup +}}/N{sub {mu}{sup -}}) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is R{sub eff} = 1.346 {+-} 0.002 (stat) {+-} 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 {+-} 0.008 (stat) {+-} 0.016 (syst) + (1.8 {+-} 0.3) x 10{sup -5} x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  1. Lateral Distribution for Aligned Events in Muon Groups Deep Underground

    E-Print Network [OSTI]

    A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

    2007-01-09T23:59:59.000Z

    The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

  2. Radiation Testing of Electronics for the CMS Endcap Muon System

    E-Print Network [OSTI]

    B. Bylsma; D. Cady; A. Celik; L. S. Durkin; J. Gilmore; J. Haley; V. Khotilovich; S. Lakdawala; J. Liu; M. Matveev; B. P. Padley; J. Roberts; J. Roe; A. Safonov; I. Suarez; D. Wood; I. Zawisza

    2012-08-20T23:59:59.000Z

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  3. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-04-11T23:59:59.000Z

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  4. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science...

  5. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01T23:59:59.000Z

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  6. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01T23:59:59.000Z

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  7. Higgs Bosons from Top Quark Decays

    E-Print Network [OSTI]

    Tao Han; Richard Ruiz

    2014-04-28T23:59:59.000Z

    In light of the discovery of a Standard Model (SM)-like Higgs boson ($h$) at the LHC, we investigate the top quark to Higgs boson transition $t\\rightarrow W^{*}bh$, which is the leading $t\\to h$ decay mode in the SM. We find the decay branching fraction to be $1.80\\times 10^{-9}$. In comparison, the two-body, loop-induced $t\\rightarrow ch$ transition occurs at $\\sim10^{-14}$ in the SM. We consider the consequences of gauge invariant dimension-6 operators affecting the $t\\bar{t}h$ interaction and find that the decay branching fraction may be increased by a factor of two within current constraints on the coupling parameters from collider experiments. We also extend the calculation to the CP-conserving Type I and Type II Two Higgs Doublet Models (2HDM), including both CP-even and CP-odd Higgs bosons. For neutral scalar masses at about $100$ GeV, the decay rates can be several times larger than the SM result in the allowed range of model parameters. Observation prospects at present and future colliders are briefly addressed.

  8. Neutrinoless double beta decay in seesaw models

    E-Print Network [OSTI]

    Mattias Blennow; Enrique Fernandez-Martinez; Jacobo Lopez-Pavon; Javier Menendez

    2014-05-12T23:59:59.000Z

    We study the general phenomenology of neutrinoless double beta decay in seesaw models. In particular, we focus on the dependence of the neutrinoless double beta decay rate on the mass of the extra states introduced to account for the Majorana masses of light neutrinos. For this purpose, we compute the nuclear matrix elements as functions of the mass of the mediating fermions and estimate the associated uncertainties. We then discuss what can be inferred on the seesaw model parameters in the different mass regimes and clarify how the contribution of the light neutrinos should always be taken into account when deriving bounds on the extra parameters. Conversely, the extra states can also have a significant impact, cancelling the Standard Model neutrino contribution for masses lighter than the nuclear scale and leading to vanishing neutrinoless double beta decay amplitudes even if neutrinos are Majorana particles. We also discuss how seesaw models could reconcile large rates of neutrinoless double beta decay with more stringent cosmological bounds on neutrino masses.

  9. RARE KAON DECAYS.

    SciTech Connect (OSTI)

    LITTENBERG, L.

    2005-07-19T23:59:59.000Z

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  10. Neutrinoless double beta decay

    E-Print Network [OSTI]

    K. Zuber

    2012-01-23T23:59:59.000Z

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations are presented as well as the current status of experiments. Finally an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  11. Constraining Decaying Dark Matter

    E-Print Network [OSTI]

    Ran Huo

    2011-07-13T23:59:59.000Z

    We revisited the decaying dark matter (DDM) model, in which one collisionless particle decays early into two collisionless particles, that are potentially dark matter particles today. The effect of DDM will be manifested in the cosmic microwave background (CMB) and structure formation. With a systematic modification of CMB calculation tool \\texttt{camb}, we can numerically calculated this effect, and compare it to observations. Further Markov Chain Monte Carlo \\texttt{cosmomc} runnings update the constraints in that model: the free streaming length $\\lambda_{FS}\\lesssim0.5$Mpc for nonrelativistic decay, and $((M_{DDM}/keV) Y)^2 (T_d/yr)\\lesssim5\\times10^{-5}$ for relativistic decay.

  12. Double Beta Decay

    E-Print Network [OSTI]

    Steven R. Elliott; Petr Vogel

    2002-02-27T23:59:59.000Z

    The motivation, present status, and future plans of the search for the neutrinoless double beta decay are reviewed. It is argued that, motivated by the recent observations of neutrino oscillations, there is a reasonable hope that neutrinoless double beta decay corresponding to the neutrino mass scale suggested by oscillations, of about 50 meV, actually exists. The challenges to achieve the sensitivity corresponding to this mass scale, and plans to overcome them, are described.

  13. PyDecay/GraphPhys: A Unified Language and Storage System for Particle Decay Process Descriptions

    SciTech Connect (OSTI)

    Dunietz, Jesse N.; /MIT /SLAC

    2011-06-22T23:59:59.000Z

    To ease the tasks of Monte Carlo (MC) simulation and event reconstruction (i.e. inferring particle-decay events from experimental data) for long-term BaBar data preservation and analysis, the following software components have been designed: a language ('GraphPhys') for specifying decay processes, common to both simulation and data analysis, allowing arbitrary parameters on particles, decays, and entire processes; an automated visualization tool to show graphically what decays have been specified; and a searchable database storage mechanism for decay specifications. Unlike HepML, a proposed XML standard for HEP metadata, the specification language is designed not for data interchange between computer systems, but rather for direct manipulation by human beings as well as computers. The components are interoperable: the information parsed from files in the specification language can easily be rendered as an image by the visualization package, and conversion between decay representations was implemented. Several proof-of-concept command-line tools were built based on this framework. Applications include building easier and more efficient interfaces to existing analysis tools for current projects (e.g. BaBar/BESII), providing a framework for analyses in future experimental settings (e.g. LHC/SuperB), and outreach programs that involve giving students access to BaBar data and analysis tools to give them a hands-on feel for scientific analysis.

  14. Neutrinoless Double Beta Decay in Particle Physics

    E-Print Network [OSTI]

    Werner Rodejohann

    2010-11-22T23:59:59.000Z

    Neutrinoless double beta decay is a process of fundamental importance for particle physics. It can be mediated by light massive Majorana neutrinos (standard interpretation) or by something else (non-standard interpretations). We review its dependence on the neutrino parameters, its complementarity to other observables sensitive to neutrino mass, and emphasize its ability to distinguish different neutrino mass models. Then we discuss mechanisms different from light Majorana neutrino exchange, and show what can be learned from those and how they could be tested.

  15. Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update

    E-Print Network [OSTI]

    Faessler, Amand; Kovalenko, Sergey; Simkovic, Fedor

    2014-01-01T23:59:59.000Z

    We revisit the mechanism of neutrinoless double beta (NLDBD) decay mediated by the exchange with the heavy Majorana neutrino N of arbitrary mass mN, slightly mixed with the electron neutrino. By assuming the dominance of this mechanism we update the well known NLDBD-decay exclusion plot in the mass-mixing angle plane taking into account recent progress in calculation of nuclear matrix elements within quasiparticle random phase approximation and improved experimental bounds on the NLDBD-decay half-life of Ge-76 and Xe-136. We also consider the known formula approximating the mN dependence of the NLDBD-decay nuclear matrix element in a simple explicit form. We analyze its accuracy and specify the corresponding parameters allowing one to easily calculate the NLDBD-decay half-life for arbitrary mN for all the experimentally interesting isotopes without resorting to real nuclear structure calculations.

  16. New expectations and uncertainties on Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Dell'Oro, Stefano; Vissani, Francesco

    2014-01-01T23:59:59.000Z

    The discovery of neutrino oscillations and its implication that neutrinos have mass have boosted the importance of neutrinoless double beta decay. Neutrinoless double beta decay offers unique chances to investigate the nature of the neutrino mass term, giving also information on the absolute scale and the mass hierarchy, assuming that neutrinos are Majorana particles. We study the Majorana Effective Mass, i. e. the crucial parameter that regulates the rate of the neutrinoless double beta decay due to light neutrino exchange. We update the previous estimations of this parameter, using the most recent data analysis, phase space factors and nuclear matrix elements. We evaluate the impact of the quenching in the nuclear medium of the axial vector coupling constant, as discussed by Iachello and collaborators. We provide estimations of the sensitivity of recent and future neutrinoless double beta decay experiments in terms of the Majorana Effective Mass. Finally, we discuss the possibility of taking advantage of th...

  17. Predicting neutrinoless double beta decay

    SciTech Connect (OSTI)

    Hirsch, M.; Villanova del Moral, A.; Valle, J.W.F. [AHEP Group, Instituto de Fisica Corpuscular - C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain); Ma, Ernest [Physics Department, University of California, Riverside, California 92521 (United States); Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom)

    2005-11-01T23:59:59.000Z

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A{sub 4} family symmetry model. We show that there is a lower bound for the {beta}{beta}{sub 0{nu}} amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter vertical bar m{sub ee} vertical bar {>=}0.17{radical}({delta}m{sub ATM}{sup 2}). This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on vertical bar m{sub ee} vertical bar is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, {beta}{beta}{sub 0{nu}} may be accessible to the next generation of high sensitivity experiments.

  18. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    SciTech Connect (OSTI)

    Gogos, Jeremy Peter; /Minnesota U.; ,

    2007-12-01T23:59:59.000Z

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 {+-} 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin{sup 2} 2{theta}{sub 23} = 0.95{sub -0.32} and {Delta}m{sub 23}{sup 2} = 0.93{sub -0.44}{sup +3.94} x 10{sup -3} eV{sup 2}. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  19. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-11-10T23:59:59.000Z

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  20. Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $pp$ collisions at $\\sqrt{s}=8$TeV with the ATLAS detector at the LHC

    E-Print Network [OSTI]

    Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet

    2015-01-01T23:59:59.000Z

    This paper presents a search for Higgs bosons decaying to four leptons, either electrons or muons, via one or two light exotic gauge bosons $Z_d$, $H\\to Z Z_d \\to 4\\ell$ or $H\\to Z_d Z_d \\to 4\\ell$. The search was performed using $pp$ collision data corresponding to an integrated luminosity of about 20 fb$^{-1}$ at the center-of-mass energy of $\\sqrt{s}=8 $TeV recorded with the ATLAS detector at the Large Hadron Collider. The observed data are well described by the Standard Model prediction. Upper bounds on the branching ratio of $H\\to Z Z_d \\to 4\\ell$ and on the kinetic mixing parameter between the $Z_d$ and the Standard Model hypercharge gauge boson are set in the range $(1$--$9)\\times10^{-5}$ and $(4$--$17)\\times10^{-2}$ respectively, at 95% confidence level assuming the Standard Model branching ratio of $H\\to Z Z^* \\to 4\\ell$, for $Z_d$ masses between 15 and 55 GeV. Upper bounds on the effective mass mixing parameter between the $Z$ and the $Z_d$ are also set using the branching ratio limits in the $H \\to...

  1. Overconstrained estimates of neutrinoless double beta decay within the QRPA

    E-Print Network [OSTI]

    Amand Faessler; Gianluigi Fogli; Eligio Lisi; Vadim Rodin; Anna Maria Rotunno; Fedor Simkovic

    2008-05-29T23:59:59.000Z

    Estimates of nuclear matrix elements for neutrinoless double beta decay (0nu2beta) based on the quasiparticle random phase approximations (QRPA) are affected by theoretical uncertainties, which can be substantially reduced by fixing the unknown strength parameter g_pp of the residual particle-particle interaction through one experimental constraint - most notably through the two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted that the g_pp adjustment via 2\

  2. Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

  3. The Neutral Decay Modes of the Eta-Meson

    E-Print Network [OSTI]

    B. M. K. Nefkens; J. W. Price

    2002-02-11T23:59:59.000Z

    The neutral decay modes of the eta meson are reviewed. The most recent results obtained with the Crystal Ball multiphoton detector at BNL are incorporated. This includes a new, precise result for the slope parameter alpha of the Dalitz plot in eta -> 3pi0 decay and a new, lower branching ratio for eta -> pi0 gamma gamma which is consistent with chiral perturbation theory. Recently-obtained limits are given for novel tests of CP and C invariance based on several rare eta decays.

  4. Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay

    E-Print Network [OSTI]

    Abada, A; Teixeira, A M

    2014-01-01T23:59:59.000Z

    We address the impact of sterile fermion states on the anomalous magnetic moment of charged leptons, as well as their contribution to neutrinoless double beta decays. We illustrate our results in a minimal, effective extension of the Standard Model by one sterile fermion state, and in a well-motivated framework of neutrino mass generation, embedding the Inverse Seesaw into the Standard Model. The simple "3+1" effective case succeeds in alleviating the tension related to the muon anomalous magnetic moment, albeit only at the 3$\\sigma$ level, and for light sterile states (corresponding to a }cosmologically disfavoured regime). Interestingly, our analysis shows that a future $0 \

  5. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01T23:59:59.000Z

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  6. Nuclear Instruments and Methods in Physics Research A 538 (2005) 159177 Muon acceleration in FFAG rings

    E-Print Network [OSTI]

    Keil, Eberhard

    2005-01-01T23:59:59.000Z

    Nuclear Instruments and Methods in Physics Research A 538 (2005) 159­177 Muon acceleration in FFAG August 2004 Available online 3 November 2004 Abstract Muon acceleration from 6 or 10 to 20 GeV in fixed-field alternating gradient (FFAG) rings is considered. The novel physics issues associated with non-scaling FFAG

  7. Semi-analytic approximations for production of atmospheric muons and neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2001-04-19T23:59:59.000Z

    Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.

  8. Holographic calculation of hadronic contributions to muon g-2

    SciTech Connect (OSTI)

    Hong, Deog Ki; Matsuzaki, Shinya [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Doyoun [Frontier Physics Research Division and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2010-04-01T23:59:59.000Z

    Using the gauge-gravity duality, we compute the leading order hadronic (HLO) contribution to the anomalous magnetic moment of muon, a{sub {mu}}{sup HLO}. Holographic renormalization is used to obtain a finite vacuum polarization. We find a{sub {mu}}{sup HLO}=470.5x10{sup -10} in anti-de Sitter/QCD with two light flavors, which is compared with the currently revised BABAR data estimated from e{sup +}e{sup -{yields}{pi}+{pi}-} events, a{sub {mu}}{sup HLO}[{pi}{pi}]=(514.1{+-}3.8)x10{sup -10}.

  9. The New Muon g-2 Experiment at Fermilab

    E-Print Network [OSTI]

    J. Grange for the E989 collaboration

    2015-01-28T23:59:59.000Z

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  10. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31T23:59:59.000Z

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  11. Monotonic Local Decay Estimates

    E-Print Network [OSTI]

    Avy Soffer

    2011-10-29T23:59:59.000Z

    For the Hamiltonian operator H = -{\\Delta}+V(x) of the Schr\\"odinger Equation with a repulsive potential, the problem of local decay is considered. It is analyzed by a direct method, based on a new, L^2 bounded, propagation observable. The resulting decay estimate, is in certain cases monotonic in time, with no "Quantum Corrections". This method is then applied to some examples in one and higher dimensions. In particular the case of the Wave Equation on a Schwarzschild manifold is redone: Local decay, stronger than the known ones are proved (minimal loss of angular derivatives and lower order of radial derivatives of initial data). The method developed here can be an alternative in some cases to the Morawetz type estimates, with L^2-multipliers replacing the first order operators. It provides an alternative to Mourre's method, by including thresholds and high energies.

  12. Search for a Light Higgs Boson Decaying to Long-Lived Weakly Interacting Particles in Proton-Proton Collisions at root s=7 TeV with the ATLAS Detector

    SciTech Connect (OSTI)

    Aad G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; et al.

    2012-06-19T23:59:59.000Z

    A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb{sup -1} of proton-proton collisions at {radical}s = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.

  13. WHY SEARCH FOR DOUBLE BETA DECAY?

    E-Print Network [OSTI]

    Kayser, B.

    2010-01-01T23:59:59.000Z

    the search for neutrinoless double beta decay may prove verySearching for neutrinoless double beta decay is the onlysensitivity of neutrinoless double beta decay. The potential

  14. Measuring neutrino oscillation parameters using $\

    SciTech Connect (OSTI)

    Backhouse, Christopher James; /Oxford U.

    2011-02-01T23:59:59.000Z

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

  15. Muon Collider Final Cooling in 30-50 T Solenoids

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow, R.C.; Lederman, J.

    2011-03-28T23:59:59.000Z

    Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

  16. Parametric-resonance ionization cooling of muon beams

    SciTech Connect (OSTI)

    Morozov, V. S.; Derbenev, Ya. S.; Afanasev, A.; Johnson, R. P.; Erdelyi, B.; Maloney, J. A. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Muons, Inc., Batavia, Illinois 60510 (United States) and George Washington University, Washington, D.C. 20052 (United States); Muons, Inc., Batavia, Illinois 60510 (United States); Northern Illinois University, DeKalb, Illinois 60115 (United States)

    2012-12-21T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel's free oscillations. Thin absorbers placed at the focal points then cool the beam's angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/G4beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread.

  17. Rare meson decays into very light neutralinos

    SciTech Connect (OSTI)

    Dreiner, H. K.; Grab, S.; Koschade, Daniel; Kraemer, M.; O'Leary, Ben; Langenfeld, Ulrich [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Institut fuer Theoretische Physik, RWTH Aachen University, 52056 Aachen, Germany and Centre for Research in String Theory, Department of Physics, Queen Mary, University of London, E1 4NS London (United Kingdom); Institut fuer Theoretische Physik, RWTH Aachen University, 52056 Aachen (Germany); DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2009-08-01T23:59:59.000Z

    We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the minimal supersymmetric standard model (MSSM) with and without minimal flavor violation. We present explicit formulas for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e., a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for nonminimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC.

  18. atlas muon spectrometer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in...

  19. Study of Bbar to Xu l nubar Decays in BBbar Events Tagged by a Fully Reconstructed B-meson Decay and Determination of |V_{ub}|

    SciTech Connect (OSTI)

    Lees, J.P.

    2012-07-13T23:59:59.000Z

    We report measurements of partial branching fractions for inclusive charmless semileptonic B decays {bar B} {yields} X{sub u}{ell}{bar {nu}}, and the determination of the CKM matrix element |V{sub ub}|. The analysis is based on a sample of 467 million {Upsilon}(4S) {yields} B{bar B} decays recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. We select events in which the decay of one of the B mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other B meson. We measure partial branching fractions {Delta}{Beta} in several restricted regions of phase space and determine the CKM element |V{sub ub}| based on four different QCD predictions. For decays with a charged lepton momentum p*{sub {ell}} > 1.0 GeV in the B meson rest frame, we obtain {Delta}{Beta} = (1.80 {+-} 0.13{sub stat.} {+-} 0.15{sub sys.} {+-} 0.02{sub theo.}) x 10{sup -3} from a maximum likelihood fit to the two-dimensional M{sub X} - q{sup 2} distribution. Here, M{sub X} refers to the invariant mass of the final state hadron X and q{sup 2} is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract |V{sub ub}| = (4.31 {+-} 0.25{sub exp.} {+-} 0.16{sub theo.}) x 10{sup -3} as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for {bar B}{sup 0} and B{sup -} decays and derive a limit on the isospin breaking in {bar B} {yields} X{sub u}{ell}{bar {nu}} decays.

  20. Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Heinrich Päs; Werner Rodejohann

    2015-07-01T23:59:59.000Z

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  1. Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Päs, Heinrich

    2015-01-01T23:59:59.000Z

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  2. Vacuum Energy Decay

    E-Print Network [OSTI]

    Enrique Álvarez; Roberto Vidal

    2011-11-09T23:59:59.000Z

    The problem of the vacuum energy decay is studied through the analysis of the vacuum survival amplitude ${\\mathcal A}(z, z')$. Transition amplitudes are computed for finite time-span, $Z\\equiv z^\\prime-z$, and their {\\em late time} behavior is discussed up to first order in the coupling constant, $\\l$.

  3. Neutrinoless double beta decay

    E-Print Network [OSTI]

    Petr Vogel

    2006-11-17T23:59:59.000Z

    The status of the search for neutrinoless double beta decay is reviewed. The effort to reach the sensitivity needed to cover the effective Majorana neutrino mass corresponding to the degenerate and inverted mass hierarchy is described. Various issues concerning the theory (and phenomenology) of the relation between the $0\

  4. Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2012-10-01T23:59:59.000Z

    A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton-proton collisions at sqrt(s) = 7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb-1 event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particles' mean lifetime.

  5. Observation of a narrow mass state decaying into ?(1S)+? in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.

    2012-08-01T23:59:59.000Z

    Using data corresponding to an integrated luminosity of 1.3 fb?¹, we observe a narrow mass state decaying into ?(1S)+?, where the ?(1S) meson is detected by its decay into a pair of oppositely charged muons, and the photon is identified through its conversion into an electron-positron pair. The significance of this observation is 5.6 standard deviations. The mass of the state is centered at 10.551±0.014(stat)±0.017(syst) GeV/c², which is consistent with that of the state recently observed by the ATLAS Collaboration.

  6. Observation of a narrow mass state decaying into ?(1S)+? in pp[over ¯] collisions at sqrt[s]=1.96??TeV

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; et al.

    2012-08-01T23:59:59.000Z

    Using data corresponding to an integrated luminosity of 1.3 fb{sup -1}, we observe a narrow mass state decaying into {Upsilon}(1S) + {gamma}, where the {Upsilon}(1S) meson is detected by its decay into a pair of oppositely charged muons, and the photon is identified through its conversion into an electron-positron pair. The significance of this observation is 5.6 standard deviations. The mass of the state is centered at 10.551 {+-} 0.014(stat.) {+-} 0.017(syst.) GeV/c{sup 2}, which is consistent with that of the state recently observed by the ATLAS Collaboration.

  7. Search for neutral Higgs bosons decaying to tau pairs produced in association with b-quarks at s**(1/2)=1.96 TeV

    SciTech Connect (OSTI)

    Herner, Kenneth Richard; /SUNY, Stony Brook

    2008-12-01T23:59:59.000Z

    We report results from a search for neutral Higgs bosons decaying to tau pairs produced in association with a b-quark in 1.6 fb{sup -1} of data taken from June 2006 to March 2008 with the D0 detector at Fermi National Accelerator Laboratory. The final state includes a muon, hadronically decaying tau, and jet identified as coming from a b-quark. We set cross section times branching ratio limits on production of such neutral Higgs bosons {phi} in the mass range from 90 GeV to 160 GeV. Exclusion limits are set at the 95% Confidence Level for several supersymmetric scenarios.

  8. A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice

    E-Print Network [OSTI]

    M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

    2009-10-22T23:59:59.000Z

    In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

  9. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    E-Print Network [OSTI]

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2015-01-01T23:59:59.000Z

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5-8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  10. Measurement of the Charge Ratio of Cosmic Muons using CMS Data

    E-Print Network [OSTI]

    M. Aldaya; P. Garcia-Abia

    2008-10-20T23:59:59.000Z

    We have performed the measurement of the cosmic ray muon charge ratio, as a function of the muon momentum, using data collected by the CMS experiment, exploiting the capabilities of the muon barrel drift tube (DT) chambers. The cosmic muon charge ratio is defined as the ratio of the number of positive- to negative-charge muons. Cosmic ray muons result from the interaction of high-energy cosmic-ray particles (mainly protons and nuclei), entering the upper layers of the atmosphere, with air nuclei. Since these collisions favour positive meson production, there is an asymmetry in the charge composition and more positive muons are expected. The data samples were collected at the \\textit{Magnet Test and Cosmic Challenge} (MTCC). While the MTCC itself was a crucial milestone in the CMS detector construction, not having physics studies among its primary goals, it provided the first opportunity to obtain physics results and test the full analysis chain using real data in CMS before the LHC startup, together with a complementary check of the detector performance.

  11. Study of Dispersion of Mass Distribution of Ultra-High Energy Cosmic Rays using a Surface Array of Muon and Electromagnetic Detectors

    E-Print Network [OSTI]

    Vícha, Jakub; Nosek, Dalibor; Ebr, Jan

    2015-01-01T23:59:59.000Z

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  12. SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Bazo Alba, J. L.; Benabderrahmane, M. L.; Berdermann, J. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Universite Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Becker, J. K. [Department of Physics, TU Dortmund University, D-44221 Dortmund (Germany)

    2010-02-10T23:59:59.000Z

    We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10{sup -3} erg cm{sup -2} (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10{sup -3} erg cm{sup -2} (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10{sup -3} erg cm{sup -2} (3 TeV-2.8 PeV) assuming an E {sup -2} flux.

  13. Muon spin rotation in heavy-electron pauli-limit superconductors

    SciTech Connect (OSTI)

    Michal, V. P., E-mail: vincent.michal@cea.fr [INAC/SPSMS, Commissariat a l'Energie Atomique (France)

    2012-11-15T23:59:59.000Z

    The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.

  14. Extra dimensions, orthopositronium decay, and stellar cooling

    E-Print Network [OSTI]

    Alexander Friedland; Maurizio Giannotti

    2007-09-14T23:59:59.000Z

    In a class of extra dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision orthopositronium decay experiments. We point out that in this framework a photon in plasma should be metastable. We consider the astrophysical consequences of this observation, in particular, what it implies for the plasmon decay rate in globular cluster stars and for the core-collapse supernova cooling rate. The resulting bounds on the model parameter exceed the possible reach of orthopositronium experiments by many orders of magnitude.

  15. JUNO and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Ge, Shao-Feng

    2015-01-01T23:59:59.000Z

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of two. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  16. JUNO and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Shao-Feng Ge; Werner Rodejohann

    2015-07-20T23:59:59.000Z

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of two. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  17. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01T23:59:59.000Z

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  18. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Aberle, Derek; Green, J. Andrew; McDuff, George G. [National Security Technologies, Los Alamos, NM 87544 (United States)] [National Security Technologies, Los Alamos, NM 87544 (United States); Luki?, Zarija [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States)] [Southern Methodist University, Dallas, TX 75205 (United States)

    2013-08-15T23:59:59.000Z

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  19. Double beta decay experiments: beginning of a new era

    E-Print Network [OSTI]

    A. S. Barabash

    2012-09-19T23:59:59.000Z

    The review of current experiments on search and studying of double beta decay processes is done. Results of the most sensitive experiments are discussed and values of modern limits on effective Majorana neutrino mass ($) are given. New results on two neutrino double beta decay are presented. The special attention is given to new current experiments with mass of studied isotopes more than 100 kg, EXO--200 and KamLAND--Zen. These experiments open a new era in research of double beta decay. In the second part of the review prospects of search for neutrinoless double beta decay in new experiments with sensitivity to $$ at the level of $\\sim 0.01-0.1$ eV are discussed. Parameters and characteristics of the most perspective projects (CUORE, GERDA, MAJORANA, SuperNEMO, EXO, KamLAND--Zen, SNO+) are given.

  20. Complementarity of Neutrinoless Double Beta Decay and Cosmology

    SciTech Connect (OSTI)

    Dodelson, Scott; Lykken, Joseph

    2014-03-20T23:59:59.000Z

    Neutrinoless double beta decay experiments constrain one combination of neutrino parameters, while cosmic surveys constrain another. This complementarity opens up an exciting range of possibilities. If neutrinos are Majorana particles, and the neutrino masses follow an inverted hierarchy, then the upcoming sets of both experiments will detect signals. The combined constraints will pin down not only the neutrino masses but also constrain one of the Majorana phases. If the hierarchy is normal, then a beta decay detection with the upcoming generation of experiments is unlikely, but cosmic surveys could constrain the sum of the masses to be relatively heavy, thereby producing a lower bound for the neutrinoless double beta decay rate, and therefore an argument for a next generation beta decay experiment. In this case as well, a combination of the phases will be constrained.

  1. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

    2014-01-01T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  2. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

    2014-10-27T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  3. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01T23:59:59.000Z

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  4. Double Beta Decay Experiments

    SciTech Connect (OSTI)

    Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2011-11-23T23:59:59.000Z

    At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

  5. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    SciTech Connect (OSTI)

    Pavlovic, Zarko; /Texas U.

    2008-05-01T23:59:59.000Z

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation hypothesis and measure precisely {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 10{sup 20} protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} to be (2.38{sub -0.16}{sup +0.20}) x 10{sup -3} eV{sup 2}/c{sup 4} and 1.00{sub -0.08}, respectively.

  6. STUDY OF RARE PROCESSES INDUCED BY 209-GeV MUONS

    E-Print Network [OSTI]

    Smith, W.H.

    2010-01-01T23:59:59.000Z

    the Chicago cyclotron magnet (CCM) just upstream of thethe Chicago cyclo­ tron magnet (CCM) for targetting on theshield V» A M Q Neutrino beam CCM P Muon Laboratory XBL80I0-

  7. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01T23:59:59.000Z

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  8. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C. [Muons, Inc.; Ankenbrandt, Charles M. [Muons, Inc.; Johnson, Rolland P. [Muons, Inc.; Derbenev, Yaroslav [JLAB; Morozov, Vasiliy [JLAB; Neuffer, David [FNAL; Yonehara, K. [FNAL

    2013-12-01T23:59:59.000Z

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  9. Improvement of the Track-based Alignment Procedure of the CMS Muon System

    E-Print Network [OSTI]

    Amin, Nick Jogesh

    2013-12-02T23:59:59.000Z

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is used to explore subatomic interactions through proton-proton collisions. The resulting out- burst of particles from these high energy collisions is then tracked...

  10. A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Lakdawala, Samir

    2013-05-02T23:59:59.000Z

    Compact Muon Solenoid (CMS) is one of the flagship experiments in particle physics operating at the Large Hadron Collider (LHC). CMS was built to search for signatures of Higgs bosons, supersymmetry, and other new phenomena. The coming upgrade...

  11. Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at s=8??TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O.?S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-07-01T23:59:59.000Z

    A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. This analysis uses the full data set recorded in 2012: 20.3 fb-1 of proton-proton collision data at ?s = 8 TeV. The search employs techniques for reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal events require at least two reconstructed vertices. No significant excess of events over the expected background is found, and limits as a function of proper lifetime are reported for the decay of themore »Higgs boson and other scalar bosons to long-lived particles and for Hidden Valley Z' and Stealth SUSY benchmark models. The first search results for displaced decays in Z' and Stealth SUSY models are presented. The upper bounds of the excluded proper lifetimes are the most stringent to date.« less

  12. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1993-12-01T23:59:59.000Z

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  13. A magnetic spectrometer measurement of the charge ratio of energetic cosmic ray muons

    E-Print Network [OSTI]

    Bateman, Benjamin Jefferson

    1967-01-01T23:59:59.000Z

    A MAGNETIC SPECTROIIETER MEASUREPIENT OF THE CHARGE PATIO OF ENEIFGFTIC COSMIC RAY MUONS A Thesis BENJAMIN JEF1'EIHSON BATFIKN, JR. Submdtted to the Graduate College of the Texas AAM University in Daltial full'Ills, 'ent of the requirellents... magnet ~ 2 Schematic representation of the magnets, counters and spark chambers to form a spectrometer-telescope. A typical muon trajectory is shown. . . . . . . . ~ 3 End view of the eighteen-lamina magnet. 4 The winding process 5 The complete...

  14. Radiative ?(1S) decays

    E-Print Network [OSTI]

    Baringer, Philip S.

    1990-03-01T23:59:59.000Z

    — wW~ ii~ ~ + v~ 1''&WV'' V 0.20 0.45 0.70 ~y ~ EBFA~ 0.95 l.20 FIG. 4. Energy spectrum (normalized to beam energy) for Y~y2(h+h ) event candidates, with continuum data and ex- pected background from Y~m 2(h +h ) overplotted. 40 30— ~ 20— LLI IO— hl...PHYSICAL REVIEW 0 VOLUME 41, NUMBER 5 Radiative T(lS) decays 1 MARCH 1990 R. Fulton, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, and J. Whitmore Ohio State University, Columbus, Ohio 43210 W.-Y. Chen, J. Dominick, R. L. Mc...

  15. Rare B Decays

    SciTech Connect (OSTI)

    Jackson, P.D.; /Victoria U.

    2006-02-24T23:59:59.000Z

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  16. Flavour independent search for Higgs bosons decaying into hadronic final states in e^(+)e^(?)e^(+)e^(?) collisions at LEP

    E-Print Network [OSTI]

    Wilson, Graham Wallace; OPAL Collaboration; Abbiendi, G.; Ainsley, C.; Å kesson, P.F.; Alexander, G.; Allison, J.; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.

    2004-09-02T23:59:59.000Z

    generators are used: KK2F [11] YTHIA [12] for the process qq¯(? ), grc4f [13], LW [14] and EXCALIBUR [15] for the four- n processes, BHWIDE [16] for e+e?(? ), KO- [17] for µ+µ?(? ) and ?+??(? ), and PHO- 18], HERWIG [19] and VERMASEREN [20] dronic... itrary flavour or into gluon pairs. The following al states (search channels) are therefore con- d, depending on the decay of the Z boson: the et channel (Z ? qq¯), the missing energy chan- ? ??¯) and the electron, muon and tau channels e+e?, µ+µ? and ?...

  17. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High-Energy Upward-Going Muons in Super-Kamiokande I

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; M. E. C. Swanson

    2007-02-07T23:59:59.000Z

    Many astrophysical models predict a diffuse flux of high-energy neutrinos from active galactic nuclei and other extra-galactic sources. At muon energies above 1 TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found one extremely high energy upward-going muon event, compared with an expected atmospheric neutrino background of 0.46 plus or minus 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward-going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV.

  18. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect (OSTI)

    Reichhart, L.; Ghag, C. [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom)] [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom); Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal)] [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom)] [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); and others

    2013-08-08T23:59:59.000Z

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub ?0.28}{sup +0.21})×10{sup ?3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  19. B, D and K Decays

    SciTech Connect (OSTI)

    Artuso, M.; Asner, D.M.; Ball, P.; Baracchini, E.; Bell, G.; Beneke, M.; Berryhill, J.; Bevan, A.; Bigi, I.I.; Blanke, M.; Bobeth, Ch.; Bona, M.; Borzumati, F.; Browder, T.; Buanes, T.; Buchalla, G.; Buchmuller, O.; Buras, A.J.; Burdin, S.; Cassel, D.G.; Cavanaugh, R.; /Syracuse U. /Carleton U. /Durham U., IPPP /Rome U. /INFN, Rome /Karlsruhe U. /RWTH Aachen U. /Fermilab /Queen Mary, U. of London /Notre Dame U. /Munich, Tech. U. /Munich, Max Planck Inst. /Dortmund U. /Annecy, LAPP /ICTP, Trieste /Taiwan, Natl. Central U. /Hawaii U. /Bergen U. /Munich U. /CERN /Liverpool U.

    2008-03-07T23:59:59.000Z

    The present report documents the results of Working Group 2: B, D and K decays, of the workshop on Flavor in the Era of the LHC, held at CERN from November 2005 through March 2007. With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavor physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. The aim of Working Group 2 was twofold: on one hand, to provide a coherent, up-to-date picture of the status of flavor physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high-p{sub T} and flavor data. This report is organized as follows. In Sec. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavor observables in NP models. Sec. 2 contains a concise discussion of the main theoretical problem in flavor physics: the evaluation of the relevant hadronic matrix elements for weak decays. Sec. 3 contains a detailed discussion of NP effects in a set of flavor observables that we identified as 'benchmark channels' for NP searches. The experimental prospects for flavor physics at future facilities are discussed in Sec. 4. Finally, Sec. 5 contains some assessments on the work done at the workshop and the prospects for future developments.

  20. Search for new heavy particles decaying to ZZ?llll, lljj in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell’Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.

    2011-06-01T23:59:59.000Z

    We report on a search for anomalous production of Z boson pairs through a massive resonance decay in data corresponding to 2.5–2.9 fb?¹ of integrated luminosity in pp? collisions at ?s=1.96 TeV using the CDF II detector at the Fermilab Tevatron. This analysis, with more data and channels where the Z bosons decay to muons or jets, supersedes the 1.1 fb?¹ four-electron channel result previously published by CDF. In order to maintain high efficiency for muons, we use a new forward tracking algorithm and muon identification requirements optimized for these high signal-to-background channels. Predicting the dominant backgrounds in each channel entirely from sideband data samples, we observe four-body invariant mass spectra above 300 GeV/c² that are consistent with background. We set limits using the acceptance for a massive graviton resonance that are 7–20 times stronger than the previously published direct limits on resonant ZZ diboson production.

  1. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  2. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  3. Muon spin rotation studies of niobium for superconducting RF applications

    E-Print Network [OSTI]

    Grassellino, A; Kolb, P; Laxdal, R; Lockyer, N S; Longuevergne, D; Sonier, J E

    2013-01-01T23:59:59.000Z

    In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.

  4. Neutrino factory and muon collider collaboration R and D activities

    SciTech Connect (OSTI)

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaborat

    2001-03-22T23:59:59.000Z

    The Neutrino Factory and Muon Collider Collaboration (MC) comprises about 140 U.S. and non-U.S. accelerator and particle physicists. The MC is carrying out an R and D program aimed at validating the critical design concepts required for the construction of such machines. We are committed to encouraging international cooperation and coordination of the R and D effort. Main activities of the MC include a Targetry program, a MUCOOL program, a component development program, and a theory and simulation effort. Moreover, the MC has participated in several feasibility studies for a complete Neutrino Factory facility, with the aim of identifying any additional R and D activities needed to prepare a Zeroth-order Design Report (ZDR) in about two years and a Conceptual Design report (CDR) about two years thereafter. In this paper, the R and D goals in each area will be indicated, and the present status and future plans of the R and D program will be described.

  5. Anomalous Lagrangians and the radiative muon capture in hydrogen

    E-Print Network [OSTI]

    J. Smejkal; E. Truhlik; F. C. Khanna

    2005-04-29T23:59:59.000Z

    The structure of an anomalous Lagrangian of the pi-rho-omega-a_1 system is investigated within the hidden local SU(2)_R x SU(2)_L symmetry approach. The interaction of the external electromagnetic and weak vector and axial-vector fields with the above hadron system is included. The Lagrangian of interest contains the anomalous Wess-Zumino term following from the well known Wess-Zumino-Witten action and six independent homogenous terms. It is characterized by four constants that are to be determined from a fit to the data on various elementary reactions. Present data allows one to extract the constants with a good accuracy. The homogenous part of the Lagrangian has been applied in the study of anomalous processes that could enhance the high energy tail of the spectrum of photons, produced in the radiative muon capture in hydrogen. It should be noted that recently, an intensive search for such enhancement processes has been carried in the literature, in an attempt to resolve the so called "g_P puzzle": an about 50 % difference between the theoretical prediction of the value of the induced pseudoscalar constant g_P and its value extracted from the high energy tail of the photon spectrum, measured in the precision TRIUMF experiment. Here, more details on the studied material are presented and new results, obtained by using the Wess-Zumino term, are provided.

  6. NSAC Subcommittee Double Beta Decay

    E-Print Network [OSTI]

    and Lawrence Berkeley National Laboratory #12;2 Decay #12;2 0 0 Decay If 0 occurs then the neutrino is a Majorana particle and the neutrino and antiparticle are not distinct. Lepton number is not conserved! #12 30 ) Experimental Resolution #12;Higgs Boson, Majorana Mass and Lepton Number Conservation #12;LVD

  7. Particle decay in false vacuum

    SciTech Connect (OSTI)

    Gorsky, A.; Voloshin, M. B. [William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Institute of Theoretical and Experimental Physics, Moscow, 117259 (Russian Federation)

    2006-01-15T23:59:59.000Z

    We revisit the problem of decay of a metastable vacuum induced by the presence of a particle. For the bosons of the 'master field' the problem is solved in any number of dimensions in terms of the spontaneous decay rate of the false vacuum, while for a fermion we find a closed expression for the decay rate in (1+1) dimensions. It is shown that in the (1+1) dimensional case an infrared problem of one-loop correction to the decay rate of a boson is resolved due to a cancellation between soft modes of the field. We also find the boson decay rate in the 'sine-Gordon staircase' model in the limits of strong and weak coupling.

  8. Particle decay in false vacuum

    E-Print Network [OSTI]

    A. Gorsky; M. B. Voloshin

    2005-11-08T23:59:59.000Z

    We revisit the problem of decay of a metastable vacuum induced by the presence of a particle. For the bosons of the `master field' the problem is solved in any number of dimensions in terms of the spontaneous decay rate of the false vacuum, while for a fermion we find a closed expression for the decay rate in (1+1) dimensions. It is shown that in the (1+1) dimensional case an infrared problem of one-loop correction to the decay rate of a boson is resolved due to a cancellation between soft modes of the field. We also find the boson decay rate in the `sine-Gordon staircase' model in the limits of strong and weak coupling.

  9. Search for neutrinoless decays of the ? lepton

    E-Print Network [OSTI]

    Baringer, Philip S.

    1990-02-01T23:59:59.000Z

    We have searched for neutrinoless ? decays into three charged particles. Evidence of such decays would demonstrate nonconservation of lepton flavor and, in some cases, lepton number. We see no signal for any such neutrinoless ? decays and set upper...

  10. Proton Decay and the Planck Scale

    E-Print Network [OSTI]

    Larson, Daniel T.

    2009-01-01T23:59:59.000Z

    LBNL- 56556 PROTON DECAY AND THE PLANCK SCALE DANIEL T.ph/0410035v1 2 Oct 2004 PROTON DECAY AND THE PLANCK SCALE ?without grand uni?cation, proton decay can be a powerful

  11. $?$ Meson In $J/?$ Decays

    E-Print Network [OSTI]

    Wujun Huo; Xinmin Zhang; Tao Huang

    2002-03-20T23:59:59.000Z

    Recently BES at BEPC found evidence for the existence of the $\\sigma$ meson in the process of $J/\\Psi \\to \\sigma\\omega \\to\\pi\\pi\\omega$. In this paper we firstly discuss the relevant coupling $g_{\\sigma\\pi\\pi}$ and show that the linear $\\sigma$ model gives rise to a reasonable description of the $\\sigma$ decay into $\\pi$'s, then we calculate the coupling constant $g^{th}_{J/\\Psi\\sigma\\omega}$ by using the perturbative QCD technique and the light-cone wave functions of the $\\sigma$ and $\\omega$ mesons. The results show that the theoretical value of $g^{th}_{J/\\Psi\\sigma\\omega}$ is within the range of experimental value $g_{J/\\Psi\\sigma\\omega}$.

  12. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu [Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364 (United States)

    2014-07-15T23:59:59.000Z

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.

  13. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    E-Print Network [OSTI]

    Zisman, Michael S.

    2010-01-01T23:59:59.000Z

    Table 1 summarizes the NF proton driver parameters obtainedboth facilities. Table 1. Proton driver requirements for arepetition frequency (Hz) Proton energy (GeV) Proton rms

  14. Branching Fraction for B+ -> pi0 l+ nu, Measured in Upsilon (4S) -> BBbar Events Tagged by B- -> D0 l- nubar (X) Decays

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

    2005-06-29T23:59:59.000Z

    We report a preliminary branching fraction of (1.80 {+-} 0.37{sub stat.} {+-} 0.23{sub syst.}) x 10{sup -4} for the charmless exclusive semileptonic B{sup +} {yields} {pi}{sup 0}{ell}{sup +}{nu} decay, where {ell} can be either a muon or an electron. This result is based on data corresponding to an integrated luminosity of 81 fb{sup -1} collected at the {Upsilon}(4S) resonance with the BABAR detector. The analysis uses B{bar B} events that are tagged by a B meson reconstructed in the semileptonic B{sup -} {yields} D{sup 0}{ell}{sup -}{bar {nu}}(X) decays, where X can be either a {gamma} or a {pi}{sup 0} from a D* decay.

  15. Amplitude analyses of the decays ?c1?????? and ?c1??'????

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, G. S.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Pearson, L. J.; Thorndike, E. H.; Ricciardi, S.; Thomas, C.; et al

    2011-12-01T23:59:59.000Z

    Using a data sample of 2.59×10? ?(2S) decays obtained with the CLEO-c detector, we perform amplitude analyses of the complementary decay chains ?(2S)???c1; ?c1?????? and ?(2S)???c1; ?c1??'????. We find evidence for an exotic P-wave ?'? amplitude, which, if interpreted as a resonance, would have parameters consistent with the ??(1600) state reported in other production mechanisms. We also make the first observation of the decay a?(980)??'? and measure the ratio of branching fractions B(a?(980)??'?)/B(a?(980)???)=0.064±0.014±0.014. The ?? spectrum produced with a recoiling ? is compared to that with ?' recoil.

  16. MUON CAPTURE IN THE FRONT END OF THE IDS NEUTRINO D. Neuffer, Fermilab, Batavia, IL 60510, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    paper discusses the muon capture and cooling system. In this system we follow ref. [2], and set 201 to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high the scope of a future neutrino Factory facility. INTRODUCTION The goal of the IDS Neutrino Factory

  17. Double beta decay: present status

    E-Print Network [OSTI]

    A. S. Barabash

    2008-07-18T23:59:59.000Z

    The present status of double beta decay experiments (including the search for $2\\beta^{+}$, EC$\\beta^{+}$ and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as $ beta decay experiments with a sensitivity for the $$ at the level of (0.01-0.1) eV are considered.

  18. Wave Decay in MHD Turbulence

    E-Print Network [OSTI]

    Andrey Beresnyak; Alex Lazarian

    2008-05-06T23:59:59.000Z

    We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.

  19. $D_s^+ \\to ??^+$ Decay

    E-Print Network [OSTI]

    E. El aaoud

    1998-01-08T23:59:59.000Z

    Motivated by the experimental measurement of the decay rate, $\\Gamma$, and the longitudinal polarization, $P_L$, in the Cabibbo favored decay $D_s^+\\to \\phi {\\rho}^{+}$, we have studied theoretical prediction within the context of factorization approximation invoking several form factors models. We were able to obtain agreement with experiment for both $\\Gamma$ and $P_L$ by using experimentally measured values of the form factors $A_1^{D_s\\phi}(0)$, $A_2^{D_s\\phi}(0)$ and $V^{D_s\\phi}(0)$ in the semi-leptonic decay $D_s^+\\to \\phi l^{+}\

  20. Neutrinoless Double Beta Decay Constraints

    E-Print Network [OSTI]

    Hiroaki Sugiyama

    2003-07-25T23:59:59.000Z

    A brief overview is given of theoretical analyses with neutrinoless double beta decay experiments. Theoretical bounds on the ``observable'', _betabeta, are presented. By using experimental bounds on _betabeta, allowed regions are obtained on the m_l-cos{2theta_12} plane, where m_l stands for the lightest neutrino mass. It is shown that Majorana neutrinos can be excluded by combining possible results of future neutrinoless double beta decay and {}^3H beta decay experiments. A possibility to constrain one of two Majorana phases is discussed also.

  1. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01T23:59:59.000Z

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  2. Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

    E-Print Network [OSTI]

    Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

    2014-01-01T23:59:59.000Z

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

  3. Compact storage ring to search for the muon electric dipole moment

    E-Print Network [OSTI]

    A. Adelmann; K. Kirch; C. J. G. Onderwater; T. Schietinger

    2009-06-25T23:59:59.000Z

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment of the muon ($d_\\mu$) by adapting the "frozen spin" method. At existing muon facilities a statistics limited sensitivity of $d_\\mu \\sim 5 \\times 10^{-23} \\ecm$ can be achieved within one year of data taking. Reaching this precision would demonstrate the viability of this novel technique to directly search for charged particle EDMs and already test a number of Standard Model extensions. At a future, high-power muon facility a statistical reach of $d_\\mu \\sim 5 \\times 10^{-25} \\ecm$ seems realistic with this setup.

  4. ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning

    E-Print Network [OSTI]

    Shawn McKee

    2009-10-15T23:59:59.000Z

    Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

  5. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    E-Print Network [OSTI]

    The MACRO Collaboration; M. Ambrosio et al

    1998-07-09T23:59:59.000Z

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  6. Measurement of helium-3 and deuterium stopping power ratio for negative muons

    E-Print Network [OSTI]

    V. M. Bystritsky; V. V. Gerasimov; J. Wozniak

    2006-07-07T23:59:59.000Z

    The measurement method and results measuring of the stopping power ratio of helium-3 and deuterium atoms for muons slowed down in the D/$^3$He mixture are presented. Measurements were performed at four values of pure $^3$He gas target densities, $\\phi_{He} = 0.0337, 0.0355, 0.0359, 0.0363$ (normalized to the liquid hydrogen density) and at a density 0.0585 of the D/$^3$He mixture. The experiment was carried out at PSI muon beam $\\mu$E4 with the momentum P$\\mu =34.0$ MeV/c. The measured value of the mean stopping ratio $S_{^3He/D}$ is $1.66\\pm 0.04$. This value can also be interpreted as the value of mean reduced ratio of probabilities for muon capture by helium-3 and deuterium atoms.

  7. Computer code for double beta decay QRPA based calculations

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    . The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays

  8. Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele, Department of Physics, University of California, Berkeley;

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele National Labs, Berkeley, CA 94720 Abstract Ionization cooling of muon beams is a crucial component of the proposed muon collider and neutrino factory. Cur- rent studies of cooling channels predominantly use simula

  9. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    E-Print Network [OSTI]

    CMS Collaboration

    2014-07-25T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  10. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    SciTech Connect (OSTI)

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia); et al.,

    2014-09-01T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  11. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27T23:59:59.000Z

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  12. Nonmesonic Weak Decay Dynamics from proton spectra of $?$-Hypernuclei

    E-Print Network [OSTI]

    Franjo Krmpotic; Cláudio De Conti

    2015-03-06T23:59:59.000Z

    A novel comparison between the data and the theory is proposed for the nonmesonic (NM) weak decay of hypernuclei. Instead of confronting the primary decay rates, as is usually done, we focus attention on the effective decay rates that are straightforwardly related with the number of emitted particles. Proton kinetic energy spectra of $^5_\\Lambda$He, $^7_\\Lambda$Li, $^9_\\Lambda$Be, $^{11}_\\Lambda$B, $^{12}_{\\Lambda}$C, $^{13}_\\Lambda$C, $^{15}_{\\Lambda}$N and $^{16}_{\\Lambda}$O, measured by FINUDA, are evaluated theoretically. The Independent Particle Shell Model (IPSM) is used as the nuclear structure framework, while the dynamics is described by the One-Meson-Exchange (OME) potential. Only for the $^{5}_{\\Lambda}$He, $^{7}_{\\Lambda}$Li, and $^{12}_{\\Lambda}$C hypernuclei is it possible to make a comparison with the data, since for the rest there is no published experimental information on number of produced hypernuclei. Considering solely the one-nucleon-induced ($1N$-NM) decay channel, the theory reproduces correctly the shapes of all three spectra at medium and high energies ($E_p \\geq 40 $ MeV). Yet, it greatly overestimates their magnitudes, as well as the corresponding transition rates when the full OME ($\\pi+K+ \\eta+\\rho+\\omega+K^*$) model is used. The agreement is much improved when only the $\\pi+K$ mesons with soft dipole cutoff parameters participate in the decay process. We find that the IPSM is a fair first order approximation to disentangle the dynamics of the $1N$-NM decay, the knowledge of which is indispensable to inquire about the baryon-baryon strangeness-flipping interaction. It is shown that the IPSM provides very useful insights regarding the determination the $2N$-NM decay rate. In a new analysis of the FINUDA data, we derive two results for this quantity with one of them close to that obtained previously.

  13. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect (OSTI)

    Faessler, A. [University of Tuebingen, Institute of Theoretical Physics (Germany)], E-mail: amand.faessler@uni-tuebingen.de

    2006-12-15T23:59:59.000Z

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  14. Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations

    E-Print Network [OSTI]

    Oliviero Cremonesi

    2010-02-07T23:59:59.000Z

    Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

  15. Prompt muon-induced fission: a probe for nuclear energy dissipation

    E-Print Network [OSTI]

    Volker E. Oberacker

    1999-05-04T23:59:59.000Z

    We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

  16. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    E-Print Network [OSTI]

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01T23:59:59.000Z

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  17. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x$_{Bj}$

    E-Print Network [OSTI]

    Adams, M R; Anthony, P L; Averill, D A; Baker, M D; Baller, B R; Banerjee, A; Bhatti, A A; Bratzler, U; Braun, H M; Breidung, H; Busza, W; Carroll, T J; Clark, H L; Conrad, J M; Davisson, R; Derado, I; Dhawan, S K; Dietrich, F S; Dougherty, W; Dreyer, T; Eckardt, V; Ecker, U; Erdmann, M; Fang, G Y; Figiel, J; Finlay, R W; Gebauer, H J; Geesaman, D F; Griffioen, K A; Guo, R S; Haas, J; Halliwell, C; Hantke, D; Hicks, K H; Hughes, V W; Jackson, H E; Jaffe, D E; Jancso, G; Jansen, D M; Jin, Z; Kaufman, S; Kennedy, R D; Kinney, E R; Kirk, T; Kobrak, H G E; Kotwal, A V; Kunori, S; Lord, J J; Lubatti, H J; McLeod, D; Madden, P; Magill, S; Manz, A; Melanson, H; Michael, D G; Montgomery, H E; Morfín, J G; Nickerson, R B; Novák, J; O'Day, S; Olkiewicz, K; Osborne, L; Otten, R; Papavassiliou, V; Pawlik, B; Pipkin, F M; Potterveld, D H; Ramberg, E J; Röser, A; Ryan, J J; Salgado, C W; Salvarani, A; Schellman, H; Schmitt, M; Schmitz, N; Schüler, K P; Siegert, G; Skuja, A; Snow, G A; Soldner, S; Rembold, U; Spentzouris, P; Stier, H E; Stopa, P; Swanson, R A; Venkataramania, H; Wilhelm, M; Wilson, R; Wittek, W; Wolbers, S A; Zghiche, A; Zhao, T

    1995-01-01T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  18. Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    E-Print Network [OSTI]

    Fermilab E665 Collaboration

    1995-05-10T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  19. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01T23:59:59.000Z

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  20. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas [Univ. of Connecticut, Storrs, CT (United States); Brookhaven National Lab., Upton, NY (United States); Chowdhury, Saumitra [Univ. of Connecticut, Storrs, CT (United States); Hayakawa, Masashi [Nagoya Univ. (Japan); Nishina Center, RIKEN, Wako, Saitama (Japan); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  1. Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

    E-Print Network [OSTI]

    The AMANDA collaboration; M. Ackermann

    2005-08-24T23:59:59.000Z

    A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

  2. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13T23:59:59.000Z

    A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  3. Decoherence delays false vacuum decay

    E-Print Network [OSTI]

    Thomas C. Bachlechner

    2013-04-17T23:59:59.000Z

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling $\\Gamma\\sim\\Gamma_{CDL}^{2}$, where $\\Gamma_{CDL}$ is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincare recurrence in de Sitter space.

  4. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01T23:59:59.000Z

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  5. Neutrinoless Double Beta-Decay

    E-Print Network [OSTI]

    S. M. Bilenky

    2010-01-12T23:59:59.000Z

    The neutrinoless double $\\beta$-decay of nuclei is reviewed. We discuss neutrino mixing and 3x3 PMNS neutrino mixing matrix. Basic theory of neutrinoless double $\\beta$-decay is presented in some details. Results of different calculations of nuclear matrix element are discussed. Experimental situation is considered. The Appendix is dedicated to E. Majorana (brief biography and his paper in which the theory of Majorana particles is given)

  6. Beta and gamma decays April 9, 2002

    E-Print Network [OSTI]

    Landstreet, John D.

    Beta and gamma decays April 9, 2002 1 Simple Fermi theory of beta decay ² Beta decay is one by the emission of a positive or negative beta particle (positron or electron). To ensure conservation of lepton emitted in beta decay is a continuum of energies, up to a maximum value, with most emitted betas having

  7. Signature of nonexponential nuclear decay

    E-Print Network [OSTI]

    A Ray; A K Sikdar; A De

    2015-03-18T23:59:59.000Z

    Precision tests of decay law of radioactive nuclei have not so far found any deviation from the exponential decay law at early time, as predicted by quantum mechanics. In this paper, we show that the quantum decoherence time (i.e. the timescale of nonexponential decay) of the quasifission or fission process should be of the order of attosecond considering the atom of the fissioning nucleus as a quantum detector. Hence, the observed decay timescale of the quasifission or fission process of even highly excited (EX greater than 50 MeV) transuranium and uraniumlike complexes should be rather long (of the order of attosecond) in spite of their very fast exponential decay timescale (of the order of zeptosecond) as measured by the nuclear techniques. Recent controversy regarding the observation of very long (of the order of attosecond ) and very short (of the order of zeptosecond ) quasifission or fission timescales for similar systems at similar excitation energies as obtained by direct techniques (crystal blocking, X ray fission fragment) and nuclear techniques could be interpreted as evidence for nonexponential decays in nuclear systems

  8. The dynamics of universe for exponential decaying dark energy

    E-Print Network [OSTI]

    Bostan, Nilay

    2015-01-01T23:59:59.000Z

    In this study we consider an exponential decaying form for dark energy as EoS parameter in order to discuss the dynamics of the universe. Firstly, assuming that universe is filled with an ideal fluid which consists of exponential decaying dark energy we obtain time dependent behavior of several physical quantities such as energy density, pressure and others for dark energy, dark energy-matter coupling and non-coupling cases. Secondly, using scalar field instead of an ideal fluid we obtain these physical quantities in terms of scalar potential and kinetic term for the same cases in scalar-tensor formalism. Finally we show that ideal fluid and scalar-tensor description of dark energy give mathematically equivalent results for this EoS parameter.

  9. Interacting Dark Energy: Decay into Fermions

    E-Print Network [OSTI]

    A. de la Macorra

    2007-02-08T23:59:59.000Z

    A dark energy component is responsible for the present stage of acceleration of our universe. If no fine tuning is assumed on the dark energy potential then it will end up dominating the universe at late times and the universe will not stop this stage of acceleration. On the other hand, the equation of state of dark energy seems to be smaller than -1 as suggested by the cosmological data. We take this as an indication that dark energy does indeed interact with another fluid (we consider fermion fields) and we determine the interaction through the cosmological data and extrapolate it into the future. We study the conditions under which a dark energy can dilute faster or decay into the fermion fields. We show that it is possible to live now in an accelerating epoch dominated by the dark energy and without introducing any fine tuning parameters the dark energy can either dilute faster or decaying into fermions in the future. The acceleration of the universe will then cease.

  10. Spin-rotation coupling in non-exponential decay of hydrogenlike heavy ions

    E-Print Network [OSTI]

    G. Lambiase; G. Papini; G. Scarpetta

    2008-11-14T23:59:59.000Z

    We discuss a model in which a recently reported modulation in the decay of the hydrogenlike ions ${}^{140}$Pr$^{58 +}$ and ${}^{142}$Pm$^{60 +}$ arises from the coupling of rotation to the spin of electron and nuclei (Thomas precession). A similar model describes the electron modulation in muon $ g-2$ experiments correctly. Agreement with the GSI experimental results is obtained for the current QED-values of the bound electron g-factors, $g({}^{140}$Pr$^{58 +})=1.872$ and $g({}^{142}$Pm$^{60 +})=1.864$, if the Lorentz factor of the bound electron is $\\sim 1.88$. The latter is fixed by either of the two sets of experimental data. The model predicts that the modulation is not observable if the motion of the ions is linear, or if the ions are stopped in a target.

  11. B Decays in a General Left-Right Symmetric Model

    E-Print Network [OSTI]

    Frank, Mariana; Turan, Ismail

    2010-01-01T23:59:59.000Z

    Motivated by recently observed disagreements with the SM predictions in B decays, we study $b \\to d, s$ transitions in a general class of $SU(2)_L \\times SU(2)_R \\times U(1)_{B-L}$ models, with a simple one-parameter structure of the right handed mixing matrix for the quarks, which obeys the constraints from kaon physics. We use experimental constraints on the branching ratios of $b \\to s \\gamma$, $b \\to c e {\\bar \

  12. Bs-->K+K- and Bs-->K0 anti-K0 Decays within Supersymmetry

    E-Print Network [OSTI]

    Seungwon Baek; David London; Joaquim Matias; Javier Virto

    2006-11-27T23:59:59.000Z

    We compute the supersymmetric (SUSY) contributions to the observables in Bs-->K+K- and Bs-->K0 anti-K0 decays. The hadronic parameters in the standard-model (SM) amplitudes are obtained from the Bd-->K0 anti-K0 decay using a recent approach that combines flavor SU(3) symmetry and a controlled input from QCD factorization. The latest experimental data for BR(Bs-->K+K-) is in agreement with the SM prediction. We study how the branching ratios and the direct and mixing-induced CP asymmetries of both Bs-->KK decay modes are affected with the inclusion of SUSY, after imposing constraints from BR(B--> Xs gamma), B--> pi K and Delta Ms over the parameter space. While the branching ratios remain unaffected by SUSY, we identify the CP asymmetries of the Bs-->KK decays as the most promising observables to look for large deviations from the SM.

  13. Neutrino mixing schemes and neutrinoless double beta decay

    E-Print Network [OSTI]

    H. V. Klapdor-Kleingrothaus; U. Sarkar

    2002-02-22T23:59:59.000Z

    We study the possible structure of the neutrino mass matrix taking into consideration the solar and atmospheric neutrinos and the neutrinoless double beta decay. We emphasize on mass matrices with vanishing elements. There are only a very few possibilities remaining at present. We concentrate on three generation scenarios and find that with three parameters there are few possibilities with and without any vanishing elements. For completeness we also present a five parameter four neutrino (with one sterile neutrino) mass matrix which can explain all these experiments and the LSND result.

  14. CP Violation in B->eta'K0 and Status of SU(3)-related Decays

    E-Print Network [OSTI]

    J. G. Smith

    2007-03-19T23:59:59.000Z

    We present measurements from Belle and BABAR of the time-dependent CP-violation parameters S and C in B->eta'K0 decays. Both experiments observe mixing-induced CP violation with a significance of more than 5 standard deviations in this b-> s penguin dominated mode. We also compare with theoretical expectations and discuss the latest results for SU(3)-related decays which are useful for obtaining bounds on the expected values of S and C.

  15. Graphical Representation of CP Violation Effects in Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    K. Matsuda; N. Takeda; T. Fukuyama; H. Nishiura

    2000-07-21T23:59:59.000Z

    We illustrate the graphical method that gives the constraints on the parameters appearing in the neutrino oscillation experiments and the neutrinoless double beta decay. This method is applicable in three and four generations. Though this method is valid for more general case, we examine explicitly the cases in which the CP violating factors take $\\pm 1$ or $\\pm i$ in the neutrinoless double beta decay for illustrative clearance. We also discuss some mass matrix models which lead to the above CP violating factors.

  16. Neutrino Radiation Challenges and Proposed Solutions for Many-TeV Muon Colliders

    E-Print Network [OSTI]

    B. J. King

    2000-05-03T23:59:59.000Z

    Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

  17. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31T23:59:59.000Z

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  18. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    SciTech Connect (OSTI)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570 (Japan); Faculty of Software and Information Technology, Aomori University, 2-3-1 Kobata, Aomori, Aomori 030-0943 (Japan)

    2007-02-15T23:59:59.000Z

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the {pi}-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The {mu}{sup +}+{mu}{sup -} data show good agreement in the 1{approx}30 GeV/c range, but a large disagreement above 30 GeV/c. The {mu}{sup +}/{mu}{sup -} ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).].

  19. Identification problems of muon and electron events in the Super-Kamiokande detector

    E-Print Network [OSTI]

    K Mitsui; T Kitamura; T Wada; K Okei

    2002-09-18T23:59:59.000Z

    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.

  20. Search for Dark Matter WIMPs using Upward-Going Muons in

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Dark Matter WIMPs using Upward-Going Muons in Super{Kamiokande S. Desai, for the Super{Kamiokande searches for Weakly Interacting Massive Particles (WIMPs) with the Super-Kamiokande detector using neutrino, for the Super{Kamiokande Collaboration the Universe as a cosmological relic from the Big Bang. The most likely

  1. Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande ( ) 9 #12;Acknowledgments.Totsuka, spokesman of Kamiokande and Super-Kamiokande ex- periments. His deep insight into physics and experiments was indispensable to Kamiokande and Super-Kamiokande experiments. I also thank to ICRR stas, Prof. Y.Suzuki, Prof. T

  2. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_?$: Quo vadis? Workshop. Mini proceedings

    E-Print Network [OSTI]

    Maurice Benayoun; Johan Bijnens; Tom Blum; Irinel Caprini; Gilberto Colangelo; Henryk Czy?; Achim Denig; Cesareo A. Dominguez; Simon Eidelman; Christian S. Fischer; Paolo Gauzzi; Yuping Guo; Andreas Hafner; Masashi Hayakawa; Gregorio Herdoiza; Martin Hoferichter; Guangshun Huang; Karl Jansen; Fred Jegerlehner; Benedikt Kloss; Bastian Kubis; Zhiqing Liu; William Marciano; Pere Masjuan; Harvey B. Meyer; Tsutomu Mibe; Andreas Nyffeler; Vladimir Pascalutsa; Vladyslav Pauk; Michael R. Pennington; Santiago Peris; Christoph F. Redmer; Pablo Sanchez-Puertas; Boris Shwartz; Evgeny Solodov; Dominik Stoeckinger; Thomas Teubner; Marc Unverzagt; Marc Vanderhaeghen; Magnus Wolke

    2014-07-21T23:59:59.000Z

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  3. Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

    2012-01-01T23:59:59.000Z

    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

  4. Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier

    E-Print Network [OSTI]

    Boyer, Edmond

    Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier IN2P3, LPSC designs have been done and tracking studies are on their way using codes such as MAD, S-Code or Zgoubi. In order to cross-check results so obtained, we have performed comparisons between S-Code and Zgoubi

  5. A Theory of Pattern Recognition for the Discrimination between Muon and Electron in the Super-Kamiokande

    E-Print Network [OSTI]

    V. I. Galkin; A. M. Anokhina; E. Konishi; A. Misaki

    2007-03-29T23:59:59.000Z

    The standard Super-Kamiokande analysis uses an estimator for particle identification by which it discriminates electrons (electron nutrinos) from muons (muon nutrinos). Use of this estimator has led to the claim of a significant deficiency of muons (muon nutrinos), suggesting the existence of neutrino oscillations. We investigate three areas of concern for the Super-Kamiokande estimator: the separation of the spatial part from the angular part in the probability functions, the neglect of fluctuations in the Cherenkov light in different physical processes due to the charged particles concerned, and the point-like approximation for the emission of Cherenkov light. We show that the first two factors are important for the consideration of stochastic processes in the generation of the Cherenkov light, and that the point-like assumption oversimplifies the estimation of the Cherenkov light quantities. We develop a new discrimination procedure for separating electron neutrinos from muon neutrinos, based on detailed simulations carried out with GEANT~3.21 and with newly derived mean angular distribution functions for the charged particles concerned (muons and electrons/positrons), as well as the corresponding functions for the relative fluctuations. These angular distribution functions are constructed introducing a ``moving point'' approximation. The application of our procedure between the discrimination between electron and muon to the analysis of the experimental data in SK will be made in a subsequent paper.

  6. Alpha-nucleus potential for alpha-decay and sub-barrier fusion

    E-Print Network [OSTI]

    V. Yu. Denisov; H. Ikezoe

    2005-10-27T23:59:59.000Z

    The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the formation of very heavy nuclei and spectroscopic studies of the formed compound nuclei.

  7. Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing

    E-Print Network [OSTI]

    G. Pantis; F. Simkovic; J. D. Vergados; Amand Faessler

    1996-12-14T23:59:59.000Z

    We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.

  8. A study of final-state radiation in decays of Z bosons produced in pp collisions at 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-02-27T23:59:59.000Z

    The differential cross sections for the production of photons in Z to mu+ mu- gamma decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements were collected with the CMS detector and correspond to an integrated luminosity of 4.7 inverse femtobarns of pp collisions at sqrt(s) = 7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with POWHEG and PYTHIA, where PYTHIA is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.

  9. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect (OSTI)

    Dolinski, M J

    2008-09-24T23:59:59.000Z

    Neutrinoless double beta decay (0{nu}DBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0{nu}DBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0{nu}DBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0{nu}DBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0{nu}DBD of {sup 130}Te with a ton-scale array of unenriched TeO{sub 2} bolometers. By increasing mass and decreasing the background for 0{nu}DBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10{sup -6}. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0{nu}DBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by ({alpha},n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE data to set an upper limit for the production of a 2529 keV gamma-ray from the {sup 126}Te(n,n{prime}{gamma}) reaction. This gamma-ray is a potential source of interference for the 0{nu}DBD peak. Based on this measurement, the contribution of this line to the background is expected to be negligible.

  10. Mind the gap on Icecube: Cosmic neutrino spectrum and muon anomalous magnetic moment in the gauged L_{\\mu} - L_{\\tau} model

    E-Print Network [OSTI]

    Araki, Takeshi; Konishi, Yasufumi; Ota, Toshihiko; Sato, Joe; Shimomura, Takashi

    2014-01-01T23:59:59.000Z

    The energy spectrum of cosmic neutrinos, which was recently reported by the IceCube collaboration, shows a gap between 400 TeV and 1 PeV. An unknown neutrino interaction mediated by a field with a mass of the MeV scale is one of the possible solutions to this gap. We examine if the leptonic gauge interaction L_{\\mu} - L_{\\tau} can simultaneously explain the two phenomena in the lepton sector: the gap in the cosmic neutrino spectrum and the unsettled disagreement in muon anomalous magnetic moment. We illustrate that there remains the regions in the model parameter space, which account for both the problems. Our results also provide a hint for the distance to the source of the high-energy cosmic neutrinos.

  11. Signature of nonexponential nuclear decay

    E-Print Network [OSTI]

    Ray, A; De, A

    2015-01-01T23:59:59.000Z

    Precision tests of decay law of radioactive nuclei have not so far found any deviation from the exponential decay law at early time, as predicted by quantum mechanics. In this paper, we show that the quantum decoherence time (i.e. the timescale of nonexponential decay) of the quasifission or fission process should be of the order of attosecond considering the atom of the fissioning nucleus as a quantum detector. Hence, the observed decay timescale of the quasifission or fission process of even highly excited (EX greater than 50 MeV) transuranium and uraniumlike complexes should be rather long (of the order of attosecond) in spite of their very fast exponential decay timescale (of the order of zeptosecond) as measured by the nuclear techniques. Recent controversy regarding the observation of very long (of the order of attosecond ) and very short (of the order of zeptosecond ) quasifission or fission timescales for similar systems at similar excitation energies as obtained by direct techniques (crystal blocking...

  12. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    SciTech Connect (OSTI)

    Lyubushkin, Vladimir [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna (Russian Federation)

    2009-11-25T23:59:59.000Z

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (v{sub {mu}}n{yields}{mu}{sup -}p and v-bar{sub {mu}}p{yields}{mu}{sup +}n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total v{sub {mu}} (v-bar{sub {mu}}) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <{sigma}{sub qel}>v{sub {mu}} = (0.92{+-}0.02(stat){+-}0.06(syst))x10{sup -38} cm{sup 2} and <{sigma}{sub qel}>v-bar{sub {mu}} = (0.81{+-}0.05(stat){+-}0.09(syst))x10{sup -38} cm{sup 2} for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is M{sub A} = 1.05{+-}0.02(stat){+-}0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q{sup 2} shape analysis of the high purity sample of v{sub {mu}} quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M{sub A} is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on M{sub A}, these results are compatible with the more precise NOMAD value.

  13. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26T23:59:59.000Z

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  14. Thermodynamics of decaying vacuum cosmologies

    SciTech Connect (OSTI)

    Lima, J.A. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil)

    1996-08-01T23:59:59.000Z

    The thermodynamic behavior of decaying vacuum cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous, irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density {rho} and average number density of photons {ital n} scale with the temperature as {rho}{approximately}{ital T}{sup 4} and {ital n}{approximately}{ital T}{sup 3}. The temperature law is determined and a generalized Planckian-type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW-type cosmologies as well as for models with {open_quote}{open_quote}adiabatic{close_quote}{close_quote} photon creation are discussed. {copyright} {ital 1996 The American Physical Society.}

  15. Neutrinoless Double Beta Decay Experiments

    E-Print Network [OSTI]

    Garfagnini, Alberto

    2014-01-01T23:59:59.000Z

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been performed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future.

  16. Neutrinoless Double Beta Decay Experiments

    E-Print Network [OSTI]

    Alberto Garfagnini

    2014-08-11T23:59:59.000Z

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been performed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future.

  17. Time evolution of cascade decay

    E-Print Network [OSTI]

    Daniel Boyanovsky; Louis Lello

    2014-06-25T23:59:59.000Z

    We study non-perturbatively the time evolution of cascade decay for generic fields $\\pi \\rightarrow \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$ and obtain the time dependence of amplitudes and populations for the resonant and final states. We analyze in detail the different time scales and the manifestation of unitary time evolution in the dynamics of production and decay of resonant intermediate and final states. The probability of occupation (population) "flows" as a function of time from the initial to the final states. When the decay width of the parent particle $\\Gamma_\\pi$ is much larger than that of the intermediate resonant state $\\Gamma_{\\phi_1}$ there is a "bottleneck" in the flow, the population of resonant states builds up to a maximum at $t^* = \\ln[\\Gamma_\\pi/\\Gamma_{\\phi_1}]/(\\Gamma_\\pi-\\Gamma_{\\phi_1})$ nearly saturating unitarity and decays to the final state on the longer time scale $1/\\Gamma_{\\phi_1}$. As a consequence of the wide separation of time scales in this case the cascade decay can be interpreted as evolving sequentially $\\pi \\rightarrow \\phi_1\\phi_2; ~ \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$. In the opposite limit the population of resonances ($\\phi_1$) does not build up substantially and the cascade decay proceeds almost directly from the initial parent to the final state without resulting in a large amplitude of the resonant state. An alternative but equivalent non-perturbative method useful in cosmology is presented. Possible phenomenological implications for heavy sterile neutrinos as resonant states and consequences of quantum entanglement and correlations in the final state are discussed.

  18. What can we learn from neutrinoless double beta decay experiments?

    E-Print Network [OSTI]

    Bahcall, John N.

    2009-01-01T23:59:59.000Z

    Limits From Neutrinoless Double-Beta Decay (Rev. ),” ina next generation neutrinoless double beta decay search andPARTICLES? NO NEUTRINOLESS DOUBLE BETA DECAY AND INVERTED

  19. Symmetry relations in charmless B->PPP decays

    E-Print Network [OSTI]

    Michael Gronau; Jonathan L. Rosner

    2005-11-04T23:59:59.000Z

    Strangeness-changing decays of $B$ mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a $\\Delta I=0$ penguin amplitude with flavor structure $\\bar b \\to \\bar s$. Numerous isospin relations for $B\\to K\\pi\\pi$ and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in $B^0\\to K^{*0}\\pi^0$, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving $K_S$ or $K_L$, assuming that $\\phi K$-subtracted decay amplitudes are symmetric in $K$ and $\\bar K$, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.

  20. Symmetry relations in charmless B{yields}PPP decays

    SciTech Connect (OSTI)

    Gronau, Michael; Rosner, Jonathan L. [Department of Physics, Technion-Israel Institute of Technology, Technion City, 32000 Haifa (Israel); Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States)

    2005-11-01T23:59:59.000Z

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{sub S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.

  1. Effects of Light Scalar Mesons in eta -> 3pi decay

    SciTech Connect (OSTI)

    Abdou Abdel-Rehim; Deirdre Black; Amir H. Fariborz; Joseph Schechter

    2002-10-01T23:59:59.000Z

    We study the role of a possible nonet of light scalar mesons in the still interesting [eta] -> 3[p]i decay process, with the primary motivation of learning more about the scalars themselves. The framework is a conventional non-linear chiral Lagrangian of pseudoscalars and vectors extended to include the scalars. The parameters involving the scalars were previously obtained to fit the s-wave [pi][pi] and [pi] K scatterings in the region up to about 1 GeV as well as the strong decay [eta]' --> [eta][pi][pi]. At first, one might expect a large enhancement from diagrams including a light [sigma] (560). However there is an amusing cancellation mechanism which prevents this from occurring. In the simplest model there is an enhancement of about 13 per cent in the [eta] -> 3[pi] decay rate due to the scalars. In a more complicated model which includes derivative type symmetry breakers, the cancellation is modified and the scalars contribute about 30 percent of the total decay rate (although the total is not significantly changed). The vectors do not contribute much. Our model produces a reasonable estimate for the related a{sub 0}(980) - f{sub 0}(980) mixing strength, which has been a topic of current debate. Promising directions for future work along the present line are suggested.

  2. Pavement Thickness Design Parameter

    E-Print Network [OSTI]

    Pavement Thickness Design Parameter Impacts 2012 Municipal Streets Seminar November 14, 2012 Paul D. Wiegand, P.E. #12;Pavement Thickness Design · How do cities decide how thick to build their pavements;Pavement Thickness Design · Correct answer ­ A data-based analysis! · Doesn't have to be difficult and time

  3. Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)

    E-Print Network [OSTI]

    Marcipar, Lital

    Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

  4. Muon Reconstruction Efficiency, Momentum Scale and Resolution in $pp$ Collisions at 8 TeV with ATLAS

    E-Print Network [OSTI]

    Maximilian Goblirsch-Kolb; for the ATLAS Collaboration

    2014-08-29T23:59:59.000Z

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This paper summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to the simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution observed in experimental data, and to assess systematic uncertainties on these quantities. The dataset analysed corresponds to an integrated luminosity of $20.4$ $\\text{fb}^{\\text{-1}}$ from $pp$ collisions at $\\sqrt{s}$ = 8 TeV recorded in 2012.

  5. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Jourde, Kevin; Marteau, Jacques; d'Ars, Jean de Bremond; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe

    2015-01-01T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring...

  6. Beta decay of Ga-62 

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    We report a study of the beta decay of Ga-62, whose dominant branch is a superallowed 0(+)-->0(+) transition to the ground state of Zn-62. We find the total half-life to be 115.84+/-0.25 ms. This is the first time that the Ga-62 half-life has been...

  7. Constraining neutrinoless double beta decay

    E-Print Network [OSTI]

    L. Dorame; D. Meloni; S. Morisi; E. Peinado; J. W. F. Valle

    2011-11-23T23:59:59.000Z

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  8. Beta decay of Ga-62

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    from the ex- perimental ft value for a 01?01 b decay between analog states with the relation @3# 0556-2813/2003/68~1!/015501~6!/$20.00 68 015501- of 62Ga . Hardy, V. E. Mayes, R. G. Neilson, M. Sanchez-Vega, and R. E. Tribble y, College Station...

  9. Rare decays at the Tevatron

    SciTech Connect (OSTI)

    Farrington, S.M.; /Liverpool U.

    2006-01-01T23:59:59.000Z

    The confidence level limits of the CDF and D0 searches for the B{sub s}{sup 0}, B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}{phi} rare decays are presented.

  10. Proton decay matrix elements from lattice QCD 

    E-Print Network [OSTI]

    Cooney, Paul

    2010-01-01T23:59:59.000Z

    We present results for the matrix elements relevant for proton decay in Grand Unified Theories (GUTs), using two methods. In the indirect method, we rely on an effective field theory description of proton decay, where ...

  11. Radiative Penguin Decays at the B Factories

    SciTech Connect (OSTI)

    Cuhadar-Donszelmann, T.; /British Columbia U.

    2007-03-05T23:59:59.000Z

    Recent results from the B-Factories on radiative decays such as b {yields} s(d){gamma}, b {yields} s{ell}{ell} and leptonic decay B{sup 0} {yields} {tau}{sup +}{tau}{sup -} are reviewed.

  12. Lepton flavor violating Higgs boson decays from massive seesaw neutrinos

    SciTech Connect (OSTI)

    Arganda, Ernesto; Curiel, Ana M.; Herrero, Maria J.; Temes, David [Departamento de Fisica Teorica, Universidad Autonoma de Madrid (Spain); Laboratoire de Physique Theorique, LAPTH (France)

    2005-02-01T23:59:59.000Z

    Lepton flavor violating Higgs boson decays are studied within the context of seesaw models with Majorana massive neutrinos. Two models are considered: the SM-seesaw, with the standard model particle content plus three right-handed neutrinos, and the MSSM-seesaw, with the minimal supersymmetric standard model particle content plus three right-handed neutrinos and their supersymmetric partners. The widths for these decays are derived from a full one-loop diagrammatic computation in both models, and they are analyzed numerically in terms of the seesaw parameters, namely, the Dirac and Majorana mass matrices. Several possible scenarios for these mass matrices that are compatible with neutrino data are considered. In the SM-seesaw case, very small branching ratios are found for all studied scenarios. These ratios are explained as a consequence of the decoupling behavior of the heavy right-handed neutrinos. In contrast, in the MSSM-seesaw case, sizable branching ratios are found for some of the leptonic flavor violating decays of the MSSM neutral Higgs bosons and for some choices of the seesaw matrices and MSSM parameters. The relevance of the two competing sources of lepton flavor changing interactions in the MSSM-seesaw case is also discussed. The nondecoupling behavior of the supersymmetric particles contributing in the loop diagrams is finally shown.

  13. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    SciTech Connect (OSTI)

    CUORE; Alessandria, F.; Andreotti, E.; Ardito, R.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Cai, X. Z.; Canonica, L.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Biasi, A. De; Decowski, M. P.; Deninno, M. M.; Waard, A. de; Domizio, S. Di; Ejzak, L.; Faccini, R.; Fang, D. Q.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Franceschi, M. A.; Freedman, S. J.; Frossati, G.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Huang, H. Z.; Ichimura, K.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Kraft, S.; Lenz, D.; Li, Y. L.; Liu, X.; Longo, E.; Ma, Y. G.; Maiano, C.; Maier, G.; Maino, M.; Mancini, C.; Martinez, C.; Martinez, M.; Maruyama, R. H.; Moggi, N.; Morganti, S.; Napolitano, T.; Newman, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rimondi, F.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Terenziani, G.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Whitten Jr., C. A.; Wise, T.; Woodcraft, A.; Xu, N.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2011-11-23T23:59:59.000Z

    In this paper, we study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the sensitivity estimates are provided. Assuming a background rate of 10{sup -2} cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1#27;{sigma} sensitivity to the neutrinoless double-beta decay half-life of {caret T{sup 0{nu}}{sub 1/2}}(1{sigma}#27;) = 1.6x#2;10{sup 26} y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV; the sensitivity at 1.64{sigma}#27;, which corresponds to 90% C.L., will be {caret T{sup 0{nu}}{sub 1/2}(1.64{sigma}#27;}) = 9.5x10{sup 25} y. This range is compared with the claim of observation of neutrinoless double-beta decay in {sup 76}Ge and the preferred range in the neutrino mass parameter space from oscillation results.

  14. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    E-Print Network [OSTI]

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01T23:59:59.000Z

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  15. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  16. Search for a CP-odd Higgs boson decaying to $Zh$ in $pp$ collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    E-Print Network [OSTI]

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James

    2015-01-01T23:59:59.000Z

    A search for a heavy, CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a 125 GeV Higgs boson, $h$, with the ATLAS detector at the LHC is presented. The search uses proton--proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb$^{-1}$. Decays of CP-even $h$ bosons to $\\tau\\tau$ or $bb$ pairs with the $Z$ boson decaying to electron or muon pairs are considered, as well as $h \\rightarrow bb$ decays with the $Z$ boson decaying to neutrinos. No evidence for the production of an $A$ boson in these channels is found and the 95% confidence level upper limits derived for $\\sigma (gg\\rightarrow A) \\times \\mbox{BR}(A\\rightarrow Zh) \\times \\mbox{BR}(h\\rightarrow f\\bar{f})$ are 0.098--0.013 pb for $f=\\tau$ and 0.57--0.014 pb for $f=b$ in a range of $m_A =$ 220--1000 GeV. The results are combined and interpreted in the context of two-Higgs-doublet models.

  17. Imperfect World of $??$-decay Nuclear Data Sets?

    E-Print Network [OSTI]

    B. Pritychenko

    2015-03-11T23:59:59.000Z

    The precision of double-beta ($\\beta\\beta$) decay experimental half-lives and their uncertainties is reevaluated. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of $\\beta\\beta$-decay half-lives and nuclear matrix elements.

  18. Imperfect World of $??$-decay Nuclear Data Sets

    E-Print Network [OSTI]

    B. Pritychenko

    2015-01-09T23:59:59.000Z

    The precision of double-beta ($\\beta\\beta$) decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for $\\beta\\beta$-decay T$_{1/2}^{2\

  19. Light-Quark Decays in Heavy Hadrons

    E-Print Network [OSTI]

    Faller, Sven

    2015-01-01T23:59:59.000Z

    We consider weak decays of heavy hadrons (bottom and charmed) where the heavy quark acts as a spectator. Theses decays are heavily phase-space suppressed but may become experimentally accessible in the near future. These decays are interesting as a QCD laboratory to study the behaviour of the light quarks in the colour-background field of the heavy spectator.

  20. Double beta decay: experiments and theory review

    E-Print Network [OSTI]

    A. Nucciotti

    2007-07-28T23:59:59.000Z

    Neutrinoless double beta decay is one of the most powerful tools to set the neutrino mass absolute scale and establish whether the neutrino is a Majorana particle. After a summary of the neutrinoless double beta decay phenomenology, the present status of the experimental search for this rare decay is reported and the prospects for next generation experiments are reviewed.