National Library of Energy BETA

Sample records for muon anomalous magnetic

  1. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  2. The measurement of the anomalous magnetic moment of the muon at Fermilab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Logashenko, I.

    2015-06-17

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Furthermore, we discuss the details of the future measurement and its current status.

  3. Leptophilic dark matter and the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

  4. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  5. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect (OSTI)

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  6. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. The final result involving an estimate of the systematic uncertainty a?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

  7. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, aμhvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore » μhvp. The final result involving an estimate of the systematic uncertainty aμhvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less

  8. tan{beta}-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Marchetti, Schedar; Mertens, Susanne; Nierste, Ulrich; Stoeckinger, Dominik

    2009-01-01

    We report on a two-loop supersymmetric contribution to the magnetic moment (g-2){sub {mu}} of the muon which is enhanced by two powers of tan{beta}. This contribution arises from a shift in the relation between the muon mass and Yukawa coupling and can increase the supersymmetric contribution to (g-2){sub {mu}} sizably. As a result, if the currently observed 3{sigma} deviation between the experimental and SM theory value of (g-2){sub {mu}} is analyzed within the minimal supersymmetric standard model (MSSM), the derived constraints on the parameter space are modified significantly: If (g-2){sub {mu}} is used to determine tan{beta} as a function of the other MSSM parameters, our corrections decrease tan{beta} by roughly 10% for tan{beta}=50.

  9. Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Porter, Frank C.

    2015-04-29

    The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons

  10. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  11. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  12. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  13. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  14. Muon g-2 Superconducting Magnet Commissioning Preparation

    SciTech Connect (OSTI)

    2015-06-26

    A time-lapse of the Fermilab muon g-2 ring being installed and prepped, from June 27, 2014 to June 5, 2015.

  15. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The...

  16. Anomalous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impurity ion heating from Alfvénic cascade in the reversed field pinch Varun Tangri, P. W. Terry, and Gennady Fiksel Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA ͑Received 15 January 2008; accepted 19 September 2008; published online 3 November 2008͒ Anomalous ion and impurity heating in reversed field pinch plasmas is addressed. Previous work ͓N.

  17. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory

  18. Anomalous magnetic behavior at the graphene/Co interface

    SciTech Connect (OSTI)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-07-14

    An intensive theoretical study on the interaction between graphene and transition metal atom has been carried out; however, its experimental verification is still lacking. To explore the theoretical prediction of antiferromagnetic coupling due to charge transfer between graphene and cobalt, epitaxial layer of cobalt is grown on graphene surface. Predicted antiferromagnetic interaction with Neel temperature (T{sub N}???32?K) which anomalously shifts to higher temperature (34?K) and becomes more prominent under application of magnetic field of 1 T is reported. Lowering of magnetoresistance as a consequence of this antiferromagnetic coupling at the interface is also observed.

  19. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect (OSTI)

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  20. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect (OSTI)

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  1. MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS

    SciTech Connect (OSTI)

    Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard

    2011-09-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.

  2. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect (OSTI)

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  3. Spin ice: magnetic excitations without monopole signatures using muon spin rotation

    SciTech Connect (OSTI)

    Dunsiger, Sarah [Technical University, Munich, Germany; Aczel, Adam A. [McMaster University; Arguello, Carlos [Columbia University; Dabkowska, H. A. [McMaster University; Dabkowski, A [McMaster University; Du, Mao-Hua [ORNL; Goko, Tatsuo [Columbia University; Javanparast, B [University of Waterloo, Canada; Lin, T [University of Waterloo, Canada; Ning, F. L. [McMaster University; Noad, H. M. [McMaster University; Singh, David J [ORNL; Williams, T.J. [McMaster University; Uemura, Yasutomo J. [Columbia University; Gingras, M.P.J. [University of Waterloo, Canada; Luke, Graeme M. [McMaster University

    2011-01-01

    Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation ({mu}SR) experiment [S.T. Bramwell et al., Nature (London) 461 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of {mu}SR experiments in Dy{sub 2}Ti{sub 2}O{sub 7} that such an effect is not observable in a TF {mu}SR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.

  4. A novel precision measurement of muon g - 2 and EDM at J-PARC

    SciTech Connect (OSTI)

    Saito, Naohito; Collaboration: J-PARC g-2 /EDM Collaboration

    2012-07-27

    We propose a new experiment to measure the muon anomalous magnetic moment g - 2 and electric dipole moment with a novel technique called ultra-slow muon beam at J-PARC. Precision measurement of these dipole moments plays an important role in fundamental physics to search for a new physics beynd standard model. The concept of the experiment and its current status is described.

  5. Muon (g-2) Technical Design Report

    SciTech Connect (OSTI)

    Grange, J.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  6. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. ,

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of how to shield the detector and reduce the background are addressed in the Detector Chapter. Polarization of the muons allows many very interesting measurements which are discussed in the Physics Chapter. Unlike the electron collider in which the electron beam is highly polarized and the positron beam unpolarized, both muon beams may be partially polarized. It is necessary to select forward moving muons from the pion's decay and thus reduce the available number of muons and hence the luminosity. The necessary machine technology needed to achieve such a collider is discussed in the Option Chapter; at the moment it is not part of our point design, although such capability would almost certainly be incorporated into an actual device.

  7. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  8. Photon equation of motion with application to the electron's anomalous magnetic moment

    SciTech Connect (OSTI)

    Ritchie, A B

    2007-12-06

    The photon equation of motion previously applied to the Lamb shift is here applied to the anomalous magnetic moment of the electron. Exact agreement is obtained with the QED result of Schwinger. The photon theory treats the radiative correction to the photon in the presence of the electron rather than its inverse as in standard QED. The result is found to be first-order in the photon-electron interaction rather than second-order as in standard QED, introducing an ease of calculation hitherto unavailable.

  9. Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach

    SciTech Connect (OSTI)

    Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.; /SLAC

    2012-02-17

    We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.

  10. Next Generation Muon g-2 Experiments

    SciTech Connect (OSTI)

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  11. Synthesis and anomalous magnetic properties of hexagonal CoO nanoparticles

    SciTech Connect (OSTI)

    He, Xuemin; Shi, Huigang

    2011-10-15

    Highlights: {yields} The as-synthesized CoO nanoparticles are of pyramid configuration with hcp structure. {yields} The hexagonal CoO particles do not exhibit antiferromagnetic transition around 300 K. {yields} The CoO particles have relative large saturation magnetization and coercivity at 5 K. {yields} The shift of hysteresis loops is consistent with the result of multisublattice model. {yields} The particles contain intrinsic antiferromagnetic structure and uncompensated spins. -- Abstract: CoO nanoparticles in the 38-93 nm range have been prepared by thermal decomposition. The particles were characterized to be pyramid shape with a hexagonal close-packed structure. Their anomalous magnetic behavior includes: (i) vanishing of antiferromagnetic transition around 300 K; (ii) creation of hysteresis below a blocking temperature of 6-11 K; (iii) presence of relatively large moments and coercivities accompany with specific loop shifts at 5 K; and (iv) appearance of an additional small peak located in low field in the electron spin resonance spectrum. Further, the present results provide evidence for the existence of uncompensated surface spins. The coercivity and exchange bias decrease with increasing particle size, indicating a distinct size effect. These observations can be explained by the multisublattice model, in which the reduced coordination of surface spins causes a fundamental change in the magnetic order throughout the total CoO particle.

  12. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect (OSTI)

    Lancaster, T.; Pratt, F. L.; Blundell, S. J.; Steele, Andrew J.; Baker, Peter J.; Wright, Jack D.; Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  13. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  14. Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

    2012-05-01

    In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

  15. Extending theories on muon-specific interactions

    SciTech Connect (OSTI)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  16. Extending theories on muon-specific interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  17. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  18. Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.

    2015-11-24

    In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less

  19. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    SciTech Connect (OSTI)

    Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature To of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tbs volume collapse pressure of 53 GPa, the pressure dependence To(P) mirrors that of both Dy and Gd. However, at higher pressures To(P) for Tb becomes highly anomalous. This result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.

  20. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature To of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence To(P) mirrors that of both Dy and Gd. However, at higher pressures To(P) for Tb becomes highly anomalous. This result, together withmore » the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  1. Anomalous diffusion of field lines and charged particles in Arnold-Beltrami-Childress force-free magnetic fields

    SciTech Connect (OSTI)

    Ram, Abhay K.; Dasgupta, Brahmananda; Krishnamurthy, V.; Mitra, Dhrubaditya

    2014-07-15

    The cosmic magnetic fields in regions of low plasma pressure and large currents, such as in interstellar space and gaseous nebulae, are force-free in the sense that the Lorentz force vanishes. The three-dimensional Arnold-Beltrami-Childress (ABC) field is an example of a force-free, helical magnetic field. In fluid dynamics, ABC flows are steady state solutions of the Euler equation. The ABC magnetic field lines exhibit a complex and varied structure that is a mix of regular and chaotic trajectories in phase space. The characteristic features of field line trajectories are illustrated through the phase space distribution of finite-distance and asymptotic-distance Lyapunov exponents. In regions of chaotic trajectories, an ensemble-averaged variance of the distance between field lines reveals anomalous diffusion—in fact, superdiffusion—of the field lines. The motion of charged particles in the force-free ABC magnetic fields is different from the flow of passive scalars in ABC flows. The particles do not necessarily follow the field lines and display a variety of dynamical behavior depending on their energy, and their initial pitch-angle. There is an overlap, in space, of the regions in which the field lines and the particle orbits are chaotic. The time evolution of an ensemble of particles, in such regions, can be divided into three categories. For short times, the motion of the particles is essentially ballistic; the ensemble-averaged, mean square displacement is approximately proportional to t{sup 2}, where t is the time of evolution. The intermediate time region is defined by a decay of the velocity autocorrelation function—this being a measure of the time after which the collective dynamics is independent of the initial conditions. For longer times, the particles undergo superdiffusion—the mean square displacement is proportional to t{sup α}, where α > 1, and is weakly dependent on the energy of the particles. These super-diffusive characteristics, both of magnetic field lines and of particles moving in these fields, strongly suggest that theories of transport in three-dimensional chaotic magnetic fields need a shift from the usual paradigm of quasilinear diffusion.

  2. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  3. Anomalous Dynamical Line Shapes in a Quantum Magnet at Finite Temperature

    SciTech Connect (OSTI)

    Tennant D. A.; James A.; Lake, B.; Essler, F.H.L.; Notbohm, S.; Mikeska, H.-J.; Fielden, J.; Kogerler,, P.; Canfield, P.C.; Telling, M.T.F.

    2012-01-04

    The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.

  4. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    SciTech Connect (OSTI)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.

  5. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; et al

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  6. Correlation of anomalous write error rates and ferromagnetic resonance spectrum in spin-transfer-torque-magnetic-random-access-memory devices containing in-plane free layers

    SciTech Connect (OSTI)

    Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.; Heindl, Ranko

    2014-05-26

    In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power present in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.

  7. Anomalous-viscosity current drive

    DOE Patents [OSTI]

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  8. Muon Applications at the RIKEN-RAL Muon Facility

    SciTech Connect (OSTI)

    Ishida, K.

    2008-02-21

    Status of the muon beam at the RIKEN-RAL Muon Facility is presented as well as muon's applications for various kinds of scientific research such as muon catalyzed fusion, nuclear physics, condensed matter physics and surface and nano science.

  9. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+?} highly epitaxial thin films

    SciTech Connect (OSTI)

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.

    2014-01-14

    A giant magnetoresistance effect (?46% at 20?K under 7?T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+?} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  10. First-principles study on the relationship between magnetic anisotropy and anomalous Hall effect of bct-Fe{sub 50}Co{sub 50}

    SciTech Connect (OSTI)

    Hyodo, Kazushige Sakuma, Akimasa; Kota, Yohei

    2014-05-07

    We studied quantitative relationship between the intrinsic anomalous Hall conductivity (σ{sub xy}) and the uniaxial magnetic anisotropy constant (K{sub u}) of bct-Fe{sub 50}Co{sub 50} using first-principles calculation because these quantities originate from spin-orbit interaction. We found that the obtained σ{sub xy} and K{sub u} with changing the axial ratio c/a (1≤c/a≤√(2)) exhibit similar behavior mainly arising from the common band mixing of the minority-spin d{sub xy} and d{sub x{sup 2}−y{sup 2}} states near the Fermi level which is sensitive to c/a.

  11. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  12. 6D Muon Ionization Cooling with an Inverse Cyclotron

    SciTech Connect (OSTI)

    Summers, D. J.; Bracker, S. B.; Cremaldi, L. M.; Godang, R.; Palmer, R. B.

    2006-03-20

    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.

  13. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    SciTech Connect (OSTI)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic {tau} lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp(1)}, is estimated.

  14. Detector Background at Muon Colliders

    SciTech Connect (OSTI)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  15. Muon g−2 and Galactic Centre γ-ray excess in a scalar extension of the 2HDM type-X

    SciTech Connect (OSTI)

    Hektor, Andi; Kannike, Kristjan; Marzola, Luca

    2015-10-12

    We consider an extension of the lepto-specific 2HDM with an extra singlet S as a dark matter candidate. Taking into account theoretical and experimental constraints, we investigate the possibility to address both the γ-ray excess detected at the Galactic Centre and the discrepancy between the Standard Model prediction and experimental results of the anomalous magnetic moment of the muon. Our analyses reveal that the SS→τ{sup +}τ{sup −} and SS→bb-bar channels reproduce the Galactic Centre excess, with an emerging dark matter candidate which complies with the bounds from direct detection experiments, measurements of the Higgs boson invisible decay width and observations of the dark matter relic abundance. Addressing the anomalous magnetic moment of the muon imposes further strong constraints on the model. Remarkably, under these conditions, the SS→bb-bar channel still allows for the fitting of the Galactic Centre. We also comment on a scenario allowed by the model where the SS→τ{sup +}τ{sup −} and SS→bb-bar channels have comparable branching ratios, which possibly yield an improved fitting of the Galactic Centre excess.

  16. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  17. Muon Acceleration with RLA and Non-scaling FFAG Arcs

    SciTech Connect (OSTI)

    Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

    2010-05-01

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  18. Muon acceleration with RLA and non-scaling FFAG ARCS

    SciTech Connect (OSTI)

    Morozov, V.S.; Trbojevic, D.; Bogacz, A.

    2010-05-23

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  19. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  20. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  1. Testing the Muon g-2 Anomaly at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  2. Anomalous - viscosity current drive

    DOE Patents [OSTI]

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  3. The charmonium dissociation in an ''anomalous wind''

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less

  4. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A.

    2010-02-10

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  5. Design of the Large Acceptance Muon Beamline at J-PARC

    SciTech Connect (OSTI)

    Nakahara, K.; Miyake, Y.; Shimomura, K.; Strasser, P.; Nishiyama, K.; Kawamura, N.; Fujimori, H.; Makimura, S.; Koda, A.; Nagamine, K.; Ogitsu, T.; Yamamoto, A.; Adachi, T.; Sasaki, K.; Tanaka, K.; Kimura, N.; Makida, Y.; Ajima, Y.; Ishida, K.; Matsuda, Y.

    2008-02-21

    The Materials and Life Science Facility (MLF) is currently under construction at J-PARC in Tokai, Japan. The muon section of the facility will house the muon production target and four secondary beamlines used to transport the muons into two experimental halls. One of the beamlines is a large acceptance beamline (the so called Super Omega Muon beamline) which, when completed, will produce the largest intensity pulse muon beam in the world. The expected rate of surface muons for this beamline is 5x10{sup 8} {mu}{sup +}/s, and a cloud muon rate of 10{sup 7} {mu}{sup -}/s. The extracted muons will be used for projects involving the production of ultra-slow muons as well as for muon-catalyzed fusion. The beamline consists of the normal-conducting capture solenoids, the superconducting curved transport solenoids, and the Dai Omega-type axial focusing magnet. Currently, the capture and transport solenoids are under design, with the former in its final stages and the latter being finalized for construction of test coils. The design of the Dai Omega-type axial focusing magnet is under consideration with particular emphasis on its compatibility with the transport solenoids.

  6. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  7. Optimization of the muon stopping target for the MU2E collaboration

    SciTech Connect (OSTI)

    Hodge, Zachary Donovan

    2013-01-01

    The Mu2e Experiment utilizes state of the art accelerators, superconducting magnets, detectors, electronics, and other equipment to maximize the sensitivity to such a rare process. Many of the components of the Mu2e hardware are critical to the overall physics capability of the experiment. The muon stopping target, where muons are stopped and may interact via this very rare process, is one such component where any improvements beyond the base design can have a significant impact on the experiment. This thesis explores possible modifications to the geometry of the muon stopping target. The goal is to determine if any modifications can improve the sensitivity of observing the muon conversion process.

  8. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  9. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  10. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  11. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; Sadovskiy, Y.; Zlobin, Alexander V; /Fermilab

    2007-08-01

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  12. Muon Physics in the 21st Century

    SciTech Connect (OSTI)

    Marciano, Bill

    2005-05-11

    Intense muon sources have great potential in fundamental physics and applied science. An overview of future possibilities ranging from muon-electron conversion to muon catalyzed fusion and medical diagnostics will be given.

  13. Muon Acceleration R and D

    SciTech Connect (OSTI)

    Torun, Yagmur

    2009-12-17

    An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

  14. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    muons to search for rare and hidden phenomena in the quantum realm. In recent years, particle physicists have increasingly turned their attention to finding evidence for physics...

  15. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  16. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect (OSTI)

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  17. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  18. Measurement of the multiple-muon charge ratio in the MINOS Far Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2016-03-30

    The charge ratio, Rμ = Nμ+/Nμ-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ = 1.104±0.006(stat)-0.010+0.009(syst). As a result, this measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions atmore » TeV energies.« less

  19. Berry phase mechanism of the anomalous Hall effect in a disordered

    Office of Scientific and Technical Information (OSTI)

    two-dimensional magnetic semiconductor structure. (Journal Article) | SciTech Connect Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. Citation Details In-Document Search Title: Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a

  20. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect (OSTI)

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  1. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  2. Anomalous is ubiquitous

    SciTech Connect (OSTI)

    Eliazar, Iddo; Klafter, Joseph

    2011-09-15

    Brownian motion is widely considered the quintessential model of diffusion processes-the most elemental random transport processes in Science and Engineering. Yet so, examples of diffusion processes displaying highly non-Brownian statistics-commonly termed 'Anomalous Diffusion' processes-are omnipresent both in the natural sciences and in engineered systems. The scientific interest in Anomalous Diffusion and its applications is growing exponentially in the recent years. In this Paper we review the key statistics of Anomalous Diffusion processes: sub-diffusion and super-diffusion, long-range dependence and the Joseph effect, Levy statistics and the Noah effect, and 1/f noise. We further present a theoretical model-generalizing the Einstein-Smoluchowski diffusion model-which provides a unified explanation for the prevalence of Anomalous Diffusion statistics. Our model shows that what is commonly perceived as 'anomalous' is in effect ubiquitous. - Highlights: > The article provides an overview of Anomalous Diffusion (AD) statistics. > The Einstein-Smoluchowski diffusion model is extended and generalized. > The generalized model universally generates AD statistics. > A unified 'universal macroscopic explanation' for AD statistics is established. > AD statistics are shown to be fundamentally connected to robustness.

  3. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  4. Research and Development of Future Muon Collider

    SciTech Connect (OSTI)

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  5. The Gran Sasso muon puzzle

    SciTech Connect (OSTI)

    Fernandez-Martinez, Enrique; Mahbubani, Rakhi E-mail: rakhi@cern.ch

    2012-07-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2?. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We do not see this same period in the stratospheric temperature data.

  6. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  7. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good but not super conductors at cryogenic temperatures, can be used.

  8. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  9. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  10. Quasi-isochronous muon collection channels

    SciTech Connect (OSTI)

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.

  11. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  12. Neutrino Factory and Muon Collider Fellow

    SciTech Connect (OSTI)

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  13. Cosmic muons, as messengers from the Universe

    SciTech Connect (OSTI)

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  14. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a MuonCollider require large numbers of challenging superconducting magnets,including large aperture solenoids, closely spaced solenoids withopposing fields, shielded solenoids, very high field (~;40-50 T)solenoids, and storage ring magnets with a room-temperature midplanesection. Uses for the various magnets will be outlined, along withR&D plans to develop these and other required components of suchmachines.

  15. Fickian dispersion is anomalous

    SciTech Connect (OSTI)

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  16. Fickian dispersion is anomalous

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  17. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  18. Progress on muon{sup +}muon{sup {minus}} colliders

    SciTech Connect (OSTI)

    Palmer, R.B.

    1997-05-01

    Advantages and disadvantages of muon colliders are discussed. Recent results of calculations of the radiation hazard from muon decay neutrinos are presented. This is a significant problem for machines with center of mass energy of 4 TeV, but of no consequence for lower energies. Plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 4 TeV collider, studies are now starting on a machine near 100 GeV that could be a factory for the s-channel production of Higgs particles. Proposals are also presented for a demonstration of ionization cooling and of the required targeting, pion capture, and phase rotation rf.

  19. Anomalous energy transport across topological insulator superconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator ...

  20. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  1. The US Muon Accelerator Program (MAP)

    SciTech Connect (OSTI)

    Bross, Alan D.

    2011-10-06

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R and D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  2. Muon fluxes and showers from dark matter annihilation in the...

    Office of Scientific and Technical Information (OSTI)

    We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We also calculate ...

  3. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  4. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Neutron Production by Muon Spallation I: Theory Citation Details In-Document Search Title: Neutron Production by Muon Spallation I: Theory We describe the physics and codes ...

  5. Pion Contamination in the MICE Muon Beam (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Pion Contamination in the MICE Muon Beam The international Muon Ionization Cooling Experiment (MICE) will perform a systematic ...

  6. Neutron diffraction study and anomalous negative thermal expansion in

    Office of Scientific and Technical Information (OSTI)

    non-superconducting PrFe1-xRuxAsO (Journal Article) | SciTech Connect Neutron diffraction study and anomalous negative thermal expansion in non-superconducting PrFe1-xRuxAsO Citation Details In-Document Search Title: Neutron diffraction study and anomalous negative thermal expansion in non-superconducting PrFe1-xRuxAsO Neutron powder diraction has been used to investigate the structural and magnetic behavior of the isoelectronically doped Fe pnictide material PrFe1-xRuxAsO. Substitution of

  7. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect (OSTI)

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  8. Cold fusion catalyzed by muons and electrons

    SciTech Connect (OSTI)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  9. Muon spin relaxation and nonmagnetic Kondo state in PrInAg{sub 2}

    SciTech Connect (OSTI)

    MacLaughlin, D. E.; Department of Physics, University of California, Riverside, California 92521-0413 ; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg{sub 2}. The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at {approx}0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the {sup 141}Pr nuclear moment at low temperatures. This argues against a Pr{sup 3+} ground-state electronic magnetic moment, and is strong evidence for the doublet {gamma}{sub 3} crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr{sup 3+} ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg{sub 2}. (c) 2000 The American Physical Society.

  10. Systematic muon capture rates in PQRPA

    SciTech Connect (OSTI)

    Samana, A. R.; Sande, D.; Krmpoti?, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  11. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  12. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen

    Office of Scientific and Technical Information (OSTI)

    Tunnel Underground Laboratory (Journal Article) | SciTech Connect Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory Citation Details In-Document Search This content will become publicly available on April 7, 2017 Title: Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory Authors: Blyth, S. C. ; Chan, Y. L. ; Chen, X. C. ; Chu, M. C. ; Cui, K. X. ; Hahn, R. L. ; Ho, T. H. ; Hsiung, Y. B.

  13. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    High-energy Neutrino Beams; Review of Modern Physics, Vol. 61, Issue 3: 533 - 545; July 1989 Top Additional Web Pages: Discovery of the Muon-Neutrino, 1988 The 1988 Nobel Prize in...

  14. Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb? of pp? collisions

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Arov, M.; Askew, A.; sman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Prez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero y Garzn, G. J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.

    2011-09-16

    We present an updated measurement of the anomalous like-sign dimuon charge asymmetry Absl for semileptonic b-hadron decays in 9.0 fb? of pp? collisions recorded with the D0 detector at a center-of-mass energy of ?s=1.96 TeV at the Fermilab Tevatron collider. We obtain Absl=(-0.7870.172(stat)0.093(syst))%. This result differs by 3.9 standard deviations from the prediction of the standard model and provides evidence for anomalously large CP violation in semileptonic neutral B decay. The dependence of the asymmetry on the muon impact parameter is consistent with the hypothesis that it originates from semileptonic b-hadron decays.

  15. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect (OSTI)

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  16. Superconducting solenoids for muon-cooling in the neutrino factory

    SciTech Connect (OSTI)

    Green, M.A.; Miller, J.R.; Prestemon, S.

    2001-05-12

    The cooling channel for a neutrino factory consists of a series of alternating field solenoidal cells. The first section of the bunching cooling channel consists of 41 cells that are 2.75-m long. The second section of the cooling channel consists of 44 cells that are 1.65-m long. Each cell consists of a single large solenoid with an average diameter of 1.5 m and a pair of flux reversal solenoids that have an average diameter of 0.7 to 0.9 meters. The magnetic induction on axis reaches a peak value of about 5 T at the end of the second section of the cooling channel. The peak on axis field gradients in flux reversal section approaches 33 T/m. This report describes the two types of superconducting solenoid magnet sections for the muon-cooling channel of the proposed neutrino factory.

  17. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  18. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  19. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  20. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect (OSTI)

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  1. Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons

    SciTech Connect (OSTI)

    Schwellenbach, D.

    2012-07-17

    Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

  2. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) ... NEUTRINO OSCILLATION; NEUTRINOS; NUCLEONS; SCATTERING; SIMULATION; STATISTICS; TARGETS

  3. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  4. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  5. Higgs boson and Z physics at the first muon collider

    SciTech Connect (OSTI)

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

  6. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect (OSTI)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  7. FFAG Designs for Muon Collider Acceleration

    SciTech Connect (OSTI)

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  8. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  9. 44th Annual Anomalous Absorption Conference

    SciTech Connect (OSTI)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded beyond ICF-related laser-plasma interactions to encompass closely related technical areas including laser particle acceleration, high-intensity laser effects, short­ pulse laser interactions, PIC and Vlasov/rad-hydro modeling, inertial and magnetic fusion plasmas, advanced plasma diagnostics, alternate ignition schemes, EOS/transport/opacity, and this year, x­ ray free-electron lasers and their applications. The conference continues to be a showcase for the presentation and discussion of the latest developments in these areas. II. Meeting Report The conference was extremely successful with more than one hundred participants. There were ninety-nine (99) abstracts submitted. There were forty-four (44) presentations including eleven (11) invited talks. The following topics were covered: a) Radiation Hydrodynamics b) Implosion Plasma Kinetic Effects c) Alternate Ignition Schemes d) Astrophysical Phenomena e) Opacity/Transport/EOS f) High Power Lasers and Facilities g) High-Intensity Laser-Matter Interactions h) Hydrodynamics and Hydro-instabilities i) Hot Dense Plasma Atomic Processes j) High Energy Density Physics k) Laser Particle Acceleration Physics l) Advanced Plasma Diagnostics m) Advanced light sources and applications Despite significant advertising, there were two students who applied for the travel grants: Charlie Jarrott and Joohwan Kim. The total funds expended were $3,216.14.

  10. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  11. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  12. Hadron production in e+e- annihilation at BABAR, and implication for the

    Office of Scientific and Technical Information (OSTI)

    muon anomalous magnetic moment (Conference) | SciTech Connect Conference: Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment Citation Details In-Document Search Title: Hadron production in e+e- annihilation at BABAR, and implication for the muon anomalous magnetic moment The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our

  13. Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb⁻¹ of pp̄ collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al

    2011-09-16

    We present an updated measurement of the anomalous like-sign dimuon charge asymmetry Absl for semileptonic b-hadron decays in 9.0 fb⁻¹ of pp̄ collisions recorded with the D0 detector at a center-of-mass energy of √s=1.96 TeV at the Fermilab Tevatron collider. We obtain Absl=(-0.787±0.172(stat)±0.093(syst))%. This result differs by 3.9 standard deviations from the prediction of the standard model and provides evidence for anomalously large CP violation in semileptonic neutral B decay. The dependence of the asymmetry on the muon impact parameter is consistent with the hypothesis that it originates from semileptonic b-hadron decays.

  14. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

    2012-05-01

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  15. Eu3Ir2In15: A mixed-valent and vacancy-filled variant of the Sc5Co4Si10 structure type with anomalous magnetic properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; Banerjee, Swastika; Pati, Swapan K.; Balasubramanian, Mahalingam; Peter, Sebastian C.

    2015-10-27

    Here, a new compound, Eu3Ir2In15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μeff) of this compound is 7.35 μB/Eu ion with paramagnetic Curie temperature (θp) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurements was confirmed by XANES measurements. Themore » compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu3Ir2In15 and hypothetical vacancy variant Eu5Ir4In10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE5T4X10 would exist with X as a group 13 elements.« less

  16. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  17. Matched Optics of Muon RLA and Non-Scaling FFAG ARCS

    SciTech Connect (OSTI)

    V.S. Morozov, S.A. Bogacz, Y. Roblin, K.B. Beard, D. Trbojevic

    2011-03-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs.

  18. Top Quark Anomalous Couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We ...

  19. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators ...

  20. Anomalous spin precession and spin Hall effect in semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous spin precession and spin Hall effect in semiconductor quantum wells Title: Anomalous spin precession and spin Hall effect in semiconductor quantum wells Authors: Bi, ...

  1. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  2. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultt fr Physik and Astronomie, Theoretische Physik I, Ruhr-Universitt Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  3. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  4. Melvin Schwartz and the Discovery of the Muon Neutrino

    Office of Scientific and Technical Information (OSTI)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  5. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    Double Differential Cross Section (Conference) | SciTech Connect First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup

  6. Muon Application to Advanced Bio- and Nano-Sciences

    SciTech Connect (OSTI)

    Nagamine, Kanetada

    2008-02-21

    Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

  7. Muon Cooling R and D Progress in the US

    SciTech Connect (OSTI)

    Li Derun

    2008-02-21

    Muon ionization cooling R and D is important for a neutrino factory and future muon collider. In addition to theoretical studies, much progress has been made in muon cooling channel hardware R and D since NuFact-2006. This paper reports the progress on hardware R and D that includes experimental RF test programs using 805-MHz RF cavity, superconducting (SC) solenoids (coupling coils), 201-MHz RF cavity, liquid hydrogen absorber and MUCOOL Test Area (MTA) experiment preparation for beam tests.

  8. Chiral effective field theory predictions for muon capture on...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chiral effective field theory predictions for muon capture on deuteron and 3He Citation Details In-Document Search Title: Chiral effective field theory...

  9. Muon Neutrino to Electron Neutrino Oscillation in NO$\

    SciTech Connect (OSTI)

    Sachdev, Kanika

    2015-08-01

    NOvA is a long-baseline neutrino oscillation experiment optimized for electron neu- trino ( e) appearance in the NuMI beam, a muon neutrino ( $\

  10. The performance of the MICE muon beam line

    SciTech Connect (OSTI)

    Rayner, Mark Alastair

    2011-10-06

    The Muon Ionization Cooling Experiment is one lattice cell of a cooling channel suitable for conditioning the muon beam at the front end of a Neutrino Factory or Muon Collider. The beam line designed to transport muons into MICE has been installed, and data was collected in 2010. In this paper the method of reconstructing longitudinal momentum and transverse trace space using two timing detectors is discussed, and a preliminary simulation of the performance of a measured beam in the cooling channel is presented.

  11. Reduced Lorenz models for anomalous transport and profile resilience

    SciTech Connect (OSTI)

    Rypdal, K.; Garcia, O. E.

    2007-02-15

    The physical basis for the Lorenz equations for convective cells in stratified fluids, and for magnetized plasmas imbedded in curved magnetic fields, are reexamined with emphasis on anomalous transport. It is shown that the Galerkin truncation leading to the Lorenz equations for the closed boundary problem is incompatible with finite fluxes through the system in the limit of vanishing diffusion. An alternative formulation leading to the Lorenz equations is proposed, invoking open boundaries and the notion of convective streamers and their back-reaction on the profile gradient, giving rise to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension-reducing approximations are discussed.

  12. Search for anomalous production of multiple leptons in association with $W$ and $Z$ bosons at CDF

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-02-01

    This paper presents a search for anomalous production of multiple low-energy leptons in association with a W or Z boson using events collected at the CDF experiment corresponding to 5.1 fb{sup -1} of integrated luminosity. This search is sensitive to a wide range of topologies with low-momentum leptons, including those with the leptons near one another. The observed rates of production of additional electrons and muons are compared with the standard model predictions. No indications of phenomena beyond the standard model are found. A 95% confidence level limit is presented on the production cross section for a benchmark model of supersymmetric hidden-valley Higgs production. Particle identification efficiencies are also provided to enable the calculation of limits on additional models.

  13. Anomalous energy transport across topological insulator superconductor

    Office of Scientific and Technical Information (OSTI)

    junctions (Journal Article) | SciTech Connect Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator superconductor junctions Authors: Ren, Jie ; Zhu, Jian-Xin Publication Date: 2013-04-15 OSTI Identifier: 1102080 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 87; Journal Issue: 16; Journal ID: ISSN

  14. Design Concepts for Muon-Based Accelerators (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators You are accessing a document from the...

  15. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  16. Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

    SciTech Connect (OSTI)

    Wang, Li; Xu, FengYu; Wu, Hong; Liu, XiaoKum; Li, LanKai; Guo, XingLong; Chen, AnBin; Green, Michael A; Li, D.R.; Virostek, Steve; Pan, H.

    2008-08-02

    The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory in the UK. The coupling magnet is a superconducting solenoid mounted around four 201MHz RF cavities, which produces magnetic field up to 2.6 T on the magnet centerline to keep muons within the iris of RF cavities windows. The coupling coil with inner radius of 750mm, length of 285mm and thickness of 102.5mm will be cooled by a pair of 1.5 W at 4.2 K small coolers. This paper will introduce the updated engineering design of the coupling magnet made by ICST in China. The detailed analyses on magnetic fields, stresses induced during the processes of winding, cool down and charging, and cold mass support assembly are presented as well.

  17. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  18. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect (OSTI)

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  19. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect (OSTI)

    Veselinovi?, N. Dragi?, A. Maleti?, D. Jokovi?, D. Savi?, M. Banjanac, R. Udovi?i?, V. Ani?in, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  20. Parametric probability distributions for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  1. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  2. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect (OSTI)

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  3. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect (OSTI)

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  4. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect (OSTI)

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  5. The superconducting solenoid magnets for MICE

    SciTech Connect (OSTI)

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  6. Recent progress in neutrino factory and muon collider research within the

    Office of Scientific and Technical Information (OSTI)

    muon collaboration (Journal Article) | SciTech Connect Journal Article: Recent progress in neutrino factory and muon collider research within the muon collaboration Citation Details In-Document Search Title: Recent progress in neutrino factory and muon collider research within the muon collaboration No abstract prepared. Authors: Alsharo'a, Mohammad M. ; Ankenbrandt, Charles M. ; Atac, Muzaffer ; Autin, Bruno R. ; Balbekov, Valeri I. ; Barger, Vernon D. ; Benary, Odette ; Bennett, J. Roger

  7. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  8. Front End and HFOFO Snake for a Muon Facility

    SciTech Connect (OSTI)

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and a $\\phi-\\delta E$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $\\mu^+$ and $\\mu^-$ transversely and longitudinally. The status of the design is presented and variations are discussed.

  9. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  10. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  11. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̄μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν̄μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̄2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ̄) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν̄μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  12. Search for anomalous production of events with a high energy...

    Office of Scientific and Technical Information (OSTI)

    for anomalous production of events with a high energy lepton and photon at the Tevatron Citation Details In-Document Search Title: Search for anomalous production of events with ...

  13. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  14. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect (OSTI)

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  15. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; et al

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  16. Solenoid Magnet System for the Fermilab Mu2e Experiment

    SciTech Connect (OSTI)

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; Ostojic, R.; Page, T.; Peterson, T.; Popp, J.; Pronskikh, V.; Tang, Z.; Tartaglia, M.; Wake, M.; Wands, R.; Yamada, R.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  17. MICE Spectrometer Magnet System Progress

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  18. The Muon Accelerator Program (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Muon Accelerator Program Citation Details In-Document ... Report Number(s): FERMILAB-PUB-11-545-APC TRN: US1105220 DOE Contract Number: AC02-07CH11359 Resource Type: Journal ...

  19. Fermilab Muon Ring Arrives to a Large Crowd of Fans

    SciTech Connect (OSTI)

    2013-08-15

    A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

  20. Fermilab | Newsroom | Press Releases | May 8, 2013: Muon g-2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Res Crews work to attach the red stabilizing apparatus to the Muon g-2 rings at Brookhaven National Laboratory in New York in preparation for moving them over land and sea to...

  1. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    We describe the physics and codes developed in the Muon Physics Package. This package is a ... Authors: Luu, T ; Hagmann, C Publication Date: 2006-11-13 OSTI Identifier: 900172 Report ...

  2. Publisher's Note: Measurement of the Positive Muon Lifetime and

    Office of Scientific and Technical Information (OSTI)

    Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] (Journal Article) | SciTech Connect Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] Citation Details In-Document Search Title: Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev.

  3. The charge ratio of the atmospheric muons at low energy

    SciTech Connect (OSTI)

    Bahmanabadi, M.; Samimi, J.; Sheidaei, F.; Ghomi, M. Khakian

    2006-10-15

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

  4. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect (OSTI)

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  5. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect (OSTI)

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  6. Method for identifying anomalous terrestrial heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  7. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect (OSTI)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  8. Metal-to-insulator switching in quantum anomalous Hall states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  9. Metal-to-insulator switching in quantum anomalous Hall states

    SciTech Connect (OSTI)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  10. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  11. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect (OSTI)

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  12. Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, X. Q.; Dudson, B.; Snyder, P. B.; Umansky, M. V.; Wilson, H.

    2010-10-22

    A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less

  13. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER You are accessing a document from the Department of Energy's (DOE)...

  14. DESIGN OF A 6 TEV MUON COLLIDER (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DESIGN OF A 6 TEV MUON COLLIDER Citation Details In-Document Search Title: DESIGN OF A 6 TEV MUON COLLIDER Authors: Wang, M.-H. ; Nosochkov, Y. ; Cai, Y. ; SLAC ; Palmer, M. ;...

  15. Design Concepts for Muon-Based Accelerators (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Design Concepts for Muon-Based Accelerators Citation Details In-Document Search Title: Design Concepts for Muon-Based Accelerators Authors: Ryne, R.D. ; et al. Publication Date: ...

  16. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  17. R-Axion: A New LHC Physics Signature Involving Muon Pairs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: R-Axion: A New LHC Physics Signature Involving Muon Pairs Citation Details In-Document Search Title: R-Axion: A New LHC Physics Signature Involving Muon Pairs In a class ...

  18. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  19. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Imaging and sensing based on muon tomography Citation Details In-Document Search Title: Imaging and sensing based on muon tomography Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data. Authors: Morris, Christopher L ; Saunders, Alexander ; Sossong, Michael James ; Schultz, Larry Joe ; Green, J. Andrew ; Borozdin, Konstantin N ; Hengartner, Nicolas W ;

  20. The Muon Collider as a $H/A$ factory

    SciTech Connect (OSTI)

    Eichten, Estia; Martin, Adam

    2014-01-01

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.

  1. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N.; Bom, V. R.; Demin, A. M.; Demin, D. L.; Eijk, C. W. E. van; Filchagin, S. V.; Filchenkov, V. V.; Grafov, N. N. Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Kuryakin, A. V.; Medved', S. V.; Musyaev, R. K.; Rudenko, A. I.; Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A.; Yukhimchuk, S. A.; Zinov, V. G.

    2009-02-15

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  2. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  3. The Muon Collider as a $H/A$ factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual Hmore » and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  4. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  5. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  6. Anomalous Zeeman response of the coexisting superconducting and...

    Office of Scientific and Technical Information (OSTI)

    s -wave pairing in ferropnictide superconductors Title: Anomalous Zeeman response of ... s -wave pairing in ferropnictide superconductors Authors: Ghaemi, Pouyan ; Vishwanath, ...

  7. Evidence for an anomalous quantum state of protons in nanoconfined...

    Office of Scientific and Technical Information (OSTI)

    of protons in nanoconfined water Citation Details In-Document Search Title: Evidence for an anomalous quantum state of protons in nanoconfined water Deep inelastic neutron ...

  8. Engineering quantum anomalous/valley Hall states in graphene...

    Office of Scientific and Technical Information (OSTI)

    Engineering quantum anomalousvalley Hall states in graphene via metal-atom adsorption: An ab-initio study Citation Details In-Document Search Title: Engineering quantum anomalous...

  9. Anomalous dimensions of the double parton fragmentation functions...

    Office of Scientific and Technical Information (OSTI)

    Title: Anomalous dimensions of the double parton fragmentation functions Authors: Fleming, Sean ; Leibovich, Adam K. ; Mehen, Thomas ; Rothstein, Ira Z. Publication Date: ...

  10. Phase-space jets drive transport and anomalous resistivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...

  11. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the...

  12. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  13. Charge recombination in the muon collider cooling channel

    SciTech Connect (OSTI)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  14. The VME-based D0 muon trigger electronics

    SciTech Connect (OSTI)

    Fortner, M; Green, J; Hedin, D; Morphis, R; Repond, S; Willis, S; Zazula, R; Johns, K; Bazizi, K; Fahland, T; Hall, R E; Jerger, S; Lietzke, C; Smith, D; Butler, J M; Diehl, H T; Eartly, D; Fitzpatrick, T; Green, D; Haggerty, H; Hansen, S; Hawkins, J; Igarashi, S; Joestlein, H

    1990-11-01

    The trigger electronics for the muon system of the Fermilab D0 detector is described. The hardware trigger consists of VME-based cards designed to find probable tracks in individual chambers and then match these track segments. The fast trigger is highly parallel and able to discern probable tracks from about 15,000 trigger cells in under 200 ns from receipt of all bits in the counting house. There is a parallel confirmation trigger with a response time of 1--5 microseconds that provides a crude calculation of the momentum and charge of the muon. 6 refs., 7 figs.

  15. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  16. Measurement of the Positive Muon Lifetime and Determination of...

    Office of Scientific and Technical Information (OSTI)

    We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the ... for the Fermi constant: Gsub F(MuLan)1.166 378 8(7)x10sup -5 GeVsup -2 (0.6 ppm). ...

  17. Muon g-2 ring moving up Illinois river

    SciTech Connect (OSTI)

    2013-07-20

    This clip shows the "Miss Katie" pushing the muon g-2 ring upstream on the Illinois River, and passing through the Peoria Lock and Dam as it travels toward Lemont, where it will be unloaded onto the special Emmert transporter and driven to Fermilab.

  18. Anomalous expansion of the copper-apical-oxygen distance in supercondu...

    Office of Scientific and Technical Information (OSTI)

    Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers Citation Details In-Document Search Title: Anomalous expansion of the copper-apical-oxy...

  19. Magnetic fields and fluctuations in weakly Mn doped ZnGeP{sub 2}

    SciTech Connect (OSTI)

    Mengyan, P. W.; Lichti, R. L.; Baker, B. B.; Celebi, Y. G.; Catak, E.; Carroll, B. R.; Zawilski, K. T.; Schunemann, P. G.

    2014-02-21

    We report on our measurements of local and bulk magnetic features in weakly Mn doped ZnGeP{sub 2}. Utilizing muon spin rotation and relaxation measurements, we identify local ferromagnetic order and fluctuations in the local fields as sampled by an implanted muon (?{sup +}). We also report on field induced ferromagnetism occurring above the claimed paramagnetic to ferromagnetic transition temperature (T{sub c} = 312 K)

  20. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  1. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect (OSTI)

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  2. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect (OSTI)

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  3. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  4. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  5. A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MUON NEUTRINO CHARGED CURRENT QUASIELASTIC INTERACTION AND A TEST OF LORENTZ VIOLATION WITH THE MINIBOONE EXPERIMENT Teppei Katori Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Physics, Indiana University December 2008 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee Rex Tayloe,

  6. Diagnosing Anomalous Network Performance with Confidence

    SciTech Connect (OSTI)

    Settlemyer, Bradley W; Hodson, Stephen W; Kuehn, Jeffery A; Poole, Stephen W

    2011-04-01

    Variability in network performance is a major obstacle in effectively analyzing the throughput of modern high performance computer systems. High performance interconnec- tion networks offer excellent best-case network latencies; how- ever, highly parallel applications running on parallel machines typically require consistently high levels of performance to adequately leverage the massive amounts of available computing power. Performance analysts have usually quantified network performance using traditional summary statistics that assume the observational data is sampled from a normal distribution. In our examinations of network performance, we have found this method of analysis often provides too little data to under- stand anomalous network performance. Our tool, Confidence, instead uses an empirically derived probability distribution to characterize network performance. In this paper we describe several instances where the Confidence toolkit allowed us to understand and diagnose network performance anomalies that we could not adequately explore with the simple summary statis- tics provided by traditional measurement tools. In particular, we examine a multi-modal performance scenario encountered with an Infiniband interconnection network and we explore the performance repeatability on the custom Cray SeaStar2 interconnection network after a set of software and driver updates.

  7. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  8. NLO BFKL and anomalous dimensions of light-ray operators

    SciTech Connect (OSTI)

    Balitsky, Ian

    2013-05-01

    This presentation covers: Regge limit in the coordinate space; BFKL representation of 4-point correlation function in N = 4 SYM; light-ray operators; DGLAP representation of 4-point correlation function; and anomalous dimensions from DGAP vs BFKL representations.

  9. Quantum transport, anomalous dephasing, and spin-orbit coupling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity Home Author: B. Hackens, J. P. Minet, S. Faniel, G. Farhi, C. Gustin, J. P....

  10. Apparatus for responding to an anomalous change in downhole pressure

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Wilde, Tyson; Barlow, Jonathan S.

    2010-04-13

    A method of responding to an anomalous change in downhole pressure in a bore hole comprises detecting the anomalous change in downhole pressure, sending a signal along the segmented electromagnetic transmission path, receiving the signal, and performing a automated response. The anomalous change in downhole pressure is detected at a first location along a segmented electromagnetic transmission path, and the segmented electromagnetic transmission path is integrated into the tool string. The signal is received by at least one receiver in communication with the segmented electromagnetic transmission path. The automated response is performed along the tool string. Disclosed is an apparatus for responding to an anomalous change in downhole pressure in a downhole tool string, comprising a segmented electromagnetic transmission path connecting one or more receivers and at least one pressure sensor.

  11. Measurement of the Z? production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    SciTech Connect (OSTI)

    Khachatryan, V.

    2015-04-29

    The cross section for the production of Z? in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb?. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZ? and Z?? are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.

  12. Measurement of the Z? production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.

    2015-04-29

    The cross section for the production of Z? in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb?. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZ? andmoreZ?? are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.less

  13. Measurement of the Zγ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-04-29

    The cross section for the production of Zγ in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb-1. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. Furthermore, the differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. These observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. As a result, limits on anomalous triple gaugemore » couplings of ZZγ and Zγγ are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.« less

  14. Muon fluxes from dark matter annihilation (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Muon fluxes from dark matter annihilation Citation Details In-Document Search Title: Muon fluxes from dark matter annihilation We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We

  15. Microscopic theory of quantum anomalous Hall effect in graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: Qiao, Zhenhua ; Jiang, Hua ; Li, Xiao ; Yao, Yugui ; Niu, Qian Publication Date: 2012-03-27 OSTI Identifier: 1098600 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 85; Journal Issue: 11; Journal ID: ISSN 1098-0121

  16. Anomalous dimensions of the double parton fragmentation functions (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Anomalous dimensions of the double parton fragmentation functions Citation Details In-Document Search Title: Anomalous dimensions of the double parton fragmentation functions Authors: Fleming, Sean ; Leibovich, Adam K. ; Mehen, Thomas ; Rothstein, Ira Z. Publication Date: 2013-04-23 OSTI Identifier: 1102128 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 87; Journal Issue: 7; Journal ID: ISSN

  17. Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric

    Office of Scientific and Technical Information (OSTI)

    polymer blend with controlled nano- and meso-dipolar couplings (Journal Article) | SciTech Connect Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings Citation Details In-Document Search This content will become publicly available on April 5, 2017 Title: Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings Authors: Qian,

  18. CP violating anomalous top-quark couplings at the LHC

    SciTech Connect (OSTI)

    Gupta, Sudhir Kumar; Mete, Alaettin Serhan; Valencia, G.

    2009-08-01

    We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg{yields}tt{yields}(b{mu}{sup +}{nu}{sub {mu}})(b{mu}{sup -}{nu}{sub {mu}}). We consider several counting asymmetries at the parton level and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.

  19. Simulation framework for spatio-spectral anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Harvey, Neal R; Porter, Reid B; Wohlberg, Brendt E

    2009-01-01

    The authors describe the development of a simulation framework for anomalous change detection that considers both the spatial and spectral aspects of the imagery. A purely spectral framework has previously been introduced, but the extension to spatio-spectral requires attention to a variety of new issues, and requires more careful modeling of the anomalous changes. Using this extended framework, they evaluate the utility of spatial image processing operators to enhance change detection sensitivity in (simulated) remote sensing imagery.

  20. Method for processing seismic data to identify anomalous absorption zones

    DOE Patents [OSTI]

    Taner, M. Turhan

    2006-01-03

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  1. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  2. Top quark anomalous couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider Authors: Devetak, Erik ; Nomerotski, Andrei ; Peskin, Michael Publication Date: 2011-08-17 OSTI Identifier: 1100572 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 84; Journal Issue: 3; Journal ID: ISSN 1550-7998 Publisher:

  3. Measurement of Muon Capture on the Proton (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Measurement of Muon Capture on the Proton Citation Details In-Document Search Title: Measurement of Muon Capture on the Proton The goal of the {mu}Cap experiment is a 1% precision measurement of the muon capture rate on the free proton, which will determine the weak pseudoscalar form factor gP to 7%. At the end of 2004, the {mu}Cap detector was completed and commissioned and first physics data were taken. The analysis of these data is in an advanced stage. The muon capture rate will

  4. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  5. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  6. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom...

    Office of Scientific and Technical Information (OSTI)

    the Muon Neutrino, and the Bottom Quark His Honors His Involvement in Science Education His Wisdom and Humor Resources with Additional Information Leon Lederman started...

  7. Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru

    Office of Scientific and Technical Information (OSTI)

    spin dilution (Journal Article) | SciTech Connect Neutron diffraction and muon spin relaxation measurements are used to obtain a detailed phase diagram of PrFe1{xRuxAsO. The isoelectronic substitution of Ru for Fe acts eectively as spin dilution, suppressing both the structural and magnetic phase transitions. The temperature, TS, of the tetragonal-orthorhombic structural phase transition decreases gradually as a function of x. Slightly below TS coherent precessions of the muon spin are

  8. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  9. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect (OSTI)

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  10. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  11. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect (OSTI)

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  12. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    SciTech Connect (OSTI)

    Denisov, Dmitri; Evdokimov, Valery; Luki?, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  13. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherwinka, J.; Grant, D.; Halzen, F.; Heeger, K. M.; Hsu, L.; A. J. F. Hubbard; Karle, A.; Kauer, M.; Kudryavtsev, V. A.; Lim, K. E.; et al

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keVee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  14. Magnetic measurements on ??CS{sub 2}U{sub 4}O{sub 12}

    SciTech Connect (OSTI)

    Kanrar, Buddhadev Misra, N. L.; Sastry, P. U.; Dube, V.; Ravikumar, G.

    2014-04-24

    Magnetic and XRD measurements on ??CS{sub 2}U{sub 4}O{sub 12} having uranium in mixed valent states of U (V) and U (VI) have been made. The study reveals that the compound undergoes an antiferromagnetic transition below 25K and an anomalous magnetic behavior was seen around 75K. This anomalous behavior indicates towards a structural phase transition. However, the low temperature XRD could not confirm this observation.

  15. nuSTORM and A Path to a Muon Collider

    SciTech Connect (OSTI)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

  16. Comparison of Muon Capture in Light and in Heavy Nuclei

    SciTech Connect (OSTI)

    Measday, David F.; Stocki, Trevor J.

    2007-10-26

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The ({mu}{sup -},{nu}n) reaction is always dominant. In light nuclei, reactions such as ({mu}{sup -},{nu}p) and ({mu}{sup -},{nu}pn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as ({mu}{sup -},{nu}3n) and ({mu}{sup -},{nu}4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  17. nuSTORM and A Path to a Muon Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore » in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  18. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top

  19. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    SciTech Connect (OSTI)

    Adamson, P.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  20. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    SciTech Connect (OSTI)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  1. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore » peaks in the winter.« less

  2. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect (OSTI)

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  3. Anomalous fast ion losses at high β on the tokamak fusion test...

    Office of Scientific and Technical Information (OSTI)

    Anomalous fast ion losses at high on the tokamak fusion test reactor Citation Details In-Document Search Title: Anomalous fast ion losses at high on the tokamak fusion test ...

  4. Quantum anomalous Hall effect in single-layer and bilayer graphene...

    Office of Scientific and Technical Information (OSTI)

    Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene ...

  5. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  6. Measurement of the Positive Muon Lifetime and Determination of the Fermi

    Office of Scientific and Technical Information (OSTI)

    Constant to Part-per-Million Precision (Journal Article) | SciTech Connect Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision Citation Details In-Document Search Title: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment

  7. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-15

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  8. A new ATLAS muon CSC readout system with system on chip technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    platform (Journal Article) | DOE PAGES A new ATLAS muon CSC readout system with system on chip technology on ATCA platform Title: A new ATLAS muon CSC readout system with system on chip technology on ATCA platform The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable

  9. A new ATLAS muon CSC readout system with system on chip technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    platform (Journal Article) | SciTech Connect A new ATLAS muon CSC readout system with system on chip technology on ATCA platform Citation Details In-Document Search Title: A new ATLAS muon CSC readout system with system on chip technology on ATCA platform The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout

  10. Eu3Ir2In15: A mixed-valent and vacancy-filled variant of the Sc5Co4Si10 structure type with anomalous magnetic properties

    SciTech Connect (OSTI)

    Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; Banerjee, Swastika; Pati, Swapan K.; Balasubramanian, Mahalingam; Peter, Sebastian C.

    2015-10-27

    Here, a new compound, Eu3Ir2In15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μeff) of this compound is 7.35 μB/Eu ion with paramagnetic Curie temperature (θp) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurements was confirmed by XANES measurements. The compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu3Ir2In15 and hypothetical vacancy variant Eu5Ir4In10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE5T4X10 would exist with X as a group 13 elements.

  11. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  12. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  13. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    SciTech Connect (OSTI)

    Berg, J. S.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  14. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, K.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  15. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    Conference: A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation ... Sponsoring Org: US DOE Office of Science (DOE SC);High Energy ...

  16. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect (OSTI)

    The Soudan 2 Collaboration

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  17. Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation

    Office of Scientific and Technical Information (OSTI)

    measurements (Journal Article) | SciTech Connect Journal Article: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Citation Details In-Document Search Title: Antiferromagnetism in the spin-gap system NaV2O5: Muon spin rotation measurements Authors: Storchak, Vyacheslav G. ; Parfenov, Oleg E. ; Eshchenko, Dmitry G. ; Lichti, Roger L. ; Mengyan, Patrick W. ; Isobe, Masahiko ; Ueda, Yutaka Publication Date: 2012-03-05 OSTI Identifier: 1099289 Type: Publisher's

  18. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect (OSTI)

    Szafron, Robert; Czarnecki, Andrzej

    2015-05-19

    We determine the ?(?) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  19. High-energy electrons from the muon decay in orbit: Radiative corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  20. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  1. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  2. Effective field theory: A modern approach to anomalous couplings

    SciTech Connect (OSTI)

    Degrande, Cline; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut fr Physik, Fhringer Ring 6, 80805 Mnchen ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve

    2013-08-15

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: We discuss the advantages of effective field theories compared to anomalous couplings. We show that one need not be concerned with unitarity violation at high energy. We discuss the application of effective field theory to weak boson physics.

  3. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  6. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  9. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe2O6: NMR and muon spin relaxation studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khuntia, P.; Bert, F.; Mendels, P.; Koteswararao, B.; Mahajan, A. V.; Baenitz, M.; Chou, F. C.; Baines, C.; Amato, A.; Furukawa, Y.

    2016-03-11

    In this study, PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneousmore » magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  10. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    SciTech Connect (OSTI)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16?MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125??? cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  11. Z(gamma) production and limits on anomalous ZZ(gamma) and Z(gamma gamma) couplings in p(p)over-bar collisions at root s 1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; Asman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kobach, A. C.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; et al.

    2012-03-01

    We present a measurement of p{bar p} {yields} Z{sub {gamma}} {yields} {ell}{sup +}{ell}{sup -}{sub {gamma}} ({ell} = e, {mu}) production with a data sample corresponding to an integrated luminosity of 6.2 fb{sup -1} collected by the D0 detector at the Fermilab Tevatron p{bar p} Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section d{sigma}/dp{sub T}{sup {gamma}}, where p{sub T}{sup {gamma}} is the momentum of the photon in the plane transverse to the beam line. The results obtained are consistent with the standard model predictions from next-to-leading order use ttransverse momentum spectrum of the photon to place limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings.

  12. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, andmore » top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.« less

  13. Performance of the ATLAS muon trigger in pp collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-03-13

    The performance of the ATLAS muon trigger system is evaluated with proton–proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum 25 < pT < 100 GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The pT range for efficiency determination is extended by using muons from decays of J/ψ mesons, W bosons, and top quarks. The muon trigger shows highly uniform and stable performance. Thus, the performance is compared to the prediction of a detailed simulation.

  14. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect (OSTI)

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  15. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  16. Diluted magnetic semiconductors based on Sb2-xVxTe3 | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Centers Diluted magnetic semiconductors based on Sb2-xVxTe3 Home Author: J. S. Dyck, P. Hajek, P. Lostak, C. Uher Year: 2002 Abstract: We report on a diluted magnetic semiconductor based on the Sb2Te3 tetradymite structure doped with very low concentrations of vanadium (1-3 at. %). The anomalous transport behavior and robust magnetic hysteresis loops observed in magnetotransport and magnetic measurements are experimental manifestations of the ferromagnetic state in these materials.

  17. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2010-03-01

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  18. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N. Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V.; Takibaev, J. S.

    2009-11-15

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  19. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2016-02-17

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muonmore » counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. As a result, the completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.« less

  20. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  1. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).

  2. Search for anomalous production of events with a high energy lepton and

    Office of Scientific and Technical Information (OSTI)

    photon at the Tevatron (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Search for anomalous production of events with a high energy lepton and photon at the Tevatron Citation Details In-Document Search Title: Search for anomalous production of events with a high energy lepton and photon at the Tevatron We present results of a search for the anomalous production of events containing a high-transverse momentum charged lepton ({ell}, either e or {mu}) and photon ({gamma}),

  3. Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Crowding and Anomalous Capacitance at an ElectrodeIonic Liquid Interface Observed Using Operando X-ray Scattering Citation Details In-Document Search Title: Crowding and ...

  4. Measuring anomalous couplings in H→WW* decays at the International...

    Office of Scientific and Technical Information (OSTI)

    Title: Measuring anomalous couplings in HWW* decays at the International Linear Collider Authors: Takubo, Yosuke ; Hodgkinson, Robert N. ; Ikematsu, Katsumasa ; Fujii, Keisuke ; ...

  5. Measurement of the $W^+W^-$ Production Cross Section and Search for Anomalous $WW\\gamma$ and $WWZ$ Couplings in $p \\bar p$ Collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-12-01

    This Letter describes the current most precise measurement of the W boson pair production cross section and most sensitive test of anomalous WW{gamma} and WWZ couplings in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The WW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb{sup -1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320 {+-} 47 events. The measured total cross section is {sigma}(p{bar p} {yields} W{sup +}W{sup -} + X) = 12.1 {+-} 0.9 (stat){sub -1.4}{sup +1.6} (syst) pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WW{gamma} and WWZ couplings.

  6. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  7. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  8. Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi Constant

    SciTech Connect (OSTI)

    Chitwood, D. B.; Clayton, S. M.; Crnkovic, J.; Debevec, P. T.; Hertzog, D. W.; Kammel, P.; Kiburg, B.; Kunkle, J.; McNabb, R.; Mulhauser, F.; Oezben, C. S.; Polly, C. C.; Webber, D. M.; Winter, P.; Banks, T. I.; Crowe, K. M.; Lauss, B.; Barnes, M. J.; Wait, G. D.; Battu, S.

    2007-07-20

    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, {tau}{sub {mu}}=2.197 013(24) {mu}s, is in excellent agreement with the previous world average. The new world average {tau}{sub {mu}}=2.197 019(21) {mu}s determines the Fermi constant G{sub F}=1.166 371(6)x10{sup -5} GeV{sup -2} (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g{sub P}.

  9. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  10. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  11. Search for anomalous single top quark production in association with a photon in pp collisions at √(s) = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-13

    We found the results of a search for flavor changing neutral currents (FCNC) through single top quark production in association with a photon is presented. The study is based on proton-proton collisions at a center-of-mass energy of 8 TeV using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb-1. The search for tγ events where t → Wb andW → μn is conducted in final states with a muon, a photon, at least one hadronic jet with at most one being consistent with originating from a bottom quark, and missing transverse momentum. Furthermore, there was no evidence of single top quark production in association with a photon through a FCNC is observed. Upper limits at the 95% confidence level are set on the tug and tcg anomalous couplings and translated into upper limits on the branching fraction of the FCNC top quark decays: B(t → uγ) < 1.3 x 10-4 and B(t →cγ) < 1.7 x 10-3. Upper limits are also set on the cross section of associated tγ production in a restricted phase-space region. These are the most stringent limits currently available.

  12. Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2.23.2010]: Muons at the South Pole and Dr. Nick Holoynak Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak December 23, 2010 - 12:05pm Addthis Illustration of the IceCube neutrino observatory. Source: LBNL Illustration of the IceCube neutrino observatory. Source: LBNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Earlier today, the Energy Blog featured Los Alamos National Lab's system to track Santa. However, while there

  13. Measurement of Muon Capture on the Proton to 1% Precision and Determination

    Office of Scientific and Technical Information (OSTI)

    of the Pseudoscalar Coupling gP (Journal Article) | SciTech Connect Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Citation Details In-Document Search Title: Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Authors: Andreev, V. A. ; Banks, T. I. ; Carey, R. M. ; Case, T. A. ; Clayton, S. M. ; Crowe, K. M. ; Deutsch, J. ; Egger, J. ; Freedman, S. J. ; Ganzha, V. A. ; Gorringe, T. ; Gray,

  14. Status of the PRISM FFAG Design for the Next Generation Muon-to-electron

    Office of Scientific and Technical Information (OSTI)

    Conversion Experiment (Conference) | SciTech Connect Conference: Status of the PRISM FFAG Design for the Next Generation Muon-to-electron Conversion Experiment Citation Details In-Document Search Title: Status of the PRISM FFAG Design for the Next Generation Muon-to-electron Conversion Experiment Authors: Pasternak J. ; Witte H. ; Jenner, L.J. ; Kurup, A. ; Alekou, A. ; Aslaninejad, M. ; Chudzinski, R. ; Shi, Y. ; Uchida, Y. ; Muratori, B. ; Smith, S.L. ; Hock, K.M. ; Appleby, R. ; Owen, H.

  15. Searching for a dilaton decaying to muon pairs at the LHC

    SciTech Connect (OSTI)

    Vignaroli, Natascia

    2009-11-01

    We analyze the decays to muons of a light dilaton produced via vector boson fusion at the LHC. We investigate models in which the electroweak symmetry breaking is triggered by a spontaneously broken, approximately conformal sector. Taking into account the possibility of shifts in the dilaton Yukawa couplings to muons, we find a rather promising scenario for the conformal model search in the channel, with the possibility for a dilaton discovery at a delivered luminosity of 100 fb{sup -1} at the LHC or, alternatively, for an extension of the exclusion zone in the model parameter space, until now fixed by the Tevatron.

  16. High-Pressure Tritium Targets for Research in Muon-Catalyzed Fusion

    SciTech Connect (OSTI)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2005-07-15

    The paper presents designs of a set of high-pressure targets developed by RFNC-VNIIEF and JINR collaboration to study muon-catalyzed fusion at high density of hydrogen isotopes in a wide temperature range. Designs, technical and operating characteristics of the targets and service results are described.In 1997-2002 these targets were used to measure basic characteristics of muon catalysis in pure deuterium, binary D/T mixture and triple H/D/T mixture as a function of density ([variant phi] = 0.2 - 1.2 LHD{sup *}), temperature (T = 20-800 K) and concentration of hydrogen isotopes in a mixture.

  17. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  18. Design of an Intense Muon Source with a Carbon and Mercury Target

    SciTech Connect (OSTI)

    Stratakis, Diktys; Berg, J. Scott; Neuffer, David; Ding, Xiaoping

    2015-06-01

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  19. Design of an intense muon source with a carbon and mercury target

    SciTech Connect (OSTI)

    Stratakis, D.; Berg, J. S.; Neuffer, D.; Ding, X.

    2015-05-03

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  20. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2??1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  1. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  2. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    SciTech Connect (OSTI)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].

  3. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect (OSTI)

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  4. Sensor fusion and nonlinear prediction for anomalous event detection

    SciTech Connect (OSTI)

    Hernandez, J.V.; Moore, K.R.; Elphic, R.C.

    1995-03-07

    The authors consider the problem of using the information from various time series, each one characterizing a different physical quantity, to predict the future state of the system and, based on that information, to detect and classify anomalous events. They stress the application of principal components analysis (PCA) to analyze and combine data from different sensors. They construct both linear and nonlinear predictors. In particular, for linear prediction the authors use the least-mean-square (LMS) algorithm and for nonlinear prediction they use both backpropagation (BP) networks and fuzzy predictors (FP). As an application, they consider the prediction of gamma counts from past values of electron and gamma counts recorded by the instruments of a high altitude satellite.

  5. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect (OSTI)

    Psihas Olmedo, Silvia Fernanda

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  6. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  7. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  8. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  9. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  10. Structural Design and Analysis for a Double-Band Cold Mass Support of the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Green, Michael A; Wu, Hong; Liu, X. K.; Wang, Li; Li, S. Y.; Guo, XingLong; Pan, Heng; Xu, FengYu

    2009-07-01

    The cooling channel of Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together. A pair ofcoupling magnets operating at 4 K is applied to produce up to .6 T magnetic field on the magnet centerline to keep muon beam within the RF cavity windows. The peak magnetic force on the coupling magnet from other magnets in the MICE channel is up to 500 kN inlongitudinal direction, and the requirements for magnet center and axis azimuthal angle at 4 K are stringent. A self-centered double-band cold mass support system with intermediatethermal interruption is applied for the coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K with this support system. In this paper the design parameters of the support system are discussed. The integral analysis of the support system using FEA method was carried out to etermine the tension forces in bands when various loads are applied. The magnet centre displacement and concentricity deviation form the axis of the warm bore are obtained, and the peak tension in support bands is also determined according to the simulation results.

  11. Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

  12. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  13. Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?

    SciTech Connect (OSTI)

    Senanayake, U. K.; Florinski, V. E-mail: vaf0001@uah.edu

    2013-12-01

    Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup 1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.

  14. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  15. Anomalously High B-Values In The South Flank Of Kilauea Volcano...

    Open Energy Info (EERE)

    down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the...

  16. Violations of Lorentz invariance in the neutrino sector: an improved analysis of anomalous threshold constraints

    SciTech Connect (OSTI)

    Maccione, Luca; Liberati, Stefano; Mattingly, David M. E-mail: liberati@sissa.it

    2013-03-01

    Recently there has been a renewed activity in the physics of violations of Lorentz invariance in the neutrino sector. Flavor dependent Lorentz violation, which generically changes the pattern of neutrino oscillations, is extremely tightly constrained by oscillation experiments. Flavor independent Lorentz violation, which does not introduce new oscillation phenomena, is much more weakly constrained with constraints coming from time of flight and anomalous threshold analyses. We use a simplified rotationally invariant model to investigate the effects of finite baselines and energy dependent dispersion on anomalous reaction rates in long baseline experiments and show numerically that anomalous reactions do not necessarily cut off the spectrum quite as sharply as currently assumed. We also present a revised analysis of how anomalous reactions can be used to cast constraints from the observed atmospheric high energy neutrinos and the expected cosmogenic ones.

  17. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  18. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory

    SciTech Connect (OSTI)

    C. Bontoiu,M. Aslaninejad,J. Pozimski,Alex Bogacz

    2010-05-01

    Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results are presented and discussed.

  19. Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru spin dilution

    SciTech Connect (OSTI)

    Yiu, Yuen; Bonfa, Pietro; Sanna, Samuele; De Renzi, Roberto; Caretta, Pietro; McGuire, Michael A; Huq, Ashfia; Nagler, Stephen E

    2014-01-01

    Neutron diffraction and muon spin relaxation measurements are used to obtain a detailed phase diagram of PrFe1{xRuxAsO. The isoelectronic substitution of Ru for Fe acts eectively as spin dilution, suppressing both the structural and magnetic phase transitions. The temperature, TS, of the tetragonal-orthorhombic structural phase transition decreases gradually as a function of x. Slightly below TS coherent precessions of the muon spin are observed corresponding to static magnetism, possibly re ecting a signicant magneto-elastic coupling in the FeAs layers. Short range order in both the Fe and Pr moments persists for higher levels of x. The static magnetic moments disappear at a concentration coincident with that expected for percolation of the J1 - J2 square lattice model.

  20. Engineering quantum anomalous/valley Hall states in graphene via metal-atom

    Office of Scientific and Technical Information (OSTI)

    adsorption: An ab-initio study (Journal Article) | SciTech Connect Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Citation Details In-Document Search Title: Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Authors: Ding, Jun ; Qiao, Zhenhua ; Feng, Wanxiang ; Yao, Yugui ; Niu, Qian Publication Date: 2011-11-15 OSTI Identifier: 1101181 Type: Publisher's Accepted Manuscript

  1. Evidence for an anomalous quantum state of protons in nanoconfined water

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Evidence for an anomalous quantum state of protons in nanoconfined water Citation Details In-Document Search Title: Evidence for an anomalous quantum state of protons in nanoconfined water Deep inelastic neutron scattering provides a means of directly and accurately measuring the momentum distribution of protons in water, which is determined primarily by the proton ground-state wave function.We find that in water confined on scales of 20 A, this wave

  2. Measuring anomalous couplings in H→WW* decays at the International Linear

    Office of Scientific and Technical Information (OSTI)

    Collider (Journal Article) | SciTech Connect Measuring anomalous couplings in H→WW* decays at the International Linear Collider Citation Details In-Document Search Title: Measuring anomalous couplings in H→WW* decays at the International Linear Collider Authors: Takubo, Yosuke ; Hodgkinson, Robert N. ; Ikematsu, Katsumasa ; Fujii, Keisuke ; Okada, Nobuchika ; Yamamoto, Hitoshi Publication Date: 2013-07-18 OSTI Identifier: 1103733 Type: Publisher's Accepted Manuscript Journal Name:

  3. Structure solution with weak anomalous data (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Structure solution with weak anomalous data Citation Details In-Document Search Title: Structure solution with weak anomalous data Authors: Terwilliger, Thomas C. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-10-21 OSTI Identifier: 1133759 Report Number(s): LA-UR-14-24209 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: NIH Country of Publication: United

  4. Anomalous Dimensions and Non-Gaussianity (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Anomalous Dimensions and Non-Gaussianity Citation Details In-Document Search Title: Anomalous Dimensions and Non-Gaussianity Authors: Green, Daniel ; Lewandowski, Matthew ; Senatore, Leonardo ; Silverstein, Eva ; Zaldarriaga, Matias Publication Date: 2013-02-21 OSTI Identifier: 1063787 Report Number(s): SLAC-PUB-15334 arXiv:1301.2630 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: arXiv:1301.2630 Research Org: SLAC National

  5. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Authors: Wang, Z. F. ; Liu, Zheng ; Liu, Feng Publication Date: 2013-05-06 OSTI Identifier: 1102216 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 110; Journal Issue: 19; Journal ID: ISSN 0031-9007 Publisher:

  6. Quantum anomalous Hall effect in single-layer and bilayer graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene Authors: Tse, Wang-Kong ; Qiao, Zhenhua ; Yao, Yugui ; MacDonald, A. H. ; Niu, Qian Publication Date: 2011-04-26 OSTI Identifier: 1100329 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 83; Journal Issue: 15; Journal ID:

  7. Scattering universality classes of side jump in the anomalous Hall effect

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Scattering universality classes of side jump in the anomalous Hall effect Citation Details In-Document Search Title: Scattering universality classes of side jump in the anomalous Hall effect Authors: Yang, Shengyuan A. ; Pan, Hui ; Yao, Yugui ; Niu, Qian Publication Date: 2011-03-31 OSTI Identifier: 1100161 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 83; Journal Issue: 12; Journal

  8. CSC large panel R&D summary for the SSC GEM muon subsystem

    SciTech Connect (OSTI)

    Pratuch, S.M.; Clements, J.W.; Spellman, G.P.

    1994-05-01

    The GEM Detector uses 1,128 Cathode Strip Chamber (CSC) muon detectors requiring a total of approximately 10,000 precision panels in the CSC assemblies. These panels must be fabricated to extreme tolerances in order to meet the physics requirement. A fabrication technique used to produce two large panels, nominally 1 by 3 meters, is described and the resulting panel precision is reported.

  9. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark

    Office of Scientific and Technical Information (OSTI)

    Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark His Honors * His Involvement in Science Education His Wisdom and Humor * Resources with Additional Information Leon Lederman started his career in Physics at Columbia University, where he earned his Ph.D. in 1952. He 'stayed on at Columbia following his studies, remaining for nearly 30 years, as the Eugene Higgins Professor and, from 1961 until 1979, as director of Nevis Laboratories in Irvington, the Columbia physics department

  10. Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections Colin E. Anderson 2011 Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the ef- forts of physics experiment. As neutrino oscillation searches seek an increasingly elusive sig- nal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understand- ing.

  11. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  12. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect (OSTI)

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  13. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  14. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  15. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  16. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    SciTech Connect (OSTI)

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providing the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.

  17. Impact of anomalous dispersion on the interferometer measurements of plasmas

    SciTech Connect (OSTI)

    Nilsen, J; Johnson, W R; Iglesias, C A; Scofield, J H

    2004-12-16

    For many decades optical interferometers have been used to measure the electron density of plasmas. During the last ten years X-ray lasers in the wavelength range 14 to 47 nm have enabled researchers to use interferometers to probe even higher density plasmas. The data analysis assumes that the index of refraction is due only to the free electrons, which makes the index of refraction less than one and the electron density proportional to the number of fringe shifts. Recent experiments in Al plasmas observed plasmas with an index of refraction greater than one and made us question the validity of the usual formula for calculating the index of refraction. Recent calculations showed how the anomalous dispersion from the bound electrons can dominate the index of refraction in many types of plasma and make the index greater than one or enhance the index such that one would greatly overestimate the electron density of the plasma using interferometers. In this work we calculate the index of refraction of C, Al, Ti, and Pd plasmas for photon energies from 0 to 100 eV (12.4 nm) using a new average-atom code. The results show large variations from the free electron approximation under many different plasma conditions. We validate the average-atom code against the more detailed OPAL code for carbon and aluminum plasmas. During the next decade X-ray free electron lasers and other sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  18. Progress on the Design and Fabrication of the MICE Focusing Magnets

    SciTech Connect (OSTI)

    Green, Michael A; Baynham, D. Elwyn; Bradshaw, Thomas W.; Cobb, John H.; Lau, Wing W.; Yang, Stephanie Q.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) focusing solenoid magnets focus the muon beam within the MICE cooling channel on a liquid or solid absorber that is within the warm bore of solenoid. The focusing magnet has a warm bore of 470 mm. his magnet consists of two coils 210-mm long that is separated by an aluminum mandrel that is 200 mm long. Each of the coils has its own leads. The coils may be operated in either the non-flip mode (solenoid mode with both coils at the same polarity) or the lip mode (quadrupole focusing mode where both coils are at opposite polarity). This report describes the focusing solenoid magnet design that will be built by the vendor. The progress on the construction of the first of the focusing magnets will also be discussed in this report. Ultimately three of these magnets will be built. These magnets will be cooled using a pair 1.5 W (at 4.2 K) pulse tube coolers.

  19. Measurement of the $W^+W^-$ cross section in pp collisions at $\\sqrt{s}$ = 8 TeV and limits on anomalous gauge couplings

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-07-14

    A measurement of the W boson pair production cross section in proton-proton collisions at ? s = 8 TeV is presented. The data we collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4 fb-1 . The W+W- candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured W+W- cross section is 60.1 0.9 (stat) 3.2 (exp) 3.1 (theo) 1.6 (lumi) pb = 60.1 4.8 pb, consistent with the standard model prediction. The W+W-cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. Finally, the corresponding 95% confidence level intervals are -5.7 < cWWW/?2 < 5.9 TeV-2 , -11.4 < cW/?2 < 5.4 TeV-2 , -29.2 < cB/?2 < 23.9 TeV-2 , in the HISZ basis.

  20. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  1. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect (OSTI)

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  2. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    SciTech Connect (OSTI)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  3. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    SciTech Connect (OSTI)

    Sullivan, Michael K.; Fryberger, David

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  4. Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields

    SciTech Connect (OSTI)

    Dexheimer, V.; Negreiros, R.; Schramm, S.; Hempel, M.

    2013-03-25

    We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.

  5. Progress Report on the g-2 Storage Ring Magnet System

    SciTech Connect (OSTI)

    Bunce, G.A.; Cullen, J.; Danby, G.; Green, M.A.; Jackson, J.; Jia, L.; Krienen, F.; Meier, R.; Meng, W.; Morse, W.; Pai, C.; Polk, I.; Prodell, A.; Shutt, R.; Snydstrup, L.; Yamamoto, A.

    1995-06-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory has three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bend radius of 7.1 meters. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the inflector gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported.

  6. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  7. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  8. Analysis of the multigroup model for muon tomography based threat detection

    SciTech Connect (OSTI)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-14

    We compare different algorithms for detecting a 5?cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5?cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  9. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Magnetism 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues » submit Mineral Magnetism By understanding what makes a material magnetic, scientists want to create new strongly magnetic materials that don't rely on hard-to-get precursor elements. March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on foreign sources. CREDIT:

  10. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped

    Office of Scientific and Technical Information (OSTI)

    High-TcSuperconductor (Journal Article) | SciTech Connect Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-TcSuperconductor Citation Details In-Document Search Title: Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-TcSuperconductor We report the discovery of a self-doped multilayer high Tcsuperconductor Ba2Ca3Cu4O8F2 (F0234) which contains distinctly differentsuperconducting gap magnitudes along its two Fermi-surface sheets. Whileformal valence counting would

  11. Enhanced anomalous photo-absorption from TiO{sub 2} nanostructures

    SciTech Connect (OSTI)

    Solanki, Vanaraj; Majumder, Subrata; Mishra, Indrani; Varma, Shikha; Dash, P.; Singh, C.; Kanjilal, D.

    2014-03-28

    Two dimensional nanostructures have been created on the rutile TiO{sub 2} (110) surfaces via ion irradiation technique. Enhanced anomalous photo- absorption response is displayed, where nanostructures of 15?nm diameter with 0.5?nm height, and not the smaller nanostructures with larger surface area, delineate highest absorbance. Comprehensive investigations of oxygen vacancy states, on ion- irradiated surfaces, display a remarkable result that the number of vacancies saturates for higher fluences. A competition between the number of vacancy sites on the nanostructure in conjunction with its size is responsible for the observed anomalous photo-absorption.

  12. Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    SciTech Connect (OSTI)

    Schmelling, M.; Hashim, N.O.; Grupen, C.; Luitz, S.; Maciuc, F.; Mailov, A.; Muller, A.-S.; Sander, H.-G.; Schmeling, S.; Tcaciuc, R.; Wachsmuth, H.; Zuber, K.; /Dresden, Tech. U.

    2012-09-14

    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

  13. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect (OSTI)

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  14. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  15. GUT-inspired supersymmetric model for h → γ γ and the muon g - 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-06

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h→γγ decay channel. In order to accommodate these observations and mh≅125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to Rγγ≥1.1 is 100 GeV≲mτ˜≲200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted tomore » lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg˜≳4.5 TeV and mt˜₁≳3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.« less

  16. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  17. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect (OSTI)

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  18. Design and testing of the New Muon Lab cryogenic system at Fermilab

    SciTech Connect (OSTI)

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

    2009-11-01

    Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

  19. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  20. Superconducting and magnetic properties of Sr?Ir?Sn??

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, P. K.; Wang, Kefeng; Amato, A.; Khasanov, R.; Luetkens, H.; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    Magnetization and muon spin relaxation or rotation (SR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field SR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field SR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ?? with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap valuemoreof 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.less

  1. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  2. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  3. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    SciTech Connect (OSTI)

    Kozlov, Valentin; Collaboration: EDELWEISS Collaboration

    2013-08-08

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  4. Apparatus for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  5. Apparatus for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl

    2006-04-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  6. Apparatus for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl

    2006-10-31

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  7. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  8. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  9. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    SciTech Connect (OSTI)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H.; Fauth, A. C.; Kemp, E.; Manganote, E. J. T.; Leigui de Oliveira, M. A.; Miranda, P.; Ticona, R.; Velarde, A.

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in relation to the satellite triggers. This result agrees with theoretical expectations. Our experimental data indicate that the Tupi experiment is able to add new information and can be complementary to other techniques designed to interpret the origin of some interplanetary disturbances observed by satellites.

  10. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  11. Using analytic continuation for the hadronic vacuum polarization computation

    SciTech Connect (OSTI)

    Feng, Xu; Hashimoto, Shoji; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner Dru B

    2014-11-01

    We present two examples of applications of the analytic continuation method for computing the hadronic vacuum polarization function in space- and time-like momentum regions. These examples are the Adler function and the leading order hadronic contribution to the muon anomalous magnetic moment. We comment on the feasibility of the analytic continuation method and provide an outlook for possible further applications.

  12. A search for pair production of new light bosons decaying into muons

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-11-03

    In this study, a search for the pair production of new light bosons, each decaying into a pair of muons, is performed with the CMS experiment at the LHC, using a dataset corresponding to an integrated luminosity of 20.7 fb1 collected in protonproton collisions at center-of-mass energy of ?s = 8 TeV. No excess is observed in the data relative to standard model background expectation and a model independent upper limit on the product of the cross section, branching fraction, and acceptance is derived. The results are compared with two benchmark models, the first one in the context of the next-to-minimal supersymmetric standard model, and the second one in scenarios containing a hidden sector, including those predicting a nonnegligible light boson lifetime.

  13. Search for pair production of the scalar top quark in the electron+muon final state

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Altona, A.; Alverson, G.; Alves, G.A.

    2010-09-01

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ({tilde t}{sub 1}) in p{bar p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb{sup -1}. The scalar top quarks are assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) mass plane.

  14. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect (OSTI)

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  15. A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron

    SciTech Connect (OSTI)

    Anastasoaie, Carmen Miruna; /Nijmegen U.

    2008-02-01

    All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + light jets (W{sup {+-}}jj) (and the corresponding backgrounds with a Z boson), t{bar t}, single top production, and QCD multijet background.

  16. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  17. Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years

    SciTech Connect (OSTI)

    Boliev, M.M.; Demidov, S.V.; Mikheyev, S.P.; Suvorova, O.V. E-mail: demidov@ms2.inr.ac.ru E-mail: suvorova@cpc.inr.ac.ru

    2013-09-01

    We present a new dataset analysis of the neutrino experiment at the Baksan Underground Scintillator Telescope with muon energy threshold about 1 GeV for the longest exposure time toward the Sun. In search for a signal from self-annihilations of dark matter particles in the center of the Sun we use an updated sample of upward through-going muons for 24.12 years of live time. No observable excess has been found in measured muons relative to expected background from neutrinos of atmospheric origin. We present an improved data analysis procedure and describe it in detail. We set the 90% C.L. new upper limits on expected neutrino and muon fluxes from dark matter annihilations in the Sun, on the corresponding annihilation rates and cross sections of their elastic scattering off proton.

  18. Determination of the polarization state of x rays with the help of anomalous transmission

    SciTech Connect (OSTI)

    Schulze, K. S. Uschmann, I.; Frster, E.; Marx, B.; Paulus, G. G.; Sthlker, T.

    2014-04-14

    Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5??10{sup ?5}, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.

  19. CRYOGENIC MAGNETS

    DOE Patents [OSTI]

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  20. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  1. A spin-filter made of quantum anomalous Hall insulator nanowires

    SciTech Connect (OSTI)

    Wu, Jiansheng

    2014-07-28

    Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.

  2. Effect of entropy on anomalous transport in electron-temperature-gradient-modes

    SciTech Connect (OSTI)

    Yaqub Khan, M.; Iqbal, J.; Ul Haq, A.

    2014-05-15

    Due to the interconnection of entropy with temperature and density of plasma, it would be interesting to investigate plasma related phenomena with respect to entropy. By employing Braginskii transport equations, it is proved that entropy is proportional to a function of potential and distribution function of entropy is re-defined, ∇S–drift in obtained. New dispersion relation is derived; it is found that the anomalous transport depends on the gradient of the entropy.

  3. COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES

    SciTech Connect (OSTI)

    Shanahan, K.

    2009-10-01

    In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.

  4. Critical review of theoretical models for anomalous effects in deuterated metals

    SciTech Connect (OSTI)

    Chechin, V.A.; Tsarev, V.A. ); Rabinowitz, M. ); Kim, Y.E. )

    1994-03-01

    The authors briefly summarize the reported anomalous effects in deuterated metals at ambient temperature commonly known as [open quotes]cold fusion[close quotes] (CF) with an emphasis on the latest experiments, as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then they critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. They conclude that they do not explain the data.

  5. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  6. Fingerprints of anomalous primordial Universe on the abundance of large scale structures

    SciTech Connect (OSTI)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu

    2014-12-01

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A}<0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for MM{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.

  7. Uncorrelated versus independent elliptically-contoured distributions for anomalous change detection in hyperspectral imagery

    SciTech Connect (OSTI)

    Theiler, James P; Scovel, James C

    2008-01-01

    The detection of actual changes in a pair of images is confounded by the inadvertent but pervasive differences that inevitably arise whenever two pictures are taken of the same scene, but at different times and under different conditions. These differences include effects due to illumination, calibration, misregistration, etc. If the actual changes are assumed to be rare, then one can 'learn' what the pervasive differences are, and can identify the deviations from this pattern as the anomalous changes. A recently proposed framework for anomalous change detection recasts the problem as one of binary classification between pixel pairs in the data and pixel pairs that are independently chosen from the two images. When an elliptically-contoured (EC) distribution is assumed for the data, then analytical expressions can be derived for the measure of anomalousness of change. However, these expression are only available for a limited class of EC distributions. By replacing independent pixel pairs with uncorrelated pixel pairs, an approximate solution can be found for a much broader class of EC distributions. The performance of this approximation is investigated analytically and empirically, and includes experiments comparing the detection of real changes in real data.

  8. The apparent anomalous, weak, long-range acceleration of Pioneer 10 and 11

    SciTech Connect (OSTI)

    Anderson, J.D.; Lau, E.L.; Turyshev, S.G.; Laing, P.A.; Liu, A.S.; Nieto, M.M.

    1999-07-01

    Recently the authors reported that radio Doppler data generated by NASA`s Deep Space Network (DSN) with the Pioneer 10 and 11 spacecraft indicate an apparent anomalous, constant, spacecraft acceleration with a magnitude {approximately}8.5 {times} 10{sup {minus}8} cm s{sup {minus}2}, directed towards the Sun. Analysis of similar Doppler and ranging data from the Galileo and Ulysses spacecraft yielded ambiguous results for the anomalous acceleration, but the analysis was useful in that it ruled out the possibility of a systematic error in the DSN Doppler system that could easily be mistaken as a spacecraft acceleration. Here they present some new results, including a critique of the suggestion that the anomalous acceleration could be caused by collimated thermal emission. Based on upgraded JPL software for the Pioneer 10 orbit determination, and on a new data interval from January 1987 to July 1998, their best estimate of the average Pioneer 10 acceleration directed towards the Sun is 7.20 {sup {minus}} 0.11 {times} 10{sup {minus}8} cm s{sup {minus}2}.

  9. Role of pressure in understanding the anomalous superconductivity in europium (molybdenum)/sub 6/(sulfur)/sub 8/ and (TMTSF)/sub 2/FSO/sub 3/

    SciTech Connect (OSTI)

    Wolf, S.A.; Huang, C.Y.; Lacoe, R.C.; Chaikin, P.M.; Fuller, W.W.; Luo, H.L.; Wudl, F.

    1983-01-01

    Both the Chevrel phase compound EuMo/sub 6/S/sub 8/ and the organic material, (TMTSF)/sub 2/FSO/sub 3/ are superconducting only under moderate pressure. In both instances the absence of superconductivity at ambient pressure is directly attributed to a low temperature structural distortion that introduces a gap over all or part of the Fermi surface. The role of pressure is to suppress the transition and thus allow the electrons to condense into the superconducting state. In EuMo/sub 6/S/sub 8/, details of the pressure dependence of both the structural and superconducting transition have been explained on the basis of a competition between a charge density wave-type state and superconductivity. In the case of (TMTSF)/sub 2/FSO/sub 3/ an anion ordering giving rise to a metal-insulator transition is responsible for suppressing superconductivity. The critical magnetic fields of EuMo/sub 6/S/sub 8/ are extremely anomalous and are related to the magnetism of the Eu as well as the structure of the compound.

  10. Size-dependent magnetic ordering and spin-dynamics in DyPO4 and GdPO4 nanoparticles

    SciTech Connect (OSTI)

    Evangelisti, Marco; Sorop, Tibi G; Bakharev, Oleg N; Visser, Dirk; Hillier, Adrian D.; Alonso, Juan; Haase, Markus; Boatner, Lynn A; De Jongh, L. Jos

    2011-01-01

    Low-temperature magnetic susceptibility and heat capacity measurements on nanoparticles (d 2.6 nm) of the antiferromagnetic compounds DyPO4 (TN = 3:4 K) and GdPO4 (TN = 0:77 K) provide clear demonstrations of finite-size effects, which limit the divergence of the magnetic correlation lengths, thereby suppressing the bulk long-range magnetic ordering transitions. Instead, the incomplete antiferromagnetic order inside the particles leads to the formation of net magnetic moments on the particles. For the nanoparticles of Ising-type DyPO4 superparamagnetic blocking is found in the ac-susceptibility at 1 K, those of the XY-type GdPO4 analogue show a dipolar spin-glass transition at 0:2 K. Monte Carlo simulations for the magnetic heat capacities of both bulk and nanoparticle samples are in agreement with the experimental data. Strong size effects are also apparent in the Dy3+ and Gd3+ spin-dynamics, which were studied by zero-field SR relaxation and high-field 31P-NMR nuclear relaxation measurements. The freezing transitions observed in the ac-susceptibility of the nanoparticles also appear as peaks in the temperature dependence of the zero-field SR rates, but at slightly higher temperatures - as to be expected from the higher frequency of the muon probe. For both bulk and nanoparticles of GdPO4, the muon and 31P-NMR rates are for T 5 K dominated by exchange-narrowed hyperfine broadening arising from the electron spin-spin interactions inside the particles. The dipolar hyperfine interactions acting on the muons and the 31P are, however, much reduced in the nanoparticles. For the DyPO4 analogues the high-temperature rates appear to be fully determined by electron spin-lattice relaxation processes.

  11. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and Υ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲ pT ≲ 100 GeV) the efficiencymore » is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≃ 10 GeV, to 4% at large rapidity and pT ≃ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.« less

  12. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC protonproton collision data

    SciTech Connect (OSTI)

    Aad, G.

    2014-11-26

    This study presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at ?s = 78 TeV in 20112012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/? ? ??, Z ? ?? and ? ? ?? decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |?| < 2.7 and 5 ? pT ? 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ? 10 GeV, to 4% at large rapidity and pT ? 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.

  13. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  14. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  15. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhanced magnetic refrigeration at very low temperatures. Not Your Mother's Refrigerator Magnets Some day soon, magnets could do more than clutter up the front of your...

  16. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect (OSTI)

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  17. Design and Construction of Test Coils for the MICE Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Xu, F.Y.; Liu, XioaKun; Chen, AnBin; Li, LanKai; Gou, XingLong; Wu, Hong; Green, Michael; Li, Darun; Strauss, Bruce

    2008-08-08

    The superconducting coupling solenoid to be applied in the Muon Ionization Cooling Experiment (MICE) is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 102.5 mm at room temperature. The magnetic field up to 2.6 T at the magnet centerline is to keep the muons within the MICE RF cavities. Its self inductance is around 592 H and its magnet stored energy is about 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The stress induced inside the coil during cool down and charging is relatively high. Two test coils are to build and test in order to validate the design method and develop the fabrication technique required for the coupling coil winding, one is 350 mm inner diameter and full length same as the coupling coil, and the other is one-quarter length and 1.5 m diameter. The 1.5 m diameter coil will be charged to strain conditions that are greater than would be encountered in the coupling coil. This paper presents detailed design of the test coils as well as developed winding skills. The analyses on stress in coil assemblies, AC loss, and quench process are carried out.

  18. Pressurized H_{2} rf Cavities in Ionizing Beams and Magnetic Fields

    SciTech Connect (OSTI)

    Chung, M.; et al.

    2013-10-01

    A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10−18 to 10−16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

  19. The MuCap experiment: A measurement of the muon capture rate in hydrogen gas

    SciTech Connect (OSTI)

    Banks, T. I.

    2007-10-26

    We have recently measured the rate of nuclear muon capture by the proton, using a novel technique which involves a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S} = 725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2} = 0.88m{sub {mu}}{sup 2}) = 7.3{+-}1.1, is extracted. This result is consistent with theoretical predictions for g{sub P} that are based on the approximate chiral symmetry of QCD.

  20. Temperature dependence of spin-orbit torque effective fields in the diluted magnetic semiconductor (Ga,Mn)As

    SciTech Connect (OSTI)

    Howells, B.; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.

    2014-07-07

    We report on a study of the temperature-dependence of current-induced effective magnetic fields due to spin-orbit interactions in the diluted ferromagnetic semiconductor (Ga,Mn)As. Contributions from the effective fields as well as from the anomalous Nernst effect are evident in the difference between transverse resistance measurements as a function of an external magnetic field for opposite orientations of the applied current. We separately extract these contributions by fitting to a model of coherently rotating magnetization. The component of the effective field with Dresselhaus symmetry is substantially enhanced with increasing temperature, while no significant temperature-dependence is observed for the component with Rashba symmetry.

  1. Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection

    SciTech Connect (OSTI)

    Seifert, Carolyn E.; Myjak, Mitchell J.; Pfund, David M.

    2009-05-29

    This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques---in which only a fraction of the information derived from the spectra is displayed and stored---have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were unaffected by the presence of injected 137Cs contamination.

  2. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect (OSTI)

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along the Cu-pyz-Cu directions. The structure of the two compounds is similar, but in the case of the Cu-compound the Cu-Cu pathways are linear, whereas in the Ni-compound they are kinked. The pulsed-field data combined with information from temperature-dependent susceptibility, muon-spin rotation, electron-spin resonance and ligand-field calculations suggest that, far from being magnetically Q2D, the Ni-compound is fairly one-dimensional with the dominant exchange (J{sub 1D} = 3.1 K and J{sub {perpendicular}}/J{sub 1D} = 0.63) directed along the Ni-FHF-Ni direction. Ni(NCS){sub 2}(pyzdo){sub 2} was also investigated. Previous ultra-high field measurements using the 100 T magnet have shown that this compound has a saturation field close to 80 T. The purpose of the present studies is to map out the phase diagram of this material at mid-range fields. The data are shown in the inset to the figure. This continuing project probes the ability of organic ligands to mediate magnetic exchange, the link between structure, dimensionality and bulk magnetic properties, as well as the role of spin number in quantum magnets. Ultimately the investigations aim to determine to what extent it is possible to produce self-assembly molecular materials with tailor-made magnetic characteristics.

  3. Decaying neutralino dark matter in anomalous U(1){sub H} models

    SciTech Connect (OSTI)

    Sierra, D. Aristizabal; Restrepo, D.; Zapata, Oscar

    2009-09-01

    In supersymmetric models extended with an anomalous U(1){sub H} different R-parity violating couplings can yield an unstable neutralino. We show that in this context astrophysical and cosmological constraints on neutralino decaying dark matter forbid bilinear R-parity breaking neutralino decays and lead to a class of purely trilinear R-parity violating scenarios in which the neutralino is stable on cosmological scales. We have found that among the resulting models some of them become suitable to explain the observed anomalies in cosmic-ray electron/positron fluxes.

  4. Anomalous deflection of a charged-particle beam by bent crystals

    SciTech Connect (OSTI)

    Taratin, A.M.; Vorobev, S.A.

    1986-05-01

    Using computer simulations of particle trajectory, a deflection of part of the beam in the direction opposite to the curvature is discovered for charged particles passing through a bent crystal. The passage of a proton beam of energy E(0) = 1 GeV through a curved silicon single crystal is considered, and only particles that move through the single crystal in a quasi-channel mode are deflected. It is suggested that the observed anomalous deflection can be used to deflect beams of high energy charged particles through angles that are tens of times greater than the critical angle for channeling, with application to experimental nuclear physics. 6 references.

  5. Anomalous complete opaqueness in a sparse array of gold nanoparticle chains

    SciTech Connect (OSTI)

    Bai Benfeng; Li Xiaowei; Vartiainen, Ismo; Lehmuskero, Anni; Turunen, Jari; Kuittinen, Markku; Vahimaa, Pasi; Kang Guoguo

    2011-08-22

    We report on an anomalous polarization-switching extinction effect in a sparse array of gold nanoparticle chains: under normal incidence of light, the array is almost transparent for one polarization; whereas it is fully opaque (with nearly zero transmittance) for the orthogonal polarization within a narrow band, even though the nanoparticles cover only a tiny fraction (say, 3.5%) of the transparent substrate surface. We reveal that the strong polarization-dependent short-range dipolar coupling and long-range radiative coupling of gold nanoparticles in this highly asymmetric array is responsible for this extraordinary effect.

  6. Real-time detection and classification of anomalous events in streaming data

    DOE Patents [OSTI]

    Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.; Laska, Jason A.; Harrison, Lane T.

    2016-04-19

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.

  7. Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation

    SciTech Connect (OSTI)

    Smetanina, E O; Kompanets, V O; Chekalin, Sergei V; Kandidov, V P

    2012-10-31

    We report the results of investigation of femtosecond laser pulse filamentation in fused silica by varying the wavelength in the range from 800 to 2300 nm. It is shown that in the case of the anomalous group-velocity dispersion, a sequence of 'light bullets' with a high spatial and temporal localisation of the light field is formed along the filament. The relation of the formation and propagation of light bullets with the formation of an isolated anti-Stokes wing of the supercontinuum spectrum is established. (nonlinear optical phenomena)

  8. Magnetic design calculation and FRC formation modeling for the field reversed experiment liner

    SciTech Connect (OSTI)

    Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.

    2008-10-01

    Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.

  9. Study on the Mechanical Instability of MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Gou, Xing Long; Wu, Hong; Zheng, Shi Xian; Green, Michael A

    2011-05-04

    The superconducting coupling solenoid magnet is one of the key equipment in the Muon Ionization Cooling Experiment (MICE). The coil has an inner radius of 750 mm, length of 281 mm and thickness of 104 mm at room temperature. The peak induction in the coil is about 7.3 T with a full current of 210 A. The mechanical disturbances which might cause the instability of the impregnated superconducting magnet involve the frictional motion between conductors and the cracking of impregnated materials. In this paper, the mechanical instability of the superconducting coupling magnet was studied. This paper presents the numerical calculation results of the minimum quench energy (MQE) of the coupling magnet, as well as the dissipated strain energy in the stress concentration region when the epoxy cracks and the frictional energy caused by 'stick-slip' of the conductor based on the bending theory of beam happens. Slip planes are used in the coupling coil and the frictional energy due to 'slow slip' at the interface of the slip planes was also investigated. The dissipated energy was compared with MQE, and the results show that the cracking of epoxy resin in the region of shear stress concentration is the main factor for premature quench of the coil.

  10. RF breakdown of 805 MHz cavities in strong magnetic fields

    SciTech Connect (OSTI)

    Bowring, D.; Stratakis, D.; Kochemirovskiy, A.; Leonova, M.; Moretti, A.; Palmer, M.; Peterson, D.; Yonehara, K.; Freemire, B.; Lane, P.; Torun, Y.; Haase, A.

    2015-05-03

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.

  11. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  12. Magnetic correlations and the anisotropic kondo effect in Ce{sub 1-x}La{sub x}Al{sub 3}.

    SciTech Connect (OSTI)

    Goremychkin, E. A.; Osborn, R.; Rainford, B. D.; Costi, T. A.; Murani, A. P.; Scott, C. A.; King, P. J. C.; Materials Science Division; Univ. of Southhampton; Univ. Karlsruhe; Inst. laue Langevin; Rutherford Appleton Lab.

    2002-09-30

    By combining the results of muon spin relaxation and inelastic neutron scattering in the heavy fermion compounds Ce{sub 1-x}La{sub x}Al{sub 3} (0.0 {le} x {le} 0.2), we show that static magnetic correlations are suppressed above a characteristic temperature, T*, by electronic dissipation rather than by thermal disorder. Below T*, an energy gap opens in the single-ion magnetic response in agreement with the predictions of the anisotropic Kondo model. Scaling arguments suggest that similar behavior may underlie the 'hidden order' in URu{sub 2}Si{sub 2}.

  13. Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma

    SciTech Connect (OSTI)

    Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.

    2006-07-15

    The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.

  14. Is the baryon asymmetry of the Universe related to galactic magnetic fields?

    SciTech Connect (OSTI)

    Semikoz, V. B.; Sokoloff, D. D.; Valle, J. W. F.

    2009-10-15

    A tiny hypermagnetic field generated before the electroweak phase transition (EWPT) associated to the generation of elementary particle masses can polarize the early Universe hot plasma at huge redshifts z > or approx. 10{sup 15}. The anomalous violation of the right-handed electron current characteristic of the EWPT converts the lepton asymmetry into a baryon asymmetry. Under reasonable approximations, the magnetic field strength inferred by requiring such 'leptogenic' origin for the observed baryon asymmetry of the Universe matches the large-scale cosmological magnetic field strengths estimated from current astronomical observations.

  15. Magnetic and transport properties of Mn{sub 2}CoAl oriented films

    SciTech Connect (OSTI)

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-30

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn{sub 2}CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  16. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  17. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  18. Anomalous Transport in Sketched Nanostructures at the LaAlO3/SrTiO3

    Office of Scientific and Technical Information (OSTI)

    Interface (Journal Article) | SciTech Connect Anomalous Transport in Sketched Nanostructures at the LaAlO3/SrTiO3 Interface Citation Details In-Document Search Title: Anomalous Transport in Sketched Nanostructures at the LaAlO3/SrTiO3 Interface Authors: Cheng, Guanglei ; Veazey, Joshua P. ; Irvin, Patrick ; Cen, Cheng ; Bogorin, Daniela F. ; Bi, Feng ; Huang, Mengchen ; Lu, Shicheng ; Bark, Chung-Wung ; Ryu, Sangwoo ; Cho, Kwang-Hwan ; Eom, Chang-Beom ; Levy, Jeremy Publication Date:

  19. Superconducting and magnetic properties of Sr3Ir4Sn13

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, P. K.; Amato, A.; Khasanov, R.; Luetkens, H.; Wang, Kefeng; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr₃Ir₄Sn₁₃. From magnetization measurements the lower and upper critical fields of Sr₃Ir₄Sn₁₃ are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr₃Ir₄Sn₁₃. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth λ. The dependence of λ⁻² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr₃Ir₄Sn₁₃ withmore » a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature λ(0) is 291(3) nm. The ratio Δ(0)/kBTc = 2.1(1) indicates that Sr₃Ir₄Sn₁₃ should be considered as a strong-coupling superconductor.« less

  20. Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

    2011-05-04

    The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

  1. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  2. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - II: Pion Production Target

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Cavalleri, Emanuela; Karmanov, Fedor I.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Vecchi, Marcello

    2001-03-15

    The possibility of using a liquid lithium primary target for the 14-MeV intense neutron source (INS) based on muon-catalyzed fusion ({mu}CF) (the {mu}CF-INS) is discussed. The description of the thermohydraulic and mechanical analysis that suggested the proposed geometry is presented. Particular attention is given to the thermal parameter evaluation since these quantities have a great influence on the choice of target design. According to the calculations, the lithium primary target variant can be considered for future {mu}CF-INS realization.

  3. Anomalous QCD contribution to the Debye screening in an external field via holography

    SciTech Connect (OSTI)

    Gorsky, A.; Kopnin, P. N.; Krikun, A.

    2011-03-15

    In this paper we discuss the QCD contribution to the Abelian Debye and magnetic screening masses in a deconfined QCD plasma at finite temperature in the presence of an external magnetic field B. We use a holographic AdS/QCD setup in an AdS Schwarzschild black hole background and show that the electric screening mass has a form similar to the one-loop result in QED. Moreover, we calculate the corrections due to the magnetic field to all orders of B and demonstrate that in the case when the magnetic field is large the Debye mass grows linearly with B, while the magnetic screening mass vanishes. The whole effect of the magnetic field turns out to stem from the Chern-Simons action. We also discuss the zero temperature case in the chiral perturbation theory.

  4. Berry phase mechanism of the anomalous Hall effect in a disordered...

    Office of Scientific and Technical Information (OSTI)

    The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more ...

  5. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  6. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect (OSTI)

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  7. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household Magnets Household Magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to

  8. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  9. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  10. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  11. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  13. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOE Patents [OSTI]

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  14. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  15. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect (OSTI)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  16. Anomalous behavior of the Pd/D system. Final report, June 1989-August 1993

    SciTech Connect (OSTI)

    Szpak, S.J.; Mosier-Boss, P.A.

    1995-09-01

    In a news conference on 23 March 1989, Martin Fleischmann and Stanley Pons announced that nuclear events could be initiated by the electrochemical compression of deuterium into a palladium lattice. When researchers around the world tried to reproduce the effects described by Pons and Fleischmann in their laboratories, the results were mixed. The nature of the announcement and the Irreproducibility of the effect divided the scientific community into believers and skeptics, indicating religious fervor rather than scientific reasoning. Shortly after the Fleischmann-Pons announcement, a program at NRaD investigated anomalous effects in the Pd/D system. The NRaD program investigated the Pd/D system using standard electrochemical techniques to determine conditions for achieving high Pd/D loadings. Metallurgical aspects of the Pd/D system and the effect of additives were also examined. Tritium content in the gas/liquid phases and radiation emissions were monitored during electrolysis. This report summarizes the investigation results.

  17. On the explanation and calculation of anomalous reflood hydrodynamics in large PWR cores

    SciTech Connect (OSTI)

    Rodriguez, S.E.

    1985-01-01

    Reflood hydrodynamics from large-scale (1:20) test facilities in Japan have yielded apparently anomalous behavior relative to FLECHT tests. Namely, even at reflooding rates below one inch per second, very large liquid volume fractions (10-15%) exist above the quench fronts shortly after flood begins; thus cladding temperature excursions are terminated early in the reflood phase. This paper discusses an explanation for this behavior: liquid films on the core's unheated rods. The experimental findings are shown to be correctly simulated with a new four-field (vapor, films, droplets) version of the best-estimate TRAC-PF1 computer code, TRAC-FF. These experimental and analytical findings have important implications for PWR large-break LOCA licensing.

  18. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small massmore » ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  19. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    SciTech Connect (OSTI)

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  20. Nonuniversal gaugino masses and muong-2

    SciTech Connect (OSTI)

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; n, Cem Salih

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125126 GeV Higgs boson mass and the WMAP dark matter bounds.

  1. Preparation of ortho-para ratio controlled D{sub 2} gas for muon-catalyzed fusion

    SciTech Connect (OSTI)

    Imao, H.; Ishida, K.; Matsuzaki, T.; Matsuda, Y.; Iwasaki, M.; Kawamura, N.; Strasser, P.; Toyoda, A.; Nagamine, K.

    2008-05-15

    A negative muon in hydrogen targets, e.g., D{sub 2} or D-T mixture, can catalyze nuclear fusions following a series of atomic processes involving muonic hydrogen molecular formation (muon-catalyzed fusion, {mu}CF). The ortho-para state of D{sub 2} is a crucial parameter not only for enhancing the fusion rate but also to precisely investigate various muonic atom processes. We have developed a system for controlling and measuring the ortho-para ratio of D{sub 2} gas for {mu}CF experiments. We successfully collected para-enriched D{sub 2} without using liquid-hydrogen coolant. Ortho-enriched D{sub 2} was also obtained by using a catalytic conversion method with a mixture of chromium oxide and alumina. The ortho-para ratio of D{sub 2} gas was measured with a compact Raman spectroscopy system. We produced large volume (5-30 l at STP), high-purity (less than ppm high-Z contaminant) D{sub 2} targets with a wide range of ortho-para ratios (ortho 20%-99%). By using the ortho-para controlled D{sub 2} in {mu}CF experiments, we observed the dependence of {mu}CF phenomena on the ortho-para ratio.

  2. A search for long-lived particles that stop in the CMS detector and decay to muons

    SciTech Connect (OSTI)

    Alimena, Juliette

    2016-01-01

    A search for long-lived particles that are produced in proton-proton collisions at the CERN LHC, come to rest in the CMS detector, and decay to muons is presented. The decays of the stopped particles could be observed during the intervals between LHC beam crossings, at times that are well separated from any proton-proton collisions. The analysis uses 19.7 1/fb of 8 TeV data collected by CMS in 2012, during a search interval of 293 hours of trigger livetime. Massive, long-lived particles do not exist in the Standard Model, and so any sign of them would be an indication of new physics. The results are interpreted with a model that predicts a long-lived particle that has a charge of twice the electron charge and that behaves like a lepton. Cross section limits are set for each long-lived particle mass as a function of lifetime, for lifetimes between 100 ns and 10 days. These are the first limits for long-lived stopped particles that decay to muons.

  3. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  6. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Progress with high-field superconducting magnets for high-energy colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors.more » Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  9. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect (OSTI)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  10. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  11. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  12. Measurement of muon plus proton final states in ?? interactions on hydrocarbon at < E? > = 4.2 GeV

    SciTech Connect (OSTI)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70 and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  13. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    SciTech Connect (OSTI)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  14. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    SciTech Connect (OSTI)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  15. Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at ‹ Eν › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M. J.; Butkevich, A.; Martinez Caicedo, D. A.; et al

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  16. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at ν > = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  17. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  18. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry out a thorough revision of the original analysis with the aim of understanding the different contributions to the total bias and resolution when building MPDs on an event-by-event basis. We focus on an alternative way to build MPDs by considering average MPDs for ensembles of air-showers, with the aim of enlarging the range of applicability of this kind of analysis. Finally, we analyze how different improvements in the Surface Detector electronics and its internal configuration affect the resolution of the MPD. We conclude by summarizing the main results and discussing potential ways to improve MPD-based mass composition studies.

  19. Anomalous temperature dependence of flow stress in a Fe{sub 3}Al alloy

    SciTech Connect (OSTI)

    Song, J.H.; Ha, T.K.; Chang, Y.W.

    2000-01-01

    Iron aluminides have attracted much interest since 1930s when the excellent corrosion resistance was noted in alloys with the composition of more than about 18 at.% Al. These alloys have relatively low material cost, due to the reduced usage of strategic elements like Cr, Mo and Ni, and a lower density than stainless steels. Their tensile strength is also comparable to those of ferritic and austenitic steels. These advantages have led the iron aluminide alloys being considered for many applications in industries needing sulfidation and oxidation resistance (1). However, the poor ductility at ambient temperatures and an abrupt drop in strength above 600 C have limited these alloys for structural applications. In the past years, extensive efforts have been devoted to understanding and improving the metallurgical properties of iron aluminides with the aim of producing more strong, ductile, and corrosion-resistant materials for structural applications. These studies have resulted in significant contributions to the understanding of the fabrication and mechanical properties of iron aluminides. Deformation behavior in iron aluminides is now known to depend on composition, temperature, and the presence or absence of ordered structures. Recent studies have demonstrated that improved engineering ductility of 10--15% can be achieved in wrought Fe{sub 3}Al-based iron aluminide alloys, through the control of composition and microstructure. The effect of strain rate on the deformation behavior of Fe{sub 3}Al alloys, especially on the anomalous temperature dependence of strength is of interest recently and more systematic investigation is now necessitated. Load relaxation test has been generally regarded as a very effective technique to measure the strain rate sensitivity over a wider range of strain rates with very little microstructural changes and has been applied to the plasticity of various rate-sensitive materials. In the present study, the iron aluminide alloys with 27.6 at.% Al having the various single-phase field, i.e. the disordered solid solution ({alpha}), an Fe{sub 3}Al with an imperfectly ordered B2 structure, and an ordered Fe{sub 3}Al with the D0{sub 3} structure were first prepared. A series of load relaxation tests was then carried out at the various temperatures ranging from 300 to 800 C to investigate the effect of the tensile strain rate on the anomalous flow behavior.

  20. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; (Livermore, CA); Lucas, Matthew S.; (Pasadena, CA)

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  1. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; lvarez Gonzlez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; dAscenzo, N.; Datta, M.; de Barbaro, P.; DellOrso, M.; Demortier, L.; Deninno, M.; Devoto, F.; dErrico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; DOnofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzlez, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martnez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb? and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  2. Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g{sub P}

    SciTech Connect (OSTI)

    Andreev, V. A.; Ganzha, V. A.; Kravtsov, P. A.; Krivshich, A. G.; Maev, E. M.; Maev, O. E.; Petrov, G. E.; Schapkin, G. N.; Semenchuk, G. G.; Soroka, M. A.; Vasilyev, A. A.; Vorobyov, A. A.; Vznuzdaev, M. E.; Banks, T. I.; Case, T. A.; Crowe, K. M.; Freedman, S. J.; Gray, F. E.; Lauss, B.; Chitwood, D. B.

    2007-07-20

    The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S}=725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2}=-0.88m{sub {mu}}{sup 2})=7.3{+-}1.1, is extracted.

  3. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  4. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  5. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect (OSTI)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  6. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; et al

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbitalmore » degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.« less

  7. Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids

    SciTech Connect (OSTI)

    A Wolcott; V Doyeux; C Nelson; R Gearba; K Lei; K Yager; A dolocan; K Williams; D Nguyen; X Zhu

    2011-12-31

    The formation of solid thin films from colloidal semiconductor quantum dots (QDs) is often accompanied by red shifts in excitonic transitions, but the mechanisms responsible for the red shifts are under debate. We quantitatively address this issue using optical absorption spectroscopy of two-dimensional (2D) and three-dimensional (3D) arrays of PbSe QDs with controlled inter-QD distance, which was determined by the length of alkanedithiol linking molecules. With decreasing inter-QD distance, the first and second exciton absorption peaks show increasing red shifts. Using thin films consisting of large and isolated QDs embedded in a matrix of small QDs, we determine that a dominant contribution to the observed red shift is due to changes in polarization of the dielectric environment surrounding each QD ({approx}88%), while electronic or transition dipole coupling plays a lesser role. However, the observed red shifts are more than 1 order of magnitude larger than theoretical predictions based on the dielectric polarization effect for spherical QDs. We attribute this anomalously large polarization effect to deviations of the exciton wave functions from eigenfunctions of the idealized spherical quantum well model.

  8. HORIZONTAL BRANCH MORPHOLOGY AND MULTIPLE STELLAR POPULATIONS IN THE ANOMALOUS GLOBULAR CLUSTER M 22

    SciTech Connect (OSTI)

    Marino, A. F.; Milone, A. P.; Lind, K. E-mail: milone@iac.es

    2013-05-01

    M 22 is an anomalous globular cluster that hosts two groups of stars with different metallicity and s-element abundance. The star-to-star light-element variations in both groups, with the presence of individual Na-O and C-N anticorrelations, demonstrates that this Milky Way satellite has experienced a complex star formation history. We have analyzed FLAMES/UVES spectra for seven stars covering a small color interval on the reddest horizontal branch (HB) portion of this cluster and investigated possible relations between the chemical composition of a star and its location along the HB. Our chemical abundance analysis takes into account effects introduced by deviations from the local thermodynamic equilibrium (NLTE effects), which are significant for the measured spectral lines in the atmospheric parameters range spanned by our stars. We find that all the analyzed stars are barium-poor and sodium-poor, thus supporting the idea that the position of a star along the HB is strictly related to the chemical composition, and that the HB morphology is influenced by the presence of different stellar populations.

  9. Resonant cavity mode dependence of anomalous and inverse spin Hall effect

    SciTech Connect (OSTI)

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-young

    2014-05-07

    The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE{sub 011} and TE{sub 102} cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE{sub 011} and TE{sub 102} cavities. The voltage of ISHE in the TE{sub 011} cavity was larger than that in the TE{sub 102} cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE{sub 011} cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE{sub 011} cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE{sub 102} cavity was less sensitive than that in the TE{sub 011} cavity to decentering problem.

  10. Magnetic design constraints of helical solenoids

    SciTech Connect (OSTI)

    Lopes, M. L.; Krave, S. T.; Tompkins, J. C.; Yonehara, K.; Flanagan, G.; Kahn, S. A.; Melconian, K.

    2015-01-30

    Helical solenoids have been proposed as an option for a Helical Cooling Channel for muons in a proposed Muon Collider. Helical solenoids can provide the required three main field components: solenoidal, helical dipole, and a helical gradient. In general terms, the last two are a function of many geometric parameters: coil aperture, coil radial and longitudinal dimensions, helix period and orbit radius. In this paper, we present design studies of a Helical Solenoid, addressing the geometric tunability limits and auxiliary correction system.

  11. Improvement of charged particles transport across a transverse magnetic filter field by electrostatic trapping of magnetized electrons

    SciTech Connect (OSTI)

    Das, B. K. Hazarika, P.; Chakraborty, M.; Bandyopadhyay, M.

    2014-07-15

    A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.

  12. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  13. Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response

    SciTech Connect (OSTI)

    Lopes-Oliveira, V. Herval, L. K. S.; Orsi Gordo, V.; Cesar, D. F.; Godoy, M. P. F. de; Galvão Gobato, Y.; Henini, M.; Khatab, A.; Sadeghi, M.; Wang, S.; Schmidbauer, M.

    2014-12-21

    We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III–V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state.

  14. Kondo-type transport through a quantum dot under magnetic fields

    SciTech Connect (OSTI)

    Dong, Bing; Lei, X. L.

    2001-06-15

    In this paper, we investigate the Kondo correlation effects on linear and nonlinear transport in a quantum dot connected to reservoirs under finite magnetic fields, using the slave-boson mean field approach suggested by Kotliar and Ruckenstein [Phys. Rev. Lett. >57, 1362 (1986)]. A brief comparison between the present formulation and other slave-boson formulation is presented to justify this approach. The numerical results show that the linear conductance near electron-hole symmetry is suppressed by the application of the magnetic fields, but an anomalous enhancement is predicted in the nonsymmetry regime. The effect of external magnetic fields on the nonlinear differential conductances is discussed for the Kondo system. A significant reduction of the peak splitting is observed due to the strong Kondo correlation, which agrees well with experimental data.

  15. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  16. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  17. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  18. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  19. Monte Carlo Study of the Measurement of the top - anti-top Production Cross-Section in the Muon + Jets Channel with the D0-Detector at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Meyer, Jorg Manfred; /Bonn U.

    2004-03-01

    A measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV with the D0 detector using simulated events is performed. The final state containing a muon and jets is examined including all methods of measuring signal efficiencies and the estimation of the background contributions. Especially, the identification efficiency and properties of muons are studied.

  20. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.