National Library of Energy BETA

Sample records for muon critical energy

  1. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  2. Research and Development of Future Muon Collider

    SciTech Connect (OSTI)

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  3. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2??1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  4. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  5. High-energy electrons from the muon decay in orbit: Radiative corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  6. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect (OSTI)

    Szafron, Robert; Czarnecki, Andrzej

    2015-05-19

    We determine the ?(?) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  7. The charge ratio of the atmospheric muons at low energy

    SciTech Connect (OSTI)

    Bahmanabadi, M.; Samimi, J.; Sheidaei, F.; Ghomi, M. Khakian

    2006-10-15

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

  8. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect (OSTI)

    Psihas Olmedo, Silvia Fernanda

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  9. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  10. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  11. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  12. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  13. CMI Webinar: Energy Materials and Criticality, 2015-2030 | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Webinar: Energy Materials and Criticality, 2015-2030 The CMI Webinar series includes a CMI-only presentation "CMI Webinar: Energy Materials and Criticality, 2015-2030" by Rod...

  14. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  15. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    SciTech Connect (OSTI)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-10-15

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10{sup 3} and 10{sup 4} GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π{sup ±} and K{sup ±} mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments.

  16. Critical Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops » Critical Materials Workshop Critical Materials Workshop April 3, 2012 AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE. Questions or suggestions may

  17. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Contact Garrett Smith 301-903-7440 DOE Employee Concerns Program Environment Worker Health & Safety Facility Safety Nuclear Safety Criticality Safety Quality Assurance Risk ...

  18. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  19. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  20. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  1. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  2. Critical_Materials_Summary.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CriticalMaterialsSummary.pdf CriticalMaterialsSummary.pdf PDF icon CriticalMaterialsSummary.pdf More Documents & Publications RFI U.S. Department of Energy - Critical...

  3. Muon Acceleration R and D

    SciTech Connect (OSTI)

    Torun, Yagmur

    2009-12-17

    An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

  4. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  5. Energy Department Announces Launch of Energy Innovation Hub for Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research | Department of Energy Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the

  6. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  7. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  8. Critical Materials for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese

  9. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and ...

  10. Collisional energy loss above the critical temperature in QCD...

    Office of Scientific and Technical Information (OSTI)

    Collisional energy loss above the critical temperature in QCD Citation Details In-Document Search Title: Collisional energy loss above the critical temperature in QCD Authors: Lin, ...

  11. The Department of Energy Releases Strategy on Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department...

  12. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key ...

  13. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key ...

  14. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect (OSTI)

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  15. Energy Critical Infrastructure and Key Resources Sector-Specific

    Broader source: Energy.gov (indexed) [DOE]

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  16. Department of Energy Critical Materials Strategy Video (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  17. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, ...

  18. The Gran Sasso muon puzzle

    SciTech Connect (OSTI)

    Fernandez-Martinez, Enrique; Mahbubani, Rakhi E-mail: rakhi@cern.ch

    2012-07-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2?. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We do not see this same period in the stratospheric temperature data.

  19. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  20. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.

    2011-10-06

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R and D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  1. Neutrino Factory and Muon Collider Fellow

    SciTech Connect (OSTI)

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  2. Secretary Chu Announces Completion of Critical Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance Standards | Department of Energy Completion of Critical Energy Conservation Appliance Standards Secretary Chu Announces Completion of Critical Energy Conservation Appliance Standards September 1, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the Department of Energy has completed energy efficiency standards for a critical group of appliances that will together save up to 1.1 billion metric tons of carbon dioxide once in effect. In

  3. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  4. The Department of Energy Releases Strategy on Critical Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind

  5. Critical Materials Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  6. Muon fluxes from dark matter annihilation (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the ... We illustrate how muon energy distribution from dark matter annihilation ...

  7. Chu: President's 2013 Energy Budget Makes Critical Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation, Clean Energy, and National Security | Department of Energy Chu: President's 2013 Energy Budget Makes Critical Investments in Innovation, Clean Energy, and National Security Chu: President's 2013 Energy Budget Makes Critical Investments in Innovation, Clean Energy, and National Security February 13, 2012 - 12:06pm Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today detailed President Barack Obama's $27.2 billion Fiscal Year 2013 budget request for the Department

  8. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  9. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  10. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  11. Zero Energy Buildings: A Critical Look at the Definition; Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Energy Buildings: A Critical Look at the Definition Preprint P. Torcellini, S. Pless, and M. Deru National Renewable Energy Laboratory D. Crawley U.S. Department of Energy To ...

  12. Chu: President's 2013 Energy Budget Makes Critical Investments in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation, Clean Energy, and National Security 3, 2012 Chu: President's 2013 Energy Budget Makes Critical Investments in Innovation, Clean Energy, and National Security Washington, D.C. � U.S. Secretary of Energy Steven Chu today detailed President Barack Obama's $27.2 billion Fiscal Year 2013 budget request for the Department of Energy, emphasizing the President�s commitment to an all-of-the-above energy strategy that includes critical investments in innovation, in the job-creating

  13. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  14. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    SciTech Connect (OSTI)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  15. SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Ahlers, M.; Auffenberg, J.; Becker, K.-H.; Bai, X.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.

    2009-08-20

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10{sup -3} erg cm{sup -2} in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

  16. Critical Decision Handbook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Decision Handbook Critical Decision Handbook This Handbook is designed as a practical tool for the Office of Environmental Management (EM) Federal Project Directors (FPDs), Integrated Project Teams (IPTs), Technical Authority Board (TAB), and senior management to ensure that issues and risks that could challenge the success of EM projects are identified early and proactively addressed. Critical Decision Handbook (3.64 MB) More Documents & Publications Standard Review Plan - Overview

  17. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect (OSTI)

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  18. New Request for Information to Inform Department of Energy Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Strategy | Department of Energy New Request for Information to Inform Department of Energy Critical Materials Strategy New Request for Information to Inform Department of Energy Critical Materials Strategy February 10, 2016 - 12:00pm Addthis Diana Bauer Office Director for Energy Systems Analysis and Integration In today's energy economy, many advanced technologies rely on high performing materials with unique chemical and physical properties. In some cases, these materials are at

  19. Muon Applications at the RIKEN-RAL Muon Facility

    SciTech Connect (OSTI)

    Ishida, K.

    2008-02-21

    Status of the muon beam at the RIKEN-RAL Muon Facility is presented as well as muon's applications for various kinds of scientific research such as muon catalyzed fusion, nuclear physics, condensed matter physics and surface and nano science.

  20. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  1. Recirculating Linac Accelerators For Future Muon Facilities

    SciTech Connect (OSTI)

    Yves Roblin, Alex Bogacz, Vasiliy Morozov, Kevin Beard

    2012-04-01

    Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of shortlived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both m+ and m- species. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

  2. Cold fusion catalyzed by muons and electrons

    SciTech Connect (OSTI)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  3. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    High-energy Neutrino Beams; Review of Modern Physics, Vol. 61, Issue 3: 533 - 545; July 1989 Top Additional Web Pages: Discovery of the Muon-Neutrino, 1988 The 1988 Nobel Prize in...

  4. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  5. The Department of Energy's Critical Materials Strategy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical ...

  6. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Resource Type: Technical Report Research Org: Muons, Inc. Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Contributing Orgs: Thomas Jefferson ...

  7. Quasi-isochronous muon collection channels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    ... Research Org: Muons, Inc., Batavia, IL (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Contributing Orgs: Fermi National Accelerator ...

  8. Progress on muon{sup +}muon{sup {minus}} colliders

    SciTech Connect (OSTI)

    Palmer, R.B.

    1997-05-01

    Advantages and disadvantages of muon colliders are discussed. Recent results of calculations of the radiation hazard from muon decay neutrinos are presented. This is a significant problem for machines with center of mass energy of 4 TeV, but of no consequence for lower energies. Plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 4 TeV collider, studies are now starting on a machine near 100 GeV that could be a factory for the s-channel production of Higgs particles. Proposals are also presented for a demonstration of ionization cooling and of the required targeting, pion capture, and phase rotation rf.

  9. Telecommunication using muon beams

    DOE Patents [OSTI]

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  10. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER You are accessing a document from the Department of Energy's (DOE)...

  11. U.S. Department of Energy - Critical Materials Strategy

    SciTech Connect (OSTI)

    2010-12-01

    The Critical Materials Strategy builds on the Department’s previous work in this area and provides a foundation for future action. This Strategy is a first step toward a comprehensive response to the challenges before us. We hope it will also encourage others to engage in a dialogue about these issues and work together to achieve our Nation’s clean energy goals.

  12. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect (OSTI)

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  13. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; et al

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  14. U.S. Department of Energy Critical Materials Strategy

    SciTech Connect (OSTI)

    Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

    2010-12-01

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical materials strategy

  15. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  16. Characteristics of neutrons produced by muons in a standard rock

    SciTech Connect (OSTI)

    Malgin, A. S.

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  17. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A.

    2010-02-10

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  18. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  19. FFAG Designs for Muon Collider Acceleration

    SciTech Connect (OSTI)

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  20. 6D Muon Ionization Cooling with an Inverse Cyclotron

    SciTech Connect (OSTI)

    Summers, D. J.; Bracker, S. B.; Cremaldi, L. M.; Godang, R.; Palmer, R. B.

    2006-03-20

    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.

  1. RFI U.S. Department of Energy - Critical Materials Strategy Request...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI U.S. Department of Energy - Critical Materials Strategy Request for Information U.S....

  2. Measurement of the Positive Muon Lifetime and Determination of...

    Office of Scientific and Technical Information (OSTI)

    The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2x10sup 12 decays. Two different stopping target ...

  3. Economics in Criticality and Restoration of Energy Infrastructures.

    SciTech Connect (OSTI)

    Boyd, Gale A.; Flaim, Silvio J.; Folga, Stephen M.; Gotham, Douglas J.; McLamore, Michael R.; Novak, Mary H.; Roop, Joe M.; Rossmann, Charles G.; Shamsuddin, Shabbir A.; Zeichner, Lee M.; Stamber, Kevin L.

    2005-03-01

    Economists, systems analysts, engineers, regulatory specialists, and other experts were assembled from academia, the national laboratories, and the energy industry to discuss present restoration practices (many have already been defined to the level of operational protocols) in the sectors of the energy infrastructure as well as other infrastructures, to identify whether economics, a discipline concerned with the allocation of scarce resources, is explicitly or implicitly a part of restoration strategies, and if there are novel economic techniques and solution methods that could be used help encourage the restoration of energy services more quickly than present practices or to restore service more efficiently from an economic perspective. AcknowledgementsDevelopment of this work into a coherent product with a useful message has occurred thanks to the thoughtful support of several individuals:Kenneth Friedman, Department of Energy, Office of Energy Assurance, provided the impetus for the work, as well as several suggestions and reminders of direction along the way. Funding from DOE/OEA was critical to the completion of this effort.Arnold Baker, Chief Economist, Sandia National Laboratories, and James Peerenboom, Director, Infrastructure Assurance Center, Argonne National Laboratory, provided valuable contacts that helped to populate the authoring team with the proper mix of economists, engineers, and systems and regulatory specialists to meet the objectives of the work.Several individuals provided valuable review of the document at various stages of completion, and provided suggestions that were valuable to the editing process. This list of reviewers includes Jeffrey Roark, Economist, Tennessee Valley Authority; James R. Dalrymple, Manager of Transmission System Services and Transmission/Power Supply, Tennessee Valley Authority; William Mampre, Vice President, EN Engineering; Kevin Degenstein, EN Engineering; and Patrick Wilgang, Department of Energy, Office of

  4. Critical Materials Institute An Energy Innovation Hub Alexander King, Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  5. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Applications of Nuclear Science Archives Muon Radiography at LANL Print Text Size: A A A ... Developed in: 2002- 2003 Result of NP research: LAMPF medium energy research program. ...

  6. Magnets for Muon 6D Cooling Channels (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Muons, Inc., 552 N. Batavia Ave., Batavia, IL 60510 Sponsoring Org: USDOE; USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Contributing Orgs: Fermi ...

  7. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultt fr Physik and Astronomie, Theoretische Physik I, Ruhr-Universitt Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  8. Front End and HFOFO Snake for a Muon Facility

    SciTech Connect (OSTI)

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and a $\\phi-\\delta E$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $\\mu^+$ and $\\mu^-$ transversely and longitudinally. The status of the design is presented and variations are discussed.

  9. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  10. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  11. Muon Acceleration with RLA and Non-scaling FFAG Arcs

    SciTech Connect (OSTI)

    Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

    2010-05-01

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  12. Muon acceleration with RLA and non-scaling FFAG ARCS

    SciTech Connect (OSTI)

    Morozov, V.S.; Trbojevic, D.; Bogacz, A.

    2010-05-23

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  13. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  14. Optimization of the muon stopping target for the MU2E collaboration

    SciTech Connect (OSTI)

    Hodge, Zachary Donovan

    2013-01-01

    The Mu2e Experiment utilizes state of the art accelerators, superconducting magnets, detectors, electronics, and other equipment to maximize the sensitivity to such a rare process. Many of the components of the Mu2e hardware are critical to the overall physics capability of the experiment. The muon stopping target, where muons are stopped and may interact via this very rare process, is one such component where any improvements beyond the base design can have a significant impact on the experiment. This thesis explores possible modifications to the geometry of the muon stopping target. The goal is to determine if any modifications can improve the sensitivity of observing the muon conversion process.

  15. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muons photo Two planned Fermilab experiments, Mu2e and Muon g-2, will use particles called muons to search for rare and hidden phenomena in the quantum realm. In recent years, particle physicists have increasingly turned their attention to finding evidence for physics beyond the already known building blocks of matter and subatomic forces that determine their interactions. Discoveries beyond the well-established Standard Model will help scientists answer some of the most puzzling and pressing

  16. Muon Physics in the 21st Century

    SciTech Connect (OSTI)

    Marciano, Bill

    2005-05-11

    Intense muon sources have great potential in fundamental physics and applied science. An overview of future possibilities ranging from muon-electron conversion to muon catalyzed fusion and medical diagnostics will be given.

  17. Secretary Chu Announces Completion of Critical Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to emphasize the importance of quickening the pace of energy ... machines - we can save money, reduce carbon pollution and increase our energy security." ...

  18. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  19. President's 2014 Budget Proposes Critical Investments in Clean Energy

    Broader source: Energy.gov [DOE]

    President Barack Obama on April 10 requested a $28.4 billion Fiscal Year 2014 budget for the Energy Department, including $2.78 billion for the Energy Department's Office of Energy Efficiency and Renewable Energy (EERE).

  20. Fuel Cells for Critical Communications Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Fuel Cells for Critical Communications Backup Power This presentation provides information about using fuel cells for emergency backup power for critical communications. It was given by Greg Moreland at the Association of Public Communications Officials Annual Conference in August 2008. Posted on this Web site with permission from the author. mt_moreland_apco_presentation.pdf (3.6 MB) More Documents & Publications Overview of the DOE Hydrogen Program

  1. Areas of Critical Environmental Concern | Open Energy Information

    Open Energy Info (EERE)

    Concern Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAreasofCriticalEnvironmentalConcern&oldid612082" Feedback Contact needs...

  2. New Request for Information to Inform Department of Energy Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Understanding the factors affecting supply and demand, ... Fuel Cell Platinum Group Metal Catalysts Department of ... to Address Shortages in Rare Earth and Other Critical ...

  3. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  4. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  5. Electron-Muon Ranger: Performance in the MICE muon beam

    SciTech Connect (OSTI)

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c.

  6. Title 50 CFR 226 Designated Critical Habitat | Open Energy Information

    Open Energy Info (EERE)

    26 Designated Critical Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 50 CFR 226 Designated...

  7. Dark matter and dark energy: The critical questions (Conference...

    Office of Scientific and Technical Information (OSTI)

    The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark ...

  8. Computational Method for Improved Forewarning of Critical Events - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Electricity Transmission Electricity Transmission Early Stage R&D Early Stage R&D Find More Like This Return to Search Computational Method for Improved Forewarning of Critical Events Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL's computational method for analyzing nonlinear processes provides improved forewarning of imminent critical events. This is achieved through phase space dissimilarity analysis of data from

  9. Energy Critical Infrastructure and Key Resources Sector-Specific Plan as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and

  10. Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan

  11. Energy Department Awards Up to $4 Million for Projects to Recover Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials from Geothermal Fluids | Department of Energy Awards Up to $4 Million for Projects to Recover Critical Materials from Geothermal Fluids Energy Department Awards Up to $4 Million for Projects to Recover Critical Materials from Geothermal Fluids May 24, 2016 - 10:30am Addthis The Energy Department today announced four research and development (R&D) projects in California, Utah, Washington, and Wyoming that will receive up to $4 million in total funding to assess the occurrence of

  12. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  13. Next Generation Muon g-2 Experiments

    SciTech Connect (OSTI)

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  14. Study plan for critical renewable energy storage technology (CREST)

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Now is the time to plan to integrate significant quantities of distributed renewable energy into the electricity grid. Concerns about climate change, the adoption of state-level renewable portfolio standards and incentives, and accelerated cost reductions are driving steep growth in U.S. renewable energy technologies. The number of distributed solar photovoltaic (PV) installations and wind farms are growing rapidly. The potential for concentrated solar power (CSP) also continues to grow. As renewable energy technologies mature, they can provide a significant share of our nations electricity requirements.

  15. Chu: President's 2013 Energy Budget Makes Critical Investments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. - U.S. Secretary of Energy Steven Chu today detailed President Barack ... by the end of the decade; * Continues the Obama Administration's efforts to reduce our ...

  16. Advanced Critical Advanced Energy Retrofit Education and Training and Credentialing- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: David Riley, Penn State Targeting professionals, employers, and education program leaders in selected advanced energy retrofit (AER) project fields (including energy auditors, building operators, energy managers, and commissioning authorities), this project addresses the need for clearly defined competencies in critical fields supporting AER projects.

  17. Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $3 million for research and development to help grow U.S. low-to-moderate-temperature geothermal resources and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements.

  18. Hydrogen Fuel Cells Providing Critical Backup Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Embrittlement, under static load could be a result of the synergistic action of the HELP and decohesion mechanisms; Under cyclic load may be intergranular (extremely dangerous pipeline_group_sofronis_ms.pdf (1.84 MB) More Documents & Publications Permeation, Diffusion, Solubility Measurements: Results and Issues From Cleanup to Stewardship Building America Special Research Project: High-R Walls Case Study Analysis

    Applied Chemicals & Materials Division Material

  19. Alternative Energy Generation Opportunities in Critical Infrastructure: New Jersey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Aviation Fuel Workshop Alternative Aviation Fuel Workshop September 14, 2016 8:00AM EDT to September 15, 2016 1:00PM EDT Macon Marriott City Center 240 Coliseum Drive, Macon, GA 31217801 The aviation industry faces significant challenges to maintain growth while enhancing environmental sustainability. Alternative energy systems such as batteries, fuel cells, and natural gas are options for on-road, off-road, and marine engine applications, but these alternative fuels are not yet

  20. No Small Task: How Small Businesses are Critical to our Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy No Small Task: How Small Businesses are Critical to our Energy Future No Small Task: How Small Businesses are Critical to our Energy Future July 3, 2012 - 1:25pm Addthis Shelton Clark, President of Eberline Services, receives the Small Business of the Year award from Dot Harris, Director of the Office of Economic Impact and Diversity. Eberline Services, a New Mexico-based small business, gets 90% of their business from the Energy Department. They specialize in

  1. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

  2. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect (OSTI)

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  3. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  4. The Muon Collider as a $H/A$ factory

    SciTech Connect (OSTI)

    Eichten, Estia; Martin, Adam

    2014-01-01

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.

  5. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  6. The Muon Collider as a $H/A$ factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual Hmore » and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  7. Precision Muon Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Muon Physics Precision Muon Physics One avenue to search for particles far too heavy to be discovered at the CERN Large Hadron Collider is to investigate the properties of known particles with great precision. The muon, a heavy cousin of the electron, is well-suited for precision studies due to its relatively long lifetime and large mass. The Muon Group at Argonne is working on the design and construction of two experiments at Fermilab that will push the limits of precision

  8. Muon Mission in Tuscany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be

  9. Law of Conservation of Muons

    DOE R&D Accomplishments [OSTI]

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  10. Trends in robotics: A summary of the Department of Energy`s critical technology roadmap

    SciTech Connect (OSTI)

    Eicker, P.J.

    1998-08-10

    Technology roadmaps serve as pathways to the future. They call attention to future needs for research and development; provide a structure for organizing technology forecasts and programs; and help communicate technological needs and expectations among end users and the research and development (R and D) community. Critical Technology roadmaps, of which the Robotics and Intelligent Machines (RIM) Roadmap is one example, focus on enabling or cross-cutting technologies that address the needs of multiple US Department of Energy (DOE) offices. Critical Technology roadmaps must be responsive to mission needs of the offices; must clearly indicate how the science and technology can improve DOE capabilities; and must describe an aggressive vision for the future of the technology itself. The RIM Roadmap defines a DOE research and development path for the period beginning today, and continuing through the year 2020. Its purpose is to identify, select and develop objectives that will satisfy near- and long-term challenges posed by DOE`s mission objectives. If implemented, this roadmap will support DOE`s mission needs while simultaneously advancing the state-of-the-art of RIM. For the purposes of this document, RIM refers to systems composed of machines, sensors, computers and software that deliver processes to DOE operations. The RIM Roadmap describes how such systems will revolutionize DOE processes, most notably manufacturing, hazardous and remote operations, and monitoring and surveillance. The advances in DOE operations and RIM discussed in this document will be possible due to the developments in many other areas of science and technology, including computing, communication, electronics and micro-engineering. Modern software engineering techniques will permit the implementation of inherently safe RIM systems that will depend heavily on software.

  11. Measurement of the multiple-muon charge ratio in the MINOS Far Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2016-03-30

    The charge ratio, Rμ = Nμ+/Nμ-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ = 1.104±0.006(stat)-0.010+0.009(syst). As a result, this measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions atmore » TeV energies.« less

  12. Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders

    SciTech Connect (OSTI)

    R.P. Johnson; M. Alsharo'a; P.M. Hanlet; R. E. Hartline; M. Kuchnir; K. Paul; T.J. Roberts; C.M. Ankenbrandt; E. Barzi; L. DelFrate; I.G. Gonin; A. Moretti; D.V. Neuffer; M. Popovic; G. Romanov; D. Turrioni; V. Yarba; K. Beard; S.A. Bogacz; Y.S. Derbenev; D.M. Kaplan; K. Yonehara

    2005-05-16

    A six-dimensional(6D)cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas* is used to achieve the small transverse emittances demanded by a high-luminosity muon collider. This helical cooling channel**(HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields to generate emittance exchange. Simulations verify the analytic predictions and have shown a 6D emittance reduction of over 3 orders of magnitude in a 100 m HCC segment. Using three such sequential HCC segments, where the RF frequencies are increased and transverse dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost six orders of magnitude. After this, two new post-cooling ideas can be employed to reduce transverse emittances to one or two mm-mr, which allows high luminosity with fewer muons than previously imagined. In this report we discuss the status of and the plans for the HCC simulation and engineering efforts. We also describe the new post-cooling ideas and comment on the prospects for a Higgs factory or energy frontier muon collider using existing laboratory infrastructure.

  13. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  14. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    Conference: A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation ... Sponsoring Org: US DOE Office of Science (DOE SC);High Energy ...

  15. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, and top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.

  16. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, andmore » top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.« less

  17. Cosmic muons, as messengers from the Universe

    SciTech Connect (OSTI)

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  18. Extending theories on muon-specific interactions

    SciTech Connect (OSTI)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  19. Extending theories on muon-specific interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  20. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Nonreactor Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STD-3007-2007 February 2007 DOE STANDARD GUIDELINES FOR PREPARING CRITICALITY SAFETY EVALUATIONS AT DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge,

  1. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherwinka, J.; Grant, D.; Halzen, F.; Heeger, K. M.; Hsu, L.; A. J. F. Hubbard; Karle, A.; Kauer, M.; Kudryavtsev, V. A.; Lim, K. E.; et al

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keVee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  2. Measurement of cosmic-ray muons and muon-induced neutrons in...

    Office of Scientific and Technical Information (OSTI)

    Title: Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory Authors: Blyth, S. C. ; Chan, Y. L. ; Chen, X. C. ; Chu, M. C. ; Cui, ...

  3. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  4. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show

  5. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect (OSTI)

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  6. Muon fluxes and showers from dark matter annihilation in the...

    Office of Scientific and Technical Information (OSTI)

    We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We also calculate ...

  7. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today ...

  8. Muon g-2 Superconducting Magnet Commissioning Preparation

    SciTech Connect (OSTI)

    2015-06-26

    A time-lapse of the Fermilab muon g-2 ring being installed and prepped, from June 27, 2014 to June 5, 2015.

  9. A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MUON NEUTRINO CHARGED CURRENT QUASIELASTIC INTERACTION AND A TEST OF LORENTZ VIOLATION ... A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC INTERACTION AND A TEST OF ...

  10. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect (OSTI)

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  11. The fraction of muon tracks in cosmic neutrinos

    SciTech Connect (OSTI)

    Vissani, Francesco; Pagliaroli, Giulia; Villante, Francesco L. E-mail: giulia.pagliaroli@lngs.infn.it

    2013-09-01

    The study of the distintive signatures of the ultra high energy events recently seen by IceCube [1-4] can allow to single the neutrino origin out. The detection of tau neutrinos would be a clear way to prove that they come from cosmic distances, but at the highest energies currently seen, about 1 PeV, an experimental characterization of tau events is difficult. The study of the fraction of the muon tracks seems more promising. In fact, for any initial composition, because of the occurrence of flavor oscillations and despite their uncertainties, the fraction of muon tracks in the cosmic neutrinos is smaller than the one of atmospheric neutrinos, even hypothesizing an arbitrarily large contribution from charmed mesons. A good understanding of the detection efficiencies and the optimization of the analysis cuts, along with a reasonable increase in the statistics, should provide us with a significant test of the cosmic origin of these events.

  12. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect (OSTI)

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  13. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  14. Detector Background at Muon Colliders

    SciTech Connect (OSTI)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  15. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  16. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect (OSTI)

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  17. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  18. Pion contamination in the MICE muon beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; et al

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  19. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  20. Systematic muon capture rates in PQRPA

    SciTech Connect (OSTI)

    Samana, A. R.; Sande, D.; Krmpoti?, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  1. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  2. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    SciTech Connect (OSTI)

    Pan Xiaoyin; Sahni, Viraht

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on the assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.

  3. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).

  4. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  5. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  6. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N. Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V.; Takibaev, J. S.

    2009-11-15

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  7. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  8. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect (OSTI)

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  9. Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons

    SciTech Connect (OSTI)

    Schwellenbach, D.

    2012-07-17

    Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

  10. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  11. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  12. Design of an intense muon source with a carbon and mercury target

    SciTech Connect (OSTI)

    Stratakis, D.; Berg, J. S.; Neuffer, D.; Ding, X.

    2015-05-03

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  13. Design of an Intense Muon Source with a Carbon and Mercury Target

    SciTech Connect (OSTI)

    Stratakis, Diktys; Berg, J. Scott; Neuffer, David; Ding, Xiaoping

    2015-06-01

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  14. Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi Constant

    SciTech Connect (OSTI)

    Chitwood, D. B.; Clayton, S. M.; Crnkovic, J.; Debevec, P. T.; Hertzog, D. W.; Kammel, P.; Kiburg, B.; Kunkle, J.; McNabb, R.; Mulhauser, F.; Oezben, C. S.; Polly, C. C.; Webber, D. M.; Winter, P.; Banks, T. I.; Crowe, K. M.; Lauss, B.; Barnes, M. J.; Wait, G. D.; Battu, S.

    2007-07-20

    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, {tau}{sub {mu}}=2.197 013(24) {mu}s, is in excellent agreement with the previous world average. The new world average {tau}{sub {mu}}=2.197 019(21) {mu}s determines the Fermi constant G{sub F}=1.166 371(6)x10{sup -5} GeV{sup -2} (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g{sub P}.

  15. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  16. Muon (g-2) Technical Design Report

    SciTech Connect (OSTI)

    Grange, J.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  17. Higgs boson and Z physics at the first muon collider

    SciTech Connect (OSTI)

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect (OSTI)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  19. Impact of distributed energy resources on the reliability of a critical telecommunications facility.

    SciTech Connect (OSTI)

    Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.; Arent, Douglas

    2006-03-01

    This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  20. Impact of Distributed Energy Resources on the Reliability of a Critical Telecommunications Facility

    SciTech Connect (OSTI)

    Robinson, D.; Atcitty, C.; Zuffranieri, J.; Arent, D.

    2006-03-01

    Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages, as documented by analyses of Federal Communications Commission (FCC) outage reports by the National Reliability Steering Committee (under auspices of the Alliance for Telecommunications Industry Solutions). There are two major issues that are having increasing impact on the sensitivity of the power distribution to telecommunication facilities: deregulation of the power industry, and changing weather patterns. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. But does the diversity in power sources actually increase the reliability of offered power to the office equipment, or does the complexity of installing and managing the extended power system induce more potential faults and higher failure rates? This report analyzes a system involving a telecommunications facility consisting of two switch-bays and a satellite reception system.

  1. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  2. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities- Report, March 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Critical infrastructure (CI) collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability purposes, as well as state and local policies designed to promote CHP in critical infrastructure applications.

  3. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  4. Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

  5. Studies on soliton energy at critical and noncritical densities of negative ions in an inhomogeneous magnetized warm plasma

    SciTech Connect (OSTI)

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-11-15

    Considering an inhomogeneous plasma having finite-temperature negative and positive ions, and the isothermal electrons in the presence of an external magnetic field, the solitons at noncritical and critical densities of the negative ions are studied through Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations, respectively. The compressive (rarefactive) KdV solitons are found to propagate when the negative ion concentration is less (greater) than the critical density of the negative ions. At the critical density, both the compressive and the rarefactive solitons of equal amplitudes are found to occur. The energies of the compressive KdV soliton and the mKdV solitons are found to increase and that of the rarefactive KdV soliton is found to decrease with the negative ion density. Soliton energy for both the KdV and the mKdV solitons gets lowered under the effect of stronger magnetic field. The effect of ion temperature is to increase the energy of the compressive KdV soliton, whereas the energy of the rarefactive KdV soliton as well as of the mKdV solitons gets decreased. The variation of the energy with the obliqueness of the magnetic field is different for the KdV and the mKdV solitons.

  6. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  7. Comparison of Muon Capture in Light and in Heavy Nuclei

    SciTech Connect (OSTI)

    Measday, David F.; Stocki, Trevor J.

    2007-10-26

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The ({mu}{sup -},{nu}n) reaction is always dominant. In light nuclei, reactions such as ({mu}{sup -},{nu}p) and ({mu}{sup -},{nu}pn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as ({mu}{sup -},{nu}3n) and ({mu}{sup -},{nu}4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  8. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  9. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect (OSTI)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  10. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  11. Jack Steinberger and the Muon-Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles

  12. Muon Application to Advanced Bio- and Nano-Sciences

    SciTech Connect (OSTI)

    Nagamine, Kanetada

    2008-02-21

    Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

  13. Muon Cooling R and D Progress in the US

    SciTech Connect (OSTI)

    Li Derun

    2008-02-21

    Muon ionization cooling R and D is important for a neutrino factory and future muon collider. In addition to theoretical studies, much progress has been made in muon cooling channel hardware R and D since NuFact-2006. This paper reports the progress on hardware R and D that includes experimental RF test programs using 805-MHz RF cavity, superconducting (SC) solenoids (coupling coils), 201-MHz RF cavity, liquid hydrogen absorber and MUCOOL Test Area (MTA) experiment preparation for beam tests.

  14. Melvin Schwartz and the Discovery of the Muon Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  15. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  16. The Muon Accelerator Program (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOE Office of Science Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; LUMINOSITY; MUONS; NEUTRINO BEAMS; ...

  17. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  18. The performance of the MICE muon beam line

    SciTech Connect (OSTI)

    Rayner, Mark Alastair

    2011-10-06

    The Muon Ionization Cooling Experiment is one lattice cell of a cooling channel suitable for conditioning the muon beam at the front end of a Neutrino Factory or Muon Collider. The beam line designed to transport muons into MICE has been installed, and data was collected in 2010. In this paper the method of reconstructing longitudinal momentum and transverse trace space using two timing detectors is discussed, and a preliminary simulation of the performance of a measured beam in the cooling channel is presented.

  19. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Title: Neutron Production by Muon Spallation I: Theory We ... OSTI Identifier: 900172 Report Number(s): UCRL-TR-226323 ... Language: English Subject: 72 PHYSICS OF ELEMENTARY ...

  20. Chiral effective field theory predictions for muon capture on...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chiral effective field theory predictions for muon capture on deuteron and 3He Citation Details In-Document Search Title: Chiral effective field theory...

  1. Muon Neutrino to Electron Neutrino Oscillation in NO$\

    SciTech Connect (OSTI)

    Sachdev, Kanika

    2015-08-01

    NOvA is a long-baseline neutrino oscillation experiment optimized for electron neu- trino ( e) appearance in the NuMI beam, a muon neutrino ( $\

  2. The Muon system of the run II D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  3. Density dependent stopping power and muon sticking in muon catalyzed D-T fusion

    SciTech Connect (OSTI)

    Rafelski, H.E.; Mueller, B.

    1988-12-27

    The origin of the experimentally observed (1) density dependence of the muon alpha sticking fraction ..omega../sub s/ in muon catalyzed deuterium- tritium fusion is investigated. We show that the reactivation probability depends sensitively on the target stopping power at low ion velocities. The density dependence of the stopping power for a singly charged projectile in liquid heavy hydrogen is parametrized to simulate possible screening effects and a density dependent effective ionization potential. We find that, in principle, a description of the measured density dependence is possible, but the required parameters appear too large. Also, the discrepancy with observed (He..mu..) X-ray data widens.

  4. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  5. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    SciTech Connect (OSTI)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  6. Effect of surface free energy on critical field H{sub c3}

    SciTech Connect (OSTI)

    Podolyak, E. R.

    2011-12-15

    The emergence of surface superconductivity in a type I superconductor is considered taking into account the surface free energy of the superconducting phase. It is shown that the disregard of the surface energy leads to a substantial error in determining the Ginzburg-Landau parameter from the measurements of the H{sub c3} field.

  7. Design Concepts for Muon-Based Accelerators (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators You are accessing a document from the...

  8. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  9. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  10. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  11. Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    SciTech Connect (OSTI)

    Schmelling, M.; Hashim, N.O.; Grupen, C.; Luitz, S.; Maciuc, F.; Mailov, A.; Muller, A.-S.; Sander, H.-G.; Schmeling, S.; Tcaciuc, R.; Wachsmuth, H.; Zuber, K.; /Dresden, Tech. U.

    2012-09-14

    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

  12. Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years

    SciTech Connect (OSTI)

    Boliev, M.M.; Demidov, S.V.; Mikheyev, S.P.; Suvorova, O.V. E-mail: demidov@ms2.inr.ac.ru E-mail: suvorova@cpc.inr.ac.ru

    2013-09-01

    We present a new dataset analysis of the neutrino experiment at the Baksan Underground Scintillator Telescope with muon energy threshold about 1 GeV for the longest exposure time toward the Sun. In search for a signal from self-annihilations of dark matter particles in the center of the Sun we use an updated sample of upward through-going muons for 24.12 years of live time. No observable excess has been found in measured muons relative to expected background from neutrinos of atmospheric origin. We present an improved data analysis procedure and describe it in detail. We set the 90% C.L. new upper limits on expected neutrino and muon fluxes from dark matter annihilations in the Sun, on the corresponding annihilation rates and cross sections of their elastic scattering off proton.

  13. Matched Optics of Muon RLA and Non-Scaling FFAG ARCS

    SciTech Connect (OSTI)

    V.S. Morozov, S.A. Bogacz, Y. Roblin, K.B. Beard, D. Trbojevic

    2011-03-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs.

  14. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect (OSTI)

    Veselinovi?, N. Dragi?, A. Maleti?, D. Jokovi?, D. Savi?, M. Banjanac, R. Udovi?i?, V. Ani?in, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  15. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

    SciTech Connect (OSTI)

    C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz

    2010-05-01

    Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.

  16. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect (OSTI)

    Chatrchyan, S.

    2011-07-01

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  17. Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities: Preprint

    SciTech Connect (OSTI)

    Robinson, D. G.; Arent, D. J.; Johnson, L.

    2006-06-01

    This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  18. Creating competitive markets in electric energy: A critical analysis of H.R. 655

    SciTech Connect (OSTI)

    Lenard, T.M.; Lips, B.A.

    1998-05-01

    Meaningful competition in electric energy will be achieved only if roadblocks to operation of competitive markets at the federal and state levels are removed. The Schaefer bill has stimulated helpful activity among the states, but it adds impediments as it removes them and would frustrate the functioning of open markets. The movement away from government regulation of the electric power industry is a worldwide phenomenon, which, increasingly, is being driven by technological factors that are conducive to competition. Electricity markets have increased in size, bringing in new competitors and reducing concentration. Moreover, the development of low-cost, small-scale generation technologies makes entry easy and the exercise of market power difficult. Thus, the electricity market is ready for real deregulation. The introduction of competition into this market offers the promise of billions of dollars annually in economic benefits for electricity consumers.

  19. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  20. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  1. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect (OSTI)

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  2. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  3. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν¯μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν¯μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm¯2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ¯) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν¯μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  4. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  5. On the correlation between the photoexcitation pathways and the critical energies required for ablation of poly(methyl methacrylate): A molecular dynamics study

    SciTech Connect (OSTI)

    Conforti, Patrick F.; Prasad, Manish; Garrison, Barbara J.

    2008-05-15

    The energetics initiating ablation in poly(methyl methacrylate) (PMMA) are studied using molecular dynamics (MD) simulation. The critical energy to initiate ablation in PMMA following the absorption of photons is investigated for two penetration depths along a range of fluences using a coarse-grained, hybrid Monte Carlo-MD scheme. Both heating and direct bond scission are simulated separately after photon absorption with additional transformation of material occurring via chemical reactions following the photochemical bond cleavage. For a given type of absorption and reaction channel, a critical energy can well describe the amount of energy required to initiate ablation. The simulations show a decrease in the critical energy when a greater amount of photochemistry is introduced in the system. The simulations complement experimental studies and elucidate how enhanced photochemistry lowers ablation thresholds in polymer substrates.

  6. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect (OSTI)

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  7. Analysis of the multigroup model for muon tomography based threat detection

    SciTech Connect (OSTI)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-14

    We compare different algorithms for detecting a 5?cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5?cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  8. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  9. Measurement of Muon Capture on the Proton (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    The goal of the muCap experiment is a 1% precision measurement of the muon capture rate on the free proton, which will determine the weak pseudoscalar form factor gP to 7%. At ...

  10. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    We describe the physics and codes developed in the Muon Physics Package. This package is a ... Authors: Luu, T ; Hagmann, C Publication Date: 2006-11-13 OSTI Identifier: 900172 Report ...

  11. Fermilab Muon Ring Arrives to a Large Crowd of Fans

    SciTech Connect (OSTI)

    2013-08-15

    A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

  12. Fermilab | Newsroom | Press Releases | May 8, 2013: Muon g-2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Res Crews work to attach the red stabilizing apparatus to the Muon g-2 rings at Brookhaven National Laboratory in New York in preparation for moving them over land and sea to...

  13. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  14. A search for an excited muon decaying to a muon and two jets in pp collisions at $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; et al

    2016-07-11

    In this study, a new search signature for excited leptons is explored. Excited muons are sought in the channelmore » $${pp}\\to \\mu {\\mu }^{* }\\to \\mu \\mu \\ {\\rm{jet}}\\;{\\rm{jet}}$$, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb–1 of pp collision data at a centre-of-mass energy of $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass $${m}_{{\\mu }^{* }}$$. For $${m}_{{\\mu }^{* }}$$ between 1.3 and 3.0 TeV, the upper limit on $$\\sigma B({\\mu }^{* }\\to \\mu q\\bar{q}$$) is between 0.6 and 1 fb. Limits on $$\\sigma B$$ are converted to lower bounds on the compositeness scale Λ. In the limiting case $${\\rm{\\Lambda }}={m}_{{\\mu }^{* }}$$, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger $${\\mu }^{* }$$ masses improve upon previous limits from traditional searches based on the gauge-mediated decay $${\\mu }^{* }\\to \\mu \\gamma $$.« less

  15. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Links to national laboratories and other facilities with research related to rare earth elements or critical materials. National Energy Technology Laboratory ...

  16. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career ...

  17. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect (OSTI)

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  18. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  19. Design Concepts for Muon-Based Accelerators (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators Authors: Ryne, R.D. ; et al. Publication Date: ...

  20. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER Authors: Wang, M.-H. ; Nosochkov, Y. ; Cai, Y. ; SLAC ; Palmer, M. ;...

  1. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  2. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good but not super conductors at cryogenic temperatures, can be used.

  3. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N.; Bom, V. R.; Demin, A. M.; Demin, D. L.; Eijk, C. W. E. van; Filchagin, S. V.; Filchenkov, V. V.; Grafov, N. N. Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Kuryakin, A. V.; Medved', S. V.; Musyaev, R. K.; Rudenko, A. I.; Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A.; Yukhimchuk, S. A.; Zinov, V. G.

    2009-02-15

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  4. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect (OSTI)

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  5. The VME-based D0 muon trigger electronics

    SciTech Connect (OSTI)

    Fortner, M; Green, J; Hedin, D; Morphis, R; Repond, S; Willis, S; Zazula, R; Johns, K; Bazizi, K; Fahland, T; Hall, R E; Jerger, S; Lietzke, C; Smith, D; Butler, J M; Diehl, H T; Eartly, D; Fitzpatrick, T; Green, D; Haggerty, H; Hansen, S; Hawkins, J; Igarashi, S; Joestlein, H

    1990-11-01

    The trigger electronics for the muon system of the Fermilab D0 detector is described. The hardware trigger consists of VME-based cards designed to find probable tracks in individual chambers and then match these track segments. The fast trigger is highly parallel and able to discern probable tracks from about 15,000 trigger cells in under 200 ns from receipt of all bits in the counting house. There is a parallel confirmation trigger with a response time of 1--5 microseconds that provides a crude calculation of the momentum and charge of the muon. 6 refs., 7 figs.

  6. Charge recombination in the muon collider cooling channel

    SciTech Connect (OSTI)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  7. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  8. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  9. Critical Materials Hub

    Office of Energy Efficiency and Renewable Energy (EERE)

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  10. Muon g-2 ring moving up Illinois river

    SciTech Connect (OSTI)

    2013-07-20

    This clip shows the "Miss Katie" pushing the muon g-2 ring upstream on the Illinois River, and passing through the Peoria Lock and Dam as it travels toward Lemont, where it will be unloaded onto the special Emmert transporter and driven to Fermilab.

  11. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect (OSTI)

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  12. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  13. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  14. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  15. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    SciTech Connect (OSTI)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic {tau} lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp(1)}, is estimated.

  16. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    SciTech Connect (OSTI)

    Katori, Teppei; /MIT, LNS

    2009-09-01

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

  17. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect (OSTI)

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  18. Design of the Large Acceptance Muon Beamline at J-PARC

    SciTech Connect (OSTI)

    Nakahara, K.; Miyake, Y.; Shimomura, K.; Strasser, P.; Nishiyama, K.; Kawamura, N.; Fujimori, H.; Makimura, S.; Koda, A.; Nagamine, K.; Ogitsu, T.; Yamamoto, A.; Adachi, T.; Sasaki, K.; Tanaka, K.; Kimura, N.; Makida, Y.; Ajima, Y.; Ishida, K.; Matsuda, Y.

    2008-02-21

    The Materials and Life Science Facility (MLF) is currently under construction at J-PARC in Tokai, Japan. The muon section of the facility will house the muon production target and four secondary beamlines used to transport the muons into two experimental halls. One of the beamlines is a large acceptance beamline (the so called Super Omega Muon beamline) which, when completed, will produce the largest intensity pulse muon beam in the world. The expected rate of surface muons for this beamline is 5x10{sup 8} {mu}{sup +}/s, and a cloud muon rate of 10{sup 7} {mu}{sup -}/s. The extracted muons will be used for projects involving the production of ultra-slow muons as well as for muon-catalyzed fusion. The beamline consists of the normal-conducting capture solenoids, the superconducting curved transport solenoids, and the Dai Omega-type axial focusing magnet. Currently, the capture and transport solenoids are under design, with the former in its final stages and the latter being finalized for construction of test coils. The design of the Dai Omega-type axial focusing magnet is under consideration with particular emphasis on its compatibility with the transport solenoids.

  19. Validation of nuclear criticality safety software and 27 energy group ENDF/B-IV cross sections. Revision 1

    SciTech Connect (OSTI)

    Lee, B.L. Jr.; D`Aquila, D.M.

    1996-01-01

    The original validation report, POEF-T-3636, was documented in August 1994. The document was based on calculations that were executed during June through August 1992. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This revision is written to clarify the margin of safety being used at Portsmouth for nuclear criticality safety calculations. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Lockheed Martin Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. For calculations of Portsmouth systems using the specified codes and systems covered by this validation, a maximum k{sub eff} including 2{sigma} of 0.9605 or lower shall be considered as subcritical to ensure a calculational margin of safety of 0.02. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  20. Critical Materials Workshop Plenary Session Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Plenary Session Videos Critical Materials Workshop Plenary Session Videos Welcome and Overview of Workshop and Energy Innovation Hubs Speakers * Dr. Leo ...

  1. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect (OSTI)

    Kashikhin, Vladimir S.; Andreev, Nikolai; Johnson, Rolland P.; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  2. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  3. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  4. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  5. Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at ‹ Eν › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M. J.; Butkevich, A.; Martinez Caicedo, D. A.; et al

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  6. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at ν > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  7. Measurement of muon plus proton final states in ?? interactions on hydrocarbon at < E? > = 4.2 GeV

    SciTech Connect (OSTI)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70 and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  8. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    SciTech Connect (OSTI)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  9. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  10. Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al

    2015-05-22

    A search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy is presented.

  11. CMI Factsheet | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Factsheet 3D printer uses laser and metals to build new combinations of materials What is the Energy Innovation Hub for Critical Materials? Created by the U.S. Department of Energy, the Energy Innovation Hub is operated under the name the Critical Materials Institute. CMI is led by the DOE's Ames Laboratory, and managed by DOE's Advanced Manufacturing Office. It brings together the expertise of DOE national laboratories, universities, and industry partners to eliminate materials criticality

  12. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  13. Measurement of the Michel rho parameter in direct muon decay

    SciTech Connect (OSTI)

    Piilonen, Leo; Haim, D.; Lee, F. S.; Zhang, Y.; Amann, J. F.; Bolton, R. D.; Cooper, M. D.; Foreman, W.; Harrison, R.; Hart, G.; Hogan, G. E.; Kozlowski, T.; Kroupa, M. A.; Mischke, R. E.; Pillai, C.; Schilling, S.; Whitehouse, D.; Chen, Y.; Dzemidzic, M.; Hungerford, E. V. III

    1997-05-20

    We report on the status of LAMPF experiment E-1240 to measure the Michel {rho} parameter in direct muon decay. This experiment ran in 1993, and the data are currently being analyzed. The expected precision on the {rho} parameter is {+-}0.0008. This result will provide better constraints on new physics, particularly on the charged vector bosons' mixing angle {zeta} in the manifestly left-right symmetric extension of the Standard Model.

  14. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; Sadovskiy, Y.; Zlobin, Alexander V; /Fermilab

    2007-08-01

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  15. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory

  16. Rectlinear cooling scheme for bright muon sources

    SciTech Connect (OSTI)

    Stratakis, Diktys

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  17. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  18. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom...

    Office of Scientific and Technical Information (OSTI)

    the Muon Neutrino, and the Bottom Quark His Honors His Involvement in Science Education His Wisdom and Humor Resources with Additional Information Leon Lederman started...

  19. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect (OSTI)

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  20. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect (OSTI)

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  1. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; Witte, H.; Hansen, S.; Lopes, M.L.; Reidy Jr., J.; /Oxford High School

    2012-05-01

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  2. A search for pair production of new light bosons decaying into muons

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-03

    In this study, a search for the pair production of new light bosons, each decaying into a pair of muons, is performed with the CMS experiment at the LHC, using a dataset corresponding to an integrated luminosity of 20.7 fb1 collected in protonproton collisions at center-of-mass energy of ?s = 8 TeV. No excess is observed in the data relative to standard model background expectation and a model independent upper limit on the product of the cross section, branching fraction, and acceptance is derived. The results are compared with two benchmark models, the first one in the context of the next-to-minimal supersymmetric standard model, and the second one in scenarios containing a hidden sector, including those predicting a nonnegligible light boson lifetime.

  3. Search for pair production of the scalar top quark in the electron+muon final state

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Altona, A.; Alverson, G.; Alves, G.A.

    2010-09-01

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ({tilde t}{sub 1}) in p{bar p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb{sup -1}. The scalar top quarks are assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) mass plane.

  4. High Energy Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Technology Taking collider physics to higher energies More ATLAS at the LHC Colliding protons to learn about universal forces More Cosmology & Astrophysics Looking at the dawn and evolution of the universe More Instrumentation Innovative detectors for next-generation experiments More Precision Muon Physics Muons as a probe for new physics More Neutrino Physics Studying the elusive, but second most abundant particle in the universe More Theoretical High Energy Physics Motivating

  5. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino

  6. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    SciTech Connect (OSTI)

    Denisov, Dmitri; Evdokimov, Valery; Luki?, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  7. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect (OSTI)

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  8. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  9. A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron

    SciTech Connect (OSTI)

    Anastasoaie, Carmen Miruna; /Nijmegen U.

    2008-02-01

    All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + light jets (W{sup {+-}}jj) (and the corresponding backgrounds with a Z boson), t{bar t}, single top production, and QCD multijet background.

  10. Measurement of the Michel rho parameter in direct muon decay

    SciTech Connect (OSTI)

    Piilonen, Leo; Haim, D.; Zhang, Y.; Bolton, R.D.; Cooper, M.D.; Foreman, W.; Harrison, R.; Hart, G.; Hogan, G.E.; Kozlowski, T.; Kroupa, M.A.; Mischke, R.E.; Pillai, C.; Schilling, S.; Whitehouse, D.; Dzemidzic, M.; Hungerford, E.V.; Lan, K.; Mayes, B.W.; Pinsky, L.; von Witsch, W. Cooper, P.S.; Liu, F.; Tribble, R.E.; Tu, X.L.; Van Ausdeln, L.A.; Van Ausdeln, L.A. Jui, C.C.H.; Stantz, K.M.; Szymanski, J.J.; Manweiler, R.; Stanislaus, T.D.; Ziock, K.O.H. Wright, S.C.

    1997-05-01

    We report on the status of LAMPF experiment E-1240 to measure the Michel {rho} parameter in direct muon decay. This experiment ran in 1993, and the data are currently being analyzed. The expected precision on the {rho} parameter is {plus_minus}0.0008. This result will provide better constraints on new physics, particularly on the charged vector bosons{close_quote} mixing angle {zeta} in the manifestly left-right symmetric extension of the Standard Model. {copyright} {ital 1997 American Institute of Physics.}

  11. The New Muon g-2 Experiment at Fermilab

    SciTech Connect (OSTI)

    Grange, Joseph

    2015-01-13

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  12. The Performance and Long Term Stability of the D0 Run II Forward Muon Scintillation Counters

    SciTech Connect (OSTI)

    Bezzubov, V.; Denisov, D.; Evdokimov, V.; Lipaev, V.; Shchukin, A.; Vasilyev, I.

    2014-07-21

    The performance of the D0 experiment forward muon scintillation counters system during Run II of the Tevatron from 2001 to 2011 is described. The system consists of 4214 scintillation counters in six layers. The long term stability of the counters amplitude response determined using LED calibration system and muons produced in proton-antiproton collisions is presented. The average signal amplitude for counters of all layers has gradually decreased over ten years by 11%. The reference timing, determined using LED calibration, was stable within 0.26 ns. Average value of muon timing peak position was used for periodic D0 clock signal adjustments to compensate seasonal drift caused by temperature variations. Counters occupancy for different triggers in physics data collection runs and for minimum bias triggers are presented. The single muon yields versus time and the luminosity dependence of yields were stable for the forward muon system within 1% over 10 years.

  13. nuSTORM and A Path to a Muon Collider

    SciTech Connect (OSTI)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

  14. nuSTORM and A Path to a Muon Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore » in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  15. nuSTORM and A Path to a Muon Collider

    SciTech Connect (OSTI)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a ?+?- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the ?+?-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

  16. invention disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    invention disclosures CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both

  17. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    SciTech Connect (OSTI)

    Partyka, Kinga Anna

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be both illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  18. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    SciTech Connect (OSTI)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  19. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    SciTech Connect (OSTI)

    Adamson, P.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  20. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    SciTech Connect (OSTI)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 58 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  1. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore » peaks in the winter.« less

  2. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  3. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-15

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  4. Utilizing Gas Filled Cavities for the Generation of an Intense Muon Source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-01

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  5. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  6. Chiral effective field theory predictions for muon capture on deuteron and

    Office of Scientific and Technical Information (OSTI)

    $^3$He (Journal Article) | SciTech Connect Journal Article: Chiral effective field theory predictions for muon capture on deuteron and $^3$He Citation Details In-Document Search Title: Chiral effective field theory predictions for muon capture on deuteron and $^3$He The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral

  7. Superconducting solenoids for muon-cooling in the neutrino factory

    SciTech Connect (OSTI)

    Green, M.A.; Miller, J.R.; Prestemon, S.

    2001-05-12

    The cooling channel for a neutrino factory consists of a series of alternating field solenoidal cells. The first section of the bunching cooling channel consists of 41 cells that are 2.75-m long. The second section of the cooling channel consists of 44 cells that are 1.65-m long. Each cell consists of a single large solenoid with an average diameter of 1.5 m and a pair of flux reversal solenoids that have an average diameter of 0.7 to 0.9 meters. The magnetic induction on axis reaches a peak value of about 5 T at the end of the second section of the cooling channel. The peak on axis field gradients in flux reversal section approaches 33 T/m. This report describes the two types of superconducting solenoid magnet sections for the muon-cooling channel of the proposed neutrino factory.

  8. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  9. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  10. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  11. Wireless System Considerations When Implementing NERC Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Protection Standards | Department of Energy Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Energy asset owners are facing a monumental challenge as they address compliance with the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased

  12. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    SciTech Connect (OSTI)

    Berg, J. S.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  13. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, K.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  14. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  15. R-Axion: A New LHC Physics Signature Involving Muon Pairs (Conference...

    Office of Scientific and Technical Information (OSTI)

    origin of the higgsino mass mu and the Higgs mass mixing Bmu at the classical level. ... Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; MEV RANGE; MUON ...

  16. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect (OSTI)

    The Soudan 2 Collaboration

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  17. A novel precision measurement of muon g - 2 and EDM at J-PARC

    SciTech Connect (OSTI)

    Saito, Naohito; Collaboration: J-PARC g-2 /EDM Collaboration

    2012-07-27

    We propose a new experiment to measure the muon anomalous magnetic moment g - 2 and electric dipole moment with a novel technique called ultra-slow muon beam at J-PARC. Precision measurement of these dipole moments plays an important role in fundamental physics to search for a new physics beynd standard model. The concept of the experiment and its current status is described.

  18. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  19. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  20. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  1. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  2. Seismic Monitoring a Critical Step in EGS Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 1:33pm Addthis The Energy Department's Sandia ...

  3. Testing the Muon g-2 Anomaly at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  4. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary, Office of Electricity Delivery & Energy Reliability November is National Critical Infrastructure Security and Resilience Month, a time during which we ...

  5. The baryonic susceptibility near critical temperature (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; BARYONS; CHIRALITY; CRITICAL TEMPERATURE; ENERGY-LEVEL DENSITY; ...

  6. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2016-02-17

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muonmore » counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. As a result, the completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.« less

  7. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    SciTech Connect (OSTI)

    Schmitz, David W.; /Columbia U.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  8. Latest News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Latest News News about CMI: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives, August 16, 2016 Solar panels power materials exhibit at Geology Museum, August 2, 2016 New alloy promises to boost rare earth production while improving energy efficiency of engines, June 3, 2016 Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 On

  9. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  10. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  11. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  12. The Energy - Water Connection: Can We Sustain Critical Resources and Make them Reliable, Affordable, and Environmentally Sound?(LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    McMahon, Jim

    2011-04-28

    Summer Lecture Series 2006: Jim McMahon of Berkeley Lab's Environmental Energy Technologies Division (EETD) is head of the Energy Analysis Department in EETD, which provides technical analysis to the Department of Energy on things like energy efficiency appliance standards. McMahon and his colleagues helped the nation save tens of billions of dollars in energy costs since the standards program began. Now his Water-Energy Technology Team (WETT) is applying its expertise to the linked problem of energy and water. Each of us requires more than 500 gallons per person per day for food production, plus an additional 465 gallons to produce household electricity. WETT hopes to mine some of the numerous opportunities to save energy and water by applying new technologies.

  13. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    SciTech Connect (OSTI)

    Marshall, John Stuart; /Cambridge U.

    2008-06-01

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0

  14. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  15. Searching for a dilaton decaying to muon pairs at the LHC

    SciTech Connect (OSTI)

    Vignaroli, Natascia

    2009-11-01

    We analyze the decays to muons of a light dilaton produced via vector boson fusion at the LHC. We investigate models in which the electroweak symmetry breaking is triggered by a spontaneously broken, approximately conformal sector. Taking into account the possibility of shifts in the dilaton Yukawa couplings to muons, we find a rather promising scenario for the conformal model search in the channel, with the possibility for a dilaton discovery at a delivered luminosity of 100 fb{sup -1} at the LHC or, alternatively, for an extension of the exclusion zone in the model parameter space, until now fixed by the Tevatron.

  16. High-Pressure Tritium Targets for Research in Muon-Catalyzed Fusion

    SciTech Connect (OSTI)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2005-07-15

    The paper presents designs of a set of high-pressure targets developed by RFNC-VNIIEF and JINR collaboration to study muon-catalyzed fusion at high density of hydrogen isotopes in a wide temperature range. Designs, technical and operating characteristics of the targets and service results are described.In 1997-2002 these targets were used to measure basic characteristics of muon catalysis in pure deuterium, binary D/T mixture and triple H/D/T mixture as a function of density ([variant phi] = 0.2 - 1.2 LHD{sup *}), temperature (T = 20-800 K) and concentration of hydrogen isotopes in a mixture.

  17. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  18. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  19. Theoretical High Energy Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accelerator Technology ATLAS at the LHC Cosmology & Astrophysics Instrumentation Precision Muon Physics Neutrino Physics Theoretical High Energy Physics Theoretical High Energy Physics Theoretical High Energy Physics Much of the work of high-energy physics concentrates on the interplay between theory and experiment. The theory group of Argonne's High Energy Physics Division performs high-precision calculations of Standard Model processes, interprets experimental data in terms of

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  1. Identifying and Overcoming Critical Barriers to Widespread Second...

    Office of Scientific and Technical Information (OSTI)

    Overcoming Critical Barriers to Widespread Second Use of PEV Batteries Neubauer, J.; Smith, K.; Wood, E.; Pesaran, A. 25 ENERGY STORAGE; 29 ENERGY PLANNING, POLICY AND ECONOMY...

  2. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  3. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Nuclear criticality safety guide

    SciTech Connect (OSTI)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  7. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments [OSTI]

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  8. Muon spin relaxation and nonmagnetic Kondo state in PrInAg{sub 2}

    SciTech Connect (OSTI)

    MacLaughlin, D. E.; Department of Physics, University of California, Riverside, California 92521-0413 ; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg{sub 2}. The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at {approx}0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the {sup 141}Pr nuclear moment at low temperatures. This argues against a Pr{sup 3+} ground-state electronic magnetic moment, and is strong evidence for the doublet {gamma}{sub 3} crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr{sup 3+} ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg{sub 2}. (c) 2000 The American Physical Society.

  9. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  10. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  11. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect (OSTI)

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  12. Measurement of W + gamma Production in the W to Muon Decay Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Tanimoto, Naho

    2005-03-01

    The production cross section and the kinematic properties of the decay products of W{gamma} in the W {yields} {mu}{nu} decay channel from p{bar p} collisions at {radical}s = 1.96 TeV are presented. The measurement use the high p{sub T} muon data from the upgraded Collider Detector at Fermilab (CDF). The data were collected between March 2002 and September 2003. The total integrated luminosities are 192 pb{sup -1} with the muon detector which covers the pseudorapidity region of |{eta}| {le} 0.6 and 175 pb{sup -1} with the muon detector covering the region 0.6 {le} |{eta}| {le} 1.0. In the Standard Model the {mu}{nu}{gamma} final states occur due to W{gamma} {yields} {mu}{nu}{gamma} production and via muon Bremsstrahlung, W {yields} {mu}{nu} {yields} {mu}{nu}{gamma}. W bosons are selected in their muon decay mode. Additionally, photons with transverse energy above 7 GeV, pseudorapidity in the central region (|{eta}| < 1.1) and muon-photon angular separation {Delta}R({mu},{gamma}) > 0.7 are selected. The author observes a total of 128 W{gamma} candidates, whereas the Standard Model expectation is 142.4 {+-} 9.5 events. The W{gamma} production cross section is found to be {sigma}(p{bar p} {yields} {mu}{nu}{gamma}) = 16.3 {+-} 2.3(stat.) {+-} 1.8(syst.) {+-} 1.2(lum.) [pb]. The theoretical prediction for this cross section is {sigma}(p{bar p} {yields} l{nu}{gamma}) = 19.3 {+-} 1.4(th.) [pb]. The Standard Model predictions for several kinematic + variables are compared with data for E{sub T}{sup {gamma}} > 7 GeV and {Delta}R({mu},{gamma}) > 0.7. The measured cross section and the photon and W boson production kinematics are found to agree with the Standard Model predictions.

  13. CMI Invention Disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both research and

  14. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  15. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  16. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  17. Critical Materials Institute Affiliates Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Critical Materials Institute Affiliates Program MEMBER AGREEMENT ("Agreement") WHEREAS, The Ames Laboratory ("AMES"), a U.S. Department of Energy ("DOE") National Laboratory operated by Iowa State University of Science and Technology ("ISU") under the authority of its Contract DE-AC02-07CH11358, with administrative offices at 311 TASF, 2408 Pammel Dr,. Ames, IA 50011-1015, is the recipient of funding from the U.S. Department of Energy's Office of Energy

  18. Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Porter, Frank C.

    2015-04-29

    The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons

  19. Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

  20. Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized process for cyber vulnerability assessment in compliance with the Critical Infrastructure Protection standards adopted by the North American Electric Reliability Corporation in 2006. This guide covers the planning, execution, and reporting process. Guide to Critical Infrastructure Protection

  1. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov 2332 Pammel Drive, 134 Wilhelm Hall, Iowa State University, Ames, IA 50011-1025 The Critical Materials Institute focuses on technologies that make better use of

  2. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect (OSTI)

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and

  3. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  4. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  5. tan{beta}-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Marchetti, Schedar; Mertens, Susanne; Nierste, Ulrich; Stoeckinger, Dominik

    2009-01-01

    We report on a two-loop supersymmetric contribution to the magnetic moment (g-2){sub {mu}} of the muon which is enhanced by two powers of tan{beta}. This contribution arises from a shift in the relation between the muon mass and Yukawa coupling and can increase the supersymmetric contribution to (g-2){sub {mu}} sizably. As a result, if the currently observed 3{sigma} deviation between the experimental and SM theory value of (g-2){sub {mu}} is analyzed within the minimal supersymmetric standard model (MSSM), the derived constraints on the parameter space are modified significantly: If (g-2){sub {mu}} is used to determine tan{beta} as a function of the other MSSM parameters, our corrections decrease tan{beta} by roughly 10% for tan{beta}=50.

  6. Critical Point Finder

    Energy Science and Technology Software Center (OSTI)

    2007-03-15

    The program robustly finds the critical points in the electric field generated by a specified collection of point charges.

  7. The measurement of the anomalous magnetic moment of the muon at Fermilab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Logashenko, I.

    2015-06-17

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Furthermore, we discuss the details of the future measurement and its current status.

  8. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark His Honors * His Involvement in Science Education His Wisdom and Humor * Resources with Additional Information Leon Lederman started his career in Physics at Columbia University, where he earned his Ph.D. in 1952. He 'stayed on at Columbia following his studies, remaining for nearly 30 years, as the Eugene Higgins Professor and, from 1961 until 1979, as director of Nevis Laboratories in Irvington, the Columbia physics department

  9. Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections Colin E. Anderson 2011 Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the ef- forts of physics experiment. As neutrino oscillation searches seek an increasingly elusive sig- nal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understand- ing.

  10. CSC large panel R&D summary for the SSC GEM muon subsystem

    SciTech Connect (OSTI)

    Pratuch, S.M.; Clements, J.W.; Spellman, G.P.

    1994-05-01

    The GEM Detector uses 1,128 Cathode Strip Chamber (CSC) muon detectors requiring a total of approximately 10,000 precision panels in the CSC assemblies. These panels must be fabricated to extreme tolerances in order to meet the physics requirement. A fabrication technique used to produce two large panels, nominally 1 by 3 meters, is described and the resulting panel precision is reported.

  11. The Hadronic Contribution to the Anomalous Magnetic Moment of the Muon |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Hadronic Contribution to the Anomalous Magnetic Moment of the Muon PI Name: Paul Mackenzie PI Email: mackenzie@fnal.gov Institution: Fermilab Allocation Program: ESP Year: 2015 Research Domain: Physics Tier 2 Code Development Project Numerical Methods/Algorithms Two codes are involved in this project: MILC and the Columbia Physics System (CPS). The application operates on a four-dimensional hypercubic lattice (grid) with quark data as- associated with

  12. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    SciTech Connect (OSTI)

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providing the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.

  13. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  14. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  15. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  16. Request for Information (RFI) for Updated Critical Materials Strategy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Request for Information (RFI) for Updated Critical Materials Strategy Request for Information (RFI) for Updated Critical Materials Strategy Request for Information (RFI) for Updated Critical Materials Strategy (55.44 KB) More Documents & Publications RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI: DOE Materials Strategy Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010

  17. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect (OSTI)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  18. Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States

    SciTech Connect (OSTI)

    Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

    1981-02-04

    Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference.

  19. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  20. Renewable Energy Integration | Department of Energy

    Energy Savers [EERE]

    energy and energy efficiency enhance reliability, security, and resiliency from microgrid applications in critical infrastructure protection and highly constrained areas of ...

  1. Criticality Model Report

    SciTech Connect (OSTI)

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  2. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  3. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    ScienceCinema (OSTI)

    Latina, Andrea

    2010-01-08

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  4. DOE Releases Request for Information on Critical Materials, Including Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Platinum Group Metal Catalysts | Department of Energy Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts DOE Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts February 17, 2016 - 3:03pm Addthis The U.S. Department of Energy (DOE) has released a Request for Information (RFI) on critical materials in the energy sector, including fuel cell platinum group metal catalysts. The RFI

  5. Track B - Critical Guidance for Peak Performance Homes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy B - Critical Guidance for Peak Performance Homes Track B - Critical Guidance for Peak Performance Homes Presentations from Track B, Critical Guidance for Peak Performance Homes of the U.S. Department of Energy Building America program's 2012 Residential Energy Efficiency Stakeholder Meeting are provided below as Adobe Acrobat PDFs. These presentations for this track covered the following topics: Ventilation Strategies in High Performance Homes; Combustion Safety in Tight Houses;

  6. CRITICAL MATERIALS MUSEUM DISPLAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    critical materials, rare earth elements (REE), and the national purpose of the CMI. The CSM Geology Museum is the second most visited geology museum at an American university. ...

  7. Timelines | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A listing of timelines about various materials of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. ...

  8. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  9. President's 2014 Budget Proposal Makes Critical Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation, Clean Energy and National Security Priorities | Department of Energy President's 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and National Security Priorities President's 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and National Security Priorities April 10, 2013 - 10:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Deputy Secretary of Energy Daniel Poneman detailed President Barack Obama's $28.4

  10. President's 2015 Budget Proposal Makes Critical Investments in...

    Office of Environmental Management (EM)

    ... advance carbon capture and storage and natural gas technologies. 180 million for Electricity ... 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and ...

  11. Guidelines for Preparing Criticality Safety Evaluations at Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-2007, Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities by Diane Johnson This standard provides a framework for...

  12. Security Risk Assessment Methodologies (RAM) for Critical Infrastructu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Find More Like This Return to Search Security Risk Assessment Methodologies (RAM) for Critical Infrastructures Sandia National Laboratories...

  13. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  14. Mines Welcomes Middle School Students | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show ...

  15. Energy Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assurance Energy Assurance The Energy Sector consists of thousands of electricity, oil, and natural gas assets that are geographically dispersed and connected by systems and networks. Therefore, interdependency within the sector and across the Nation's critical infrastructure sectors is critical. The energy infrastructure provides fuel to the Nation, and in turn depends on the Nation's transportation, communications, finance, and government infrastructures. The energy systems and networks cross

  16. Before the Senate Energy and Natural Resources Committee

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Critical Materials By: Dr. David Daneilson, Assistant Secretary Office of Energy Efficiency and Renewable Energy

  17. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    SciTech Connect (OSTI)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed.

  18. 2ND FEASIBILITY STUDY OF A MUON STORAGE RING NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    OZAKI,S.; PALMER,R.B.; ZISMAN,M.S.

    2001-06-18

    The design and simulated performance of a second feasibility study are presented. The efficiency of producing muons is {approx} 0.17 {micro}/p with 24 GeV protons. This study was sponsored by the BNL Director, with BNL site specific driver and layout. It was a follow on to the First Study[2] sponsored by the Fermilab Director, with Fermilab site specific driver and layout, and was the main US collaboration conceptual effort during the past year. Other studies, and technical work by the collaboration is reported in other papers.

  19. Grid Integration of Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Integration of Solar Energy Workshop Grid Integration of Solar Energy Workshop The Grid Integration of Solar Energy Workshop on October 29, 2015 identified critical challenges ...

  20. Develop A Clean Energy Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop A Clean Energy Strategy Develop A Clean Energy Strategy Comprehensive strategic energy planning, both at the state and local levels, is a critical foundation for sound...

  1. Americas' Energy Leaders Take Action to Realize Energy and Climate...

    Energy Savers [EERE]

    ... has been overwhelmingly positive across all five ECPA elements: energy efficiency, renewable energy, cleaner fossil fuels, critical infrastructure, and energy poverty alleviation. ...

  2. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Pajarito Powder, LLC, a fuel-cell-catalyst company based in Albuquerque, is one of the voucher recipients that will partner with Los Alamos. Fuel-cell technology companies win small-business aid Pajarito Powder, LLC, (Albuquerque), NanoSonic (Pembroke, Va.)

  3. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  4. 2016 Annual Meeting | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Annual Meeting people attending CMI annual meeting 2016 The Critical Materials Institute held its annual meeting August 16-18, 2016, at Oak Ridge National Laboratory. signing ceremony for CRADA between CMI and Oddello Ceremony for signing new CRADA: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives Pictured Standing: Tim McIntyre, ORNL, Energy and Environmental Sciences Directorate; Alex King, CMI Director, Ames Laboratory; Mike

  5. EERE Announces Up to $4 Million for Critical Materials Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo courtesy of Geothermal Technologies Office, U.S. Department of Energy Critical materials like rare-earth elements and lithium play a vital role in many clean-energy ...

  6. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  7. Energy Department Releases New Critical Materials Strategy |...

    Broader source: Energy.gov (indexed) [DOE]

    The report examines the role of rare earth metals and other materials used in four clean ... The strategy analyzes 14 elements and identifies five specific rare earth metals, ...

  8. OE Leadership | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE). ... industry to enhance the security and resilience of critical energy infrastructure, and ...

  9. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    SciTech Connect (OSTI)

    Eberly, Brandon M.

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  10. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration ...

  11. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  12. Leptophilic dark matter and the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

  13. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  14. Data Acquisition for the New Muon $g$-$2$ Experiment at Fermilab

    SciTech Connect (OSTI)

    Gohn, Wesley

    2015-06-01

    A new measurement of the anomalous magnetic moment of the muon, a μ ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for a . The new measurement will accumulate 21 times those statistics, measuring a to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μ s muon spills at a raw data rate of 18 GB per second. Data will be collected using 1296 channels of μ TCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.

  15. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  16. The large superconducting solenoids for the g-2 muon storage ring

    SciTech Connect (OSTI)

    Bunce, G.; Cullen, J.; Danby, G.

    1994-12-01

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium.

  17. GUT-inspired supersymmetric model for h → γ γ and the muon g - 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-06

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h→γγ decay channel. In order to accommodate these observations and mh≅125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to Rγγ≥1.1 is 100 GeV≲mτ˜≲200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted tomore » lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg˜≳4.5 TeV and mt˜₁≳3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.« less

  18. Design and testing of the New Muon Lab cryogenic system at Fermilab

    SciTech Connect (OSTI)

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

    2009-11-01

    Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

  19. Investigating the anisotropic scintillation response in anthracene through neutron, gamma-ray, and muon measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schuster, Patricia; Brubaker, Erik

    2016-05-05

    Our paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, 137Cs gamma rays, and, for the first time, cosmic ray muons. Moreover, the neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth ofmore » that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. Our set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.« less

  20. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D. L.; DeMello, A. J.; Lambert, A. R.; Li, D.; Virostek, S.; Zisman, M.; Kaplan, D.; Palmer, R. B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  1. Data acquisition for the new muon g-2 experiment at Fermilab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gohn, Wesley

    2015-12-23

    A new measurement of the anomalous magnetic moment of the muon, aμ ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for aμ. The new measurement will accumulate 21 times those statistics, measuring aμ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a raw data rate ofmore » 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. Lastly, the described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less

  2. Additive Manufacturing Meets the Critical Materials Shortage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Additive Manufacturing Meets the Critical Materials Shortage Additive Manufacturing Meets the Critical Materials Shortage April 9, 2014 - 11:15am Addthis Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames

  3. Spent Fuel Criticality Benchmark Experiments

    SciTech Connect (OSTI)

    J.M. Scaglione

    2001-07-23

    Characteristics between commercial spent fuel waste packages (WP), Laboratory Critical Experiments (LCEs), and commercial reactor critical (CRC) evaluations are compared in this work. Emphasis is placed upon comparisons of CRC benchmark results and the relative neutron flux spectra in each system. Benchmark evaluations were performed for four different pressurized water reactors using four different sets of isotopes. As expected, as the number of fission products used to represent the burned fuel inventory approached reality, the closer to unity k{sub eff} became. Examination of material and geometry characteristics indicate several fundamental similarities between the WP and CRC systems. In addition, spectral evaluations were performed on a representative pressurized water reactor CRC, a 21-assembly area of the core modeled in a potential WP configuration, and three LCEs considered applicable benchmarks for storage packages. Fission and absorption reaction spectra as well as relative neutron flux spectra are generated and compared for each system. The energy dependent reaction rates are the product of the neutron flux spectrum and the energy dependent total macroscopic cross section. With constant source distribution functions, and the total macroscopic cross sections for the fuel region in the CRCs and WP being composed of nearly the same isotopics, the resulting relative flux spectra in the CRCs and WP are very nearly the same. Differences in the relative neutron flux spectra between WPs and CRCs are evident in the thermal energy range as expected. However, the relative energy distribution of the absorption, fission, and scattering reaction rates in both the CRCs and the WP are essentially the same.

  4. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  5. Department of Energy - Recovery Act

    Energy Savers [EERE]

    1339 en National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid http:energy.govarticlesnational-critical-infr...

  6. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  7. Critical Materials Institute uses the Materials Genome approach to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  8. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  9. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    SciTech Connect (OSTI)

    Kozlov, Valentin; Collaboration: EDELWEISS Collaboration

    2013-08-08

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  10. Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR

    DOE R&D Accomplishments [OSTI]

    Richter, B.

    1976-01-01

    The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

  11. Experimental High Energy Physics Brandeis University Final Report

    SciTech Connect (OSTI)

    Blocker, Craig A.; Bensinger, James; Sciolla, Gabriella; Wellenstein, Hermann

    2013-07-26

    During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb were delivered. The Brandeis group focused on two aspects of the ATLAS experiment -- the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' -> ll, Higgs -> ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs -> ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

  12. 2011 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting.

  13. 2010 Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

  14. Human Resources at Critical Materials Institute | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners ...

  15. Search for Muon Neutrino Disappearance in the Booster Neutrino Beam of Fermilab; Busqueda de Desaparicion de Neutrinos del Muon en el Haz de Neutrinos del Booster de Fermilab

    SciTech Connect (OSTI)

    Mendez Mendez, Diana Patricia

    2015-01-01

    In this work we carried out the disappearance analysis of muon neutrinos produced in the Fermilab Booster Neutrino Beam, using the data released to the public by the collaborations of the MiniBooNE and SciBooNE experiments. The calculations were made with programs in C and C++, implementing the ROOT libraries. From the analysis, using both the classical Pearson method and the Feldman and Cousins frequentist corrections, we obtained the 90\\% C.L. limit for the oscillation parameters sin22θ and Δm2 in the region 0.1 ≤ Δm2 ≤ 10 eV2 using a two neutrino model. The result presented in this work is consistent with the official one, with small deviations ascribed to round-off errors in the format of the used data, as well as statistical fluctuations in the generation of fake experiments used in the Feldman and Cousins method. As the official one, our result is consistent with the null oscillation hypothesis. This work was carried out independently to the MiniBooNE and SciBooNE collaborations and its results are not official.

  16. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    SciTech Connect (OSTI)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H.; Fauth, A. C.; Kemp, E.; Manganote, E. J. T.; Leigui de Oliveira, M. A.; Miranda, P.; Ticona, R.; Velarde, A.

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  17. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01

    plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL

  18. AVLIS Criticality risk assessment

    SciTech Connect (OSTI)

    Brereton, S.J., LLNL

    1998-04-29

    Evaluation of criticality safety has become an important task in preparing for the Atomic Vapor Laser Isotope Separation (AVLIS) uranium enrichment runs that will take place during the Integrated Process Demonstration (IPD) at Lawrence Livermore National Laboratory (LLNL). This integrated operation of AVLIS systems under plant-like conditions will be used to verify the performance of process equipment and to demonstrate the sustained integrated enrichment performance of these systems using operating parameters that are similar to production plant specifications. Because of the potential criticality concerns associated with enriched uranium, substantial effort has been aimed towards understanding the potential system failures of interest from a criticality standpoint, and evaluating them in detail. The AVLIS process is based on selective photoionization of uranium atoms of atomic weight 235 (U-235) in a vapor stream, followed by electrostatic extraction. The process is illustrated in Figure 1. Two major subsystems are involved: the uranium separator and the laser system. In the separator, metallic uranium is fed into a crucible where it is heated and vaporized by an electron beam. The atomic U-235/U-238 vapor stream moves away from the molten uranium and is illuminated by precisely tuned beams of dye laser light. Upon absorption of the tuned dye laser light, the U-235 atoms become excited and eject electrons (become photoionized), giving them a net positive charge. The ions of U-235 are moved preferentially by an electrostatic field to condense on the product collector, forming the enriched uranium product. The remaining vapor, which is depleted in U-235 (tails), passes unaffected through the photoionization/extractor zone and accumulates on collectors in the top of the separator. Tails and product collector surfaces operate at elevated temperatures so that deposited materials flow as segregated liquid streams. The separated uranium condensates (uranium enriched in

  19. President's 2015 Budget Proposal Makes Critical Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All-of-the-Above Energy Strategy and National Security | Department of Energy 5 Budget Proposal Makes Critical Investments in All-of-the-Above Energy Strategy and National Security President's 2015 Budget Proposal Makes Critical Investments in All-of-the-Above Energy Strategy and National Security March 4, 2014 - 2:20pm Addthis U.S. Secretary of Energy Ernest Moniz discusses President Obama's 2015 budget proposal in a briefing at the Energy Department on March 4, 2014. NEWS MEDIA CONTACT

  20. Search for excited and exotic muons in the mu gamma decay channel in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Barcelona, Autonoma U. /Baylor U. /Bologna U. /Brandeis U. /UC, Davis /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-06-01

    The authors present a search for excited and exotic muon states {mu}*, conducted using an integrated luminosity of 371 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV at the Tevatron with the CDF II detector. They search for associated production of {mu}{mu}* followed by the decay {mu}* {yields} {mu}{gamma}, resulting in the {mu}{mu}{gamma} final state. They compare the data to model predictions as a function of the mass of the excited muon M{sub {mu}*}, the compositeness energy scale {Lambda}, and the gauge coupling factor f. No signal above the standard model expectation is observed in the {mu}{gamma} mass spectrum. In the contact interaction model, they exclude 107 < M{sub {mu}*} < 853 GeV/c{sup 2} for {Lambda} = M{sub {mu}*}; in the gauge-mediated model, they exclude 100 < M{sub {mu}*} < 410 GeV/c{sup 2} for f/{Lambda} = 10{sup -2} GeV{sup -1}. These 95% confidence level exclusions extend previous limits and are the first hadron collider results on {mu}* production in the gauge-mediated model.

  1. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, aμhvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore » μhvp. The final result involving an estimate of the systematic uncertainty aμhvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less

  2. Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

    2012-05-01

    In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

  3. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  4. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect (OSTI)

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  5. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. The final result involving an estimate of the systematic uncertainty a?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

  6. A comprehensive comparison for simulations of cosmic-ray muons underground

    SciTech Connect (OSTI)

    Villano, A. N.; Cushman, P.; Kennedy, A.; Empl, A.; Lindsay, S.

    2013-08-08

    The two leading simulation frameworks used for the simulation of cosmic-ray muons underground are FLUKA and Geant4. There have been in the past various questions raised as to the equivalence of these codes regarding cosmogenically produced neutrons and radioactivity in an underground environment. Many experiments choose one of these frameworks, and because they typically have different geometries or locations, the issues relating to code comparison are compounded. We report on an effort to compare the results of each of these codes in simulations which have simple geometry that is consistent between the two codes. It is seen that in terms of integrated neutron flux and neturon capture statistics the codes agree well in a broad sense. There are, however, differences that will be subject of further study. Comparisons of the simulations to available data are considered and the difficulties of such comparisons are pointed out.

  7. Spin ice: magnetic excitations without monopole signatures using muon spin rotation

    SciTech Connect (OSTI)

    Dunsiger, Sarah [Technical University, Munich, Germany; Aczel, Adam A. [McMaster University; Arguello, Carlos [Columbia University; Dabkowska, H. A. [McMaster University; Dabkowski, A [McMaster University; Du, Mao-Hua [ORNL; Goko, Tatsuo [Columbia University; Javanparast, B [University of Waterloo, Canada; Lin, T [University of Waterloo, Canada; Ning, F. L. [McMaster University; Noad, H. M. [McMaster University; Singh, David J [ORNL; Williams, T.J. [McMaster University; Uemura, Yasutomo J. [Columbia University; Gingras, M.P.J. [University of Waterloo, Canada; Luke, Graeme M. [McMaster University

    2011-01-01

    Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation ({mu}SR) experiment [S.T. Bramwell et al., Nature (London) 461 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of {mu}SR experiments in Dy{sub 2}Ti{sub 2}O{sub 7} that such an effect is not observable in a TF {mu}SR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.

  8. Canister Transfer Facility Criticality Calculations

    SciTech Connect (OSTI)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  9. Critical Skills Master's Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skills Master's Program (CSMP): The Critical Skills Master's Program (CSMP) provides exceptional bachelor's-level candidates with the opportunity to pursue a fully funded Master's of Science degree. Successful applicants will become regular full-time Sandia employees and join multidisciplinary teams that are advancing the frontiers of science and technology to solve the world's greatest challenges. Program Requirements: * Apply to a minimum of 3 nationally accredited universities. * Successfully

  10. Only critical information was scanned

    Office of Legacy Management (LM)

    Only critical information was scanned. Entire document is available upon request - Click here to email a

  11. Top 10 Things You Didn't Know About Critical Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials

  12. Criticality Safety Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-STD-1173-2009 April 2009 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1173-2009 ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1173-2009 iii APPROVAL The Federal

  13. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. CMI Social Media | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social Media Facebook: Critical Materials Institute Twitter: CMI_hub LinkedIn: Critical Materials Institute Flickr: Critical Materials Institute

  15. Peter Dent, Electron Energy Corporation, Strategies for More...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peter Dent, Electron Energy Corporation, Strategies for More Effective Critical Materials Use Peter Dent, Electron Energy Corporation, Strategies for More Effective Critical Materials ...

  16. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Production and Trade: An Overview of Some Macroeconomic Issues Vipin Arora November 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES November 2014 Vipin Arora | U.S. Energy Information

  17. Energy Delivery Systems Cybersecurity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity » Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the reliability and resilience of the nation's energy infrastructure. Cybersecurity of energy delivery systems is critical for protecting the energy infrastructure and the integral function that it serves in our lives. OE

  18. Energy Delivery Systems Cybersecurity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the reliability and resilience of the nation's energy infrastructure. Cybersecurity of energy delivery systems is critical for protecting the energy infrastructure and the integral function that it serves in our lives. OE designed the Cybersecurity for Energy Delivery Systems

  19. Base Technology and Tools for Super Critical Reservoir | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Base Technology and Tools for Super Critical Reservoir Base Technology and Tools for Super Critical Reservoir Project objective: Develop building blocks necessary for robust tools that can operate in supercritical environments. high_henfling_super_critical_reservoir.pdf (305.92 KB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Development of a HT Seismic Tool Harsh Environment Silicon Carbide Sensor Technology for Geothermal

  20. CMI at Mines Hosts 160 Sixth Graders | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI at Mines Hosts 160 Sixth Graders Colorado School of Mines graduate student Mandi Hutchinson shows a compact fluorescent light bulb as she discusses the use of critical materials and rare earths in current technologies. The Denver School of Science and Technology's (DSST) College View sixth graders visited the Colorado School of Mines campus on Wednesday, July 8, for their fourth annual visit. More than 160 students enjoyed critical materials and energy presentations delivered by the Critical

  1. AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE

    SciTech Connect (OSTI)

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others

    2011-12-01

    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  2. CMI Develops Critical Materials Museum Exhibit | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Develops Critical Materials Museum Exhibit People view CMI exhibit at Colorado School of Mines Geology Museum The Critical Materials Institute developed a museum exhibit at the Colorado School of Mines Geology Museum. The Critical Materials Museum Exhibit is a prototype exhibit for education professionals interested in building a similar exhibit. A series of "how to" reports is being generated at key stages of the design-build process: First report: Critical Materials

  3. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  4. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  5. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC protonproton collision data

    SciTech Connect (OSTI)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at ?s = 78 TeV in 20112012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/? ? ??, Z ? ?? and ? ? ?? decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |?| < 2.7 and 5 ? pT ? 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ? 10 GeV, to 4% at large rapidity and pT ? 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.

  6. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and Υ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲ pT ≲ 100 GeV) the efficiencymore » is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≃ 10 GeV, to 4% at large rapidity and pT ≃ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.« less

  7. Diana Bauer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diana Bauer About Us Diana Bauer - Office Director for Energy Systems Analysis and Integration Most Recent New Request for Information to Inform Department of Energy Critical ...

  8. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  9. Measurement of spin correlations in t-tbar production using the matrix element method in the muon+jets final state in pp collisions at ?(s) = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-20

    The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. We then compare the data with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Furthermore, by using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 0.08 (stat)+0.15 -0.13 (syst), representing the most precise measurement of this quantity in the lepton+jets final state to date.

  10. The MuCap experiment: A measurement of the muon capture rate in hydrogen gas

    SciTech Connect (OSTI)

    Banks, T. I.

    2007-10-26

    We have recently measured the rate of nuclear muon capture by the proton, using a novel technique which involves a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S} = 725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2} = 0.88m{sub {mu}}{sup 2}) = 7.3{+-}1.1, is extracted. This result is consistent with theoretical predictions for g{sub P} that are based on the approximate chiral symmetry of QCD.

  11. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claus, R.; /SLAC

    2015-10-27

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  12. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; et al

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  13. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  14. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future US-EU-Japan Working Group on Critical Materials.pdf (120.49

  15. A Web-Based Nuclear Criticality Safety Bibliographic Database

    SciTech Connect (OSTI)

    Koponen, B L; Huang, S

    2007-02-22

    A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions.

  16. Critical Materials Institute |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    The Ames Laboratory | U.S. Department of Energy Search form Search Search Home Home CMI Materials Research Inventions Projects Researchers Webinars News Resources Success Stories US RE Magnet Patents Table Webinars Education Resources for K-12 Outreach in 2016 Courses Exhibit Webinars Working with CMI Affiliates Associates Team ORNL, Oddello sign CRADA for work on pulling magnets from used hard disk drives signing ceremony for CMI and Oddello to work together to recover rare earth magnets from

  17. CMI hosts EU, Japan to discuss global critical materials strategy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute CMI hosts EU, Japan to discuss global critical materials strategy mlthach's picture Submitted by mlthach on Wed, 09/10/2014 - 18:00 Finding ways to ensure the planet's supply of rare earths and other materials necessary for clean energy technologies is a global challenge, and experts from around the world gathered to meet it at the fourth annual EU-US-Japan Trilateral Conference on Critical Materials on Monday (September 8, 2014). The U.S. Department of Energy's

  18. Midwest Building Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Adjust Energy Conservation Measure (ECM) Requirements to Meet Opposition Critics and State Code Mandates * Develop an Implementation Plan Simultaneously but Separately ...

  19. ENERGY SMART INDUSTRIAL PARTNER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide summary of the critical baseline systems at a facility and identify potential energy efficiency measures. The assessment would provide ballpark estimates of efficiency...

  20. Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rev. 1) | Department of Energy Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) The Department of Energy (DOE) has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as

  1. SILENE Benchmark Critical Experiments for Criticality Accident Alarm Systems

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Reynolds, Kevin H.

    2011-01-01

    In October 2010 a series of benchmark experiments was conducted at the Commissariat a Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE [1] facility. These experiments were a joint effort between the US Department of Energy (DOE) and the French CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems (CAASs). This presentation will discuss the geometric configuration of these experiments and the quantities that were measured and will present some preliminary comparisons between the measured data and calculations. This series consisted of three single-pulsed experiments with the SILENE reactor. During the first experiment the reactor was bare (unshielded), but during the second and third experiments it was shielded by lead and polyethylene, respectively. During each experiment several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor, and some of these detectors were themselves shielded from the reactor by high-density magnetite and barite concrete, standard concrete, and/or BoroBond. All the concrete was provided by CEA Saclay, and the BoroBond was provided by Y-12 National Security Complex. Figure 1 is a picture of the SILENE reactor cell configured for pulse 1. Also included in these experiments were measurements of the neutron and photon spectra with two BICRON BC-501A liquid scintillators. These two detectors were provided and operated by CEA Valduc. They were set up just outside the SILENE reactor cell with additional lead shielding to prevent the detectors from being saturated. The final detectors involved in the experiments were two different types of CAAS detectors. The Babcock International Group provided three CIDAS CAAS detectors, which measured photon dose and dose rate with a Geiger-Mueller tube. CIDAS detectors are currently in

  2. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  3. Energy related applications of elementary particle physics

    SciTech Connect (OSTI)

    Rafelski, J.

    1989-10-30

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the t{mu}-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X{sup {minus}} is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs.

  4. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect (OSTI)

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  5. Expanding the Tribal Role in Carrying Out a Critical Mission in Indian

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Country | Department of Energy Expanding the Tribal Role in Carrying Out a Critical Mission in Indian Country Expanding the Tribal Role in Carrying Out a Critical Mission in Indian Country July 19, 2016 - 2:28pm Addthis Christopher Clark Deschene Christopher Clark Deschene Director, Office of Indian Energy Policy and Programs I'm driven by a critical mission: to maximize the development and deployment of energy solutions for the benefit of American Indians and Alaska Natives. Our blueprint

  6. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    My Account Primary tabs Log in(active tab) Request new password Username * Enter your Critical Materials Institute username. Password * Enter the password that accompanies your ...

  7. CMI Webinar: Critical Elements in Phosphate | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Elements in Phosphate The CMI Webinar series began with a presentation on Critical Elements in Phosphate by Patrick Zhang, Florida Industrial and Phosphate Research Institute (FIPR), on March 24, 2015. The recording of the webinar runs nearly 38 minutes (37:54

  8. Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s=13 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-05-23

    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s=13 TeV in 2015. Using a large sample of J/ψ → μμ and Z → μμ decays from 3.2 fb-1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. Furthermore, the reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| < 2.5 and 52.2 , the pT resolution for muons from Z → μμ decays is 2.9%more » while the precision of the momentum scale for low-pT muons from J/ψ → μμ decays is about 0.2% .« less

  9. : The Resumption of Criticality Experiments Facility Operations...

    Broader source: Energy.gov (indexed) [DOE]

    nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National Criticality Safety Program. ...

  10. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - II: Pion Production Target

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Cavalleri, Emanuela; Karmanov, Fedor I.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Vecchi, Marcello

    2001-03-15

    The possibility of using a liquid lithium primary target for the 14-MeV intense neutron source (INS) based on muon-catalyzed fusion ({mu}CF) (the {mu}CF-INS) is discussed. The description of the thermohydraulic and mechanical analysis that suggested the proposed geometry is presented. Particular attention is given to the thermal parameter evaluation since these quantities have a great influence on the choice of target design. According to the calculations, the lithium primary target variant can be considered for future {mu}CF-INS realization.

  11. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  12. Energy Modeling Software

    Broader source: Energy.gov [DOE]

    Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration...

  13. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  14. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  15. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M; Wagner, John C

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  16. Microsoft Word - Critical Infrastructure Security and Resilience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE ...

  17. Sensitivity to electronvolt-scale sterile neutrinos at a 3.8-GeV/c muon decay ring

    SciTech Connect (OSTI)

    Tunnell, Christopher D.

    2013-03-01

    The liquid-scintillator neutrino-detector (LSND) and mini booster neutrino experiment (MiniBooNE) experiments claim to observe the oscillation $\\bar{v}$μ → $\\bar{v}$e, which can only be explained by additional neutrinos and is a claim that must be further tested. This thesis proposes a new accelerator and experiment called neutrinos from stored muons ( STORM) to refute or confirm the oscillation these claims by studying the CPT-equivalent channel ve → vμ . A 3.8-GeV/c muon decay ring is proposed with neutrino detectors placed 20 m and 2000 m from the decay ring. The detector technology would be a magnetized iron sampling calorimeter, where the magnetic field is induced by a superconducting transmission line. In a frequentist study, the sensitivity of this experiment after 5 years would be >10σ . The range of the thesis discussion starts with the proton front-end design and ends with neutrino parameter estimation. After describing the phenomenology of sterile neutrinos, the facility and detector performance work is presented. Finally, the systematics are explained before the sensitivity and parameter-estimation works are explained

  18. A search for long-lived particles that stop in the CMS detector and decay to muons

    SciTech Connect (OSTI)

    Alimena, Juliette

    2016-01-01

    A search for long-lived particles that are produced in proton-proton collisions at the CERN LHC, come to rest in the CMS detector, and decay to muons is presented. The decays of the stopped particles could be observed during the intervals between LHC beam crossings, at times that are well separated from any proton-proton collisions. The analysis uses 19.7 1/fb of 8 TeV data collected by CMS in 2012, during a search interval of 293 hours of trigger livetime. Massive, long-lived particles do not exist in the Standard Model, and so any sign of them would be an indication of new physics. The results are interpreted with a model that predicts a long-lived particle that has a charge of twice the electron charge and that behaves like a lepton. Cross section limits are set for each long-lived particle mass as a function of lifetime, for lifetimes between 100 ns and 10 days. These are the first limits for long-lived stopped particles that decay to muons.

  19. Nonuniversal gaugino masses and muong-2

    SciTech Connect (OSTI)

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; n, Cem Salih

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125126 GeV Higgs boson mass and the WMAP dark matter bounds.

  20. Preparation of ortho-para ratio controlled D{sub 2} gas for muon-catalyzed fusion

    SciTech Connect (OSTI)

    Imao, H.; Ishida, K.; Matsuzaki, T.; Matsuda, Y.; Iwasaki, M.; Kawamura, N.; Strasser, P.; Toyoda, A.; Nagamine, K.

    2008-05-15

    A negative muon in hydrogen targets, e.g., D{sub 2} or D-T mixture, can catalyze nuclear fusions following a series of atomic processes involving muonic hydrogen molecular formation (muon-catalyzed fusion, {mu}CF). The ortho-para state of D{sub 2} is a crucial parameter not only for enhancing the fusion rate but also to precisely investigate various muonic atom processes. We have developed a system for controlling and measuring the ortho-para ratio of D{sub 2} gas for {mu}CF experiments. We successfully collected para-enriched D{sub 2} without using liquid-hydrogen coolant. Ortho-enriched D{sub 2} was also obtained by using a catalytic conversion method with a mixture of chromium oxide and alumina. The ortho-para ratio of D{sub 2} gas was measured with a compact Raman spectroscopy system. We produced large volume (5-30 l at STP), high-purity (less than ppm high-Z contaminant) D{sub 2} targets with a wide range of ortho-para ratios (ortho 20%-99%). By using the ortho-para controlled D{sub 2} in {mu}CF experiments, we observed the dependence of {mu}CF phenomena on the ortho-para ratio.