Powered by Deep Web Technologies
Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Contributions to the muon's anomalous magnetic moment from a hidden sector  

SciTech Connect

Research Highlights: > Described scenario involving hidden and connector particles that couple to the standard model which could be relevant for dark matter. > Examined constraints on such particles in the case that the SM particle they couple to is the muon. > Found regions of couplings which could explain the discrepancy in the muon's anomalous magnetic moment which differ for different hidden and connector particles' spins. - Abstract: The measurement of the anomalous magnetic moment of the muon provides a stringent test of the standard model and of any physics that lies beyond it. There is currently a deviation of 3.1{sigma} between the standard model prediction for the muon's anomalous magnetic moment and its experimental value. We calculate the contribution to the anomalous magnetic moment in theories where the muon couples to a particle in a hidden sector (that is, uncharged under the standard model) and a connector (which has nontrivial standard model gauge and hidden sector quantum numbers).

McKeen, David, E-mail: mckeen@uvic.ca [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

2011-06-15T23:59:59.000Z

2

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment  

E-Print Network (OSTI)

We review the current status of theoretical calculations of the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Different approaches and related issues such as OPE constraints and large breaking of chiral symmetry are discussed. Combining results of different models with educated guesses on the errors we come to the estimate $$a^{\\rm HLbL}=(10.5\\pm 2.6)\\times 10^{-10}.$$ The text is prepared as a contribution to the {\\it Glasgow White Paper on the present status of the Muon Anomalous Magnetic Moment}.

Joaquim Prades; Eduardo de Rafael; Arkady Vainshtein

2009-01-03T23:59:59.000Z

3

The Anomalous Magnetic Moment of the Muon and Higgs-Mediated Flavor Changing Neutral Currents  

E-Print Network (OSTI)

In the two-Higgs doublet extension of the standard model, flavor-changing neutral couplings arise naturally. In the lepton sector, the largest such coupling is expected to be $\\mu-\\tau-\\phi#. We consider the effects of this coupling on the anomalous magnetic moment of the muon. The resulting bound on the coupling, unlike previous bounds, is independent of the value of other unknown couplings. It will be significantly improved by the upcoming E821 experiment at Brookhaven National Lab.

Shuquan Nie; Marc Sher

1998-05-19T23:59:59.000Z

4

Higgs mass and muon anomalous magnetic moment in supersymmetric models with vectorlike matters  

SciTech Connect

We study the muon anomalous magnetic moment (muon g-2) and the Higgs boson mass in a simple extension of the minimal supersymmetric (SUSY) standard model with extra vectorlike matters, in the frameworks of gauge-mediated SUSY breaking (GMSB) models and gravity mediation (mSUGRA) models. It is shown that the deviation of the muon g-2 and a relatively heavy Higgs boson can be simultaneously explained in large tan{beta} region. (i) In GMSB models, the Higgs mass can be more than 135 GeV (130 GeV) in the region where the muon g-2 is consistent with the experimental value at the 2{sigma} (1{sigma}) level, while maintaining the perturbative coupling unification. (ii) In the case of mSUGRA models with universal soft masses, the Higgs mass can be as large as about 130 GeV when the muon g-2 is consistent with the experimental value at the 2{sigma} level. In both cases, the Higgs mass can be above 140 GeV if the g-2 constraint is not imposed.

Endo, Motoi; Hamaguchi, Koichi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Chiba, 277-8583 (Japan); Iwamoto, Sho; Yokozaki, Norimi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

2011-10-01T23:59:59.000Z

5

Muon anomalous magnetic moment constraints on supersymmetric U(1){sup '} models  

Science Conference Proceedings (OSTI)

We study the anomalous magnetic moment of the muon in supersymmetric E{sub 6} models and generic U(1){sup '} models to probe the model reactions and to find constraints on the large parameter space of these models. For future searches, by imposing the existing bounds coming from collider searches and theoretical considerations upon the U(1){sup '} model parameters, we examine the lightest Higgs boson mass m{sub h} and the mass of the additional Z boson m{sub Z{sub 2}} in such singlet extensions of the MSSM. We observed that not only supersymmetric E{sub 6} models but also generic U(1){sup '} models are sensitive to the imposition of the considered bounds. Indeed, without the muon anomaly constraints E{sub 6} models and generic U(1){sup '} models can predict m{sub h} as large as {approx}150 GeV and {approx}180 GeV, respectively. However, in addition to the mentioned constraints when a 1{sigma} range for the anomalous magnetic moment of the muon is considered, we observe that generic U(1){sup '} models do not favor the mass of the lightest Higgs boson to be larger than 140 GeV; it should be smaller than 135 GeV in E{sub 6} models.

Cincioglu, Elif; Solmaz, Saime; Solmaz, Levent; Hicyilmaz, Yasar [Department of Physics, Balikesir University, TR10145, Balikesir (Turkey); Kirca, Zerrin [Department of Physics, Balikesir University, TR10145, Balikesir (Turkey); Department of Physics, Uludag University, TR16000, Bursa (Turkey); Sert, Hale [Department of Physics, Izmir Institute of Technology, TR35430, Izmir (Turkey)

2010-09-01T23:59:59.000Z

6

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited  

E-Print Network (OSTI)

We discuss hadronic light-by-light scattering contribution to the muon anomalous magnetic moment a_\\mu^{\\rm lbl}, paying particular attention to the consistent matching between the short- and the long-distance behavior of the light-by-light scattering amplitude. We argue that the short-distance QCD imposes strong constraints on this amplitude overlooked in previous analyses. We find that accounting for these constraints leads to approximately 50 per cent increase in the central value of a_\\mu^{\\rm lbl}, compared to existing estimates. The hadronic light-by-light scattering contribution becomes a_\\mu^{\\rm lbl}=136(25) \\times 10^{-11}, thereby shifting the Standard Model prediction closer to the experimental value.

Kirill Melnikov; Arkady Vainshtein

2003-12-16T23:59:59.000Z

7

Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment  

E-Print Network (OSTI)

We construct a physically motivated model for the isospin-one non-strange vacuum polarization function Pi(Q^2) based on a spectral function given by vector-channel OPAL data from hadronic tau decays for energies below the tau mass and a successful parametrization, employing perturbation theory and a model for quark-hadron duality violations, for higher energies. Using a covariance matrix and Q^2 values from a recent lattice simulation, we then generate fake data for Pi(Q^2) and use it to test fitting methods currently employed on the lattice for extracting the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This comparison reveals a systematic error much larger than the few-percent total error sometimes claimed for such extractions in the literature. In particular, we find that errors deduced from fits using a Vector Meson Dominance ansatz are misleading, typically turning out to be much smaller than the actual discrepancy between the fit and exact model results. The use of a ...

Golterman, Maarten; Peris, Santiago

2013-01-01T23:59:59.000Z

8

On the order of magnitude of 8th order corrections to the anomalous magnetic moment of the muon  

E-Print Network (OSTI)

It is shown that the 8th order contribution to the muon anomaly can be as large as 100-200*( alpha / pi )/sup 4/. (10 refs).

Lautrup, B

1972-01-01T23:59:59.000Z

9

Anomalous Lagrangians and the radiative muon capture in hydrogen  

E-Print Network (OSTI)

The structure of an anomalous Lagrangian of the pi-rho-omega-a_1 system is investigated within the hidden local SU(2)_R x SU(2)_L symmetry approach. The interaction of the external electromagnetic and weak vector and axial-vector fields with the above hadron system is included. The Lagrangian of interest contains the anomalous Wess-Zumino term following from the well known Wess-Zumino-Witten action and six independent homogenous terms. It is characterized by four constants that are to be determined from a fit to the data on various elementary reactions. Present data allows one to extract the constants with a good accuracy. The homogenous part of the Lagrangian has been applied in the study of anomalous processes that could enhance the high energy tail of the spectrum of photons, produced in the radiative muon capture in hydrogen. It should be noted that recently, an intensive search for such enhancement processes has been carried in the literature, in an attempt to resolve the so called "g_P puzzle": an about 50 % difference between the theoretical prediction of the value of the induced pseudoscalar constant g_P and its value extracted from the high energy tail of the photon spectrum, measured in the precision TRIUMF experiment. Here, more details on the studied material are presented and new results, obtained by using the Wess-Zumino term, are provided.

J. Smejkal; E. Truhlik; F. C. Khanna

2005-04-29T23:59:59.000Z

10

The investigation of anomalous magnetization in the Raft River...  

Open Energy Info (EERE)

anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous...

11

Toroidal magnetic detector for high resolution measurement of muon momenta  

DOE Patents (OSTI)

A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector are described in this paper. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

Bonanos, P.

1990-11-30T23:59:59.000Z

12

Toroidal magnetic detector for high resolution measurement of muon momenta  

DOE Patents (OSTI)

A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

Bonanos, P.

1992-01-07T23:59:59.000Z

13

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

14

The intergration of liquid and solid muon absorbers into afocusing magnet of a muon cooling channel  

DOE Green Energy (OSTI)

This report describes how one can integrate the muonabsorber with the focusing coils of a SFOFO muon cooling channel [1]. Theabsorber material must be a low Z material that reduces the muon momentumwith minimum scattering. The best materials to use for muon ionizationcooling absorbers are hydrogen, helium, lithium hydride, lithium, andberyllium. Hydrogen or helium in an absorber would normally be in theliquid state. Lithium hydride, lithium, and beryllium would normally bein the solid state. This report limits the absorber materials discussedto hydrogen, helium, lithium, and beryllium. In order to achieve the samelevel of ionization cooling with a solid absorber as a liquid hydrogenabsorber, the beta of the muon beam must be reduced more than a factor oftwo. This affects both the designs of the absorber and the magnet aroundit. Reducing the beam beta reduces the momentum acceptance of thechannel. Integration of a liquid hydrogen absorber and solid absorberswith a superconducting focusing solenoid is discussed. The choice ofabsorber material affects the design of the superconducting focusingmagnet and the superconductor that is used to generate the magneticfield.

Green, M.A.; Black, E.L.; Cummings, M.A.; Kaplan, D.M.; Ishimoto,S.; Cobb, J.H.; Lau, W.; Yang, S.; Palmer, R.B.

2003-05-01T23:59:59.000Z

15

A Novel Method for Transport and Cooling of a Muon Beam Based on Magnetic Insulation  

Science Conference Proceedings (OSTI)

Unwanted field emission is a well known problem for high-gradient accelerating structures as it can cause damage and initiate breakdown. Recent experiments indicated that the deleterious effects of field-emission are greatly enhanced in the presence of external magnetic fields. In the context of designing a muon accelerator this imposes numerous constraints since rf cavities need to operate within strong magnetic fields in order to successfully transport the beam. Here, a novel design of a magnetically insulated cavity in which the walls are parallel to the magnetic field lines is presented. We show that with magnetic insulation, damage from field emission can be significantly suppressed. Effects of coil positioning errors on the cavity performance are discussed and the required magnetic field strength to achieve insulation is estimated. We present a conceptual design of a muon collider cooling lattice with magnetic insulated cavities and cross-check its performance to the one with pillbox cavities. Finally an experiment to test magnetic insulation is described.

Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B. [Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-11-04T23:59:59.000Z

16

Standard Model Predictions for the Muon $(g-2)/2$  

E-Print Network (OSTI)

The current status of the Standard Model predictions for the muon anomalous magnetic moment is described. Various contributions expected in the Standard Model are discussed. After the reevaluation of the leading-order hadronic term based on the new \\ep data, the theoretical prediction is more than three standard deviations lower than the experimental value.

S. I. Eidelman

2009-04-21T23:59:59.000Z

17

Anomalous electron trapping by magnetic flux tubes and electric current vortices  

E-Print Network (OSTI)

Anomalous electron trapping by magnetic flux tubes and electric current vortices F. Bentosela, a current vortex in the plane. In this case the flux is zero; there is a pair of bound states for a weak with a nonhomogeneous magnetic field B , and investigate the corresponding Pauli Hamiltonian. We prove a lower bound

18

Ionization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP  

E-Print Network (OSTI)

We studied the ionization of hydrogen by scattering of neutrino magnetic moment, relativistic muon, and weakly-interacting massive particle with a QED-like interaction. Analytic results were obtained and compared with several approximation schemes often used in atomic physics. As current searches for neutrino magnetic moment and dark matter have lowered the detector threshold down to the sub-keV regime, we tried to deduce from this simple case study the influence of atomic structure on the the cross sections and the applicabilities of various approximations. The general features being found will be useful for cases where practical detector atoms are considered.

Jiunn-Wei Chen; C. -P. Liu; Chien-Fu Liu; Chih-Liang Wu

2013-07-10T23:59:59.000Z

19

Anomalous magnetic moment of an electron near a dispersive surface  

E-Print Network (OSTI)

Changes in the magnetic moment of an electron near a dielectric or conducting surface due to boundary-dependent radiative corrections are investigated. The electromagnetic field is quantized by normal mode expansion for a non-dispersive dielectric and an undamped plasma, but the electron is described by the Dirac equation without matter-field quantization. Perturbation theory in the Dirac equation leads to a general formula for the magnetic moment shift in terms of integrals over products of electromagnetic mode functions. In each of the models investigated contour integration techniques over a complex wave vector can be used to derive a general formula featuring just integrals over transverse electric and transverse magnetic reflection coefficients of the surface. Analysis of the magnetic moment shift for several classes of materials yields markedly different results from the previously considered simplistic 'perfect reflector' model, due to the inclusion of physically important features of the electromagnetic response of the surface such as evanescent field modes and dispersion in the material. For a general dispersive dielectric surface, the magnetic moment shift of a nearby electron can exceed the previous prediction of the perfect-reflector model by several orders of magnitude.

Robert Bennett; Claudia Eberlein

2013-04-04T23:59:59.000Z

20

Ballpark prediction for the hadronic light-by-light contribution to the muon (g-2)_?  

E-Print Network (OSTI)

Using the momentum dependence of the dressed quark mass and the well-known formulae for the mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for the first time a systematic error on the calculation.

Pere Masjuan; Marc Vanderhaeghen

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves  

SciTech Connect

Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].

Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University, Lahore 54000 (Pakistan); Department of Physics, G. C. University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University, Lahore 54000 (Pakistan)

2011-10-15T23:59:59.000Z

22

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Mereghetti, Sandro

2008-01-01T23:59:59.000Z

23

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Sandro Mereghetti

2008-04-01T23:59:59.000Z

24

Anomalous Magnetohydrodynamics  

E-Print Network (OSTI)

Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic field. Building on the analogy with charged liquids at high magnetic Reynolds numbers, the persistence of anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimizing the energy density with the constraint that the helicity be conserved coincide, in the perfectly conducting limit, with the ones obtainable in ideal magnetohydrodynamics where the anomalous currents are neglected. It is argued that this is the rationale for the ability of extending to anomalous magnetohydrodynamics the hydromagnetic solutions characterized by finite gyrotropy. The generally covariant aspects of the problem are addressed with particular attention to conformally flat geometries which are potentially relevant for the description of the electroweak plasma prior to the phase transition.

Massimo Giovannini

2013-07-09T23:59:59.000Z

25

Muon Muon Collider: Feasibility Study  

SciTech Connect

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

2012-04-05T23:59:59.000Z

26

Fermilab | Muon Collider | How Does a Muon Collider Work?  

NLE Websites -- All DOE Office Websites (Extended Search)

A muon collider complex would comprise several machines and many different A muon collider complex would comprise several machines and many different components. Scientists across the world are developing and testing them. View full graphic How Does a Muon Collider Work? A muon collider complex would comprise several machines and many different components. Scientists across the world are developing and testing them. Proton accelerator To create lots of muons, scientists use a high-intensity proton accelerator that steers protons into a target. The collisions create short-lived particles called pions. Within 50 meters the pions decay into muons and neutral particles called neutrinos. The muons have an energy of about 200 MeV. Capture cavities Magnets guide the muons into and through a set of radiofrequency cavities. The electric field inside the cavities increases the energy of slow muons

27

Papers on Muon Colliders  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnets for Muon Collider and Neutrino Storage Ring Magnets for Muon Collider and Neutrino Storage Ring (and Open Midplane Dipole for LARP): R. Gupta, et al., "High Field HTS Solenoid for a Muon Collider – Demonstrations, Challenges and Strategies, MT23, July 2013", presented at MT23, (talk) R. Weggel et al., "Open Midplane Dipoles for Muon Collider", 2011 Particle Accelerator Conference, New York (POSTER).. R. Gupta, M. Anerella, A. Ghosh, H. Kirk, R. Palmer, S. Plate, W. Sampson, Y. Shiroyanagi, P. Wanderer, B. Brandt, D. Cline, A. Garren, J. Kolonko, R. Scanlan, R. Weggel, "High field HTS R&D solenoid for muon collider", 2010 Applied Superconductivity Conference, Washington, DC, August 2010 >> Y. Shiroyanagi, W. Sampson, A. Ghosh, R. Gupta, "The Construction and

28

ATLAS Muon Detector Commissioning  

E-Print Network (OSTI)

The ATLAS muon spectrometer consists of several major components: Monitored Drift Tubes (MDTs) for precision measurements in the bending plane of the muons, supplemented by Cathode Strip Chambers (CSC) in the high eta region; Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) for trigger and second coordinate measurement in the barrel and endcap regions, respectively; an optical alignment system to track the relative positions of all chambers; and, finally, the world's largest air-core magnetic toroid system. We will describe the status and commissioning of the muon system with cosmic rays and plans for commissioning with early beams.

E. Diehl; for the ATLAS muon collaboration

2009-10-15T23:59:59.000Z

29

Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities  

Science Conference Proceedings (OSTI)

The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

Heffner, R.H.

1980-01-01T23:59:59.000Z

30

Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics  

Science Conference Proceedings (OSTI)

In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

2012-05-01T23:59:59.000Z

31

Muon Collider Papers and Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of muon collider papers and reports. Muon Collider Feasibilty Study ... Snowmass Book BNL Muon Collider Project Publication Index Fermilab Muon Collider Notes Muon Collider...

32

Status of the Fermilab Muon (g-2) Experiment  

Science Conference Proceedings (OSTI)

The New Muon (g-2) Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, a{sub {mu}}, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained a{sub {mu}} = [116592089(63)] x 10{sup -11} {+-} 0.54 ppm. The last digit of a{sub {mu}} is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the {approx}= 3 standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

Roberts, B.Lee

2010-01-01T23:59:59.000Z

33

Fermilab | Muon Collider | Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphics A chain of accelerators and other devices is necessary to produce and accelerate muons before scientists can make muons collide. Click image for larger version A muon...

34

Muon muon collider: Feasibility study  

Science Conference Proceedings (OSTI)

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

NONE

1996-06-18T23:59:59.000Z

35

Muon (g-2): A Probe of the Standard Model and Beyond  

DOE Green Energy (OSTI)

Since the experiments of Stern and Gerlach, magnetic moments of 'elementary' particles have been important in our quest to understand subatomic physics. The first 'QED loop calculation' was done by Schwinger to explain the larger than expected hydrogen hyperfine structure. The definitive measurement of the electron's anomalous magnetic moment by Kusch and Foley followed and agreed well with Schwinger's calculation of ae = (alpha/ 2 pi). The muon's anomaly, which is sensitive to a broad range of physics beyond the standard model, will be discussed in a historical context, following the intellectual development of modern physics through the 20th century. Experiment E821 at Brookhaven will be described, as well as possible improvements, which are highly desirable since the present value of the muon anomaly, appears to differ from the standard-model value by 3.4 standard deviations.

Roberts, Lee (Boston University)

2008-09-03T23:59:59.000Z

36

Na NMR Evidence for Charge Order and Anomalous Magnetism in NaxCoO2 I. R. Mukhamedshin,1,* H. Alloul,1,  

E-Print Network (OSTI)

23 Na NMR Evidence for Charge Order and Anomalous Magnetism in NaxCoO2 I. R. Mukhamedshin,1,* H are studied by 23Na NMR and SQUID magnetometry. In nominal 0:50 x 0:70 solid state reacted samples,6] with the magnetic prop- erties. In a pioneering work, two 59Co NMR signals attributed to nonmagnetic Co3 sites were

Paris-Sud 11, Université de

37

Magnetization of neutron star matter  

E-Print Network (OSTI)

The magnetization of neutron star matter in magnetic fields is studied by employing the FSUGold interaction. It is found that the magnetic susceptibilities of the charged particles (proton, electron and muon) can be larger than that of neutron. The effects of the anomalous magnetic moments (AMM) of each component on the magnetic susceptibility are examined in detail. It is found that the proton and electron AMM affect their respective magnetic susceptibility evidently in strong magnetic fields. In addition, they are the protons instead of the electrons that contribute most significantly to the magnetization of the neutron star matter in a relative weak magnetic field, and the induced magnetic field due to the magnetization can be appear to be very large. Finally, the effect of the density-dependent symmetry energy on the magnetization is discussed.

Dong, Jianmin; Gu, Jianzhong

2013-01-01T23:59:59.000Z

38

MUON ACCELERATION  

Science Conference Proceedings (OSTI)

One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

BERG,S.J.

2003-11-18T23:59:59.000Z

39

Anomalous-viscosity current drive  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

Stix, T.H.; Ono, M.

1986-04-25T23:59:59.000Z

40

Muon Collider History  

NLE Websites -- All DOE Office Websites (Extended Search)

Colliders: A Brief History Below is a brief potted history of the muon collider concept. Click here for a one transparency summary. The muon collider concept is an idea dating back...

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Neutrino Physics at a Muon Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics at a Muon Collider The intense muon beams needed for high luminosity muon colliders produce intense beams of neutrinos. Dedicated muon storage rings with long straight...

42

Muon ID at the ILC  

SciTech Connect

This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest [1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however {approx}80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision.

Milstene, C.; Fisk, G.; Para, A.; /Fermilab

2006-09-01T23:59:59.000Z

43

muon Collider Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Muon Collider Notes Muon Collider Notes MC-001 D. Neuffer, "Colliding Muon Beams at 90 GeV" Fermilab Note FN-319, July 1979. MC-002 D. Neuffer, "Principles and Applications of Muon Cooling" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 481, 1983. MC-003 V.V. Parkhomchuk and A.N. Skrinsky, "Ionization Cooling: Physics and Applications" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 485, 1983. MC-004 E.A. Perevedentsev and A.N. Skrinsky, "On the Proton Klystron" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 508, 1983. MC-005 D. Neuffer, "Principles and Applications of Muon Cooling" Particle Accelerators, Vol. 14, p. 75, 1983. MC-006 D. Neuffer, "Multi-TeV Muon Colliders" Proc. of the Advanced

44

Multi-muon events at CDF  

E-Print Network (OSTI)

We report a study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. In a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 2100 pb$^{-1}$, we isolate a significant sample of events in which at least one of the identified muons has large impact parameter and is produced outside the beam pipe of radius 1.5 cm. We are unable to fully account for the number and properties of the events through standard model processes in conjunction with our current understanding of the CDF II detector, trigger and event reconstruction. Several topological and kinematic properties of these events are also presented. In contrast, the production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe are successfully modeled by known QCD processes which include heavy flavor production. The presence of these anomalous multi-muon events offers a plausible resolution to long-standing inconsistencies related to $b\\bar{b}$ production and decay.

F. Ptochos

2009-07-01T23:59:59.000Z

45

Multi-muon events at CDF  

SciTech Connect

We report a study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. In a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 2100 pb{sup -1}, we isolate a significant sample of events in which at least one of the identified muons has large impact parameter and is produced outside the beam pipe of radius 1.5 cm. We are unable to fully account for the number and properties of the events through standard model processes in conjunction with our current understanding of the CDF II detector, trigger and event reconstruction. Several topological and kinematic properties of these events are also presented. In contrast, the production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe are successfully modeled by known QCD processes which include heavy flavor production. The presence of these anomalous multi-muon events offers a plausible resolution to long-standing inconsistencies related to b{bar b} production and decay.

Ptochos, F.; /Cyprus U.

2009-07-01T23:59:59.000Z

46

A 125GeV Higgs Boson and Muon g-2 in More Generic Gauge Mediation  

E-Print Network (OSTI)

Recently, the ATLAS and CMS collaborations reported exciting hints of a Standard Model-like Higgs boson with a mass around 125GeV. A Higgs boson this heavy is difficult to realize in conventional models of gauge mediation. Here we revisit the lightest Higgs boson mass in "more generic gauge mediation," where the Higgs doublets mix with the messenger doublets. We show that a Higgs boson mass around 125GeV can be realized in more generic gauge mediation models, even for a relatively light gluino mass ~1TeV. We also show that the muon anomalous magnetic moment can be within 1sigma of the experimental value for these models, even when the Higgs boson is relatively heavy. We also discuss the LHC constraints and the prospects of discovery.

Evans, Jason L; Shirai, Satoshi; Yanagida, Tsutomu T

2012-01-01T23:59:59.000Z

47

Muon - proton inelastic scattering  

DOE Green Energy (OSTI)

This experiment will examine muon-proton inelastic scattering for virtual-photon energies of 10 to 110 GeV and for |q{sup 2}| values of 0.2 to 20.0 (GeV/c){sup 2}. The virtual-photon total cross sections {sigma}{sub t} + {epsilon}{sigma}{sub s}, or the equivalent expression in W{sub 1} and W{sub 2}, will be measured over this range of virtual-photon energies and q{sup 2} values. Some separation of {sigma}{sub T} and {sigma}{sub S}, or equivalently W{sub 1} and W{sub 2}, will be made. The multiplicity, momentum spectra and angular spectra of the charged hadrons produced in this reaction will be measured. Some channels such as {mu} + P {yields} {mu} + P + P{sup 0} will be isolated and completely analyzed. The experiment uses a hydrogen target, wire spark chambers and an analyzing magnet of conventional design.

Dieterle, B.; Lakin, W.; Martin, F.; Perl, M.; Petraske, E.; Tenebaum, J.; Toner, W.; Zipf, T.; /SLAC

1970-05-01T23:59:59.000Z

48

Muon Acceleration with RLA and Non-scaling FFAG Arcs  

Science Conference Proceedings (OSTI)

Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

2010-05-01T23:59:59.000Z

49

Muon Collider Progress: Accelerators  

SciTech Connect

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

50

Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature  

Science Conference Proceedings (OSTI)

Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

Coelho, Eduardo L.; Chiapparini, Marcelo [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil); Bracco, Mirian E. [Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, 27537-000, Resende, RJ (Brazil)

2013-03-25T23:59:59.000Z

51

Links to Muon Collider Related Web Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

Muon Collider related web pages: Muon Collider Feasibility Study ... Fermilab Page MUCOOL Collaboration: Ionization Cooling R&D Snowmass 1996 Feasibility Study Book Brookhaven Muon...

52

The LHCb Muon System  

E-Print Network (OSTI)

The ability to provide fast muon triggering and efficient offline muon identification is an essential feature of the LHCb experiment. The muon detector is required to have a high efficiency over a large area and an appropriate time resolution to identify the bunch crossing for level0 triggers. The LHCb muon detector consists of five stations equipped with 1368 Multi Wire Proportional Chambers and 12 Gas Electron Multiplier chambers. The technical design of the chambers is briefly presented and the Quality Control procedures during the various construction steps are described. The method developed for gas gain uniformity measurement is also described together with the results on efficiency of detectors fully equipped with the frontend electronics, obtained from tests with cosmic rays.

Lenzi, Michela

2005-01-01T23:59:59.000Z

53

Hydrogen Cryostat for Muon Beam Cooling  

DOE Green Energy (OSTI)

The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

Johnson, Rolland P.

2008-05-07T23:59:59.000Z

54

Muon-spin-relaxation measurements of magnetic penetration depth in organic superconductors (BEDT-TTF) sub 2 - X : X =Cu(NCS) sub 2 and Cu(N(CN) sub 2 )Br  

SciTech Connect

The magnetic-field penetration depth {lambda} in the organic superconductors {kappa}-(BEDT-TTF){sub 2} Cu(NCS){sub 2} and {kappa}-(BEDT-TTF){sub 2} Cu(N(CN){sub 2})Br has been measured over a wide temperature region 20 mK{le}{ital T}{le}15 K via the muon-spin-relaxation technique. Linear variation of {lambda} with {ital T} at low temperatures, found in both systems, is consistent with anisotropic superconducting pairings with line nodes in the energy gap. In the latter compound, we observe flux depinning at {ital T}{similar to}5 K, well below {ital T}{sub {ital c}}=12 K.

Le, L.P.; Luke, G.M.; Sternlieb, B.J.; Wu, W.D.; Uemura, Y.J. (Department of Physics, Columbia University, New York, New York 10027 (United States)); Brewer, J.H.; Riseman, T.M. (Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 2A3 (Canada)); Stronach, C.E. (Department of Physics, Virginia State University, Petersburg, Virginia 23803 (United States)); Saito, G.; Yamochi, H. (Department of Chemistry, Kyoto University, Kyoto 606 (Japan)); Wang, H.H.; Kini, A.M.; Carlson, K.D.; Williams, J.M. (Chemistry and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States))

1992-03-23T23:59:59.000Z

55

Helical Muon Beam Cooling Channel Engineering Design  

SciTech Connect

The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

56

Muon Collider Machine-Detector Interface  

SciTech Connect

In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

Mokhov, Nikolai V.; /Fermilab

2011-08-01T23:59:59.000Z

57

Advances in Beam Cooling for Muon Colliders  

DOE Green Energy (OSTI)

A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

R.P. Johnson, Y.S. Derbenev

2006-09-01T23:59:59.000Z

58

Muon Astronomy with LVD Detector  

E-Print Network (OSTI)

We analysed the arrival directions of single muons detected by the first LVD tower from November, 1994 till January, 1998. The moon shadowing effect has been observed. To search for point sources of high energy photons we have analysed muons crossing the rock thickness greater than 3, 5 and 7 km w.e., which corresponds to the mean muon energies 1.6, 3.9 and 8.4 TeV at the surface, respectively. Upper limits on steady muon fluxes for selected astrophysical sources for different muon energies are presented.

LVD Collaboration

1999-05-25T23:59:59.000Z

59

High field solenoids for muon cooling  

DOE Green Energy (OSTI)

The proposed cooling system for the muon collider will consist of a 200 meter long line of alternating field straight solenoids interspersed with bent solenoids. The muons are cooled in all directions using a 400 mm long section liquid hydrogen at high field. The muons are accelerated in the forward direction by about 900 mm long, 805 MHz RF cavities in a gradient field that goes from 6 T to -6 T in about 300 mm. The high field section in the channel starts out at an induction of about 2 T in the hydrogen. As the muons proceed down the cooling channel, the induction in the liquid hydrogen section increases to inductions as high as 30 T. The diameter of the liquid hydrogen section starts at 750 mm when the induction is 2 T. As the induction in the cooling section goes up, the diameter of the liquid hydrogen section decreases. When the high field induction is 30 T, the diameter of the liquid hydrogen section is about 80 mm. When the high field solenoid induction is below 8.5 T or 9T, niobium titanium coils are proposed for generating .the magnetic field. Above 8.5 T or 9 T to about 20 T, graded niobium tin and niobium titanium coils would be used at temperatures down to 1.8 K. Above 20 T, a graded bybrid magnet system is proposed, where the high field magnet section (above 20 T) is either a conventional water cooled coil section or a water cooled Bitter type coil. Two types of superconducting coils have been studied. They include; epoxy impregnated intrinsically stable coils, and cable in conduit conductor (CICC) coils with helium in the conduit.

Green, M.A.; Eyssa, Y.; Kenny, S.; Miller, J.R.; Prestemon, S.

1999-09-08T23:59:59.000Z

60

Recent Innovations in Muon Beam Cooling  

DOE Green Energy (OSTI)

Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

Rolland P. Johnson; Mohammad Alsharo'a; Charles Ankenbrandt; Emanuela Barzi; Kevin Beard; S. Alex Bogacz; Yaroslav Derbenev; Licia Del Frate; Ivan Gonin; Pierrick M. Hanlet; Robert Hartline; Daniel M. Kaplan; Moyses Kuchnir; Alfred Moretti; David Neuffer; Kevin Paul; Milorad Popovic; Thomas J. Roberts; Gennady Romanov; Daniele Turrioni; Victor Yarba; and Katsuya Yonehara

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Muon spin rotation in heavy-electron pauli-limit superconductors  

Science Conference Proceedings (OSTI)

The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.

Michal, V. P., E-mail: vincent.michal@cea.fr [INAC/SPSMS, Commissariat a l'Energie Atomique (France)

2012-11-15T23:59:59.000Z

62

NK Muon Beam  

Science Conference Proceedings (OSTI)

The NK Muon Beam will be a modified version of the existing NT beam line. The decision to employ a modified version of the NT beam line was made based on considerations of cost and availability of the beam line. Preliminary studies considered use of other beam lines, e.g., the NW beam line, and even of moving the bubble chamber with its superconducting coils but were rejected for reasons such as cost, personnel limitations, and potential conflicts with other users.

Koizumi, G.

1988-09-28T23:59:59.000Z

63

muon_collider  

NLE Websites -- All DOE Office Websites (Extended Search)

muon_collider muon_collider muon_collider FridayMeetings MCTFmeetings MondayMeetings prstab texput.log #prstab.tex# last.kumac prstab.ps arxiv.tar.gz prstab.tar.gz referee_response_II.pdf prstab.pdf prstab.aux prstab.dvi prstab.end prstab.log prstab.tex prstab.tex~ accel-010307-f03.eps accel-010307-f28.eps old conclusions.tex higgsfact.tex introduction.tex mice.tex neufact.tex physics.tex prstab.tex r_and_d.tex authors_merged.tex buncher.tex temp.prt last.kumacold ringfig.eps MICE-fig.ps chgr_norm.ps chgr_merit.ps temp.csh temp.prt~ xupdn-a-model-view-iron5.eps site1-Layout1.eps rla2.eps phaserot.eps mole-hill.eps intoap.eps emit.eps cavity.eps allcount.eps MICE-88MHz-cooling.eps changes hh_ha_susy_rtsscan.eps letter_plots.eps scott33.eps scott32b.eps scott32a.eps MICE-200MHz-long.eps MICE-resolution.eps dipole_fields.eps

64

Muon Cooling R&D  

E-Print Network (OSTI)

International efforts are under way to design and test a muon ionization cooling channel. The present R&D program is described, and future plans outlined.

Steve Geer

2001-08-15T23:59:59.000Z

65

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

1.2 Transport in tokamakAnomalous radial transport model for edge plasma . . . . . .Anomalous transport . . . . . . . . . . . . . . . . . . . .

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

66

ATLAS Muon Spectrometer | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Muon Spectrometer small wheels Brookhaven National Laboratory led the development of the 32 muon detectors in the inner ring of the ATLAS detector's "small wheels." (A small...

67

Links to Muon Collider Related Web Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

useful nu-factory related web pages: Nu-FactoryMuon Collider Studies at Fermilab Neutrino Factory Design Study MUCOOL Collaboration: Ionization Cooling R&D Brookhaven Muon...

68

Imaging and sensing based on muon tomography  

SciTech Connect

Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

2012-10-16T23:59:59.000Z

69

MANX, A 6-D Muon Cooling Demonstration Experiment  

DOE Green Energy (OSTI)

Most ionization cooling schemes now under consideration are based on using many large flasks of liquid hydrogen energy absorber. One important example is the proposed Muon Ionization Cooling Experiment (MICE), which has recently been approved to run at the Rutherford Appleton Laboratory (RAL). In the work reported here, a potential muon cooling demonstration experiment based on a continuous liquid energy absorber in a helical cooling channel (HCC) is discussed. The original HCC used a gaseous energy absorber for the engineering advantage of combining the energy absorption and RF energy regeneration in hydrogen-filled RF cavities. In the Muon And Neutrino eXperiment (MANX) that is proposed here, a liquid-filled HCC is used without RF energy regeneration to achieve the largest possible cooling rate in six dimensions. In this case, the magnetic fields of the HCC must diminish as the muons lose momentum as they pass through the liquid energy absorber. The length of the MANX device is determined by the maximum momentum of the muon test beam and the maximum practical field that can be sustained at the magnet coils. We have studied a 3 meter-long HCC example that could be inserted between the MICE spectrometers at RAL.

Roberts,Thomas; Alsharo'a, Mohammad; Hanlet, Pierrick M; Johnson, Rolland P; Kuchnir, Moyses; Paul, Kevin; Ankenbrandt, Charles; Moretti, Alfred; Popovic, Milorad; Yarba, Victor; Kaplan, Daniel; Yonehara, Katsuya

2005-04-01T23:59:59.000Z

70

OPTIMIZING THE MUON COLLIDER CAPTURE TARGET & FRONT END  

E-Print Network (OSTI)

[T] Field map calculated from coil current densiUes using Icool grid rou length =5-7 m- B=20-1.5 & 2.5 T Target SC Magnets Field Map 0 5 10 15 20 25 Z/25/13 6 Tracking 1E5 muons through decay channel -10 cells (50 m) Transmission

McDonald, Kirk

71

Anomalous is ubiquitous  

Science Conference Proceedings (OSTI)

Brownian motion is widely considered the quintessential model of diffusion processes-the most elemental random transport processes in Science and Engineering. Yet so, examples of diffusion processes displaying highly non-Brownian statistics-commonly termed 'Anomalous Diffusion' processes-are omnipresent both in the natural sciences and in engineered systems. The scientific interest in Anomalous Diffusion and its applications is growing exponentially in the recent years. In this Paper we review the key statistics of Anomalous Diffusion processes: sub-diffusion and super-diffusion, long-range dependence and the Joseph effect, Levy statistics and the Noah effect, and 1/f noise. We further present a theoretical model-generalizing the Einstein-Smoluchowski diffusion model-which provides a unified explanation for the prevalence of Anomalous Diffusion statistics. Our model shows that what is commonly perceived as 'anomalous' is in effect ubiquitous. - Highlights: > The article provides an overview of Anomalous Diffusion (AD) statistics. > The Einstein-Smoluchowski diffusion model is extended and generalized. > The generalized model universally generates AD statistics. > A unified 'universal macroscopic explanation' for AD statistics is established. > AD statistics are shown to be fundamentally connected to robustness.

Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il [Department of Technology Management, Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Klafter, Joseph, E-mail: klafter@post.tau.ac.il [School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

2011-09-15T23:59:59.000Z

72

Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders  

DOE Green Energy (OSTI)

A six-dimensional(6D)cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas* is used to achieve the small transverse emittances demanded by a high-luminosity muon collider. This helical cooling channel**(HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields to generate emittance exchange. Simulations verify the analytic predictions and have shown a 6D emittance reduction of over 3 orders of magnitude in a 100 m HCC segment. Using three such sequential HCC segments, where the RF frequencies are increased and transverse dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost six orders of magnitude. After this, two new post-cooling ideas can be employed to reduce transverse emittances to one or two mm-mr, which allows high luminosity with fewer muons than previously imagined. In this report we discuss the status of and the plans for the HCC simulation and engineering efforts. We also describe the new post-cooling ideas and comment on the prospects for a Higgs factory or energy frontier muon collider using existing laboratory infrastructure.

R.P. Johnson; M. Alsharo'a; P.M. Hanlet; R. E. Hartline; M. Kuchnir; K. Paul; T.J. Roberts; C.M. Ankenbrandt; E. Barzi; L. DelFrate; I.G. Gonin; A. Moretti; D.V. Neuffer; M. Popovic; G. Romanov; D. Turrioni; V. Yarba; K. Beard; S.A. Bogacz; Y.S. Derbenev; D.M. Kaplan; K. Yonehara

2005-05-16T23:59:59.000Z

73

Research and Development of Future Muon Collider  

SciTech Connect

Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

Yonehara, K.; /Fermilab

2012-05-01T23:59:59.000Z

74

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

75

MANX, a 6-D Muon Beam Cooling Experiment for RAL  

DOE Green Energy (OSTI)

MANX is a six-dimensional muon ionization cooling demonstration experiment based on the concept of a helical cooling channel in which a beam of muons loses energy in a continuous helium or hydrogen absorber while passing through a special superconducting magnet called a helical solenoid. The goals of the experiment include tests of the theory of the helical cooling channel and the helical solenoid implementation of it, verification of the simulation programs, and a demonstration of effective six-dimensional cooling of a muon beam. We report the status of the experiment and in particular, the proposal to have MANX follow MICE at the Rutherford-Appleton Laboratory (RAL) as an extension of the MICE experimental program. We describe the economies of such an approach which allow the MICE beam line and much of the MICE apparatus and expertise to be reused.

Yonehara, K.; Kashikhin, V.; Lamm, M.; Zlobin, A.; /Fermilab; Abrams, R.; Ankenbrandt, C.; Cummings, M.A.C.; Johnson, R.P.; Kahn, S.; /Muons Inc., Batavia; Maloney, J.; /Northern Illinois U.

2009-05-01T23:59:59.000Z

76

EPIC Muon Cooling Simulations using COSY INFINITY  

SciTech Connect

Next generation magnet systems needed for cooling channels in both neutrino factories and muon colliders will be innovative and complicated. Designing, simulating and optimizing these systems is a challenge. Using COSY INFINITY, a differential algebra-based code, to simulate complicated elements can allow the computation and correction of a variety of higher order effects, such as spherical and chromatic aberrations, that are difficult to address with other simulation tools. As an example, a helical dipole magnet has been implemented and simulated, and the performance of an epicyclic parametric ionization cooling system for muons is studied and compared to simulations made using G4Beamline, a GEANT4 toolkit.

J.A. Maloney, B. Erdelyi, A. Afanasev, R.P. Johnson, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov

2011-03-01T23:59:59.000Z

77

Integration and commissioning of the ATLAS Muon spectrometer  

E-Print Network (OSTI)

The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is currently waiting to record the first collision data in spring 2009. Its muon spectrometer is designed to achieve a momentum resolution of 10% pT(mu) = 1 TeV/c. The spectrometer consists of a system of three superconducting air-core toroid magnets and is instrumented with three layers of Monitored Drift Tube chambers (Cathode Strip Chambers in the extreme forward region) as precision detectors. Resistive Plate Chambers in the barrel and Thin Gap Chambers in the endcap regions provide a fast trigger system. The spectrometer passed important milestones in the last year. The most notable milestone was the installation of the inner layer of endcap muon chambers, which constituted the last big piece of the ATLAS detector to be lowered in the ATLAS cavern. In addition, during the last two years most of the muon detectors were commissioned with cosmic rays while being assembled in the underground experimental cavern. We will report on our experience with the precision and trigger chambers, the optical spectrometer alignment system, the level-1 trigger, and the ATLAS data acquisition system. Results of the global performance of the muon system from data with magnetic field will also be presented.

Alberto Belloni; for the ATLAS collaboration

2008-10-16T23:59:59.000Z

78

Alternative Muon Front-end for the International Design Study (IDS)  

E-Print Network (OSTI)

We discuss alternative designs of the muon capture front end of the Neutrino Factory International Design Study (IDS). In the front end, a proton bunch on a target creates secondary pions that drift into a capture channel, decaying into muons. A sequence of RF cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. This design is affected by limitations on accelerating gradients within magnetic fields. The effects of gradient limitations are explored, and mitigation strategies are presented

Alekou, A; Martini, M; Prior, G; Rogers, C; Stratakis, D; Yoshikawa, C; Zisman, M

2010-01-01T23:59:59.000Z

79

Chromaticity correction for a muon collider optics  

Science Conference Proceedings (OSTI)

Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

2011-03-01T23:59:59.000Z

80

Muon Collaboration Friday Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration Friday Meetings Collaboration Friday Meetings Muon Collaboration Friday Meetings are held at Fermilab, in the Snakepit (WH 2E), at 1:30 pm CDT/CST on most Fridays. An audio bridge is available, details are in the meeting notice. To receive the weekly meeting notice, either join the NuMu-Collaboration-l mailing list or send email to Terry Hart (look me up in the FNAL Phonebook). 13-NOV-2009 Agenda Zisman.pdf 30-OCT-2009 Agenda Bross.ppt Ankenbrandt.ppt 22-OCT-2009 Agenda Fernow_1.pdf Fernow_2.pdf Snopok.pdf Palmer.pdf 16-OCT-2009 Agenda News Alexahin.ppt Alexakhin.pdf 9-OCT-2009 Agenda Yonehara.ppt 8-OCT-2009 Agenda Kirk.pdf 1-OCT-2009 Agenda Lamm.pdf 25-SEP-2009 Agenda Fernow.pdf 24-SEP-2009 Agenda 18-SEP-2009 Derun.pptx 17-SEP-2009 popovic.ppt 10-SEP-2009 Action_items.doc Bross.ppt Agenda 4-SEP-2009 Kaplan.pdf

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Law of Conservation of Muons  

DOE R&D Accomplishments (OSTI)

A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

Feinberg, G.; Weinberg, S.

1961-02-00T23:59:59.000Z

82

Prompt muon contribution to the flux underwater  

E-Print Network (OSTI)

We present high energy spectra and zenith-angle distributions of the atmospheric muons computed for the depths of the locations of the underwater neutrino telescopes. We compare the calculations with the data obtained in the Baikal and the AMANDA muon experiments. The prompt muon contribution to the muon flux underwater due to recent perturbative QCD-based models of the charm production is expected to be observable at depths of the large underwater neutrino telescopes. This appears to be probable even at rather shallow depths (1-2 km), provided that the energy threshold for muon detection is raised above $\\sim 100$ TeV.

T. S. Sinegovskaya; S. I. Sinegovsky

2000-07-21T23:59:59.000Z

83

Beta function and anomalous dimensions  

Science Conference Proceedings (OSTI)

We demonstrate that it is possible to determine the coefficients of an all-orders beta-function linear in the anomalous dimensions using as data the 2-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows us to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

Pica, Claudio; Sannino, Francesco [CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

2011-06-01T23:59:59.000Z

84

NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.  

Science Conference Proceedings (OSTI)

Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

PARSA,Z.

2001-06-18T23:59:59.000Z

85

Muon capture on Chlorine-35  

E-Print Network (OSTI)

We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

S. Arole; D. S. Armstrong; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; V. Kuzmin; B. A. Moftah; R. Sedlar; T. J. Stocki; T. Tetereva

2002-04-30T23:59:59.000Z

86

Superconducting Magnets for a Muon Collider  

E-Print Network (OSTI)

support of the Office of High Energy and Nuclear Physics,support of the Office of High Energy and Nuclear Physics,support of the Office of High Energy and Nuclear Physics,

Green, M.A.

1996-01-01T23:59:59.000Z

87

Renewal-anomalous-heterogeneous files  

E-Print Network (OSTI)

Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is exponential as in Brownian files, yet obeys: {\\psi}_{\\alpha} (t)~t^(-1-{\\alpha}), 0renewal as all the particles attempt to jump at the same time. It is shown that the mean square displacement (MSD) in a renewal-anomalous-heterogeneous file, , obeys, ~[_{nrml}]^{\\alpha}, where _{nrml} is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

Ophir Flomenbom

2010-08-13T23:59:59.000Z

88

The US Muon Accelerator Program (MAP)  

SciTech Connect

The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

Bross, Alan D.; /Fermilab

2010-12-01T23:59:59.000Z

89

Commissioning of the ATLAS Muon Trigger Selection  

E-Print Network (OSTI)

The performance of the three-level ATLAS muon trigger as evaluated by using LHC data is presented. Events have been selected by using only the hardware-based Level-1 trigger in order to commission and to subsequently enable the (software-based) selections of the High Level Trigger. Studies aiming at selecting prompt muons from J/{\\psi} and at reducing non prompt muon contamination have been performed. A brief overview on how the muon triggers evolve with increasing luminosity is given.

Musto, Elisa

2010-01-01T23:59:59.000Z

90

Commissioning of the ATLAS Muon Trigger Selection  

E-Print Network (OSTI)

The performance of the three-level ATLAS muon trigger as evaluated by using LHC data is presented. Events have been selected by using only the hardware-based Level-1 trigger in order to commission and to subsequently enable the (software-based) selections of the High Level Trigger. Studies aiming at selecting prompt muons from J/{\\psi} and at reducing non prompt muon contamination have been performed. A brief overview on how the muon triggers evolve with increasing luminosity is given.

Elisa Musto

2010-09-30T23:59:59.000Z

91

Muons in minimum bias events from the first CMS data  

Science Conference Proceedings (OSTI)

Muon signatures are extremely important in the challenging environment of collisions at the LHC. Understanding the observed muon yield from Standard Model processes is the first task for all analyses involving muons. Basic muon kinematical observables are presented for the first CMS data at s ?=?7? TeV and compared with Monte Carlo expectations. The muon sample composition is studied by using the MC truth in terms of muons from heavy flavours

Lucia Barbone; The CMS Collaboration

2010-01-01T23:59:59.000Z

92

Open-Midplane Dipoles for a Muon Collider  

SciTech Connect

For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

2011-03-28T23:59:59.000Z

93

MaxEnt-Burg Application to Muon-Spin Resonance  

SciTech Connect

Muon-Spin Rotation ({mu}SR) is an experimental technique similar to Nuclear Magnetic Resonance (NMR). {mu}SR data are recorded as a set of time-series histograms of muon-decay events. Both {mu}SR and NMR regularly produce signals that are overlapping, weak and/or broadened in frequency space. These {mu}SR histograms are usually analyzed by curve fitting and Fourier transformations. However, several NMR and {mu}SR groups have developed Maximum Entropy (MaxEnt, ME) applications to improve the sensitivity of the time series analysis. We have focused on the application of the ME-Burg algorithm. The optimal number of autoregression coefficients is between N/3 and N/5 where N is the total number of data points. Selected results for simulated data and real data ME-{mu}SR applications are reported. Most of our {mu}SR work is for cuprate superconductor studies. The strength of the ME-Burg algorithm is fully used, as there is a clear relationship between the muon-spin signal S(i) at any time i and the signals S(i-k) at earlier times. ME-Burg has the major advantage of producing in the frequency transform only structure for which sufficient statistical evidence is present.

Boekema, C.; Browne, M. C. [Department of Physics and Astronomy, San Jose State University, San Jose CA 95192-0106 (United States)

2008-11-06T23:59:59.000Z

94

A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon  

DOE R&D Accomplishments (OSTI)

The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

1955-03-00T23:59:59.000Z

95

Cold fusion catalyzed by muons and electrons  

SciTech Connect

Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

Kulsrud, R.M.

1990-10-01T23:59:59.000Z

96

Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux  

E-Print Network (OSTI)

The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

Soudan 2 Collaboration

1999-05-24T23:59:59.000Z

97

Muon Collider interaction region and machine-detector interface design  

Science Conference Proceedings (OSTI)

One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interlaced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5-TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, an innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb{sub 3}Sn superconductor were developed and analyzed in terms of the operating margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate the unprecedented dynamic heat deposition due to muon decays ({approx}0.5 kW/m). It is shown that an appropriately designed machine-detector interface (MDI) with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.

Mokhov, N.V.; Alexahin, Y.I.; Kashikhin, V.V.; Striganov, S.I.; Zlobin, A.V.; /Fermilab

2011-03-01T23:59:59.000Z

98

Plasma Lens for Muon and Neutrino Beams  

SciTech Connect

The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented.

Kahn,S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

2008-06-23T23:59:59.000Z

99

Search for Anomalous Production of Events with Two Photons and Additional Energetic Objects at CDF  

SciTech Connect

The authors present results of a search for anomalous production of two photons together with an electron, muon, {tau} lepton, missing transverse energy, or jets using p{bar p} collision data from 1.1-2.0 fb{sup -1} of integrated luminosity collected by the Collider Detector at Fermilab (CDF). The event yields and kinematic distributions are examined for signs for new physics without favoring a specific model of new physics. The results are consistent with the standard model expectations. The search employs several new analysis techniques that significantly reduce instrumental backgrounds in channels with an electron and missing transverse energy.

Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /Padua U. /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Kosice, IEF; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U. /Dubna, JINR

2009-10-01T23:59:59.000Z

100

Anomalous GPDs in the photon  

E-Print Network (OSTI)

We consider deeply virtual Compton scattering (DVCS) on a photon target, in the generalized Bjorken limit, at the Born order and in the leading logarithmic approximation. This leads us to the extraction of the photon anomalous generalized parton distributions (GPDs) \\cite{url, DVCSphoton}.

S. Friot; B. Pire; L. Szymanowski

2007-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Anomalous transport due to shear-Alfven waves  

SciTech Connect

The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed.

Lee, W.W.; Chance, M.S.; Okuda, H.

1980-10-01T23:59:59.000Z

102

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

Transport in tokamak plasma . . . . . . . . . . . . . . .of tokamak plasma . . . . . . . . . 1.4 Dissertationtransport model for edge plasma . . . . . . 6.1 Anomalous

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

103

Ion temperature gradient instability and anomalous transport  

SciTech Connect

This report discusses experiments in ion temperature gradient instability and anomalous transport in the CLM steady state device. (LSP).

Sen, A.K.

1991-08-01T23:59:59.000Z

104

The Cosmic Ray Muon Flux at WIPP  

E-Print Network (OSTI)

In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).

E. -I. Esch; T. J. Bowles; A. Hime; A. Pichlmaier; R. Reifarth; H. Wollnik

2004-08-25T23:59:59.000Z

105

The Cosmic Ray Muon Flux at WIPP  

E-Print Network (OSTI)

In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to ?vert = (3.10 +0.05 ?0.07) 10?7 s ?1 cm ?2 sr ?1.

E. -i. Esch A; T. J. Bowles A; A. Hime A; A. Pichlmaier A; R. Reifarth A; H. Wollnik B

2004-01-01T23:59:59.000Z

106

The Cosmic Ray Muon Flux at WIPP  

E-Print Network (OSTI)

In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).

Esch, E I; Hime, A; Pichlmaier, A; Reifarth, R; Wollnik, H

2005-01-01T23:59:59.000Z

107

Preparations for Muon Experiments at Fermilab  

SciTech Connect

The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

Syphers, M.J.; Popovic, M.; Prebys, E.; /Fermilab; Ankenbrandt, C.; /Muons Inc., Batavia

2009-05-01T23:59:59.000Z

108

Improving scintillation crystals using muon tomography  

SciTech Connect

The cosmic ray muon scanning array provides information on NaI(T1) crystals using some 65,536 trajectories, each measuring the NaI(T1) response to high energy muons. With this information, it is possible to use established computer-aided-tomography techniques to deconvolute these integrated responses and produce a detailed picture of the detector's interior.

Dowell, D.H.; Fineman, B.J.; Sandorfi, A.M.

1987-01-01T23:59:59.000Z

109

Mercury Handling for the Target System for a Muon Collider  

Science Conference Proceedings (OSTI)

The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

2012-01-01T23:59:59.000Z

110

Investigation and simulation of muon cooling rings with tilted solenoids  

DOE Green Energy (OSTI)

Alternating solenoid focused muon cooling ring without special bending magnets is considered and investigate in detail. Both fringe field between solenoid coils with opposite directed current, and an inclination of the coils in vertical plane are used to provide a bending and closing of the particle trajectories. Realistic (Maxwellian) magnetic field is calculated and used for a simulation. Methodic is developed and applied to find closed orbit at any energy, dispersion, region of stability, and other conventional accelerator characteristics. Earlier proposed RFOFO cooling ring with 200 MHz RF system and liquid hydrogen absorbers is investigated in detail. After an optimization, normalized 6D emittance about 20 mm{sup 3} and transmission 57% are obtained.

Valeri I. Balbekov

2003-05-28T23:59:59.000Z

111

Does The Pioneer Anomalous Acceleration Really Exist?  

E-Print Network (OSTI)

The analysis of the Pioneer 10 and 11 data demonstrated the presence of an anomalous Doppler frequency blue-shift drift which is interpreted as an anomalous acceleration. The Doppler frequency dirft follows by considering the motions of the Pioneers in the universe, i.e. it is of cosmological origin. There is no anomalous acceleration.

Walter Petry

2005-09-21T23:59:59.000Z

112

Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93  

SciTech Connect

This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

Leon, M. [comp.

1994-01-01T23:59:59.000Z

113

Studies of a Gas-filled Helical Muon Beam Cooling Channel  

DOE Green Energy (OSTI)

A helical cooling channel (HCC) can quickly reduce the six dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. The HCC is composed of solenoidal, helical dipole, and helical quadrupole magnetic fields to provide the focusing and dispersion needed for emittance exchange as the beam follows an equilibrium helical orbit through a continuous homogeneous absorber. We consider liquid helium and liquid hydrogen absorbers in HCC segments that alternate with RF accelerating sections and we also consider gaseous hydrogen absorber in pressurized RF cavities imbedded in HCC segments. In the case of liquid absorber, the possibility of using superconducting RF in low magnetic field regions between the HCC segments may provide a cost effective solution to the high repetition rate needed for an intense neutrino factory or high average luminosity muon collider. In the gaseous hydrogen absorber case, the pressurized RF cavities can be operated at low temperature to improve their efficiency for higher repetition rates. Numerical simulations are used to optimize and compare the liquid and gaseous HCC techniques.

R.P. Johnson; K. Paul; T.J. Roberts; Y.S. Derbenev; K. Yonehara

2006-06-26T23:59:59.000Z

114

R&D Toward a Neutrino Factory and Muon Collider  

SciTech Connect

Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

Zisman, Michael S

2011-03-20T23:59:59.000Z

115

Magnetic and Electric Dipole Constraints on Extra Dimensions and Magnetic Fluxes  

E-Print Network (OSTI)

The propagation of charged particles and gauge fields in a compact extra dimension contributes to $g-2$ of the charged particles. In addition, a magnetic flux threading this extra dimension generates an electric dipole moment for these particles. We present constraints on the compactification size and on the possible magnetic flux imposed by the comparison of data and theory of the magnetic moment of the muon and from limits on the electric dipole moments of the muon, neutron and electron.

Aaron J. Roy; Myron Bander

2008-05-10T23:59:59.000Z

116

Muon Collider Collaboration Meeting Program  

NLE Websites -- All DOE Office Websites (Extended Search)

schemes 9. Beam halo and scraping 10. Beam instabilities 11. Large aperture magnets 12. Resonant power supplies 6. Lattice C. Johnstone, FNAL; A. Garren, LBL *** 1....

117

Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons  

SciTech Connect

Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.

Schwellenbach, D.

2012-07-17T23:59:59.000Z

118

Muon Acceleration - RLA and FFAG  

SciTech Connect

Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

Alex Bogacz

2011-10-01T23:59:59.000Z

119

Use of dielectric material in muon accelerator RF cavities  

E-Print Network (OSTI)

The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

French, Katheryn Decker

2011-01-01T23:59:59.000Z

120

Parametric-Resonance Ionization Cooling of Muon Beams  

Science Conference Proceedings (OSTI)

Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel?s free oscillations. Thin absorbers placed at the focal points then cool the beam?s angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/ G4beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread.

V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, B. Erdelyi, J.A. Maloney

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Parametric-resonance ionization cooling of muon beams  

Science Conference Proceedings (OSTI)

Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel's free oscillations. Thin absorbers placed at the focal points then cool the beam's angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/G4beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread.

Morozov, V. S.; Derbenev, Ya. S.; Afanasev, A.; Johnson, R. P.; Erdelyi, B.; Maloney, J. A. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Muons, Inc., Batavia, Illinois 60510 (United States) and George Washington University, Washington, D.C. 20052 (United States); Muons, Inc., Batavia, Illinois 60510 (United States); Northern Illinois University, DeKalb, Illinois 60115 (United States)

2012-12-21T23:59:59.000Z

122

Polarized photons in radiative muon capture  

E-Print Network (OSTI)

We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant $g_P$. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for $g_P$ and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.

Shung-ichi Ando; Harold W. Fearing; Dong-Pil Min

2001-04-25T23:59:59.000Z

123

Fermilab | Muon Collider | Reports and Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports and Papers Reports and Papers Comprehensive Reports J. Gallardo, R. Palmer, A. Tollestrup, A. Sessler, A. Skrinsky et al., "μ+ μ- Collider: A Feasibility Study," DPF/DPB Summer Study on New Directions for High Energy Physics, Snow- mass, Colorado, 25 Jun - 12 Jul 1996, BNL - 52503, Fermilab - Conf - 96 - 092, LBNL - 38946, http://www.cap.bnl.gov/mumu/pubs/snowmass96.html C. Ankenbrandt et al.,"Status of muon collider research and development and future plans," Phys. Rev. ST Accel. Beams 2 (1999) 081001, http://prst-ab.aps.org/abstract/PRSTAB/v2/i8/e081001 M. M. Alsharo'a et al., "Recent progress in neutrino factory and muon collider research within the Muon Collaboration," Phys. Rev. ST Accel. Beams 6 (2003) 081001, http://prst-ab.aps.org/abstract/PRSTAB/v6/i8/e081001

124

Progress in Absorber R&D for Muon Cooling  

E-Print Network (OSTI)

A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

D. M. Kaplan; E. L. Black; M. Boghosian; K. W. Cassel; R. P. Johnson; S. Geer; C. J. Johnstone; M. Popovic; S. Ishimoto; K. Yoshimura; L. Bandura; M. A. Cummings; A. Dyshkant; D. Hedin; D. Kubik; C. Darve; Y. Kuno; D. Errede; M. Haney; S. Majewski; M. Reep; D. Summers

2001-08-15T23:59:59.000Z

125

A Moment Equation Approach to a Muon Collider Cooling Lattice  

E-Print Network (OSTI)

a Muon Collider Cooling Lattice C.M. Celata, A.M. Sessler,a Muon Collider Cooling Lattice C.M. Celata and A.M. SesslerMUON COLLIDER COOLING LATTICE eM. Celata and A. M. Sessler,

Celata, C.M.; Sessler, A.M.; Lee, P.B.; Shadwick, B.A.; Wurtele, S.

2008-01-01T23:59:59.000Z

126

Higgs boson and Z physics at the first muon collider  

SciTech Connect

The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

Demarteau, M.; Han, T.

1998-01-01T23:59:59.000Z

127

W and Anomalous Single Top Production at HERA  

E-Print Network (OSTI)

The analysis of $W$ production and the search for anomalous single top production is performed with the H1 detector at HERA with an integrated luminosity of 0.5 fb$^{-1}$, consisting of the complete high energy data from the HERA programme. Production cross section measurements of single $W$ production, as well as $W$ polarisation fractions in events containing isolated leptons and missing transverse momentum are also presented. In the context of a search for single top production an upper limit on the top production cross section $\\sigma_{ep\\to etX} < 0.16$ pb is established at the 95% confidence level, corresponding to an upper bound on the anomalous magnetic coupling $\\kappa_{tu\\gamma} < 0.14$.

E. Rizvi; for the H1 Collabortion

2008-07-22T23:59:59.000Z

128

Complete Muon Cooling Channel Design and Simulations  

Science Conference Proceedings (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

129

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

130

Muon interactions at 490 GeV  

DOE Green Energy (OSTI)

E665 is a new, high-energy muon scattering experiment at Fermilab. Data were taken with a 490 GeV muon beam incident on deuterium, hydrogen, and xenon targets during the 1987--88 fixed target run. These data are being analyzed with various physics objectives in mind, and a number of preliminary results have been obtained. This paper presents four of results, specifically the small {chi}{sub Bj} ratio of xenon and deuterium cross sections, inclusive hadron distributions, two jet signals, and exclusive {rho}{sup 0} production.

Schmitt, M. (Fermi National Accelerator Lab., Batavia, IL (USA) Harvard Univ., Cambridge, MA (USA))

1990-06-01T23:59:59.000Z

131

Simulations of a Gas-Filled Helical Muon Beam Cooling Channel  

DOE Green Energy (OSTI)

A helical cooling channel (HCC) has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. The HCC is composed of a series of RF cavities filled with dense hydrogen gas that acts as the energy absorber for ionization cooling and suppresses RF breakdown in the cavities. Magnetic solenoidal, helical dipole, and helical quadrupole coils outside of the RF cavities provide the focusing and dispersion needed for the emittance exchange for the beam as it follows a helical equilibrium orbit down the HCC. In the work presented here, two Monte Carlo programs have been developed to simulate a HCC to compare with the analytic predictions and to begin the process of optimizing practical designs that could be built in the near future. We discuss the programs, the comparisons with the analytical theory, and the prospects for a HCC design with the capability to reduce the six-dimensional phase space emittance of a muon beam by a factor of over five orders of magnitude in a linear channel less than 100 meters long.

K. Yonehara; D.M. Kaplan; K. Beard; S.A. Bogacz; Y.S. Derbenev; R.P. Johnson; K. Paul; T.J. Roberts

2005-05-16T23:59:59.000Z

132

Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts  

E-Print Network (OSTI)

In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

Reetanjali Moharana; Nayantara Gupta

2011-07-22T23:59:59.000Z

133

Anomalous Radiative Decay of Heavy Higgs Boson  

E-Print Network (OSTI)

The radiative decay width of a heavy Higgs boson $H \\rightarrow W^+W^-\\gamma$ for a {\\it hard} photon is calculated in the Standard Model and its extension with anomalous $\\gamma WW$ couplings. Its dependence on the Higgs mass, the two unknown anomalous couplings, and the photon energy cutoff are studied in detail. We show that this radiative decay of a heavy Higgs is not very sensitive to a wide range of the anomalous couplings compared to the Standard Model result.

Tzu Chiang Yuan

1992-05-27T23:59:59.000Z

134

Six-dimensional muon beam cooling in a continuous, homogeneous, gaseous hydrogen absorber  

DOE Green Energy (OSTI)

The fast reduction of the six-dimensional phase space of muon beams is required for muon colliders and is also of great importance for neutrino factories based on accelerated muon beams. Ionization cooling, where all momentum components are degraded by an energy absorbing material and only the longitudinal momentum is restored by RF cavities, provides a means to quickly reduce transverse beam sizes. However, the beam momentum spread cannot be reduced by this method unless the longitudinal emittance can be transformed or exchanged into the transverse emittance. The best emittance exchange plans up to now have been accomplished by using magnets to disperse the beam along the face of a wedge-shaped absorber such that higher momentum particles pass through thicker parts of the absorber and thus suffer larger ionization energy loss. In the scheme advocated in this paper, it is noted that one can generate a magnetic channel filled with absorber where higher momentum corresponds to a longer path length and therefore larger ionization energy loss. Thus a homogeneous absorber, without any special edge shaping, can provide the desired emittance exchange. An attractive example of a cooling channel based on this principle involves the use of RF cavities filled with a continuous gaseous hydrogen absorber in a magnetic channel composed of a solenoidal field with superimposed helical transverse dipole, quadrupole, and octupole fields. The theory of this helical channel is described to support the analytical prediction of a million-fold reduction in phase space volume in a channel 150 m long.

Yaroslav Derbenev; Rolland P. Johnson

2004-10-01T23:59:59.000Z

135

Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion  

E-Print Network (OSTI)

We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

Sachie Kimura; Aldo Bonasera

2006-05-24T23:59:59.000Z

136

Magnetism and Superconductivity in Ruthenates, Ruthenocuprates, and Other Layered Oxides.  

E-Print Network (OSTI)

??There exist several classes of materials that simultaneously exhibit superconductivity and anomalous magnetic order, where both effects are homogeneous throughout the material. No cohesive explanation (more)

Smylie, Matthew Passmore

2010-01-01T23:59:59.000Z

137

Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron  

Science Conference Proceedings (OSTI)

A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

2012-05-01T23:59:59.000Z

138

Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron  

E-Print Network (OSTI)

A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

D. J. Summers; L. M. Cremaldi; T. L. Hart; L. P. Perera; M. Reep; H. Witte; S. Hansen; M. L. Lopes; J. Reidy, Jr.

2012-07-28T23:59:59.000Z

139

Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons  

Science Conference Proceedings (OSTI)

A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

Kurennoy, Sergey S. [Los Alamos National Laboratory

2012-05-14T23:59:59.000Z

140

Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron instabilities  

DOE Green Energy (OSTI)

One- and two-dimensional simulations have been carried out to study electrostatic ion cyclotron instabilities for a hydrogen plasma in a strong magnetic field. It is found that strong ion heating and anomalous cross-field diffusion comparable to Bohm diffusion take place associated with the instability. Implications of the instability to the recent observations in fusion devices and space plasmas are discussed.

Okuda, H.; Cheng, C.Z.; Lee, W.W.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Closed-cell 201.25 MHz RF structures for a muon cooling channel  

DOE Green Energy (OSTI)

We report on the research and development of high gradient low frequency closed-cell structures for possible use in a muon cooling channel. The presence of strong magnetic fields precludes the use of superconducting RF. These multi-cell structures have the ''beam iris'' closed by conducting oils, grids of tubes or other isolating structures. This greatly increases the shunt impedance and also allows the individually powered cells to be set independently to any phase. The isolating structure must be made using a very small amount of low-Z material to avoid unacceptable scattering of the muon beam. Various cell designs and methods of closure are presented and compared. The problems of RF heating and breakdown at high gradient are discussed with regard to the vulnerable isolating structures. RF, thermal and stress analyses are presented and the integration of the RF with the solenoid cryostat and liquid hydrogen absorbers is considered.

Rimmer, R.; Hartman, N.; Ladran, A.; Li, D.; Moretti, A.; Jurgens, T.

2001-06-01T23:59:59.000Z

142

The ATLAS Muon Trigger vertical slice at LHC startup  

E-Print Network (OSTI)

The ATLAS trigger system has a three-levels structure, implemented to retain interesting physics events, here described for the muon case ("Muon Vertical Slice"). The first level, implemented in a custom hardware, uses measurements from the trigger chambers of the Muon Spectrometer to select muons with high transverse momentum and defines a Region of Interest (RoI) in the detector. RoIs are then processed by a second trigger level, in which fast algorithms run on an online software architecture. Full granularity information from precision chambers is accessed inside RoIs. A third trigger level (Event Filter), using offline-like algorithms and accessing the full event, provide the best possible muon reconstruction/identification and finally confirm or discard the trigger hypothesis formed at earlier levels. Implementation and performance of the full muon trigger slice, together with first events triggered with LHC beams on, are presented.

Grancagnolo, Sergio

2009-01-01T23:59:59.000Z

143

Performance study of the level-1 di-muon trigger  

E-Print Network (OSTI)

An event with two muons in the final state is a distinctive signal and can be triggered efficiently with the use of the level-1 di-muon trigger. Nevertheless triggering is still an issue if these muon tracks are fairly soft and fake di-muon triggers originating from muons that traverse more than one region of the trigger chambers increase the trigger rate. It is important to provide an acceptable trigger rate, while keeping high trigger efficiency to study low-pt $B$-physics such as rare $B$ hadron decays or CP violation in the $B$-events, especially in a multi-purpose experiment like ATLAS. In this note, the level-1 di-muon trigger and its expected performance are described.

The ATLAS Collaboration

2009-01-01T23:59:59.000Z

144

Jack Steinberger and the Muon-Neutrino  

Office of Scientific and Technical Information (OSTI)

Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles exist in families of particles ... . At the time, the elementary particles which were involved were the electrons and the neutrino. ... [W]e required the [BNL] accelerator, which was the effort of very many people, ... and this allowed [us] to make a beam of these neutrinos, and we were able to convince ourselves that these neutrinos were not the same kind of neutrinos as those which had been seen before. They were associated with not electrons, but with something called [muons]. So we were able to understand that there is a different neutrino associated with the [muon] than with the electron.

145

Ionization cooling in the muon collider  

SciTech Connect

The muon beams in a high luminosity muon collider are produced with a very large emittance. The process of ionization cooling offers a method for reducing the 6-dimensional normalized emittance of the beam by a factor of {approx} 10{sup 6}. A simple analytic theory has been developed that demonstrates the dependence of the net cooling on various experimental parameters. The simple theory has been checked and realistic arrangements have been examined using Monte Carlo simulations. Transverse cooling of the initial beam can be achieved using passive Li absorbers in a FOFO lattice. The last factor of 10 in transverse cooling probably requires the use of current-carrying Li lenses. Efficient longitudinal cooling requires the use of wedge shaped absorbers in a dispersive section of the beam line. An example, multi-stage cooling scenario has been developed that meets the requirements of the muon collider. Preliminary designs have been made of solenoids for use in the FOFO lattice and of solenoids and dipoles for use in the emittance exchange sections. Detailed simulation work, farther optimization, and preparations for experimental demonstrations of critical components are currently in progress.

Fernow, R.C.; Gallardo, J.C.; Kirk, H.G.; Palmer, R.B. [and others

1996-10-01T23:59:59.000Z

146

Muon Application to Advanced Bio- and Nano-Sciences  

SciTech Connect

Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

Nagamine, Kanetada [Muon Science Laboratory, KEK, Tsukuba, Ibaraki, 305-0081 (Japan); Atomic Physics Laboratory, RIKEN, Wako, Saitama, 351-0198 (Japan); Department of Physics and Astronomy, University of California, Riverside, CA92521 (United States)

2008-02-21T23:59:59.000Z

147

Jet production in muon scattering at Fermilab E665  

SciTech Connect

Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

Salgado, C.W.; E665 Collaboration

1993-11-01T23:59:59.000Z

148

High Field Magnet R&D |Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

High Field Magnet R&D High Field Magnet R&D The Superconducting Magnet Division is developing advanced magnet designs and magnet-related technologies for high field accelerator magnets. We are currently working on magnets for three inter-related programs: High Field Magnets for Muon Collider Papers, Presentations Common Coil Magnets Papers, Presentations Interaction Region Magnets Papers, Presentations High Temperature Superconductor (HTS) Magnets Papers, Presentations This is part of a multi-lab superconducting magnet development program for new accelerator facilities that would be part of the U.S. High Energy Physics program. These programs (@BNL, @FNAL, @LBNL) are quite complimentary to each other, so that magnet designs and technologies developed at one laboratory can be easily transferred to another. The BNL

149

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network (OSTI)

the University of California. Search for muon neutrinos fromSearch for muon neutrinos from Gamma-Ray Bursts with theWe present the results of searches for high-energy muon

Abbasi, R.

2010-01-01T23:59:59.000Z

150

Imaging and sensing based on muon tomography - Energy Innovation ...  

Subtraction techniques are described to enhance the processing of the muon tomography data. Skip to Content. ... Hydropower, Wave and Tidal; Industrial Technologies ...

151

Search for anomalous production of multiple leptons in association with $W$ and $Z$ bosons at CDF  

Science Conference Proceedings (OSTI)

This paper presents a search for anomalous production of multiple low-energy leptons in association with a W or Z boson using events collected at the CDF experiment corresponding to 5.1 fb{sup -1} of integrated luminosity. This search is sensitive to a wide range of topologies with low-momentum leptons, including those with the leptons near one another. The observed rates of production of additional electrons and muons are compared with the standard model predictions. No indications of phenomena beyond the standard model are found. A 95% confidence level limit is presented on the production cross section for a benchmark model of supersymmetric hidden-valley Higgs production. Particle identification efficiencies are also provided to enable the calculation of limits on additional models.

Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

2012-02-01T23:59:59.000Z

152

Novel linac structures for low-beta ions and for muons  

SciTech Connect

Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

Kurennoy, Sergey S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

153

RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM  

E-Print Network (OSTI)

Considerations for the Dtep Underwater Muon and NeutrinoPresented at the Deep Underwater Huon and Neutrino DetectionCOMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO

Leskovar, B.

2010-01-01T23:59:59.000Z

154

Atmospheric Muon Flux at Sea Level, Underground, and Underwater  

E-Print Network (OSTI)

The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.

E. V. Bugaev; A. Misaki; V. A. Naumov; T. S. Sinegovskaya; S. I. Sinegovsky; N. Takahashi

1998-03-30T23:59:59.000Z

155

magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

156

Search for anomalous ZZ{gamma} and Z{gamma}{gamma} couplings with D0  

Science Conference Proceedings (OSTI)

A direct test of the Standard Model by searching for anomalous ZZ{gamma} and Z{gamma}{gamma} couplings is presented. The authors analyze p{bar p} {yields} ll{gamma} + X, (l = e,{mu}) events at {radical}s = 1.8 TeV with the D0d detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb{sup {minus}1} (13.3 pb{sup {minus}1}) for the electron (muon) channel, yields the following 95% CL limits on the anomalous CP-conserving ZZ{gamma} couplings: -1.9 < h{sub 30}{sup Z} < 1.8 (h{sub 40}{sup Z} = 0), and -0.5 < h{sub 40}{sup Z} < 0.5 ({sub 30}{sup Z} = 0), for a form-factor scale {Lambda} = 500 GeV. Limits on the Z{gamma}{gamma} couplings and CP-violating couplings are also discussed.

Landsberg, G.

1995-05-01T23:59:59.000Z

157

ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION  

SciTech Connect

More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

2013-03-15T23:59:59.000Z

158

A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.  

DOE Green Energy (OSTI)

This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

2003-03-01T23:59:59.000Z

159

A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker  

DOE Green Energy (OSTI)

This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

1999-03-29T23:59:59.000Z

160

Effect of muon-nuclear inelastic scattering on high-energy atmospheric muon spectrum at large depth underwater  

E-Print Network (OSTI)

The energy spectra of hadron cascade showers produced by the cosmic ray muons travelling through water as well as the muon energy spectra underwater at the depth up to 4 km are calculated with two models of muon inelastic scattering on nuclei, the recent hybrid model (two-component, 2C) and the well-known generalized ector-meson-dominance model for the comparison. The 2C model involves photonuclear interactions at low and moderate virtualities as well as the hard scattering including the weak neutral current processes. For the muon scattering off nuclei substantial uclear effects, shadowing, nuclear binding and Fermi motion of nucleons are taken into account. It is shown that deep nderwater muon energy spectrum calculated with the 2C model are noticeably distorted at energies above 100 TeV as compared to that obtained with the GVMD model.

Sinegovsky, S I; Lokhtin, K S; Takahashi, N

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effect of muon-nuclear inelastic scattering on high-energy atmospheric muon spectrum at large depth underwater  

E-Print Network (OSTI)

The energy spectra of hadron cascade showers produced by the cosmic ray muons travelling through water as well as the muon energy spectra underwater at the depth up to 4 km are calculated with two models of muon inelastic scattering on nuclei, the recent hybrid model (two-component, 2C) and the well-known generalized ector-meson-dominance model for the comparison. The 2C model involves photonuclear interactions at low and moderate virtualities as well as the hard scattering including the weak neutral current processes. For the muon scattering off nuclei substantial uclear effects, shadowing, nuclear binding and Fermi motion of nucleons are taken into account. It is shown that deep nderwater muon energy spectrum calculated with the 2C model are noticeably distorted at energies above 100 TeV as compared to that obtained with the GVMD model.

S. I. Sinegovsky; A. Misaki; K. S. Lokhtin; N. Takahashi

2007-12-24T23:59:59.000Z

162

Extended Air Showers and Muon Interactions  

E-Print Network (OSTI)

The objective of this work is to report on the influence of muon interactions on the development of air showers initiated by astroparticles. We make a comparative study of the different theoretical approaches to muon bremsstrahlung and muonic pair production interactions. A detailed algorithm that includes all the relevant characteristics of such processes has been implemented in the AIRES air shower simulation system. We have simulated ultra high energy showers in different conditions in order to measure the influence of these muonic electromagnetic interactions. We have found that during the late stages of the shower development (well beyond the shower maximum) many global observables are significantly modified in relative terms when the mentioned interactions are taken into account. This is most evident in the case of the electromagnetic component of very inclined showers. On the other hand, our simulations indicate that the studied processes do not induce significant changes either in the position of the shower maximum or the structure of the shower front surface.

A. N. Cillis; S. J. Sciutto

2000-10-24T23:59:59.000Z

163

Progress on muon parametric-resonance ionization cooling channel development  

SciTech Connect

Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

2012-07-01T23:59:59.000Z

164

Positive muon and the positron as probes of defects  

SciTech Connect

The positive muon and the positron are each being used nowadays to investigate defects in condensed matter. A brief summary of the experimental methods employed with each particle is given in this paper. Similarities and differences between the behavior of the two leptons when implanted in consensed matter are pointed out, and by means of a comparison between muon and positron data in Al it is shown that the combination of muon and positron experiments can serve as a useful new probe of defects in solids.

Lynn, K G

1980-01-01T23:59:59.000Z

165

Helical FOFO snake for 6D ionization cooling of muons  

DOE Green Energy (OSTI)

A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside solenoids and RF cavities between them. Important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4Beamline are presented which show that 200MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

Alexahin, Y.; /Fermilab

2009-10-01T23:59:59.000Z

166

Novel Muon Beam Facilities for Project X at Fermilab  

SciTech Connect

Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

167

Muon Acceleration in Cosmic-ray Sources  

E-Print Network (OSTI)

Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

2012-08-09T23:59:59.000Z

168

New results for rare muon decays  

Science Conference Proceedings (OSTI)

Branching-ratio limits obtained with the Crystal Box detector are presented for the rare muon decays ..mu.. ..-->.. eee, ..mu.. ..-->.. e..gamma.., and ..mu.. ..-->.. e..gamma gamma... These decays, which violate the conservation of separate lepton-family numbers, are expected to occur in many extensions to the standard model. We found no candidates for the decay ..mu.. ..-->.. eee, yielding an upper limit for the branching ratio of B/sub ..mu..3e/ .. e..gamma.. candidates yields an upper limit of B/sub ..mu..e..gamma../ .. e..gamma gamma.. candidates gives an upper limit of B/sub ..mu..e..gamma gamma../ < 7.2 x 10/sup -11/. These results strengthen the constraints on models that allow transitions between lepton families.

Mischke, R.E.; Bolton, R.D.; Bowman, J.D.; Cooper, M.D.; Frank, J.S.; Hallin, A.L.; Heusi, P.A.; Hoffman, C.M.; Hogan, G.E.; Mariam, F.G.

1986-01-01T23:59:59.000Z

169

Ordinary Muon Capture in Hydrogen Reexamined  

E-Print Network (OSTI)

The rate of muon capture in a muonic hydrogen atom is calculated in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To this order, we present the systematic evaluation of all the corrections due to the QED and electroweak radiative corrections and the proton-size effect. Since the low-energy constants involved can be determined from other independent sources of information, the theory has predictive power. For the hyperfine-singlet $\\mu p$ capture rate $\\Gamma_0$, our calculation gives $\\Gamma_0=710 \\,\\pm 5\\,s^{-1}$, which is in excellent agreement with the experimental value obtained in a recent high-precision measurement by the MuCap Collaboration.

U. Raha; F. Myhrer; K. Kubodera

2013-03-25T23:59:59.000Z

170

The case for anomalous link discovery  

Science Conference Proceedings (OSTI)

In this paper, we describe the challenges inherent to the task of link prediction, and we analyze one reason why many link prediction models perform poorly. Specifically, we demonstrate the effects of the extremely large class skew associated ... Keywords: anomalous link discovery, link prediction, relational learning

Matthew J. Rattigan; David Jensen

2005-12-01T23:59:59.000Z

171

Nonlinear Response to Anomalous Tropical Forcing  

Science Conference Proceedings (OSTI)

We have investigated the nonlinear steady-state response of a barotropic model to an estimate of the observed anomalous tropical divergence forcing for the El Nio winter of 1982/83. The 400 mb climatological flow was made a forced solution of ...

R. J. Haarsma; J. D. Opsteegh

1989-11-01T23:59:59.000Z

172

When will we know a muon collider is feasible? Status and directions of muon accelerator R&D  

E-Print Network (OSTI)

Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following the LHC discoveries. This article briefly reviews the status of the accelerator R&D, addresses the question of the feasibility of a Muon Collider, what needs to be done to prove it and presents projected timeline of the project.

Vladimir Shiltsev

2010-03-16T23:59:59.000Z

173

Melvin Schwartz and the Discovery of the Muon Neutrino  

NLE Websites -- All DOE Office Websites (Extended Search)

Melvin Schwartz and the Discovery of the Muon Neutrino Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron (AGS), the then brand-new accelerator at the U.S. Department of Energy's Brookhaven National Laboratory. ... First coming to Brookhaven in 1955, Schwartz performed his Ph.D. thesis research through 1956 at the Laboratory's first accelerator, the Cosmotron. While finishing his thesis, he was employed by the Laboratory from 1956-58.

174

Neutrino Factory and Muon Collider R&D  

E-Print Network (OSTI)

European, Japanese, and US Neutrino Factory designs are presented. The main R&D issues and associated R&D programs, future prospects, and the additional issues that must be addressed to produce a viable Muon Collider design, are discussed.

Steve Geer

2001-11-05T23:59:59.000Z

175

Asymmetry of Charge Ratio for Low Energetic Muons  

Science Conference Proceedings (OSTI)

The WILLI calorimeter, installed in NIPNE Bucharest, is operated since several years for measuring charge ratio of atmospheric muons at low energies (Egeomagnetic field and also on features of the hadronic interaction.

Mitrica, Bogdan [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest (Romania)

2008-01-24T23:59:59.000Z

176

Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays  

E-Print Network (OSTI)

The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

The ATLAS Collaboration

2010-06-22T23:59:59.000Z

177

On the parametrization of atmospheric muon angular flux underwater  

E-Print Network (OSTI)

The analytical expression for angular integral flux of atmospheric muons in matter with the explicit relation of its parameters with those of the sea level spectrum is obtained. The fitting formula for the sea level muon spectrum at different zenith angles for spherical atmosphere is proposed. The concrete calculations for pure water are presented. Fluctuations of muon energy losses are taken into account by means of parametrized correction factor calculated using survival probabilities resulted from Monte Carlo simulations. Parametrizations of all continuous energy losses are obtained with using the most recent expressions for muon interaction cross-sections. The corresponding parametrization errors and field of method application are comprehensively discussed. The proposed formulae could be useful primarily for experimentalists processing data of arrays located deep under water or under ice.

S. I. Klimushin; E. V. Bugaev; I. A. Sokalski

2000-12-04T23:59:59.000Z

178

Expected Muon Energy Spectra and Zenithal Distributions Deep Underwater  

E-Print Network (OSTI)

Energy spectra and zenith angle distributions of atmospheric muons are calculated for the depths of operation of large underwater neutrino telescopes. The estimation of the prompt muon contribution is performed with three approaches to charm hadroproduction: recombination quark-parton model, quark-gluon string model, and perturbative QCD based models. Calculations show that the larger are zenith angles and water thickness above the detector, the lower is the energy at which the prompt muon flux becomes equal to conventional one (``crossing energy'') . For instance, for the depth of the Baikal Neutrino Telescope and for zenith angle of 78 degrees the crossing energy is about 300 TeV, whereas it is only 8 TeV for the NESTOR depth. Nevertheless, the muon flux of the crossing energy at NESTOR depth is in order of magnitude lower in comparison with the Baikal depth.

A. Misaki; V. A. Naumov; T. S. Sinegovskaya; S. I. Sinegovsky; N. Takahashi

1999-05-19T23:59:59.000Z

179

Muon transfer from hot muonic hydrogen atoms to neon  

DOE Green Energy (OSTI)

A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of [mu][sup [minus]p] atoms in each target. The rates [lambda][sub pp[mu

Jacot-Guillarmod, R. (Fribourg Univ. (Switzerland). Inst. de Physique); Bailey, J.M. (Liverpool Univ. (United Kingdom)); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. (Victoria Univ., BC (Canada)); Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M. (British Columbia Univ., Vancouver, BC (Canada)); Huber, T.M. (Gustavus Adolphus Coll., St. Peter, MN (United States)); Kammel, P.; Zmeskal, J.

1992-01-01T23:59:59.000Z

180

The charge ratio of the atmospheric muons at low energy  

Science Conference Proceedings (OSTI)

From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

Bahmanabadi, M.; Samimi, J. [Department of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran (Iran, Islamic Republic of); ALBORZ Observatory, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sheidaei, F. [Department of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran (Iran, Islamic Republic of); Ghomi, M. Khakian [ALBORZ Observatory, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

2006-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells  

SciTech Connect

The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

Liu, Chao-Xing; /Tsinghua U., Beijing /Stanford U., Phys. Dept.; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

2010-03-19T23:59:59.000Z

182

Method for identifying anomalous terrestrial heat flows  

DOE Patents (OSTI)

A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

Del Grande, Nancy Kerr (San Leandro, CA)

1977-01-25T23:59:59.000Z

183

Anomalous Charge Transport in Disordered Organic Semiconductors  

Science Conference Proceedings (OSTI)

Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

Muniandy, S. V.; Woon, K. L. [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Choo, K. Y. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

2011-03-30T23:59:59.000Z

184

Anomalous and resonance small angle scattering  

SciTech Connect

Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

Epperson, J.E.; Thiyagarajan, P.

1987-11-01T23:59:59.000Z

185

Anomalous and resonance small angle scattering: Revision  

SciTech Connect

Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

Epperson, J.E.; Thiyagarajan, P.

1987-11-01T23:59:59.000Z

186

Counting muons to probe the neutrino mass spectrum  

E-Print Network (OSTI)

The experimental evidence that \\theta_{13} is large opens new opportunities to identify the neutrino mass spectrum. We outline a possibility to investigate this issue by means of conventional technology. The ideal setup turns out to be long baseline experiment: the muon neutrino beam, with 10^{20} protons on target, has an average energy of 6 (8) GeV; the neutrinos, after propagating 6000 (8000) km, are observed by a muon detector of 1 Mton and with a muon energy threshold of 2 GeV. The expected number of muon events is about 1000, and the difference between the two neutrino spectra is sizeable, about 30%. This allows the identification of the mass spectrum just counting muon tracks. The signal events are well characterized experimentally by their time and direction of arrival, and 2/3 of them are in a region with little atmospheric neutrino background, namely, between 4 GeV and 10 GeV. The distances from CERN to Baikal Lake and from Fermilab to KM3NET, or ANTARES, fit in the ideal range.

Carolina Lujan-Peschard; Giulia Pagliaroli; Francesco Vissani

2013-01-19T23:59:59.000Z

187

RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity  

E-Print Network (OSTI)

THERMAL AND STRUCTURAL ANALYSIS OF THE 201.25 MHZ MUON IONIZATION COOLINGthe thermal performance of the cavity, including the coolingthermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling

Virostek, S.; Li, D.

2005-01-01T23:59:59.000Z

188

A ROTATING METAL BAND TARGET FOR PION PRODUCTION AT MUON COLLIDERS.  

Science Conference Proceedings (OSTI)

A conceptual design is presented for a high power pion production target for muon colliders that is based on a rotating metal band. Three candidate materials are considered for the target band: inconel alloy 718, titanium alloy 6Al-4V grade 5 and nickel. A pulsed proton beam tangentially intercepts a chord of the target band that is inside a 20 Tesla tapered solenoidal magnetic pion capture channel similar to designs previously considered for muon colliders and neutrino factories. The target band has a radius of 2.5 meters and is continuously rotated at approximately 1 m/s to carry heat away from the production region and through a water cooling tank. The mechanical layout and cooling setup of the target are described, including the procedure for the routine replacement of the target band. A rectangular band cross section is assumed, optionally with I-beam struts to enhance stiffness and minimize mechanical vibrations. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target and from ANSYS finite element calculations for the corresponding shock heating stresses. The target scenario is found to perform satisfactorily and with conservative safety margins for multi-MW pulsed proton beams.

KING,B.J.; SIMOS,N.; WEGGEL,R.V.; MOKHOV,N.V.

2002-01-18T23:59:59.000Z

189

The LHCb Muon detector commissioning and first running scenarios  

E-Print Network (OSTI)

The LHCb muon detector, part of the first LHCb trigger level (L0), has been built to provide a fast and efficient identification of the muons produced in pp collisions at the LHC. The expected performances are: 95% L0 trigger efficiency within a 25 ns time window and muon identification in L0 with a Pr resolution of 20%. The detector has been built using Multi-Wire Proportional Chambers and Gas Electron Multiplier technology. The chambers are arranged in five stations, interspersed with iron filter placed along the beam pipe. The results obtained in the commissioning of all the installed chambers and the measured performances are presented. The strategies foreseen for the detector calibration, the results of the space and time alignment efforts and few first running scenarios are discussed.

Furcas, S

2010-01-01T23:59:59.000Z

190

Measurement of Ground Level Muon Charge Ratio Using ECRS Simulation  

Science Conference Proceedings (OSTI)

The Muon charge ratio at the Earth's surface has been studied with a Geant4 based simulation for two different geomagnetic locations: Atlanta and Lynn Lake. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake, At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 {+-} 0.05 (without geomagnetic field), 1.12 {+-} 0.05 (with geomagnetic field) for Atlanta and 1.22 {+-} 0.04 (with geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing secondary cosmic ray muon flux distribution at Earth's surface and can be used to evaluate the parameter of atmospheric neutrino oscillations.

Sanjeewa, Hakmana; He Xiaochun; Cleven, Christopher [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

2006-11-17T23:59:59.000Z

191

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network (OSTI)

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

192

Optics for Phase Ionization Cooling of Muon Beams  

DOE Green Energy (OSTI)

The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.

R.P. Johnson; S.A. Bogacz; Y.S. Derbenev

2006-06-26T23:59:59.000Z

193

A parameterisation of single and multiple muons in the deep water or ice  

E-Print Network (OSTI)

A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

Annarita Margiotta

2006-02-01T23:59:59.000Z

194

Multiple Muons From Neutrino-Initiated Multi-W(Z) Production  

E-Print Network (OSTI)

Current underground detectors can search for multiple muons from multi-W(Z) production initiated by ultrahigh energy neutrinos from active galactic nuclei. O($\\mu$b) cross sections give rise to downward going muon bundles whose features differ from those of atmospheric muon bundles.

D. A. Morris; A. Ringwald

1993-08-29T23:59:59.000Z

195

Anomalous zipping dynamics and forced polymer translocation  

E-Print Network (OSTI)

We investigate by Monte Carlo simulations the zipping and unzipping dynamics of two polymers connected by one end and subject to an attractive interaction between complementary monomers. In zipping, the polymers are quenched from a high temperature equilibrium configuration to a low temperature state, so that the two strands zip up by closing up a "Y"-fork. In unzipping, the polymers are brought from a low temperature double stranded configuration to high temperatures, so that the two strands separate. Simulations show that the unzipping time, $\\tau_u$, scales as a function of the polymer length as $\\tau_u \\sim L$, while the zipping is characterized by anomalous dynamics $\\tau_z \\sim L^\\alpha$ with $\\alpha = 1.37(2)$. This exponent is in good agreement with simulation results and theoretical predictions for the scaling of the translocation time of a forced polymer passing through a narrow pore. We find that the exponent $\\alpha$ is robust against variations of parameters and temperature, whereas the scaling of $\\tau_z$ as a function of the driving force shows the existence of two different regimes: the weak forcing ($\\tau_z \\sim 1/F$) and strong forcing ($\\tau_z$ independent of $F$) regimes. The crossover region is possibly characterized by a non-trivial scaling in $F$, matching the prediction of recent theories of polymer translocation. Although the geometrical setup is different, zipping and translocation share thus the same type of anomalous dynamics. Systems where this dynamics could be experimentally investigated are DNA (or RNA) hairpins: our results imply an anomalous dynamics for the hairpins closing times, but not for the opening times.

Alessandro Ferrantini; Enrico Carlon

2011-02-14T23:59:59.000Z

196

R&D Proposal for the National Muon Acccelerator Program  

SciTech Connect

This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

2010-02-01T23:59:59.000Z

197

R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM  

SciTech Connect

This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

2010-02-24T23:59:59.000Z

198

Anomalous Adsorption of Ultrafast Laser Irradiation in Glass ...  

Science Conference Proceedings (OSTI)

Presentation Title, Anomalous Adsorption of Ultrafast Laser Irradiation in Glass ... and is driven by the stress induced by absorption of ultrafast light in glass.

199

Anomalous resistance in high-frequency heating of tokamak plasma  

SciTech Connect

It is shown that induced scattering of electromagnetic waves by ions in a plasma with a longitudinal current can lead to the appearance of an appreciable anomalous resistance.

Parail, V.V.

1976-08-20T23:59:59.000Z

200

Anomalous shear wave attenuation in the shallow crust beneath...  

Open Energy Info (EERE)

the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about...

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Muon transfer from hot muonic hydrogen atoms to neon  

DOE Green Energy (OSTI)

A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of {mu}{sup {minus}p} atoms in each target. The rates {lambda}{sub pp{mu}} and {lambda}{sub pd} can be extracted.

Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland). Inst. de Physique; Bailey, J.M. [Liverpool Univ. (United Kingdom); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M. [British Columbia Univ., Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P.; Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria). Inst. fuer Mittelenergiephysik; Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

1992-12-31T23:59:59.000Z

202

Muon Bremsstrahlung and Muonic Pair Production in Air Showers  

E-Print Network (OSTI)

The objective of this work is to report on the modifications in air shower development due to muon bremsstrahlung and muonic pair production. In order to do that we have implemented new muon bremsstrahlung and muonic pair production procedures in the AIRES air shower simulation system, and have used it to simulate ultra high energy showers in different conditions. The influence of the mentioned processes in the global development of the air shower is important for primary particles of large zenith angles, while they do not introduce significant changes in the position of the shower maximum.

A. Cillis; S. J. Sciutto

2000-06-08T23:59:59.000Z

203

Charge recombination in the muon collider cooling channel  

SciTech Connect

The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

Fernow, R. C.; Palmer, R. B. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2012-12-21T23:59:59.000Z

204

Doped H(2)-Filled RF Cavities for Muon Beam Cooling  

DOE Green Energy (OSTI)

RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants.

Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Johnson, R.P.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia; Rose, D.V.; /Voss Sci., Albuquerque

2009-05-01T23:59:59.000Z

205

Magnetized baryonic matter in holographic QCD  

E-Print Network (OSTI)

We investigate the properties of the Sakai-Sugimoto model at finite magnetic field and baryon chemical potentials. We show that in a finite magnetic field, there exists a spatially homogeneous configuration carrying finite baryon number density. At low magnetic field and baryon chemical potential the equation of state of the matter coincides with that obtained from the chiral perturbation theory Lagrangian with an anomalous term. We discuss the behavior of the system at larger magnetic fields.

Ethan G. Thompson; Dam T. Son

2008-06-02T23:59:59.000Z

206

Recent Results on Muon Capture for a Neutrino Factory and Muon Collider  

SciTech Connect

Scenarios for capture, bunching and phase-energy rotation of {mu}'s from a proton source have been developed. The goal is capture of a maximal number of muons in a string of rf bunches with applications in neutrino factories and {mu}{sup +}-{mu}{sup -} colliders. In this note we begin with the bunching, phase rotation and cooling scenario used in neutrino factory study 2B and adapted by R. Palmer as the initial stage of a {mu}{sup +}-{mu}{sup -} collider scenario. However the scenario produces a relatively large number of bunches that must be recombined for maximal collider luminosity. In this paper we modify the scenario to obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both n-factory and collider scenarios. We describe these examples and consider some variations toward an optimal {nu}-factory + collider scenario.

Neuffer, David; /Fermilab

2008-01-01T23:59:59.000Z

207

Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies  

SciTech Connect

An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

208

Status of Neutrino Factory R&D within the Muon Collaboration  

E-Print Network (OSTI)

We describe the current status of the research within the Muon Collaboration towards realizing a Neutrino Factory. We describe briefly the physics motivation behind the neutrino factory approach to studying neutrino oscillations and the longer term goal of building the Muon Collider. The benefits of a step by step staged approach of building a proton driver, collecting and cooling muons followed by the acceleration and storage of cooled muons are emphasized. Several usages of cooled muons open up at each new stage in such an approach and new physics opportunites are realized at the completion of each stage.

Rajendran Raja

2004-02-12T23:59:59.000Z

209

Status of Neutrino Factory R&D within the Muon Collaboration  

Science Conference Proceedings (OSTI)

The authors describe the current status of the research within the Muon Collaboration towards realizing a Neutrino Factory. The authors describe briefly the physics motivation behind the neutrino factory approach to studying neutrino oscillations and the longer term goal of building the Muon Collider. The benefits of a step by step staged approach of building a proton driver, collecting and cooling muons followed by the acceleration and storage of cooled muons are emphasized. Several usages of cooled muons open up at each new stage in such an approach and new physics opportunities are realized at the completion of each stage.

Rajendran Raja

2004-02-19T23:59:59.000Z

210

The ATLAS Muon Trigger - Experience and Performance in the first 3 years of LHC pp runs  

E-Print Network (OSTI)

The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 trigger followed by an event filter for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. The ATLAS experiment has taken data with high efficiency continuously over entire running periods form 2010 to 2012, for which sophisticated triggers to guard the highest physics output while reducing effectively the event rate were mandatory. The ATLAS Muon trigger has successfully adapted to this changing environment. The selection strategy has been optimized for the various physics analysis involving mu...

Ventura, A; The ATLAS collaboration

2013-01-01T23:59:59.000Z

211

Muon and Tau Neutrinos Spectra from Solar Flares  

E-Print Network (OSTI)

Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeV

D. Fargion; F. Moscato

2004-05-03T23:59:59.000Z

212

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

213

Neutrinos from Stored Muons nuSTORM: Expression of Interest  

E-Print Network (OSTI)

The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report.

D. Adey; S. K. Agarwalla; C. M. Ankenbrandt; R. Asfandiyarov; J. J. Back; G. Barker; E. Baussan; R. Bayes; S. Bhadra; V. Blackmore; A. Blondel; S. A. Bogacz; C. Booth; S. B. Boyd; A. Bravar; S. J. Brice; A. D. Bross; F. Cadoux; H. Cease; A. Cervera; J. Cobb; D. Colling; L. Coney; A. Dobbs; J. Dobson; A. Donini; P. J. Dornan; M. Dracos; F. Dufour; R. Edgecock; J. Evans; M. A. George; T. Ghosh; A. deGouvea; J. J. Gomez-Cadenas; A. Haesler; G. Hanson; M. Geelhoed; P. F. Harrison; M. Hartz; P. Hernandez; J. A. Hernando-Morata; P. J. Hodgson; P. Huber; A. Izmaylov; Y. Karadhzov; T. Kobilarcik; J. Kopp; L. Kormos; A. Korzenev; A. Kurup; Y. Kuno; P. Kyberd; J. P. Lagrange; A. M. Laing; J. Link; A. Liu; K. R. Long; N. McCauley; K. T. McDonald; K. Mahn; C. Martin; J. Martin; O. Mena; S. R. Mishra; N. Mokhov; J. Morfin; Y. Mori; W. Murray; D. Neuffer; R. Nichol; E. Noah; M. A. Palmer; S. Parke; S. Pascoli; J. Pasternak; M. Popovic; P. Ratoff; M. Ravonel; M. Rayner; S. Ricciardi; C. Rogers; P. Rubinov; E. Santos; A. Sato; E. Scantamburlo; J. K. Sedgbeer; D. R. Smith; P. J. Smith; J. T. Sobczyk; S. Soldner-Rembold; F. J. P. Soler; M. Sorel; A. Stahl; L. Stanco; P. Stamoulis; S. Striganov; H. Tanaka; I. J. Taylor; C. Touramanis; C. D. Tunnel; Y. Uchida; N. Vassilopoulos; M. O. Wascko; A. Weber; E. Wildner; M. J. Wilking; W. Winter; U. K. Yang

2013-05-07T23:59:59.000Z

214

What does the muon-neutrino oscillate into?  

E-Print Network (OSTI)

The favoured resolution of the atmospheric neutrino anomaly involves an oscillation of the muon neutrino to a different state. Current experiments allow for the latter to contain a significantly large fraction of a non-standard flavour. We demonstrate how the next generation of experiments may take advantage of matter effects to resolve this issue.

Debajyoti Choudhury; Anindya Datta

2006-06-08T23:59:59.000Z

215

High-energy cosmic ray muons in the Earth's atmosphere  

Science Conference Proceedings (OSTI)

We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

Kochanov, A. A., E-mail: kochanov@iszf.irk.ru [Russian Academy of Sciences, Siberian Branch, Institute of Solar-Terrestrial Physics (Russian Federation); Sinegovskaya, T. S. [Irkutsk State Railway University (Russian Federation)] [Irkutsk State Railway University (Russian Federation); Sinegovsky, S. I., E-mail: sinegovsky@api.isu.ru [Irkutsk State University (Russian Federation)

2013-03-15T23:59:59.000Z

216

CONCEPTUAL DESIGN REPORT FOR A FAST MUON TRIGGER  

SciTech Connect

This document is a Conceptual Design Report for a fast muon trigger for the PHENIX experiment that will enable the study of flavor separated quark and anti-quark spin polarizations in the proton. A powerful way of measuring these polarizations is via single spin asymmetries for W boson production in polarized proton-proton reactions. The measurement is done by tagging W{sup +} and W{sup -} via their decay into high transverse momentum leptons in the forward directions. The PHENIX experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample the rare leptons fromW decay at the highest luminosities at the Relativistic Heavy Ion Collider (RHIC). This Report details the goals, design, R&D, and schedule for building new detectors and trigger electronics to use the full RHIC luminosity to make this critical measurement. The idea for W boson measurements in polarized proton-proton collisions at RHIC was first suggested by Jacques Soffer and Claude Bourrely in 1995. This prompted the RIKEN institute in Japan to supply funds to build a second muon arm for PHENIX (south muon arm). The existence of both a north and south muon arm makes it possible to utilize a Z{sup 0} sample to study and control systematic uncertainties which arise in the reconstruction of high momentum muons. This document has its origins in recommendations made by a NSAC Subcommittee that reviewed the U.S. Heavy Ion Physics Program in June 2004. Part of their Recommendation 1 was to 'Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR'. In Recommendation 2 the subcommittee stated '- detector improvements proceed at a rate that allows a timely determination of the flavor dependence of the quark-antiquark sea polarization through W-asymmetry measurements' as we are proposing here. On September 13, 2004 DOE requested from BNL a report articulating a research plan for the RHIC spin physics program. The document was submitted to DOE on January 31, 2005. It pointed out that one of three top priorities for the program lies in the clean and elegant measurement of the quark and anti-quark polarizations sorted by quark flavor through the parity-violating production of W bosons.

OBRIEN,E.; BASYE, A.; ISENHOWER, D.; JUMPER, D.; SPARKS, N.; TOWELL, R.; WATTS, C.; WOOD, J.; WRIGHT, R.; HAGGERTY, J.; LYNCH, D.; BARISH, K.; EYSER, K.O.; SETO, R.; HU, S.; LI, X.; ZHOU, S.; GLENN, A.; KINNEY, E.; KIRILUK, K.; NAGLE, J.; CHI, C.Y.; SIPPACH, W.; ZAJC. W.; BUTLER, C.; HE, X.; OAKLEY, C.; YING, J.; BLACKBURN, J.; CHIU, M.; PERDEKAMP, M.G.; KIM, Y.J.; KOSTER, J.; LAYTON, D.; MAKINS, N.; MEREDITH, B.; NORTHACKER, D.; PENG, J.-C.; SEIDL, R.; THORSLAND, E.; WADHAMS, S.; WILLIAMSON, S.; YANG, R.; HILL, J.; KEMPEL, T.; LAJOIE, J.; SLEEGE, G.; VALE, C.; WEI, F.; SAITO, N.; HONG, B.; KIM, B.; LEE, K.; LEE, K.S.; PARK, S.; SIM, K.-S.; AOKI, K.; DAIRAKU, S.; IMAI, K.; KARATSU, K.; MURAKAMI, T.; SATO, A.; SENZAKA, K.; SHOJI, K.; TANIDA, K.; BROOKS, M.; LEITCH, M.; ADAMS, J.; CARINGI, A.; FADEM, B.; IDE, J.; LICHTENWALNER, P.; FIELDS, D.; MAO, Y.; HAN, R.; BUNCE, G.; XIE, W.; FUKAO, Y.; TAKETANI, A.; KURITA, K.; MURATA, J.; (PHENIX COLLABORATION)

2007-08-01T23:59:59.000Z

217

Discussion - Next Step for Fukushima Daiichi Muon Tomography  

Science Conference Proceedings (OSTI)

Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

Miyadera, Haruo [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

218

Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons  

E-Print Network (OSTI)

We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.

S. Coutu; J. J. Beatty; M. A. DuVernois; S. W. Barwick; E. Schneider; A. Bhattacharyya; C. R. Bower; J. A. Musser; A. Labrador; D. Muller; S. P. Swordy; E. Torbet; C. Chaput; S. McKee; G. Tarle; A. D. Tomasch; S. L. Nutter; G. A. deNolfo

2000-04-07T23:59:59.000Z

219

FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.  

SciTech Connect

The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

2001-06-30T23:59:59.000Z

220

Implementation of the Control System for the LHCb Muon Detector  

E-Print Network (OSTI)

The Muon Detector of LHCb will be equipped with 1368 Multi- Wire Proportional Chambers and 24 Triple-GEM Detectors. Within the Framework of the CERN Control System Project, using PVSS as the main tool, we are developing an instrument to manage the Muon System of LHCb. Adjustment and monitoring of High and Low Voltage power supplies, on-line diagnostics and ne tuning of the Front-End read-out devices, data acquisition from the gas system and the monitoring of pressure and temperature of the experimental hall are being implemented. The system will also look after long term data archiving and alert handling. The Control System performance is currently under evaluation in a cosmic ray station. Built as a nal quality control of the LHCb Multi-Wire Proportional Chambers, allowing acquisition of data from as many as 600 Front-End readout channels, the cosmic ray station is fully managed by means of a Control System prototype.

Pinci, Davide; Chiodi, Giacomo; Iacoangeli, Francesco; Nobrega, Rafael; Rinaldi, Walter

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR  

SciTech Connect

Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

2012-07-01T23:59:59.000Z

222

The scattering of muons in low Z materials  

DOE Green Energy (OSTI)

This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionization cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionization cooling will work better than would be predicted by Geant 4.7.0p01.

D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

2005-12-03T23:59:59.000Z

223

Baseline scenario(s) for muon collider proton driver  

DOE Green Energy (OSTI)

This paper gives an overview of the various muon collider scenarios and the requirements they put on the Proton Driver. The required proton power is about 4-6MW in all the scenarios, but the bunch repetition rate varies between 12 and 65Hz. Since none of the muon collider scenarios have been simulated end-to-end, it would be advisable to plan for an upgrade path to around 10MW. Although the proton driver energy is flexible, cost arguments seems to favor a relatively low energy. In particular, at Fermilab 8GeV seems most attractive, partly due to the possibility of reusing the three existing fixed energy storage rings for bunch manipulations.

Jansson, Andreas; /Fermilab

2008-07-01T23:59:59.000Z

224

Muon ring cooler for the MUCOOL experiment  

DOE Green Energy (OSTI)

A possibility to use a ring cooler for the MUCOOL experiment is considered. The cooler is a ring accelerator of about 37 m in circumference consisting of 8 dipole magnets, 4 short solenoids with a field flip of {+-} 2:5 T, and 4 long solenoids with adiabatic field 2-5 T. The 201.25 MHz linacs provide accelerating gradient 15 MV/min in the long straight sections. Four 1.3 m long liquid hydrogen absorbers are put between the linacs for transverse cooling, and LiH wedge absorbers in the short SS are used for the emittance exchange. To simplify the injection problem, {pi}-{mu}-production on an internal target is considered as an option for the MUCOOL experiment.

Valeri Balbekov et al.

2001-07-20T23:59:59.000Z

225

Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity  

E-Print Network (OSTI)

In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

2011-01-24T23:59:59.000Z

226

Our Next Two Steps for Fukushima Daiichi Muon Tomography  

SciTech Connect

After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

Miyadera, Haruo [Los Alamos National Laboratory

2012-04-11T23:59:59.000Z

227

LHCb: The LHCb Muon detector commissioning and first running scenarios  

E-Print Network (OSTI)

The LHCb Muon detector, being part of the first trigger level (L0), has been optimized in order to provide a fast and efficient identification of the muons produced in pp collisions at the LHC. The expected performances are: 95% L0 trigger efficiency within a 25ns time window and muon identification in L0 with a pT resolution of ~20%. The detector has been built, to met those stringent requirements, using Multi Wire Proportional Chambers and Gas Electron Multiplier (in the innermost region, closest to the IP) technology. The chambers (1368 MWPC + 12 GEM) are arranged in 5 detector stations, interspersed with iron filters placed along the beam pipe. While the installation of chambers in stations 2 to 5 has already been completed, the work on the first and most challenging station is still ongoing and expected to end by July 09. The results obtained in the commissioning of all the installed chambers as well as the performances measured by means of data acquired during cosmics runs since September 08 are reviewe...

Furcas, S

2009-01-01T23:59:59.000Z

228

Lateral Distribution for Aligned Events in Muon Groups Deep Underground  

E-Print Network (OSTI)

The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

2007-01-09T23:59:59.000Z

229

Detecting compounded anomalous SNMP situations using cooperative unsupervised pattern recognition  

Science Conference Proceedings (OSTI)

This research employs unsupervised pattern recognition to approach the thorny issue of detecting anomalous network behavior. It applies a connectionist model to identify user behavior patterns and successfully demonstrates that such models respond well ...

Emilio Corchado; lvaro Herrero; Jos Manuel Siz

2005-09-01T23:59:59.000Z

230

Testing and Comparing the Modified Anomalous Diffraction Approximation  

Science Conference Proceedings (OSTI)

The modified anomalous diffraction approximation (MADA) is used to predict absorption and extinction in water and ice clouds, but it does not predict the scattering phase function or asymmetry parameter g. In conjunction with g parameterizations, ...

David L. Mitchell; Anthony J. Baran; W. P. Arnott; C. Schmitt

2006-11-01T23:59:59.000Z

231

Searching for the fourth family quarks through anomalous decays  

Science Conference Proceedings (OSTI)

The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

Sahin, M.; Sultansoy, S.; Turkoz, S. [TOBB University of Economics and Technology, Physics Division, Ankara (Turkey); TOBB University of Economics and Technology, Physics Division, Ankara, Turkey and Institute of Physics, National Academy of Sciences, Baku (Azerbaijan); Ankara University, Department of Physics, Ankara (Turkey)

2010-09-01T23:59:59.000Z

232

CMS reconstruction improvement for the muon tracking by the RPC chambers  

E-Print Network (OSTI)

The contribution of Resistive Plate Chamber (RPC) to muon reconstruction in CMS has been studied on a sample of muons collected in proton-proton collisions at sqrt(s) = 7 TeV at the LHC in 2011. Muon reconstruction is performed using the all-silicon inner tracker and with up to four stations of gas-ionization muon detectors. Drift Tubes and Cathode Strip Chambers detect muons in the barrel and endcap regions, respectively, and are complemented by the RPC system. Measured distributions of reconstructed hits in the RPCs crossed by muons from Z decays with a transverse momentum pT above 20 GeV/c are well reproduced by the Monte Carlo simulation. From the samples of J/psi and Z events, the efficiencies for muons with and without the inclusion of the RPC hits in the muon track reconstruction are measured and compared with the simulation. Using RPC information in track reconstruction improves up to about 3% of offline reconstruction efficiency for the muons in the region of pT above 7 GeV/c, in good agreement with simulation.

Min Suk Kim on behalf of the CMS Collaboration

2012-09-12T23:59:59.000Z

233

An Improved Limit on the Electric Dipole Moment of the Muon  

E-Print Network (OSTI)

Data from the muon g-2 experiment at Brookhaven National Lab has been analyzed to search for a muon electric dipole moment(EDM), which would violate parity and time reversal symmetries. An EDM would cause a tilt in the spin precession plane of the muons, resulting in a vertical oscillation in the position of electrons hitting the detectors. No signal has been observed. Based on this analysis, an improved limit of $2.8 \\times 10^{-19} e-cm(95% CL) is set on the muon EDM.

Ronald McNabb

2004-07-01T23:59:59.000Z

234

Muon Charge Information from Geomagnetic Deviation in Inclined Extensive Air Showers  

E-Print Network (OSTI)

We propose to extract the charge information of high energy muons in very inclined extensive air showers by analyzing their relative lateral positions in the shower transverse plane. We calculate the muon lateral deviation under the geomagnetic field and compare it to dispersive deviations from other causes. By our criterion of resolvability, positive and negative muons with energies above $10^4$ GeV will be clearly separated into two lobes if the shower zenith angle is larger than $70^\\circ$. Thus we suggest a possible approach to measure the $\\mu^+ / \\mu^-$ ratio for high energy muons.

BingKan Xue; Bo-Qiang Ma

2006-11-22T23:59:59.000Z

235

Hadronic Light-by-Light Contribution to Muon g-2: Status and Prospects  

E-Print Network (OSTI)

I review the recent calculations and present status of the hadronic light-by-light contribution to the muon g-2.

Joaquim Prades

2008-06-13T23:59:59.000Z

236

Hadronic Vacuum Polarization Contribution to g-2 from the Lattice  

Science Conference Proceedings (OSTI)

We give a short description of the present situation of lattice QCD simulations. We then focus on the computation of the anomalous magnetic moment of the muon using lattice techniques. We demonstrate that by employing improved observables for the muon anomalous magnetic moment, a significant reduction of the lattice error can be obtained. This provides a promising scenario that the accuracy of lattice calculations can match the experimental errors.

Dru Renner, Xu Feng, Marcus Petschlies, Karl Jansen

2012-05-01T23:59:59.000Z

237

THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET EXPERIMENT*  

E-Print Network (OSTI)

THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET In this paper, issues associated with the interaction of a proton beam with windows designed for the muon to maintain an enclosed environment around the target implies the use of beam windows that will survive

McDonald, Kirk

238

Study of single muons with the Large Volume Detector at Gran Sasso Laboratory  

E-Print Network (OSTI)

The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \\pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.

Aglietta, M; Antonioli, P; Badino, G; Bari, G; Basile, M; Berezinsky, Veniamin Sergeevich; Bersani, F; Bertaina, M; Bertoni, R; Bruni, G; Cara Romeo, G; Castagnoli, C; Castellina, A; Chiavassa, A; Chinellato, J A; Cifarelli, Luisa; Cindolo, F; Contin, A; Dadykin, V L; Dos Santos, L G; Enikeev, R I; Fulgione, W; Galeotti, P; Ghia, P; Giusti, P; Gmez, F; Granella, R; Grianti, F; Gurentsov, V I; Iacobucci, G; Inoue, N; Kemp, E; Khalchukov, F F; Korolkova, E V; Korchaguin, P V; Korchaguin, V B; Kudryavtsev, V A; Luvisetto, Marisa L; Malguin, A S; Massam, Thomas; Mengotti-Silva, N; Morello, C; Nania, R; Navarra, G; Periale, L; Pesci, A; Picchi, P; Pless, I A; Ryasny, V G; Ryazhskaya; Saavedra, O; Saitoh, K; Sartorelli, G; Selvi, M; Taborgna, N; Talochkin, P; Trinchero, G C; Tsuji, S; Turtelli, A; Vallania, P; Vernetto, S; Vigorito, C; Votano, L; Wada, T; Weinstein, R; Widgoff, M; Yakushev, V F; Yamamoto, I; Zatsepin, G T; Zichichi, A

2003-01-01T23:59:59.000Z

239

The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors  

E-Print Network (OSTI)

An experimental study of the production of up-going charged particles in inelastic interactions of down-going underground muons is reported, using data obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of 12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243 events are observed having an up-going particle associated with a down-going muon. These events are analysed to determine the range and emission angle distributions of the up-going particle, corrected for detection and reconstruction efficiency. Measurements of the muon neutrino flux by underground detectors are often based on the observation of through-going and stopping muons produced in $\

The MACRO Collaboration; M. Ambrosio et al

1998-07-31T23:59:59.000Z

240

The gravitational cusp anomalous dimension from AdS space  

E-Print Network (OSTI)

Recently a new picture has been developed for examining Wilson lines, and the corresponding anomalous dimensions which govern their renormalization properties. By making a particular coordinate transform, the calculation of the cusp anomalous dimension in QED or QCD can be related to the energy of a pair of static charges in Euclidean Anti-de-Sitter (AdS) space. This paper shows how the same picture can be used to describe Wilson lines in quantum gravity. We show how the relevant cusp anomalous dimension (which has recently been shown to be one loop exact) can be obtained using the Newtonian limit of General Relativity. We also show how both the QED and gravity cases emerge as special cases of a general formulation, and that a continuous parameter exists which interpolates between them. The results may be useful in examining the relations between gauge and gravity theories.

Miller, D J

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The gravitational cusp anomalous dimension from AdS space  

E-Print Network (OSTI)

Recently a new picture has been developed for examining Wilson lines, and the corresponding anomalous dimensions which govern their renormalization properties. By making a particular coordinate transform, the calculation of the cusp anomalous dimension in QED or QCD can be related to the energy of a pair of static charges in Euclidean Anti-de-Sitter (AdS) space. This paper shows how the same picture can be used to describe Wilson lines in quantum gravity. We show how the relevant cusp anomalous dimension (which has recently been shown to be one loop exact) can be obtained using the Newtonian limit of General Relativity. We also show how both the QED and gravity cases emerge as special cases of a general formulation, and that a continuous parameter exists which interpolates between them. The results may be useful in examining the relations between gauge and gravity theories.

D. J. Miller; C. D. White

2012-01-11T23:59:59.000Z

242

Muon Collider Final Cooling in 30-50 T Solenoids  

DOE Green Energy (OSTI)

Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

Palmer, R.B.; Fernow, R.C.; Lederman, J.

2011-03-28T23:59:59.000Z

243

The Compact Muon Solenoid (CMS) Experiment on YouTube  

DOE Data Explorer (OSTI)

The Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the proton-proton Large Hadron Collider (LHC) at CERN in Switzerland and France. The CMS detector is located in an underground cavern at Cessy in France and studies many aspects of proton collisions at 14 TeV, the center-of-mass energy of the LHC particle accelerator. [http://en.wikipedia.org/wiki/Compact_Muon_Solenoid]. US groups have made significant contributions to nearly every aspect of the detector throughout all phases including construction, installation and now in the data-taking stage. The US collaboration also made major contributions to the construction and operation of the computing facilities needed to analyze the unprecedented amount of data to be generated by CMS. This work includes the software that allows physicists to operate the CMS detector, reconstruct the data, analyze it and extract new physics. The CMS channel on YouTube was established in 2009.

244

Photon Redshift in a Magnetic field  

E-Print Network (OSTI)

Previous results from the authors concerning the arising a tiny photon anomalous paramagnetic moment are also interpreted as a red-shift in analogy to the gravitational known effect. It is due to the photon interaction with the magnetized virtual electron-positron background which withdraw transverse momentum from photons and is polarization-dependent. If the photon frequency red-shift implies a change in time, a clock would go faster for increasing magnetic field intensity.

Rojas, H Prez

2010-01-01T23:59:59.000Z

245

A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice  

E-Print Network (OSTI)

In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

2009-10-22T23:59:59.000Z

246

Perspectives of a Midrapidity Dimuon Program at RHIC: A Novel and Compact Muon Telescope Detector  

E-Print Network (OSTI)

We propose a large-area, cost-effective Muon Telescope Detector (MTD) for the Solenoidal Tracker at RHIC (STAR) at mid-rapidity and for the next generation of detectors at a possible electron-ion collider. We utilize Multi-gap Resistive Plate Chambers with large modules and long readout strips (Long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a Long-MRPC are 60-70 ps and $\\sim1$ cm, respectively. The prototype performance of such a novel muon telescope detector at STAR indicates that muon identification at the transverse momentum of a few GeV/$c$ can be achieved through the combined information of track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of $J/\\psi$, the separation of $\\Upsilon$ 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.

L. Ruan; G. Lin; Z. Xu; K. Asselta; H. F. Chen; W. Christie; H. J. Crawford; J. Engelage; G. Eppley; T. J. Hallman; C. Li; J. Liu; W. J. Llope; R. Majka; T. Nussbaum; J. Scheblein; M. Shao; R. Soja; Y. Sun; Z. Tang; X. Wang; Y. Wang

2009-04-24T23:59:59.000Z

247

Greenhouse Warming, Decadal Variability, or El Nio? An Attempt to Understand the Anomalous 1990s  

Science Conference Proceedings (OSTI)

The dominant variability modes in the Tropics are investigated and contrasted with the anomalous situation observed during the last few years. The prime quantity analyzed is anomalous sea surface temperature (SST) in the region 30S60N. ...

M. Latif; R. Kleeman; C. Eckert

1997-09-01T23:59:59.000Z

248

20 years of cosmic muons research performed in IFIN-HH  

Science Conference Proceedings (OSTI)

During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

Mitrica, Bogdan [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest, P.O.B.MG-6 (Romania)

2012-11-20T23:59:59.000Z

249

Climatology of Anomalous Propagation Radar Echoes in a Coastal Area  

Science Conference Proceedings (OSTI)

Anomalous propagation (AP) of ground-based radar beam results in the detection of ground echoes beyond the horizon. One year of data gathered with an S-band meteorological radar located on the coast in southwest France is used to analyze the ...

Frdric Mesnard; Henri Sauvageot

2010-11-01T23:59:59.000Z

250

Anomalous Transport Processes in Turbulent non-Abelian Plasmas  

E-Print Network (OSTI)

Turbulent color fields, which can arise in the early and late stages of relativistic heavy ion collisions, may contribute significantly to the transport processes in the matter created in these collisions. We review the theory of these anomalous transport processes and discuss their possible phenomenology in the glasma and quasistationary expanding quark-gluon plasma.

Masayuki Asakawa; Steffen A. Bass; Berndt Mller

2010-08-20T23:59:59.000Z

251

Scale-dependent mass anomalous dimension from Dirac eigenmodes  

E-Print Network (OSTI)

We investigate the eigenmodes of the massless Dirac operator to extract the scale-dependent fermion mass anomalous dimension gamma_m(mu). By combining simulations on multiple lattice volumes, and when possible several gauge couplings, we are able to measure the anomalous dimension across a wide range of energy scales. The method that we present is universal and can be applied to any lattice model of interest, including both conformal or chirally broken systems. We consider SU(3) lattice gauge theories with Nf=4, 8 and 12 light or massless fermions. The 4-flavor model behaves as expected for a QCD-like system and demonstrates that systematic effects are manageable in practical lattice calculations. Our 12-flavor results are consistent with the existence of an infrared fixed point, at which we predict the scheme-independent mass anomalous dimension gamma_m^*=0.32(3). For the 8-flavor model we observe a large anomalous dimension across a wide range of energy scales. Further investigation is required to determine whether Nf=8 is chirally broken and walking, or if it possesses a strongly-coupled conformal fixed point.

Anqi Cheng; Anna Hasenfratz; Gregory Petropoulos; David Schaich

2013-01-07T23:59:59.000Z

252

Astrophysics of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars  

E-Print Network (OSTI)

I summarize the recent advances in our understanding of the Soft Gamma Repeaters: in particular their spin behavior, persistent emission and hyper-Eddington outbursts. The giant flares on 5 March 1979 and 27 August 1998 provide compelling physical evidence for magnetic fields stronger than 10 B_{QED} = 4.4 x 10^{14} G, consistent with the rapid spindown detected in two of these sources. The persistent X-ray emission and variable spindown of the 6-12 s Anomalous X-ray Pulsars are compared and contrasted with those of the SGRs, and the case made for a close connection between the two types of sources. Their collective properties point to the existence of {\\it magnetars}: neutron stars in which a decaying magnetic field (rather than accretion or rotation) is the dominant source of energy for radiative and particle emissions. Observational tests of the magnetar model are outlined, along with current ideas about the trigger of SGR outbursts, new evidence for the trapped fireball model, and the influence of QED processes on X-ray spectra and lightcurves. A critical examination is made of coherent radio emission from bursting strong-field neutron stars. I conclude with an overview of the genetic connection between neutron star magnetism and the violent fluid motions in a collapsing supernova core.

Christopher Thompson

2000-10-02T23:59:59.000Z

253

Physics validation studies for muon collider detector background simulations  

Science Conference Proceedings (OSTI)

Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

Morris, Aaron Owen; /Northern Illinois U.

2011-07-01T23:59:59.000Z

254

Vertical muon intensity measured with MACRO at the Gran Sasso laboratory  

Science Conference Proceedings (OSTI)

The vertical underground muon intensity has been measured in the slant depth range 3200--7000 hg cm{sup {minus}2} (standard rock) with the completed lower part of the MACRO detector at the Gran Sasso laboratory, using a large sample of data. These observations are used to compute the surface muon flux and the primary ``all-nucleon`` spectrum. An analysis of systematic uncertainties introduced by the interaction models in the atmosphere and the underground propagation of muons is presented. A comparison of our results with published data is also presented.

Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Corona, A.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Liu, R.; Longley, N.P.; Longo, M.J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Petrera, S.; Pignatano, N.D.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tassoni, F.; Togo, V.; Valente, V.; Walter, C.W.; Webb, R. [Dipartimento di Fisica dell`Universita di Bari and Istituto Nazionale di Fisica Nucleare, 70126 Bari (Italy)]|[Dipartimento di Fisica dell`Universita di Bologna and Istituto Nazionale di Fisica Nucleare, 40126 Bologna (Italy)]|[Physics Department, Boston University, Boston, Massachusetts 02215 (United States)]|[California Institute of Technology, Pasadena, California 91125 (United States)...

1995-10-01T23:59:59.000Z

255

A Toy Model Study of Decay Trapping | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

A Toy Model Study of Decay Trapping, reported by Brett Parker A Toy Model Study of Decay Trapping, reported by Brett Parker Introduction A group from the BNL Superconducting Magnet Division is looking at various options for dipole magnets which would be suitable for use in a muon storage ring that is used as a neutrino factory. Since the useful neutrino beams from a neutrino factory come from straight sections it is desirable to minimize the rings arc circumference, in relation to straight section length, in order to ensure that the fraction of muons which decay in the straight section is as large as possible. Therefore superconducting magnets, with higher B-fields and smaller bend radii, are reasonable to consider for this application. Unfortunately the decay electrons generated along with the neutrinos carry on average about a third of the original

256

Measurement of muon neutrino quasi-elastic scattering on carbon  

SciTech Connect

Low energy (200 < E{sub v} < 2000 MeV) neutrino oscillation experiments, including MiniBooNE, require a model of charged current quasi-elastic (CCQE) neutrino interactions to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M{sub A} = 1.23 {+-} 0.20 GeV, used to describe the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, {kappa} = 1.019 {+-} 0.011.

Aguilar-Arevalo, A.A.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; Djurcic, Z.; /Alabama U. /Bucknell

2007-06-01T23:59:59.000Z

257

INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING  

Science Conference Proceedings (OSTI)

Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

2012-07-01T23:59:59.000Z

258

nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC  

E-Print Network (OSTI)

The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is unique in that it will: 1. Allow searches for sterile neutrinos of exquisite sensitivity to be carried out; 2. Serve future long- and short-baseline neutrino-oscillation programs by providing definitive measurements of electron neutrino and muon neutrino scattering cross sections off nuclei with percent-level precision; and 3. Constitutes the crucial first step in the development of muon accelerators as a powerful new technique for particle physics. The document describes the facility in detail and demonstrates its physics capabilities. This document was submitted to the Fermilab Physics Advisory Committee in consideration for Stage I approval.

D. Adey; S. K. Agarwalla; C. M. Ankenbrandt; R. Asfandiyarov; J. J. Back; G. Barker; E. Baussan; R. Bayes; S. Bhadra; V. Blackmore; A. Blondel; S. A. Bogacz; C. Booth; S. B. Boyd; A. Bravar; S. J. Brice; A. D. Bross; F. Cadoux; H. Cease; A. Cervera; J. Cobb; D. Colling; P. Coloma; L. Coney; A. Dobbs; J. Dobson; A. Donini; P. Dornan; M. Dracos; F. Dufour; R. Edgecock; J. Evans; M. Geelhoed; M. A. George; T. Ghosh; J. J. Gomez-Cadenas; A. de Gouvea; A. Haesler; G. Hanson; P. F. Harrison; M. Hartz; P. Hernandez; J. A. Hernando Morata; P. Hodgson; P. Huber; A. Izmaylov; Y. Karadzhov; T. Kobilarcik; J. Kopp; L. Kormos; A. Korzenev; Y. Kuno; A. Kurup; P. Kyberd; J. B. Lagrange; A. Laing; A. Liud; J. M. Link; K. Long; K. Mahn; C. Mariani; C. Martin; J. Martin; N. McCauley; K. T. McDonald; O. Mena; S. R. Mishra; N. Mokhov; J. Morfin; Y. Mori; W. Murray; D. Neuffer; R. Nichol; E. Noah; M. A. Palmer; S. Parke; S. Pascoli; J. Pasternak; M. Popovic; P. Ratoff; M. Ravonel; M. Rayner; S. Ricciardi; C. Rogers; P. Rubinov; E. Santos; A. Sato; T. Sen; E. Scantamburlo; J. K. Sedgbeer; D. R. Smith; P. J. Smith; J. T. Sobczyk; L. Soby; F. J. P. Soler; S. Soldner-Rembold; M. Sorel; P. Snopok; P. Stamoulis; L. Stanco; S. Striganov; H. A. Tanaka; I. J. Taylor; C. Touramanis; C. D. Tunnell; Y. Uchida; N. Vassilopoulos; M. O. Wascko; A. Weber; M. J. Wilking; E. Wildner; W. Winter; U. K. Yang

2013-07-31T23:59:59.000Z

259

Muon Radiography at LANL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Muon Radiography at LANL Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Muon Radiography at LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Application of tracking chambers and algorithms to observe deflections of cosmic ray muons as they pass through heavy materials Developed at: Los Alamos National Laboratory

260

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network (OSTI)

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A parameterisation of single and multiple muons in the deep water or ice  

E-Print Network (OSTI)

Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

2005-07-19T23:59:59.000Z

262

Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory  

E-Print Network (OSTI)

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earths surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring ...

Formaggio, Joseph A.

263

Strong WW scattering physics: A comparative study for the LHC, NLC and a Muon Collider  

SciTech Connect

We discuss the model independent parameterization for a strongly interacting electroweak sector. Phenomenological studies are made to probe such a sector for future colliders such as the LHC, e{sup +}e{sup -} Linear collider and a muon collider.

Han, Tao

1997-04-01T23:59:59.000Z

264

The Neutrino Factory and Muon Collider Collaboration The Target System and Support Facility  

E-Print Network (OSTI)

off in a hot cell. Kirk T. McDonald May 4, 2001 12 #12;The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling capability. Kirk T. Mc

McDonald, Kirk

265

The Neutrino Factory and Muon Collider Collaboration The R&D Program for  

E-Print Network (OSTI)

off in a hot cell. Kirk T. McDonald May 26, 2001 18 #12;The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling capability. Kirk T. Mc

McDonald, Kirk

266

The Neutrino Factory and Muon Collider Collaboration The Target System and Support Facility  

E-Print Network (OSTI)

off in a hot cell. Kirk T. McDonald May 4, 2001 12 #12; The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling capability. Kirk T. Mc

McDonald, Kirk

267

The Neutrino Factory and Muon Collider Collaboration The R&D Program for  

E-Print Network (OSTI)

products can be distilled off in a hot cell. Kirk T. McDonald May 26, 2001 17 #12; The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling

McDonald, Kirk

268

PRECURSORS OF THE FORBUSH DECREASE ON 2006 DECEMBER 14 OBSERVED WITH THE GLOBAL MUON DETECTOR NETWORK (GMDN)  

Science Conference Proceedings (OSTI)

We analyze the precursor of a Forbush decrease (FD) observed with the Global Muon Detector Network on 2006 December 14. An intense geomagnetic storm is also recorded during this FD with the peak Kp index of 8+. By using the 'two-dimensional map' of the cosmic ray intensity produced after removing the contribution from the diurnal anisotropy, we succeed in extracting clear signatures of the precursor. A striking feature of this event is that a weak loss-cone (LC) signature is first recorded more than a day prior to the storm sudden commencement (SSC) onset. This suggests that the LC precursor appeared only 7 hr after the coronal mass ejection eruption from the Sun, when the interplanetary (IP) shock driven by the interplanetary coronal mass ejection was located at 0.4 AU from the Sun. We find the precursor being successively observed with multiple detectors in the network according to the Earth's spin and confirmed that the precursor continuously exists in space. The long lead time (15.6 hr) of this precursor which is almost twice the typical value indicates that the interplanetary magnetic field (IMF) was more quiet in this event than a typical power spectrum assumed for the IMF turbulence. The amplitude (-6.45%) of the LC anisotropy at the SSC onset is more than twice the FD size, indicating that the maximum intensity depression behind the IP shock is much larger than the FD size recorded at the Earth in this event. We also find the excess intensity from the sunward IMF direction clearly observed during {approx}10 hr preceding the SSC onset. It is shown that this excess intensity is consistent with the measurement of the particles accelerated by the head-on collisions with the approaching shock. This is the first detailed observation of the precursor due to the shock reflected particles with muon detectors.

Fushishita, A.; Kato, C.; Yasue, S.; Munakata, K. [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan); Kuwabara, T.; Bieber, J. W.; Evenson, P. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Da Silva, M. R.; Lago, A. Dal [National Institute for Space Research (INPE), 12227-010 Sao Jose dos Campos, SP (Brazil); Schuch, N. J. [Southern Regional Space Research Center (CRS/INPE), P.O. Box 5021, 97110-970, Santa Maria, RS (Brazil); Tokumaru, M. [Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Duldig, M. L. [Australian Antarctic Division, Kingston, Tasmania 7050 (Australia); Humble, J. E. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania 7001 (Australia); Sabbah, I. [Astronomy Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al Jassar, H. K.; Sharma, M. M. [Physics Department, Faculty of Science, Kuwait University, Kuwait City (Kuwait)

2010-06-01T23:59:59.000Z

269

Z(gamma) production and limits on anomalous ZZ(gamma) and Z(gamma gamma) couplings in p(p)over-bar collisions at root s 1.96 TeV  

Science Conference Proceedings (OSTI)

We present a measurement of p{bar p} {yields} Z{sub {gamma}} {yields} {ell}{sup +}{ell}{sup -}{sub {gamma}} ({ell} = e, {mu}) production with a data sample corresponding to an integrated luminosity of 6.2 fb{sup -1} collected by the D0 detector at the Fermilab Tevatron p{bar p} Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section d{sigma}/dp{sub T}{sup {gamma}}, where p{sub T}{sup {gamma}} is the momentum of the photon in the plane transverse to the beam line. The results obtained are consistent with the standard model predictions from next-to-leading order use ttransverse momentum spectrum of the photon to place limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings.

Abazov, V.M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; Asman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kobach, A. C.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; et al.

2012-03-01T23:59:59.000Z

270

On anomalous diffusion in a plasma in velocity space  

E-Print Network (OSTI)

The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients f...

Trigger, S A; van Heijst, G J F; Schram, P P J M; Sokolov, I M

2010-01-01T23:59:59.000Z

271

Low-magnetic-field magnetars  

E-Print Network (OSTI)

It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

Turolla, R

2013-01-01T23:59:59.000Z

272

Anomalous transport and stabilization of collisionless drift-wave instabilities  

SciTech Connect

Extensive numerical simulations have been carried out to study the enhanced transport processes associated with the collisionless drift wave instabilities. The results indicate that the shear is effective in reducing the anomalous particle diffusion as predicted by theory; however, it is less so for the accompanied electron heat transfer. The quasilinear decay of the density profile is found to be the dominant mechanism for the nonlinear saturation. (auth)

Lee, W.W.; Okuda, H.

1975-12-01T23:59:59.000Z

273

Proposed solid-state Faraday anomalous-dispersion optical filter  

Science Conference Proceedings (OSTI)

We propose a Faraday anomalous dispersion optical filter (FADOF) based on a rare-earth ion doped crystal. We present theoretical analyses for the solid-state FADOF transmission. Our theoretical model predicts a maximum transmission efficiency of 71% and a double-peaked transmission spectrum with a bandwidth of 6 GHz under current experimental conditions. Our proposal may have important applications in optical communications.

Lin, Wei-Bin [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China); Institute of Laser Technology, Hefei University of Technology, Hefei 230009 (China); Zhou, Zong-Quan; Li, Chuan-Feng; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China)

2011-11-15T23:59:59.000Z

274

On the origin of the anomalous precession of Mercury's perihelion  

E-Print Network (OSTI)

Action at distance in Newtonian physics is replaced by finite propagation speeds in classical post--Newtonian physics. As a result, the differential equations of motion in Newtonian physics are replaced by functional differential equations, where the delay associated with the finite propagation speed is taken into account. Newtonian equations of motion, with post--Newtonian corrections, are often used to approximate the functional differential equations. In ``On the origin of quantum mechanics'', preprint, physics/0505181, May 2005, a simple atomic model based on a functional differential equation which reproduces the quantized Bohr atomic model was presented. The unique assumption was that the electrodynamic interaction has a finite propagation speed. In ``On the origin of the gravitational quantization: The Titius--Bode Law'', preprint, physics/0507072, Jul 2005, a simple gravitational model based on a functional differential equation which gives a gravitational quantification and an explanation of the modified Titius--Bode law is described. Firstly, in this work, we recall the calculations made by Einstein to arrive at the explanation of the anomalous precession of Mercury's perihelion. Secondly, we recover an ancient work of Gerber in 1898 as a precursor of the retarded theories. In this paper Gerber gave an explanation of the anomalous precession of the Mercury's perihelion in terms of a velocity--dependent potential. In this paper an explanation of the anomalous precession of Mercury's perihelion is given in terms of a simple retarded potential, which, at first order, coincides with Gerber's potential, and which agrees with the author's previous works.

Jaume Gin

2005-10-11T23:59:59.000Z

275

Study of HTS Wires at High Magnetic Fields  

SciTech Connect

Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

2009-01-01T23:59:59.000Z

276

On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements  

E-Print Network (OSTI)

For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range $E_\\mu=1-3\\cdot10^5$ GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies $>40$ GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed.

A. A. Lagutin; A. G. Tyumentsev; A. V. Yushkov

2004-02-06T23:59:59.000Z

277

The Muon (g-2) Theory Value: Present and Future  

E-Print Network (OSTI)

This White Paper briefly reviews the present status of the muon (g-2) Standard-Model prediction. This value results in a 3 - 4 standard-deviation difference with the experimental result from Brookhaven E821. The present experimental uncertainty is $\\pm 63 \\times 10^{-11}$ (0.54~ppm), and the Standard-Model uncertainty is $\\simeq \\pm 49 \\times 10^{-11}$. Fermilab experiment E989 has the goal to reduce the experimental error to $\\pm 16 \\times 10^{-11}$. Improvements in the Standard-Model value, which should be achieved between now and when the first results from Fermilab E989 could be available, should lead to a Standard-Model uncertainty of $\\sim \\,\\pm 35 \\times 10^{-11}$. These improvements would halve the uncertainty on the difference between experiment and theory, and should clarify whether the current difference points toward New Physics, or to a statistical fluctuation. At present, the (g-2) result is arguably the most compelling indicator of physics beyond the Standard Model and, at the very least, it represents a major constraint for speculative new theories such as supersymmetry, dark gauge bosons or extra dimensions.

Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael; B. Lee Roberts; Thomas Teubner; Graziano Venanzoni

2013-11-09T23:59:59.000Z

278

Improving Higgs Sensitivity at CDF by Introducing New Muon Triggers  

Science Conference Proceedings (OSTI)

A search for Standard Model Higgs boson production in the H {yields} WW {yields} {ell}{nu}jj channel using 5.7 fb{sup -1} of CDF II data is presented. The search is performed using a matrix element technique in which event probability densities for the signal and background hypotheses are calculated and used to create a powerful disciminator (called the event probability discriminant, EPD). The EPD distributions for signal and background are fit to the data using a binned likelihood approach to search for the Higgs boson signal. To improve the limits on the H production cross section, a new muon category, CMP, is added. No evidence for a Higgs boson signal is observed, and 95% confidence level upper limits on the H cross section times the branching ratio of the Higgs boson to decay to two W of {sigma}(p{bar p} {yields} H) x BR(H {yields} WW)/SM Higgs boson masses of between m{sub H} = 150 GeV/c{sup 2} and m{sub H} = 200 GeV/c{sup 2} are found. The expected (median) limit estimated in pseudo-experiments is {sigma}(p{bar p} {yields} H) x BR(H {yields} WW)/SM < 12.5 to 41.0 at 95% C.L. The inclusion of the phi gap trigger lead to improvements in the sensitivity of up to 7.3%; on average, the improvement in the sensitivity was 3.3%.

Buchmann, Marco-Andrea; /Zurich, ETH

2010-07-01T23:59:59.000Z

279

Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors  

E-Print Network (OSTI)

Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\\times 2 \\times 2$ mm^3 voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 \\times 30$ cm^2 GEM detector for the next muon tomography prototype with final frontend electronics and DAQ...

Gnanvo, K; Bittner, W; Costa, F; Grasso, L; Hohlmann, M; Locke, J B; Martoiu, S; Muller, H; Staib, M; Tarazona, A; Toledo, J

2010-01-01T23:59:59.000Z

280

Delayed muons in extensive air showers and double-front showers  

Science Conference Proceedings (OSTI)

The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

Beisembaev, R. U.; Vavilov, Yu. N., E-mail: yuvavil@mail.ru; Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation); Takibaev, J. S. [Al-Farabi Kazakh National University (Kazakhstan)

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evidence for an anomalous like-sign dimuon charge asymmetry  

SciTech Connect

We present a measurement of the like-sign dimuon asymmetry in semileptonic b-hadron decays, performed using 6.1 fb{sup -1} of p{bar p} collisions recorded with the D0 detector at a center-of-mass energy {radical}s = 1.96 TeV at the Fermilab Tevatron collider. This measured value is A{sub sl}{sup b} = [-0.957 {+-} 0.251 (stat) {+-} 0.146 (syst)] %, which disagrees with the Standard Model prediction at a statistical level of 3.2 {sigma}, and provides the first evidence of anomalous CP violation in the mixing of neutral B mesons.

Williams, M.R.J.; /Lancaster U.

2011-01-01T23:59:59.000Z

282

Anomalous Soft Photons Associated with Hadron Production in String Fragmentation  

Science Conference Proceedings (OSTI)

The bosonized QCD2+QED2 system for quarks with two flavors contains QCD2 and QED2 bound states, with an isoscalar photon at about 25 MeV and an isovector (I=1 J_{3}=0) photon at about 44 MeV. Consequently, when a quark and antiquark at the two ends of a string pulls apart from each other at high energies, hadrons and soft photons will be produced simultaneously in the fragmentation of the string. The production of the QED2 soft photons in association with hadrons may explain the anomalous soft photon data in hadron-hadron collisions and e^{+}-e^{-} annihilations at high energies.

Wong, Cheuk-Yin [ORNL

2011-01-01T23:59:59.000Z

283

Three loop MSbar transversity operator anomalous dimensions for fixed moment n <= 8  

E-Print Network (OSTI)

We compute the anomalous dimensions of the transversity operator at three loops in the MSbar scheme for fixed moment n where n n <= 7.

J. A. Gracey

2006-11-07T23:59:59.000Z

284

Anomalous effects due to the inertial anti-gravitational potential of the sun  

E-Print Network (OSTI)

It is introduced inertial anti-gravitational potential into the theory of gravity to stop gravitational collapse at the nuclear density and thus prevent singularities. It is considered effective gravity which includes Newtonian potential and inertial anti-gravitational potential. It is investigated footprints of the effective gravity in the solar system. The inertial anti-gravitational potential of the sun allows to explain the anomalous acceleration of Pioneer 10 and 11, the anomalous increase in the lunar semi-major axis, the residuals of the seasonal variation of the proper angular velocity of the earth, the anomalous increase of the Astronomical Unit, the anomalous shift of the perihelion of mercury.

D. L. Khokhlov

2007-10-31T23:59:59.000Z

285

Anomalous Small-angle Scattering with Soft X-rays at Al and Si K ...  

Science Conference Proceedings (OSTI)

Anomalous Small-angle Scattering with Soft X-rays at Al and Si K Absorption ... and Cooling Cycles in a High Strength Quenched and Tempered Structural Steel.

286

Improving Higgs Sensitivity at CDF by Introducing New Muon Triggers  

SciTech Connect

A search for Standard Model Higgs boson production in the H {yields} WW {yields} {ell}{nu}jj channel using 5.7 fb{sup -1} of CDF II data is presented. The search is performed using a matrix element technique in which event probability densities for the signal and background hypotheses are calculated and used to create a powerful disciminator (called the event probability discriminant, EPD). The EPD distributions for signal and background are fit to the data using a binned likelihood approach to search for the Higgs boson signal. To improve the limits on the H production cross section, a new muon category, CMP, is added. No evidence for a Higgs boson signal is observed, and 95% confidence level upper limits on the H cross section times the branching ratio of the Higgs boson to decay to two W of {sigma}(p{bar p} {yields} H) x BR(H {yields} WW)/SM < 7.7 to 62.1 for Higgs boson masses of between m{sub H} = 150 GeV/c{sup 2} and m{sub H} = 200 GeV/c{sup 2} are found. The expected (median) limit estimated in pseudo-experiments is {sigma}(p{bar p} {yields} H) x BR(H {yields} WW)/SM < 12.5 to 41.0 at 95% C.L. The inclusion of the phi gap trigger lead to improvements in the sensitivity of up to 7.3%; on average, the improvement in the sensitivity was 3.3%.

Buchmann, Marco-Andrea; /Zurich, ETH

2010-07-01T23:59:59.000Z

287

Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark  

Office of Scientific and Technical Information (OSTI)

Leon Lederman, the K-meson, the Muon Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom Quark His Honors · His Involvement in Science Education His Wisdom and Humor · Resources with Additional Information Leon Lederman started his career in Physics at Columbia University, where he earned his Ph.D. in 1952. He 'stayed on at Columbia following his studies, remaining for nearly 30 years, as the Eugene Higgins Professor and, from 1961 until 1979, as director of Nevis Laboratories in Irvington, the Columbia physics department center for experimental research in high-energy physics. ... Leon Lederman Courtesy of Fermilab In 1956, working with a Columbia team at the Brookhaven National Laboratory on Long Island, Lederman discovered a new particle, the long-lived neutral K-meson, which had been predicted from theory. Further research at Columbia demonstrated the non-conservation of parity during muon decay. ...

288

Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.23.2010]: Muons at the South Pole and Dr. Nick Holoynak 2.23.2010]: Muons at the South Pole and Dr. Nick Holoynak Geek-Up[12.23.2010]: Muons at the South Pole and Dr. Nick Holoynak December 23, 2010 - 12:05pm Addthis Illustration of the IceCube neutrino observatory. Source: LBNL Illustration of the IceCube neutrino observatory. Source: LBNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Earlier today, the Energy Blog featured Los Alamos National Lab's system to track Santa. However, while there is a lot of attention focused on the North Pole right now, the Geek-Up[date] team is taking a look at the opposite end of the Earth. This past weekend, a collaborative group of 40 institutions from around the world, including DOE's Lawrence Berkeley National Lab, celebrated the completion of the IceCube Neutrino Observatory

289

Distortions of Experimental Muon Arrival Time Distributions of Extensive Air Showers by the Observation Conditions  

E-Print Network (OSTI)

Event-by-event measured arrival time distributions of Extensive Air Shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (R < 200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.

R. Haeusler; A. F. Badea; H. Rebel; I. M. Brancus; J. Oehlschlaeger

2001-10-17T23:59:59.000Z

290

ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning  

E-Print Network (OSTI)

Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

Shawn McKee

2009-10-15T23:59:59.000Z

291

Anomalous diffusion and scaling in coupled stochastic processes  

SciTech Connect

Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

Bel, Golan [Los Alamos National Laboratory; Nemenman, Ilya [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

292

Indication of anomalous heat energy production in a reactor device  

E-Print Network (OSTI)

An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be far above those of any known chemical source. Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources.

Giuseppe Levi; Evelyn Foschi; Torbjrn Hartman; Bo Histad; Roland Pettersson; Lars Tegnr; Hanno Essn

2013-05-16T23:59:59.000Z

293

Prompt muon-induced fission: a probe for nuclear energy dissipation  

E-Print Network (OSTI)

We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

Volker E. Oberacker

1999-05-04T23:59:59.000Z

294

Prompt muon-induced fission: a probe for nuclear energy dissipation  

E-Print Network (OSTI)

Abstract. We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order 2 10 ?21 s.

Volker E. Oberacker

1999-01-01T23:59:59.000Z

295

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector  

E-Print Network (OSTI)

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

The AMANDA collaboration; M. Ackermann

2005-08-24T23:59:59.000Z

296

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

297

Axion emission from a magnetized neutron gas  

SciTech Connect

By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2011-01-15T23:59:59.000Z

298

A 3 TeV Muon Collider Lattice Design  

SciTech Connect

A new lattice for 3 TeV c.o.m. energy with {beta}* = 5mm was developed which follows the basic concept of the earlier 1.5 TeV design but uses quad triplets for the final focus in order to keep the maximum magnet strength and aperture close to those in 1.5 TeV case. Another difference is employment of combined-function magnets with the goal to lower heat deposition in magnet cold mass and to eliminate bending field free regions which produce 'hot spots' of neutrino radiation that can be an issue at higher energy. The proposed lattice is shown to satisfy the requirements on luminosity, dynamic aperture and momentum acceptance.

Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab

2012-05-01T23:59:59.000Z

299

Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems Onuttom Narayan1,2  

E-Print Network (OSTI)

Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems Onuttom Narayan1 will obey Fourier's law of conduction j ÿrT; (1) where T is the local temperature and is the heat con but not divergent conduc- tivity [3].) Recently, it has been argued [9] that such anomalous heat conduction occurs

California at Santa Cruz, University of

300

Anomalous evolution of Ar metastable density with electron density in high density Ar discharge  

SciTech Connect

Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

Park, Min; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, Shin-Jae; Kim, Jung-Hyung [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of); Shin, Yong-Hyeon

2011-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

OPTIMIZING THE MUON COLLIDER CAPTURE TARGET & FRONT END  

E-Print Network (OSTI)

[T] Field map calculated from coil current densiUes using Icool grid rou Transmission: Constant 1.5 Solenoid Field %67 Field map from realisUc coils taper length =7 m- B=20-1.5 T Target SC Magnets Field Map 0 5 10 15 20 25 Z [m

McDonald, Kirk

302

Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics  

E-Print Network (OSTI)

Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p ? 1s and the 3d ? 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 ? 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission. If there is large friction between the outer fission barrier and the scission point the muon will remain in the lowest molecular energy level and emerge in the 1s bound state of the heavy fission fragment. On the other hand, if friction is small (i.e. the nuclear collective motion is fast) there is a nonvanishing probability that the muon may be promoted to higher-lying molecular orbitals, e.g. the 2p? level, from where

Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

2008-01-01T23:59:59.000Z

303

AN IONIZATION COOLING CHANNEL FOR MUON BEAMS BASED ON ALTERNATING SOLENOIDS.  

DOE Green Energy (OSTI)

The muon collider requires intense, cooled muon bunches to reach the required luminosity. Due to the limited life-time of the muon, the cooling process must take place very rapidly. Ionization cooling seems to be our only option, given the large emittances of the muon beam from pion decay. However, this ionization cooling method has been found quite difficult to implement in practice. We describe a scheme based on the use of liquid hydrogen absorbers followed by r.f. cavities (''pillbox'' or ''open iris'' type), embedded in a transport lattice based on high field solenoids. These solenoidal fields are reversed periodically in order to suppress the growth of the canonical angular momentum. This channel has been simulated in detail with independent codes, featuring conventional tracking in e.m. fields and detailed simulation of multiple scattering and straggling in the absorbers and windows. These calculations show that the 15 Tesla lattice cools in 6-D phase space by a factor {approx} 2 over a distance of 20 m.

GALLARDO,J.C.; FERNOW,R.C.; KIRK,H.G.; PALMER,R.B.; LEBRUN,P.; MORETTI,A.; TOLLESTRUP,A.T.; KAPLAN,D.M.; FUKUI,Y.

1999-03-29T23:59:59.000Z

304

Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory  

SciTech Connect

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

2009-02-16T23:59:59.000Z

305

Test with cosmic rays of the GEM chambers for the LHCb muon system produced in Cagliari  

E-Print Network (OSTI)

The inner region of the first LHCb muon station will be equipped with twelve Gas Electron Multiplier chambers. The seven chambers produced in Cagliari were studied for several days each using cosmic rays. We measured the efficiency, timing resolution, and uniformity, cluster-size and out-of-time multiplicity. We find all seven chambers perform well.

Bonivento, W; Oldeman, R G C

2007-01-01T23:59:59.000Z

306

Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy  

Science Conference Proceedings (OSTI)

The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

2012-01-01T23:59:59.000Z

307

Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory  

SciTech Connect

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

2009-02-16T23:59:59.000Z

308

Study of various photomultiplier tubes with muon beams and Cerenkov light produced in electron showers  

E-Print Network (OSTI)

Study of various photomultiplier tubes with muon beams and Cerenkov light produced in electron beams and Cerenkov light produced in electron showers CMS HCAL collaboration E-mail: Burak their windows were traversed by energetic charged particles. This signal, which is due to Cerenkov light

Akgun, Ugur

309

Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere  

DOE R&D Accomplishments (OSTI)

Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

1963-06-00T23:59:59.000Z

310

Simulation analysis of data processing activities in Compact Muon Solenoid physics  

Science Conference Proceedings (OSTI)

The scale, complexity and worldwide geographical spread of the Large Hadron Collider (LHC) computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially ... Keywords: Compact Muon Solenoid, large-scale distributed systems, simulation model

Ciprian Dobre

2012-12-01T23:59:59.000Z

311

Possible evidence of a ground level enhancement of muons in association with a SWIFT Trigger  

E-Print Network (OSTI)

Starting from April 2007, a search for solar daily variation of the muon intensity ($E_\\mu >0.2$ GeV) at sea level and using two directional muon telescopes is in progress. In this survey, several ground level enhancements (GLEs) on the muon counting rate background have been found. Here, we highlight one of them, observed in the vertical telescope on 07 August 2007 for the following reasons: The GLE consists of a single narrow peak, with a statistical significance of 4.4$\\sigma$. The GLE is in temporal coincidence with a SWIFT trigger $N^0287222$, at 21:16:05 UT according to the Burst Alert Telescope (BAT) on board of the SWIFT spacecraft. However, the Swift StarTracker had lost stellar lock minutes before that and the resulting improper s/c attitude information caused BAT to "trigger" on a known source. Even so, the SWIFT trigger coordinates are inside the effective field of view of the vertical Tupi muon telescope. The temporal and directional coincidences between this GLE and the SWIFT satellite unknown event strongly suggest that they may be physically associated. Details and implications of this possible association are reported in this work.

C. R. A. Augusto; C. E. Navia; M. B. Robba; K. H. Tsui

2007-08-21T23:59:59.000Z

312

Evidence for an anomalous like-sign dimuon charge asymmetry  

Science Conference Proceedings (OSTI)

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb{sup -1} of pp collisions recorded with the D0 detector at a center-of-mass energy {radical}(s)=1.96 TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: A{sub sl}{sup b}=-0.00957{+-}0.00251 (stat){+-}0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction A{sub sl}{sup b}(SM)=(-2.3{sub -0.6}{sup +0.5})x10{sup -4} and provides first evidence of anomalous CP violation in the mixing of neutral B mesons.

Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Hall, I. [Michigan State University, East Lansing, Michigan 48824 (United States)

2010-08-01T23:59:59.000Z

313

Evidence for an anomalous like-sign dimuon charge asymmetry  

SciTech Connect

The D0 Collaboration has recently measured the charge asymmetry of same-sign dimuon events in 6.1 fb{sup -1} of data collected in p{bar p} collisions at the Fermilab Tevatron collider. This allows the extraction of the same-sign dimuon charge asymmetry in semileptonic b-hadron decays, which is predicted to be extremely small in the standard model. The result is found to differ by 3.2 standard deviations from the standard model value, providing the first evidence for anomalous CP-violation in the mixing of neutral B mesons. The analysis, and the method used to extract the result are described in detail.

Brooijmans, Gustaaf; /Columbia U.

2010-05-01T23:59:59.000Z

314

The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics.  

E-Print Network (OSTI)

The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics.

Metzler, R

2004-01-01T23:59:59.000Z

315

nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee  

SciTech Connect

The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

2012-06-01T23:59:59.000Z

316

Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities  

DOE Green Energy (OSTI)

There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity.

Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; /Fermilab; Norem, J.; /Argonne; Li, D.; Zisman, M.; /LBL, Berkeley; Torun, Y.; /IIT, Chicago; Rimmer, R.; /Jefferson Lab; Errede,; /Illinois U., Urbana

2005-10-01T23:59:59.000Z

317

Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Incredible Journey -- Transporting a 50-ton An Incredible Journey -- Transporting a 50-ton Magnet Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet July 11, 2013 - 4:38pm Addthis The Muon g-2 (pronounced gee minus two) is an experiment that will use the Fermilab accelerator complex to create an intense beam of muons -- a type of subatomic particle -- traveling at the speed of light. The experiment is picking up after a previous muon experiment at Brookhaven National Laboratory, which concluded in 2001. In this photo, the massive electromagnet is beginning its 3,200-mile journey from the woods of Long Island to the plains near Chicago, where scientists at Fermilab will refill its storage ring with muons created at Fermilab’s Antiproton Source. The 50-foot-diameter ring is made of steel, aluminum and superconducting wire. It will travel down the East Coast, around the tip of Florida, and up the Mississippi River to Fermilab in Illinois. Transporting the 50-ton device by truck requires meticulous precision -- just a tilt or a twist of a few degrees could leave the internal wiring irreparably damaged.

318

A Search for Muon Neutrinos from Gamma-Ray Bursts wih the IceCube 22-String Detector.  

E-Print Network (OSTI)

??Two searches are conducted for muon neutrinos from Gamma-Ray Bursts (GRBs) using the IceCube detector. Gamma-Ray Bursts are brief and transient emissions of keV/MeV radiation (more)

Roth, A Philip

2009-01-01T23:59:59.000Z

319

Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System  

E-Print Network (OSTI)

At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\\eta region. An international collaboration is investigating the possibility of covering the 1.6 radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\\times10 cm2) and full-size trapezoidal (1\\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.

M. Tytgat; A. Marinov; N. Zaganidis; Y. Ban; J. Cai; H. Teng; A. Mohapatra; T. Moulik; M. Abbrescia; A. Colaleo; G. de Robertis; F. Loddo; M. Maggi; S. Nuzzo; S. A. Tupputi; L. Benussi; S. Bianco; S. Colafranceschi; D. Piccolo; G. Raffone; G. Saviano; M. G. Bagliesi; R. Cecchi; G. Magazzu; E. Oliveri; N. Turini; T. Fruboes; D. Abbaneo; C. Armagnaud; P. Aspell; S. Bally; U. Berzano; J. Bos; K. Bunkowski; J. P. Chatelain; J. Christiansen; A. Conde Garcia; E. David; R. De Oliveira; S. Duarte Pinto; S. Ferry; F. Formenti; L. Franconi; A. Marchioro; K. Mehta; J. Merlin; M. V. Nemallapudi; H. Postema; A. Rodrigues; L. Ropelewski; A. Sharma; N. Smilkjovic; M. Villa; M. Zientek; A. Gutierrez; P. E. Karchin; K. Gnanvo; M. Hohlmann; M. J. Staib

2011-11-30T23:59:59.000Z

320

Feasibility for p+/p- flow-ratio evaluation in the 0.5 - 1.5 TeV primary energy range, based on Moon-shadow muon measurements, to be carried out in the Pyramid of the Sun, Teotihuacan, Experiment  

E-Print Network (OSTI)

Calculations are presented to demonstrate the feasibility of Moon shadow observations for mean primary energies in the region 0.5-1.5 TeV using a muon detector operating under the Pyramid of the Sun at Teotihuacan, Mexico. Due to the small height of that monument (65 m), the experiment is capable of providing considerably high statistics, although with reduced angular accuracy for primary particle direction reconstruction. Our estimates are based on simulations of muon production and transport in the atmosphere by CORSIKA and along the body of the pyramid by GEANT4. The deflection of primaries in the earth magnetic field is calculated using the IGRF model. The statistics for the Moon shadow observations, which depends on different factors affecting the accuracy of the primary particle direction reconstruction, are analyzed in detail.

Grabskii, V; Reche, R; Orozco, O

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The ATLAS Muon Trigger Performance in pp Collisions at sqrt(s)=8 TeV in Year 2012 Runs  

E-Print Network (OSTI)

Events with muons in the final state are an important signature for many physics topics at Large Hadron Collider (LHC), for instance, searches for Higgs boson production or new phenomena, measurements on the standard model processes like top-quark, W, Z production. Thus, efficient trigger on muons in data taking and understanding its performance are crucial to perform these physics studies. At LHC high rejection power against large backgrounds, while maintaining high efficiency for rare signal events, is required for online selection at the trigger level. The ATLAS experiment employs a multi-level trigger architecture that selects the events in three sequential steps of increasing complexity and accuracy to cope with this challenging task. The L1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The Muon HLT is purely software ba...

Nobe, T; The ATLAS collaboration

2012-01-01T23:59:59.000Z

322

Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles  

SciTech Connect

We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

Sundaralingam, N.

1993-06-08T23:59:59.000Z

323

Anomalous orebody within the Ambrosia Lake trend at Sandstone Mine  

SciTech Connect

The Sandstone Mine contains an anomalous orebody that lacks the characteristic coloring and high gamma-ray expression typically associated with uranium ore in the Ambrosia Lake district. The orebody occurs at the downdip edge of a tongue of hematitic sand in the basal sand unit of the Westwater Canyon Member of the Morrison Formation. The orebody ranges from white to light gray in color. Preliminary analysis indicates the presence of uranophane (Ca(UO/sub 2/)/sub 2/SiO/sub 3/(OH)/sub 2/.5H/sub 2/O), evidently altered from coffinite, which is the predominant uranium mineral in the district. Equivalent U/sub 3/O/sub 8/ indicates that this orebody is relatively recent. Oxidizing meteoric water, which formed a geochemical cell, remobilized uranium minerals in preexisting trend orebodies and deposited the uranium downdip of the furthest extent of this cell. Post-Dakota deformation influenced the course of the migrating meteoric water and the extent of the redox interface controlling the orebody. As sampling and mining lower grades of uranium becomes increasingly more economical, the potential for unknown reserves adjacent to the redox interface should not be overlooked.

Foster, J.F.; Quintanar, R.J.

1980-01-01T23:59:59.000Z

324

Quantum mechanics in fractional and other anomalous spacetimes  

SciTech Connect

We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final states.

Calcagni, Gianluca [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Universita Cattolica, via Musei 41, 25121 Brescia (Italy); INFN Gruppo Collegato di Trento, Universita di Trento, 38100 Povo (Trento) (Italy); Scalisi, Marco [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

2012-10-15T23:59:59.000Z

325

Anomalous North Pacific Atmospheric Circulation and Large Winter Floods in the Southwestern United States  

Science Conference Proceedings (OSTI)

Specific anomalous atmospheric circulation conditions over the North Pacific are conducive to the occurrence of the largest winter floods (?10-yr return period) on rivers in six hydroclimatic subregions of Arizona and southern Utah, Nevada, and ...

Lisa L. Ely; Yehouda Enzel; Daniel R. Cayan

1994-06-01T23:59:59.000Z

326

Regional Weather Patterns during Anomalous AirSea Fluxes at the Kuroshio Extension Observatory (KEO)  

Science Conference Proceedings (OSTI)

The weather patterns during periods of anomalous surface fluxes in the Kuroshio recirculation gyre of the western North Pacific are documented. Separate analyses are carried out for the cold season (October March) when the net surface heat flux ...

Nicholas A. Bond; Meghan F. Cronin

2008-04-01T23:59:59.000Z

327

Nature of the Soft Gamma Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

I summarize recent developments in the magnetar model of the Soft Gamma Repeaters and Anomalous X-ray Pulsars, give a critical inventory of alternative models for the AXPs, and outline the improved diagnostics expected from present observational efforts.

Christopher Thompson

2001-10-30T23:59:59.000Z

328

The Absorption of Solar Radiation by Cloud Droplets: An Application of Anomalous Diffraction Theory  

Science Conference Proceedings (OSTI)

In this paper we demonstrate that the anomalous diffraction theory of van de Hulst with some modifications, provides a reasonable approximation of the volume extinction and absorption coefficients. We also show how the shortwave radiative ...

Steven A. Ackerman; Graeme L. Stephens

1987-06-01T23:59:59.000Z

329

Impact of Anomalous Ocean Heat Transport on the North Atlantic Oscillation  

Science Conference Proceedings (OSTI)

Coupled atmosphereocean dynamics in the North Atlantic is studied by means of a simple model, featuring a baroclinic three-dimensional atmosphere coupled to a slab ocean. Anomalous oceanic heat transport due to wind-driven circulation is ...

Fabio DAndrea; Arnaud Czaja; John Marshall

2005-12-01T23:59:59.000Z

330

Objective Identification of Echoes Due to Anomalous Propagation in Weather Radar Data  

Science Conference Proceedings (OSTI)

Serious contamination of weather radar data can occur in atmospheric conditions that cause anomalous propagation of the radar beam. Excessive downward refraction of the beam may be sufficient to cause ground returns (anaprop), which may be ...

J. A. Pamment; B. J. Conway

1998-02-01T23:59:59.000Z

331

Anomalous Near-Field Heat Transfer between a Cylinder and a Perforated Surface  

E-Print Network (OSTI)

We predict that the near-field radiative heat-transfer rate between a cylinder and a perforated surface depends nonmonotonically on their separation. This anomalous behavior, which arises due to evanescent-wave effects, ...

Rodriguez-Wong, Alejandro

332

Coexistence and efficiency of normal and anomalous transport by molecular motors in living cells  

E-Print Network (OSTI)

Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.

Igor Goychuk; Vasyl O. Kharchenko; R. Metzler

2013-09-26T23:59:59.000Z

333

Forward physics with tagged protons at the LHC: QCD and anomalous couplings  

E-Print Network (OSTI)

We present some physics topics that can be studied at the LHC using proton tagging. We distinguish the QCD (Pomeron structure, BFKL analysis...) from the exploratory physics topics (HIggs boson, anomalous couplings between photons and $W/Z$ bosons

Royon, C

2013-01-01T23:59:59.000Z

334

Physics with tagged protons at the LHC: understanding the Pomeron structure and anomalous coupling studies  

E-Print Network (OSTI)

We describe different physics topics which can be performed at the LHC using tagged intact protons, namely a better understanding of the Pomeron structure in terms of quarks and gluons, and the serach for quartic anomalous couplings.

Royon, C

2013-01-01T23:59:59.000Z

335

Deducing Anomalous Wave Source Regions during the Life Cycles of Persistent Flow Anomalies  

Science Conference Proceedings (OSTI)

Anomalous wave source regions are identified during the life cycles of persistent flow anomalies occurring over the North Pacific and North Atlantic Oceans during boreal winter. These cases project strongly upon the PacificNorth American and ...

Robert X. Black

1997-04-01T23:59:59.000Z

336

The Statistics and Horizontal Structure of Anomalous Weather Regimes in the Community Climate Model  

Science Conference Proceedings (OSTI)

The statistics, horizontal structure, and linear barotropic dynamics of anomalous weather regimes are evaluated in a 15-winter integration of the NCAR Community Climate Model (CCM2). Statistical and ensemble analyses of simulated regimes are ...

Robert X. Black; Katherine J. Evans

1998-04-01T23:59:59.000Z

337

Application of a Bayesian Classifier of Anomalous Propagation to Single-Polarization Radar Reflectivity Data  

Science Conference Proceedings (OSTI)

A nave Bayes classifier (NBC) was developed to distinguish precipitation echoes from anomalous propagation (anaprop). The NBC is an application of Bayes's theorem, which makes its classification decision based on the class with the maximum a ...

Justin R. Peter; Alan Seed; Peter J. Steinle

2013-09-01T23:59:59.000Z

338

Quench Protection for the MICE Cooling Channel Coupling Magnet  

Science Conference Proceedings (OSTI)

This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

2008-08-02T23:59:59.000Z

339

Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics  

E-Print Network (OSTI)

Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p -> 1s and the 3d -> 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 - 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission.

Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

2004-03-30T23:59:59.000Z

340

A new measurement of the altitude dependence of the atmospheric muon intensity  

E-Print Network (OSTI)

We present a new measurement of atmospheric muons made during an ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+/mu- as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c is presented. The differential mu- intensities in the 0.3-50 GeV/c range and for atmospheric depths between 4-960 g/cm^2 are also presented. We compare these results with other measurements and model predictions. We find that our charge ratio is ~1.1 for all atmospheric depths and is consistent, within errors, with other measurements and the model predictions. We find that our measured mu- intensities are also consistent with other measurements, and with the model predictions, except at shallow atmospheric depths.

J. J. Beatty; S. Coutu; S. A. Minnick; A. Bhattacharyya; C. R. Bower; J. A. Musser; S. P. McKee; M. Schubnell; G. Tarle; A. D. Tomasch; A. W. Labrador; D. Muller; S. P. Swordy; M. A. DuVernois; S. L. Nutter

2004-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New measurement of the altitude dependence of the atmospheric muon intensity  

SciTech Connect

We present a new measurement of atmospheric muons made during an ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio {mu}{sup +}/{mu}{sup -} as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c is presented. The differential {mu}{sup -} intensities in the 0.3-50 GeV/c range and for atmospheric depths between 4-960 g/cm{sup 2} are also presented. We compare these results with other measurements and model predictions. We find that our charge ratio is {approx}1.1 for all atmospheric depths and is consistent, within errors, with other measurements and the model predictions. We find that our measured {mu}{sup -} intensities are also consistent with other measurements, and with the model predictions, except at shallow atmospheric depths.

Beatty, J.J.; Coutu, S.; Minnick, S.A.; Bhattacharyya, A.; Bower, C.R.; Musser, J.A.; McKee, S.P.; Schubnell, M.; Tarle, G.; Tomasch, A.D.; Labrador, A.W.; Mueller, D.; Swordy, S.P.; DuVernois, M.A.; Nutter, S.L. [Departments of Physics and of Astronomy and Astrophysics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Swain Hall West, Indiana University, Bloomington, Indiana 47405 (United States); Department of Physics, Randall Laboratory, University of Michigan, 500 E. University Avenue, Ann Arbor, Michigan 48109-1120 (United States); Enrico Fermi Institute and Department of Physics, 933 E. 56th Street, University of Chicago, Chicago, Illinois 60637 (United States); School of Physics and Astronomy, 16 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Physics and Geology, SC 147, Northern Kentucky University, Highland Heights, Kentucky 41099 (United States)

2004-11-01T23:59:59.000Z

342

Constraining Anomaly Mediated Supersymmetry Breaking Framework via Ongoing Muon g-2 Experiment at Brookhaven  

E-Print Network (OSTI)

The ongoing high precision E821 Brookhaven National Laboratory experiment on muon g-2 is promising to probe a theory involving supersymmetry. We have studied the constraints on the minimal Anomaly Mediated Supersymmetry Breaking (AMSB) model using the current data of muon g-2 from Brookhaven. A scenario of seeing no deviation from the Standard Model is also considered, within a $2\\sigma$ limit of the combined error from the Standard Model result and the Brookhaven predicted uncertainty level. The resulting constraint is found to be complementary to what one obtains from $b \\to s+ \\gamma$ bounds within the AMSB scenario, since only a definite sign of $\\mu$ is effectively probed via $b \\to s+ \\gamma$. A few relevant generic features of the model are also described for disallowed regions of parameter space.

Utpal Chattopadhyay; Dilip Kumar Ghosh; Sourov Roy

2000-06-05T23:59:59.000Z

343

D Note 3563 LED Pulser System for the D Muon Upgrade Scintillation Counters  

E-Print Network (OSTI)

We present the technical design for an LED based pulser system for the D Upgrade Muon Scintillation counters. For Run II, accurate timing information from the scintillation counters is imperative for the proper performance of the muon triggers. The LED Pulser System will serve in the commissioning of the counters and for the continuous monitoring of the PMTs ' performances and gains. A detailed description of the system is presented, as well as the results of tests on individual components and integrated system. Proceedures for production, assembly, quality control, installation, and commissioning are presented. Cost estimates and resource needs to complete the system are presented, as well as an estimated schedule. From the test results, the D LED Pulser System performs at a level exceeding speci cations for a fraction of the initial cost estimated for performing the required tasks.

Pierrick Hanlet Matthew Marcus; Al Ito; Bob Jones; Tom Regan; B. S. Acharya; Juan Pablo Negret; Manuel Zanabria

1999-01-01T23:59:59.000Z

344

A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope  

E-Print Network (OSTI)

An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.

ANTARES collaboration; J. A. Aguilar; I. Al Samarai; A. Albert; M. Andre; M. Anghinolfi; G. Anton; S. Anvar; M. Ardid; A. C. Assis Jesus; T. Astraatmadja; J-J. Aubert; R. Auer; B. Baret; S. Basa; M. Bazzotti; V. Bertin; S. Biagi; C. Bigongiari; C. Bogazzi; M. Bou-Cabo; M. C. Bouwhuis; A. M. Brown; J. Brunner; J. Busto; F. Camarena; A. Capone; C. Carloganu; G. Carminati; J. Carr; S. Cecchini; Ph. Charvis; T. Chiarusi; M. Circella; R. Coniglione; H. Costantini; N. Cottini; P. Coyle; C. Curtil; M. P. Decowski; I. Dekeyser; A. Deschamps; C. Distefano; C. Donzaud; D. Dornic; Q. Dorosti; D. Drouhin; T. Eberl; U. Emanuele; J-P. Ernenwein; S. Escoffier; F. Fehr; V. Flaminio; U. Fritsch; J-L. Fuda; S. Galata; P. Gay; G. Giacomelli; J. P. Gomez-Gonzalez; K. Graf; G. Guillard; G. Halladjian; G. Hallewell; H. van Haren; A. J. Heijboer; Y. Hello; J. J. Hernandez-Rey; B. Herold; J. Hl; C. C. Hsu; M. de Jong; M. Kadler; N. Kalantar-Nayestanaki; O. Kalekin; A. Kappes; U. Katz; P. Kooijman; C. Kopper; A. Kouchner; V. Kulikovskiy; R. Lahmann; P. Lamare; G. Larosa; D. Lefevre; G. Lim; D. Lo Presti; H. Loehner; S. Loucatos; F. Lucarelli; S. Mangano; M. Marcelin; A. Margiotta; J. A. Martinez-Mora; A. Mazure; A. Meli; T. Montaruli; M. Morganti; L. Moscoso; H. Motz; C. Naumann; M. Neff; D. Palioselitis; G. E. Pavalas; P. Payre; J. Petrovic; N. Picot-Clemente; C. Picq; V. Popa; T. Pradier; E. Presani; C. Racca; C. Reed; G. Riccobene; C. Richardt; R. Richter; A. Rostovtsev; M. Rujoiu; G. V. Russo; F. Salesa; P. Sapienza; F. Schck; J-P. Schuller; R. Shanidze; F. Simeone; A. Spiess; M. Spurio; J. J. M. Steijger; Th. Stolarczyk; M. Taiuti; C. Tamburini; L. Tasca; S. Toscano; B. Vallage; V. Van Elewyck; G. Vannoni; M. Vecchi; P. Vernin; G. Wijnker; E. de Wolf; H. Yepes; D. Zaborov; J. D. Zornoza; J. Zuniga

2011-05-20T23:59:59.000Z

345

Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a Muon Tomography station based on GEM detectors  

E-Print Network (OSTI)

Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30cm \\times 30cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (~0.03 liters) using GEM-based Muon Tomography.

Gnanvo, Kondo; Hohlmann, Marcus; Locke, Judson B; Quintero, Amilkar S; Mitra, Debasis

2010-01-01T23:59:59.000Z

346

On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory  

SciTech Connect

In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

Arsene, N.; Rebel, H.; Sima, O. [Institute of Space Science (ISS), Bucharest-Magurele, P.O. Box MG-23 (Romania) and Physics Department, University of Bucharest, Bucharest-Magurele (Romania); Karlsruhe Institute of Technology, Karlsruhe (Germany); Physics Department, University of Bucharest, Bucharest-Magurele (Romania)

2012-11-20T23:59:59.000Z

347

FEA Simulations of Magnets with Grain Oriented Steel  

Science Conference Proceedings (OSTI)

One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

Witte H.

2012-08-06T23:59:59.000Z

348

AGS performance and upgrades; A possible proton driver for a muon collider  

SciTech Connect

After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10{sup 13} protons per pulse accelerated to 24GeV was achieved. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of six. The total beam power then reaches almost 1 MW and the AGS can then be considered as a proton driver for a muon collider.

Roser, T.

1995-12-31T23:59:59.000Z

349

MuCap: Muon capture on the proton to determine the pseudoscalar coupling, gp  

Science Conference Proceedings (OSTI)

The MuCap collaboration has measured the capture rate of the muon on the proton and reported its first value for the weak pseudoscalar coupling: gp 7.3{+-}1.1. To achieve 5% uncertainty on gp, many hardware upgrades were implemented for the subsequent 2006-2007 running periods. These improvements are described and the outlook for MuCap and the followup experiment, MuSun, is discussed.

Kiburg, Brendan [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

2009-12-17T23:59:59.000Z

350

Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

magnet technology has allowed physicists to attain higher energies in circular accelerators. One can obtain higher magnetic fields because there is no resistance in a...

351

A lattice for the 50 GeV muon collider ring  

Science Conference Proceedings (OSTI)

A recent progress report on the lattice design of the 50-50 GeV muon collider is presented. The ring circumference needs to be as small as possible due to the short lifetime of the 50 GeV muons. The background at the detector is affected by the continuous decay of muons into electrons which requires a dipole between the high focusing quadrupoles and the detector. To obtain a luminosity on the order of 1{times}10{sup 33} cm{sup {minus}2} s{sup {minus}1} it is required to have beam intensities on the order of 1{times}10{sup 12} particles per bunch. The rms momentum spread of the beam is equal to 0.12% and the beta functions at the interaction point are equal to 4 cm. The maxima of the betatron functions at these quadrupoles are 1,300 m, resulting in large chromaticities which must be corrected by local chromatic correction. Pairs of horizontal and vertical chromatic sextupoles are located at locations where the corresponding betatron functions are 100 m and the values of the horizontal dispersion functions are 3 and 2 m, respectively. They are carefully placed so that most of their nonlinear effects are canceled. The dynamic aperture is larger than 7 times the mean size of the beam for the momentum offsets larger than {minus}6 and +10 sigmas.

Trbojevic, D. [Brookhaven National Lab., Upton, NY (United States); Ng, K.Y.; Weishi, W. [Fermi National Accelerator Lab., Batavia, IL (United States)

1998-08-01T23:59:59.000Z

352

Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table  

E-Print Network (OSTI)

On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV - 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

Dimitra Atri; Adrian L. Melott

2010-11-19T23:59:59.000Z

353

Nonlinear stability of magnetic islands in a rotating helical plasma  

Science Conference Proceedings (OSTI)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

Nishimura, S.; Toda, S.; Narushima, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yagi, M. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

2012-12-15T23:59:59.000Z

354

Anomalous X-ray Diffraction Studies for Photovoltaic Applications  

DOE Green Energy (OSTI)

Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their efficiency and low risk of environmental pollution. These materials are important to solar cells as a result of their remarkable combination of optical and electrical properties, including high electrical conductivity and high optical transparency in the spectrum of visible light. TCs provide a transparent window, which allows sunlight to pass through while also allowing electricity to conduct out of the cell. Spinel materials have the chemical form AB{sub 2}O{sub 4}, and are made of a face-centered cubic (FCC) lattice of oxygen anions and cations in specific interstitial sites. A normal spinel has all A cations on tetrahedral sites and B cations on octahedral sites. In contrast; an inverse spinel has the A and half of the B cations on octahedral sites and the other half of the B cations on tetrahedral sites; a mixed spinel lies between. In the spinel structure, 8 of 64 possible tetrahedral sites and 16 of 32 possible octahedral sites are filled. Normal spinels have particularly high conduction as the linear octahedral chains of B cations likely serve as conduction paths. In this paper we present how the data obtained with AXRD is used to analyze TCs properties as they apply to photovoltaic applications. One of the materials used for this analysis is zinc oxide. It has been loaded with 5% and 10% of Ga, which has an absorption edge of 10367 eV. The peak (100) was measured for the zinc oxide loaded with 10% Ga. In the case of 5% Ga, we measured peaks (100) and (101). With the information provided by the AXRD we can identify if Ga is being incorporated in the ZnO crystal structure. The analysis of 311 plane in the ZnCo{sub 2}O{sub 4} spinel shows if Co is in tetrahedral or octahedral site.

Not Available

2011-06-22T23:59:59.000Z

355

Drift-convective cells in a nonuniform plasma with magnetic shear  

SciTech Connect

The existence of near zero frequency growing modes driven by plasma density and temperature nonuniformities in a sheared magnetic field is demonstrated. These modes are viable candidates for explaining anomalous cross-field transport. It is believed that these modes have been observed in FM-1, when operated in the collisional limit.

Mahajan, S.M.; Guzdar, P.N.; Kaw, P.K.; Oberman, C.

1977-06-01T23:59:59.000Z

356

Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects  

SciTech Connect

Topics covered are: anomalous transport and E ? B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

Alexei Y. Pankin; Arnold H. Kritz

2011-07-19T23:59:59.000Z

357

Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field  

Science Conference Proceedings (OSTI)

In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

2012-05-01T23:59:59.000Z

358

Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields  

Science Conference Proceedings (OSTI)

We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.

Dexheimer, V. [UFSC, Florianopolis, Brazil and Gettysburg College, Gettysburg, PA (Brazil); Negreiros, R. [UFF, Niteroi (Brazil) and FIAS - Johann Wolfgang Goethe University, Frankfurt (Germany); Schramm, S. [FIAS - Johann Wolfgang Goethe University, Frankfurt (Germany); Hempel, M. [University of Basel, Basel (Switzerland)

2013-03-25T23:59:59.000Z

359

SOLAR CYCLE DEPENDENCE OF THE DIURNAL ANISOTROPY OF 0.6 TeV COSMIC-RAY INTENSITY OBSERVED WITH THE MATSUSHIRO UNDERGROUND MUON DETECTOR  

SciTech Connect

We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at {approx}15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% +- 0.002%) and minimum ({approx}0.008% +- 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% +- 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the 'active' solar activity epoch is about twice the amplitude in the 'quiet' solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the 'single-band valley depth' (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro's report, we find no steady increase in the Matsushiro observations in a seven-year period between 2000 and 2007. We suggest, therefore, that the steady increase of the SBVD reported by the Milagro experiment is not caused by the decreasing solar modulation in the declining phase of the 23rd solar activity cycle.

Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S. [Department of Physics, Shinshu University, Matsumoto 390-8621 (Japan); Takita, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Kota, J., E-mail: kmuna00@shinshu-u.ac.j [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 87721 (United States)

2010-04-01T23:59:59.000Z

360

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment  

Science Conference Proceedings (OSTI)

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

Coleman, Stephen James; /William-Mary Coll.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Implementation of sub-nanoseconds TDC in FPGA: applications to time-of-flight analysis in muon radiography  

E-Print Network (OSTI)

Time-of-flight (tof) techniques are standard techniques in high energy physics to determine particles propagation directions. Since particles velocities are generally close to c, the speed of light, and detectors typical dimensions at the meter level, the state-of-the-art tof techniques should reach sub-nanosecond timing resolution. Among the various techniques already available, the recently developed ring oscillator TDC ones, implemented in low cost FPGA, feature a very interesting figure of merit since a very good timing performance may be achieved with limited processing ressources. This issue is relevant for applications where unmanned sensors should have the lowest possible power consumption. Actually this article describes in details the application of this kind of tof technique to muon tomography of geological bodies. Muon tomography aims at measuring density variations and absolute densities through the detection of atmospheric muons flux's attenuation, due to the presence of matter. When the measure...

Marteau, J; Gibert, D; Jourde, K; Gardien, S; Girerd, C; Ianigro, J -C

2013-01-01T23:59:59.000Z

362

How Many Muons Do We Need to Store in a Ring For Neutrino Cross-Section Measurements?  

SciTech Connect

Analytical estimate of the number of muons that must decay in the straight section of a storage ring to produce a neutrino & anti-neutrino beam of sufficient intensity to facilitate cross-section measurements with a statistical precision of 1%. As we move into the era of precision long-baseline {nu}{sub {mu}} {yields} {nu}{sub e} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} measurements there is a growing need to precisely determine the {nu}{sub e} and {bar {nu}}{sub e} cross-sections in the relevant energy range, from a fraction of 1 GeV to a few GeV. This will require {nu}{sub e} and {bar {nu}}{sub e} beams with precisely known fluxes and spectra. One way to produce these beams is to use a storage ring with long straight sections in which muon decays ({mu}{sup -} {yields} e{sup -}{nu}{sub {mu}}{bar {nu}}{sub e} if negative muons are stored, and {nu}{sup +} {yields} e{sup +}{nu}{sub e}{bar {nu}}{sub {mu}} if positive muons are stored) produce the desired beam. The challenge is to capture enough muons in the ring to obtain useful neutrino and anti-neutrino fluxes. Early proposals to use a muon storage ring for neutrino oscillation experiments were based upon injecting 'high energy' charged pions into the ring which then decayed to create stored muons. These proposals were hampered by lack of sufficient intensity to pursue the physics. The Neutrino Factory proposal in 1997 was designed to fix this problem by using a Muon Collider class 'low energy' muon source to capture many more pions at low energy, allow them to decay in an external decay channel, manipulate their phase space to capture as many muons as possible within the acceptance of an accelerator, and then accelerate to the energy of choice before injecting into a specially designed ring with long straight sections. All this technology would do a wonderful job in fixing the intensity problem, but at a price that excludes this solution from being realized in the short term. The question that we are now faced with is whether the older, lower intensity 'parasitic' muon storage ring based on 'high energy' pion decays can, with suitable modification, produce sufficient intensity to measure the desired cross-sections. Fortunately, the intensity requirements for cross-section measurements are less demanding than the corresponding requirements for oscillation measurements, so there is hope. To fuel the discussion, in this note we consider the design goal: how many muons do we need to store?

Geer, Steve; /Fermilab

2011-07-14T23:59:59.000Z

363

Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii-  

Open Energy Info (EERE)

Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Evidence For The Distribution Of Magma Below Kilauea'S East Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Evidence For The Distribution Of Magma Below Kilauea'S East Rift Zone Details Activities (1) Areas (1) Regions (0) Abstract: The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South

364

Quantum anomalous Hall effect with cold atoms trapped in a square lattice  

E-Print Network (OSTI)

We propose an experimental scheme to realize the quantum anomalous Hall effect in an anisotropic square optical lattice which can be generated from available experimental setups of double-well lattices with minor modifications. A periodic gauge potential induced by atom-light interaction is introduced to give a Peierls phase for the nearest-neighbor site hopping. The quantized anomalous Hall conductivity is investigated by calculating the Chern number as well as the chiral gapless edge states of our system. Furthermore, we show in detail the feasability for its experimental detection through light Bragg scattering of the edge and bulk states with which one can determine the topological phase transition from usual insulating phase to quantum anomalous Hall phase.

Liu, Xiong-Jun; Liu, Xin; Wu, Congjun; Sinova, Jairo

2010-01-01T23:59:59.000Z

365

Anomalous shear wave attenuation in the shallow crust beneath the Coso  

Open Energy Info (EERE)

Anomalous shear wave attenuation in the shallow crust beneath the Coso Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Details Activities (1) Areas (1) Regions (0) Abstract: We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles,

366

Micro-Pattern Gas Detectors for Charged-Particle Tracking and Muon Detection  

E-Print Network (OSTI)

In the context of the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community, this white paper outlines a roadmap for further development of Micro-pattern Gas Detectors for tracking and muon detection in HEP experiments. We briefly discuss technical requirements and summarize current capabilities of these detectors with a focus of operation in experiments at the energy frontier in the medium-term to long-term future. Some key directions for future R&D on Micro-pattern Gas Detectors in the U.S. are suggested.

M. Hohlmann; V. Polychronakos; A. White; J. Yu

2013-06-08T23:59:59.000Z

367

CP and T violation in long baseline experiments with low energy neutrino from muon storage ring  

E-Print Network (OSTI)

Stimulated by the idea of PRISM, a very high intensity muon ring with rather low energy, we consider possibilities of observing CP-violation effects in neutrino oscillation experiments. More than 10% of CP-violation effect can be seen within the experimentally allowed region. Destructive sum of matter effect and CP-violation effect can be avoided with use of initial nu_e beam. We finally show that the experiment with (a few) x 100 MeV of neutrino energy and (a few) x 100 km of baseline length, which is considered in this paper, is particularly suitable for a search of CP violation in view of statistical error.

Masafumi Koike; Joe Sato

1999-09-22T23:59:59.000Z

368

The development of high performance online tracker for High Level Trigger of Muon Spectrometer of ALICE  

E-Print Network (OSTI)

The Muon Spectrometer (MS) of the ALICE experiment at LHC is equipped with a HLT (High Level Trigger), whose aim is to improve the accuracy of the trigger cuts delivered at the L0 stage. A computational challenge of real-time event reconstruction is satisfied to achieve this software trigger cut of the HLT. After the description of the online algorithms, the performance of the online tracker is compared with that of the offline tracker using the measured pp collisions at $\\sqrt{s}=7$ TeV.

Indranil Das

2011-05-19T23:59:59.000Z

369

The development of high performance online tracker for High Level Trigger of Muon Spectrometer of ALICE  

E-Print Network (OSTI)

The Muon Spectrometer (MS) of the ALICE experiment at LHC is equipped with a HLT (High Level Trigger), whose aim is to improve the accuracy of the trigger cuts delivered at the L0 stage. A computational challenge of real-time event reconstruction is satisfied to achieve this software trigger cut of the HLT. After the description of the online algorithms, the performance of the online tracker is compared with that of the offline tracker using the measured pp collisions at $\\sqrt{s}=7$ TeV.

Das, Indranil

2011-01-01T23:59:59.000Z

370

Gauge symmetric delta(1232) couplings and the radiative muon capture in hydrogen  

E-Print Network (OSTI)

Using the difference between the gauge symmetric and standard pi-N-delta couplings, a contact pi-pi-N-N term, quadratic in the pi-N-delta coupling, is explicitly constructed. Besides, a contribution from the delta excitation mechanism to the photon spectrum for the radiative muon capture in hydrogen is derived from the gauge symmetric pi-N-delta and gamma-N-delta couplings. It is shown for the photon spectrum, studied recently experimentally, that the new spectrum is for the photon momentums k > 60 MeV by 4-10 % smaller than the one obtained from standardly used couplings with the on-shell deltas.

J. Smejkal; E. Truhlik

2004-09-06T23:59:59.000Z

371

The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory  

E-Print Network (OSTI)

The anomalous Nambu-Goldstone (NG) theorem which is found as a violation of counting law of the number of NG bosons of the normal NG theorem in nonrelativistic and Lorentz-symmetry-violated relativistic theories is studied in detail, with emphasis on its mathematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras (local) and Lie groups (global). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anomalous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be experimentally confirmed. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangian approach on the anomalous NG theorem is given for our general discussion. Not only the condition of the counting law of true NG bosons, but also the mechanism to generate a mass of massive NG boson is also found by our examination on the kaon condensation model. Furthermore, the generation of a massive mode in the NG sector is understood by the quantum uncertainty relation of the Heisenberg algebra, obtained from a symmetry breaking of a Lie algebra, which realizes in the effective potential of the kaon condensation model. Hence the relation between a symmetry breaking scheme, a Heisenberg algebra, a mode-mode coupling, and the mechanism of mass generation in an NG sector is established. Finally, some relations between the Riemann hypothesis and the anomalous NG theorem are presented.

Tadafumi Ohsaku

2013-12-01T23:59:59.000Z

372

GEANT4 Simulation of a Cosmic Ray Muon Tomography System with Micro-Pattern Gas Detectors for the Detection of High-Z Materials  

E-Print Network (OSTI)

Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing shipping containers is a promising candidate for identifying threatening high-Z materials. Since position-sensitive detectors with high spatial resolution should be particularly suited for tracking muons in an MT application, we propose to use compact micro-pattern gas detectors, such as Gas Electron Multipliers (GEMs), for muon tomography. We present a detailed GEANT4 simulation of a GEM-based MT station for various scenarios of threat material detection. Cosmic ray muon tracks crossing the material are reconstructed with a Point-Of-Closest-Approach algorithm to form 3D tomographic images of the target material. We investigate acceptance, Z-discrimination capability, effects of placement of high-Z material and shielding materials inside the cargo, and detector resolution effects for such a MT station.

Hohlmann, Marcus; Gnanvo, Kondo; Helsby, Jennifer; Pena, David; Hoch, Richard; Mitra, Debasis

2008-01-01T23:59:59.000Z

373

Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector  

E-Print Network (OSTI)

We present a search for Higgs bosons in multilepton final states in pp-bar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb-1. The multilepton states considered are two electron plus muon, electron with two muons, muon with two hadronic tau leptons, and like-charge electron-muon pairs. These channels directly probe the HVV (V=W,Z) coupling of the Higgs boson in production and decay. The muon with two hadronic tau lepton channel is also sensitive to H to tau lepton pair decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 Higgs boson model.

D0 Collaboration

2013-02-22T23:59:59.000Z

374

An additional study of multi-muon events produced in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV  

Science Conference Proceedings (OSTI)

We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb{sup -1}. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Fermilab

2011-11-01T23:59:59.000Z

375

"Pre-Acceleration of Anomalous Cosmic Ray Ions at Recurrent Solar Wind Shocks" Interstellar pickup ions and solar wind ions are two main sources of anomalous cosmic ray (ACR) ions. An important  

E-Print Network (OSTI)

"Pre-Acceleration of Anomalous Cosmic Ray Ions at Recurrent Solar Wind Shocks" Interstellar pickup ions and solar wind ions are two main sources of anomalous cosmic ray (ACR) ions. An important unresolved theoretical issue is how such low-energy seed ions are pre-accelerated to energies sufficiently

Christian, Eric

376

Anomalous Roughening of Curvature-Driven Growth With a Variable Interface Window  

E-Print Network (OSTI)

We studied the curvature-driven roughening of a disk domain pattern with a variable interface window. The relaxation of interface is driven by negative surface tension . When a domain boundary propagates radially at a constant rate, we found that evolution of interface roughness follows scaling dynamic behavior. The local growth exponents are substantially different from the global exponents. Curvature-driven roughening belongs to a new class of anomalous roughening dynamics. However, a different surface tension leads to different global exponents. This is different from that of interface evolution with a fixed-size window, which has universal exponent. The variable growth window leads to a new class of anomalous roughening dynamics.

Yong-Jun Chen; Yuko Nagamine; Tomohiko Yamaguchi; Kenichi Yoshikawa

2012-08-22T23:59:59.000Z

377

Vacuum pressures and energy in a strong magnetic field  

E-Print Network (OSTI)

We study vacuum in a strong magnetic field. It shows a nonlinear response, as a ferromagnetic medium. Anisotropic pressures arise, and a negative pressure is exerted in the direction perpendicular to the field. The analogy of this effect with the Casimir effect is analyzed. The vacuum transverse pressure is found to be of the same order of the statistical pressure for $B\\sim10^{15}G$ and $N\\sim10^{33}electrons/cm^{3}$. Vacuum interaction with the field is studied also for $B\\sim10^{16}G$ and larger, including the electron anomalous magnetic moment. We estimate quark contribution to vacuum behavior.

H. Perez Rojas; E. Rodriguez Querts

2004-06-25T23:59:59.000Z

378

Magnetic Storms  

Science Conference Proceedings (OSTI)

... magnetic reversal. As there is no predictive science of geomagnetism, we currently lack even simple forecasts. Our scientific ...

2010-10-05T23:59:59.000Z

379

Magnetic Imaging  

Science Conference Proceedings (OSTI)

... data-storage and permanent magnets with increased energy products, in ... Optimization of future materials, including improved yields, requires an ...

2012-10-02T23:59:59.000Z

380

Magnetic Properties  

Science Conference Proceedings (OSTI)

...Since the discovery of high-temperature superconductors in 1986 (Ref 10), the demonstration of magnetic flux exclusion

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c  

SciTech Connect

The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

Schmelling, M.; /Heidelberg, Max Planck Inst.; Hashim, N.O.; /Kenyatta U. Coll.; Grupen, C.; /Siegen U.; Luitz, S.; /SLAC; Maciuc, F.; /Heidelberg, Max Planck Inst.; Mailov, A.; /Siegen U.; Muller, A.-S.; /Karlsruhe, Inst. Technol.; Sander, H.-G.; /Mainz U., Inst. Phys.; Schmeling, S.; /CERN; Tcaciuc, R.; /Siegen U.; Wachsmuth, H.; /CERN; Zuber, K.; /Dresden, Tech. U.

2012-09-14T23:59:59.000Z

382

Tracking Waves and Vortex Nucleation in Excitable Systems with Anomalous Dispersion N. Manz, C.T. Hamik, and O. Steinbock  

E-Print Network (OSTI)

Tracking Waves and Vortex Nucleation in Excitable Systems with Anomalous Dispersion N. Manz, C of the underlying anomalous dispersion relation. DOI: 10.1103/PhysRevLett.92.248301 PACS numbers: 82.40.Ck, 05.45.­a and physicochemical systems [1,2]. Important examples include neuronal and cardiac tissue as well as gas discharge

Steinbock, Oliver

383

DUMAND-II (deep underwater muon and neutrino detector) progress report  

SciTech Connect

The DUMAND II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with the expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in late 1994 or early 1995. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Young, K.K. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); The DUMAND Collaboration

1995-07-10T23:59:59.000Z

384

High power RF test of an 805 MHz RF cavity for a muon cooling channel  

SciTech Connect

We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q{sub 0} of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons.

Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

2002-05-30T23:59:59.000Z

385

DUMAND-II (Deep Underwater Muon and Neutrino Detector) PROGRESS Report  

E-Print Network (OSTI)

The DUMAND-II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with the expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in 1995.

Kenneth K. Young

1994-12-16T23:59:59.000Z

386

A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC  

E-Print Network (OSTI)

Compact Muon Solenoid (CMS) is one of the flagship experiments in particle physics operating at the Large Hadron Collider (LHC). CMS was built to search for signatures of Higgs bosons, supersymmetry, and other new phenomena. The coming upgrade of the collider will increase the rate of collisions and expand the physics reach of CMS, but will also push the detector systems beyond their current capabilities. One critically affected element is the CMS trigger, a system responsible for making a fast decision if a particular event is of interest and trigger the readout of the detector. As saving the data from every collision would require a technically unattainable bandwidth and is not possible, triggering inefficiencies propagate into reduction of physics reach for the entire experiment. One proposal to handle the future increase in collision rates aims to combine the capabilities of the existing Cathode Strip Chambers (CSC) with the newly proposed Gaseous Electron Multiplication (GEM) detectors to improve the efficiency and discriminating power of the electronics-based muon Level-1trigger. This project focuses on development of a test-stand to emulate operational conditions of such a system, taking into account geometries of the two detector elements. The results of this study will present a proof of principle that building a joint GEM-CSC trigger system is feasible and it can be used to improve trigger efficiency.

Lakdawala, Samir

2013-05-01T23:59:59.000Z

387

Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System  

SciTech Connect

In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G. [Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario (Canada); Bueno, J.; Bryman, D.; Liu, Z. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Charles, E.; Gallant, G. [Canada Border Services Agency, Ottawa, Ontario (Canada); Cousins, T.; Noel, S. [International Safety Research, Ottawa, Ontario (Canada); Drouin, P.-L.; Waller, D. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Stocki, T. J. [Health Canada, Ottawa, Ontario (Canada)

2011-12-13T23:59:59.000Z

388

Design and testing of the New Muon Lab cryogenic system at Fermilab  

Science Conference Proceedings (OSTI)

Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

2009-11-01T23:59:59.000Z

389

Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts  

E-Print Network (OSTI)

We investigate the expected neutrino emissivity from nuclear collisions in magnetically dominated collisional models of gamma-ray bursts, motivated by recent observational and theoretical developments. The results indicate that significant multi-GeV neutrino fluxes are expected for model parameter values which are typical of electromagnetically detected bursts. We show that for detecting at least one muon event in Icecube and its Deep Core sub-array, a single burst must be near the high end of the luminosity function and at a redshift $z\\lesssim 0.2$. We also calculate the luminosity and distance ranges that can generate $0.01-1$ muon events per GRB in the same detectors, which may be of interest if simultaneously detected electromagnetically, or if measured with future extensions of Icecube or other neutrino detectors with larger effective volume and better sensitivity.

Shan Gao; Peter Meszaros

2011-12-23T23:59:59.000Z

390

Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux  

E-Print Network (OSTI)

We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs), at the example of the often used reference Waxman-Bahcall GRB flux, in terms of the particle physics involved. We first reproduce this reference flux treating synchrotron energy losses of the secondary pions explicitly. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly, and changes the normalization by a factor of three to four. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be already much stronger than anticipated.

Philipp Baerwald; Svenja Hmmer; Walter Winter

2010-09-21T23:59:59.000Z

391

Sound beyond the speed of light: destructive interference, anomalous dispersion and nonlocality of near field  

E-Print Network (OSTI)

Experimentally fixed sound pulse beyond of light speed in the region of anomalous dispersion [W. M. Robertson, e. a. Appl. Phys. Lett, 90, 014102 (2007)] can be explained, as well as the similar superluminal phenomena, by "the nonlocality in the small" of near electromagnetic field at transferring of relevanted excitations.

Perel'man, M E

2007-01-01T23:59:59.000Z

392

Light supersymmetric axion in an anomalous Abelian extension of the standard model  

Science Conference Proceedings (OSTI)

We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.

Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone [Dipartimento di Fisica, Universita del Salento Via Arnesano 73100 Lecce (Italy) and INFN Sezione di Lecce, Via Arnesano 73100 Lecce (Italy)

2009-08-01T23:59:59.000Z

393

Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume  

E-Print Network (OSTI)

Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume, Clifton, Karachi 75600, Pakistan A B S T R A C TA R T I C L E I N F O Article history: Received 28 October

Clift, Peter

394

The Linearity of the Atmospheric Response to Tropical Pacific Anomalous Forcing  

Science Conference Proceedings (OSTI)

In this paper, the authors show that the effect of a tropical Pacific anomalous forcing can he primarily linear or nonlinear depending on its sign and longitudinal position. Using a nine-level steady-state model both the linear and nonlinear ...

Qing Liu; Cornelius J. F. Schuurmans

1993-05-01T23:59:59.000Z

395

Search for the gamma-branch of the shape isomers of separated U isotopes using muon for nuclide excitation  

SciTech Connect

We have searched for back-decay gamma rays from the shape isomeric states in /sup 235/U, /sup 236/U, and /sup 238/U possibly excited in muon radiationless transition. The energies and intensities of gamma rays following muon atomic capture were measured as a function of time after muon stopping. Background was suppressed by requiring that the candidate gamma ray be followed by another gamma ray (..mu..-capture gamma ray). The prompt gamma-ray spectra included the U-muonic x rays. The measured /sup 235/U and /sup 238/U x-ray energies were in good agreement with previously reported results. The x-ray spectrum from /sup 236/U has not been previously reported. The /sup 236/U spectrum is very similar to that of /sup 238/U, except that the K x-rays exhibit an isotope shift of approximately 20 keV, the /sup 236/U energies being higher. In the analysis of the delayed spectra of /sup 236/U and /sup 238/U using the GAMANL peak searching program, and with an effective lower-limit detection efficiency of .15% per stopping muon, no candidate gamma rays for the back decay transitions from the shape isomeric state were observed.

Mireshghi, A.

1982-12-01T23:59:59.000Z

396

Muon g - 2 anomaly and 125 GeV Higgs: Extra vector-like quark and LHC prospects  

Science Conference Proceedings (OSTI)

The ATLAS and CMS collaborations recently reported indication of a Higgs boson around 125GeV. If we add extra vector-like quarks to the MSSM, such a relatively heavy Higgs can be naturally realized in the GMSB framework, simultaneously explaining the muon g - 2 anomaly. I will discuss LHC prospect of this attractive model.

Iwamoto, Sho [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

2012-07-27T23:59:59.000Z

397

Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ?(1S)  

E-Print Network (OSTI)

We search for di-muon decays of a low-mass Higgs boson (A[superscript 0]) produced in radiative ?(1S) decays. The ?(1S) sample is selected by tagging the pion pair in the ?(2S,3S)??[superscript +]?[superscript -]?(1S) ...

Cowan, Ray Franklin

398

Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR  

DOE R&D Accomplishments (OSTI)

The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

Richter, B.

1976-01-00T23:59:59.000Z

399

Apparatus for magnetic and electrostatic confinement of plasma  

DOE Patents (OSTI)

An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

Rostoker, Norman; Binderbauer, Michl

2013-06-11T23:59:59.000Z

400

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and...

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties  

Science Conference Proceedings (OSTI)

In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

2009-08-21T23:59:59.000Z

402

Design Issues for the Superconducting Magnet that Goes Around the Liquid Hydrogen Absorber for the Muon Ionization Cooling Experiment (MICE)  

E-Print Network (OSTI)

3) the size of the heat exchanger around the liquid hydrogendo not require a large heat exchanger to get the heat out ofMICE hydrogen absorber heat exchanger was designed to remove

2004-01-01T23:59:59.000Z

403

Design Issues for the Superconducting Magnet that Goes Around the Liquid Hydrogen Absorber for the Muon Ionization Cooling Experiment (MICE)  

E-Print Network (OSTI)

the absorber body and pipes and the heat conduction down theheat transfer into the absorber to about 19 kW. The absorber vent pipeheat transfer into the liquid hydrogen to about 54 kW. The vent pipes

2004-01-01T23:59:59.000Z

404

Simultaneous observation of extensive air showers and deep-underground muons at the Gran Sasso Laboratory  

Science Conference Proceedings (OSTI)

Combined measurements of extensive air showers at the surface and high-energy muons deep underground have been initiated at the Gran Sasso Laboratory. The underground detector is the first supermodule of MACRO (area=140 m{sup 2}, depth=3100 m of water equivalent , {ital E}{sub {mu}}{gt}1.3 TeV) and the surface detector is the EAS-TOP array (altitude 2000 m above sea level, total enclosed area {ital A}{approximately}10{sup 5} m{sup 2}). We discuss the correlation technique, the comparison between the shower parameters as determined by the two detectors, and some of the characteristics of the reconstructed events.

Bellotti, R.; Cafagna, F.; Caliccio, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Giglietto, N.; Nappi, E.; Spinelli, P. (Istituto di Fisica dell'Universita di Bari, Via Amendola, Bari (Italy)); Cecchini, S.; Fabbri, M.; Giacomelli, G.; Mandrioli, G.; Matteuzzi, P.; Pal, B.; Patrizii, L.; Predieri, F.; Sanzani, G.L.; Serra, P.; Spurio, M. (Dipartimento di Fisica dell'Universita di Bologna, Via Irnerio 46, I-40126, Bologna (Italy)); Ahlen, S.; Ficenec, D.; Hazen, E.; Klein, S.; Levin, D.; Marin, A.; Stone, J.L.; Sulak, L.R.; Worstell, W. (Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA (USA)); Barish, B.; Coutu, S.; Hong, J.; Liu, G.; Peck, C.; Solie, D.; Steele, J. (California Institute of Technology, Pasadena, CA (USA)); Lane, C.; Steinberg, R. (Physics Department, Drexel University, Philadelphia, PA (USA)); Battistoni, G.; Bilokon, H.; Bloise, C.; Campana, P.; Chiarella, V.; Forti, C.; Grillo, A.; Iarocci, E.; Marini, A.; Patera, V.; Re; MACRO Collaboration

1990-09-01T23:59:59.000Z

405

Electron to Muon Conversion in Low-Energy Electron-Nucleus Scattering  

E-Print Network (OSTI)

We present an estimate of the electron to muon conversion cross section in fixed-target elastic electron scattering. The matrix element $$ is calculated analytically in two scenarios introducing suitable approximations. We consider on the one hand side the case of three light Dirac neutrinos with CKM-type leptonic mixing and on the other hand a typical see-saw scenario. We evaluate the coulombic contribution to the scattering cross section in the limit of vanishing energy transfer to the nucleus and, thus, obtain a realistic estimate for the total conversion cross section. Although we find that in the see-saw scenario the cross section can be enhanced by as much as twenty orders of magnitude in comparison to the Dirac case, it is still not experimentally accessible.

Kai-Peer O. Diener

2004-03-24T23:59:59.000Z

406

Slepton Flavor Nonuniversality, the Muon EDM and its Proposed sensitive Search at Brookhaven  

E-Print Network (OSTI)

We analyze the electric dipole moment of the electron ($d_e$), of the neutron ($d_n$) and of the muon ($d_{\\mu}$) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation $d_{\\mu}/d_e\\simeq m_{\\mu}/m_e$ in the cancellation region. An analysis of $d_e, d_n$ and $d_{\\mu}$ under the constraints of the current experimental limits on $d_e$ and $d_n$ and under the constraints of the recent Brookhaven result on $g_{\\mu}-2$ shows that in the non-scaling region $d_{\\mu}$ can be as large as ($10^{-24}-10^{-23}$)ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for $d_{\\mu}$ at the level of $10^{-24}$ ecm.

Tarek Ibrahim; Pran Nath

2001-05-03T23:59:59.000Z

407

Slepton Flavor Nonuniversality, the Muon EDM and its Proposed Sensitive Search at Brookhaven  

E-Print Network (OSTI)

We analyze the electric dipole moment of the electron (de), of the neutron (dn) and of the muon (d) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation d/de ? m/me in the cancellation region. An analysis of de,dn and d under the constraints of the current experimental limits on de and dn and under the constraints of the recent Brookhaven result on g ?2 shows that in the non-scaling region d can be as large as (10?24 ? 10?23)ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for d at the level of 10?24 ecm. 1 Permanent address

Tarek Ibrahim (a; Pran Nath (b

2001-01-01T23:59:59.000Z

408

First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section  

SciTech Connect

A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

2010-02-01T23:59:59.000Z

409

First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section  

SciTech Connect

Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

Katori, Teppei; /MIT, LNS

2009-09-01T23:59:59.000Z

410

Electron-muon heat conduction in neutron star cores via the exchange of transverse plasmons  

E-Print Network (OSTI)

We calculate the thermal conductivity of electrons and muons kappa_{e-mu} produced owing to electromagnetic interactions of charged particles in neutron star cores and show that these interactions are dominated by the exchange of transverse plasmons (via the Landau damping of these plasmons in nonsuperconducting matter and via a specific plasma screening in the presence of proton superconductivity). For normal protons, the Landau damping strongly reduces kappa_{e-mu} and makes it temperature independent. Proton superconductivity suppresses the reduction and restores the Fermi-liquid behavior kappa_{e-mu} ~ 1/T. Comparing with the thermal conductivity of neutrons kappa_n, we obtain kappa_{e-mu}> kappa_n for T>2 GK in normal matter and for any T in superconducting matter with proton critical temperatures T_c>3e9 K. The results are described by simple analytic formulae.

P. S. Shternin; D. G. Yakovlev

2007-05-14T23:59:59.000Z

411

Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider  

E-Print Network (OSTI)

We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

2005-07-26T23:59:59.000Z

412

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network (OSTI)

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2006-11-12T23:59:59.000Z

413

Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons  

E-Print Network (OSTI)

Azimuthal asymmetries in semi-inclusive production of positive (h^+) and negative hadrons (h^-) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle phi of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all phi-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h^+ and h^- within the statistical errors. The dependencies of the phi-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum p_h^T were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudin...

Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Bade?ek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dnnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; He, C; Hinterberger, F; Horikawa, N; Hppner, Ch; dHose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabu, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Knigsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krmer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlter, T; Schmitt, L; Schopferer, S; Schrder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A; 10.1140/epjc/s10052-010-1461-9

2010-01-01T23:59:59.000Z

414

CMS PAPER CFT-09-005 Measurement of the Muon Stopping Power in Lead  

E-Print Network (OSTI)

to be resolved regarding the mechanism of cosmic rays - cloud cover variations due to solar (magnetic) activity-index, a measure of the Earth's magnetic field, or derivatives to be potentially important for variations in global

Roma "La Sapienza", Università di

415

Multimedia Resources, including the CMS Eye, from the Compact Muon Solenoid (CMS) Experiment at CERN  

DOE Data Explorer (OSTI)

The Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the proton-proton Large Hadron Collider (LHC) at CERN in Switzerland and France. The CMS detector is located in an underground cavern at Cessy in France. The CMS detector will study many aspects of proton collisions at 14 TeV, the center-of-mass energy of the LHC particle accelerator. [from http://en.wikipedia.org/wiki/Compact_Muon_Solenoid]

The US CMS collaboration, with 48 institutions, 420 Ph.D. physicists, over 100 graduate students, and nearly 200 engineers, technicians, and computer scientists is the largest national group in the CMS collaboration. US groups have made significant contributions to nearly every aspect of the detector throughout all phases including construction, installation and preparation for data-taking. The US collaboration also made major contributions to the construction and operation of the computing facilities needed to analyze the unprecedented amount of data to be generated by CMS. This work includes the software that allows physicists to operate the CMS detector, reconstruct the data, analyze it and extract new physics.

The CMS media website from CERN provides images, videos, presentations, and the CMS Eye, a system of webcams looking into the underground cavern at Cessy, into the control room, and even out of the window of the control room at the village of Cessy and the Jura Mountains. Many event displays are available in the image collections, as well as the CMS Photo Book covering 1998 2008 when CMS was being assembled, installed, and commissioned.

US-LHC and the International CMS Collaboration

416

Search for right-handed currents by means of muon spin rotation  

SciTech Connect

A muon spin rotation (..mu..SR) technique has been used to place limits on right-handed weak currents in ..mu../sup +/ decay. A beam of almost 100% polarized 'surface' muons obtained from the TRIUMF M13 beamline was stopped in essentially non-depolarizing >99.99% pure metal foils. The ..mu../sup +/ spins were precessed by 70-G or 110-G transverse fields. Decay e/sup +/ emitted within 225 mrad of the beam direction and with momenta above 46 MeV/c were momentum-analyzed to 0.2%. Comparison of the ..mu..SR signal amplitude with that expected for (V-A) decay yields an endpoint asymmetry xiP..mu..delta/rho>0.9951 with 90% confidence. In the context of manifest left-right symmetric models with massless neutrinos the results imply the 90% confidence limits M(W/sub 2/)>381 GeV/c/sup 2/ and -0.057

Stoker, D.P.

1985-09-01T23:59:59.000Z

417

Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Mit Hilfe der Technologie supraleitender Magnete lassen sich in Mit Hilfe der Technologie supraleitender Magnete lassen sich in Ringbeschleunigern höhere Energien erreichen. Weil supraleitende Spulen keinen elektrischen Widerstand aufweisen, können damit stärkere Magnetfelder erzeugt werden. In normal leitenden Elektromagneten wird - wegen des elektrischen Widerstands der Drähte - die Spule aufgeheizt. Auf diese Weise geht sehr viel Energie in Form von Wärme verloren, was die Energiekosten dieser Magnete in die Höhe treibt. Supraleitende Spulen erlauben es, Magnete grosser Feldstärke unter günstigen Bedingungen zu betreiben und damit die Energiekosten zu senken. Durch den Einbau supraleitender Spulen in den Ringbeschleuniger von Fermilab konnte dessen Energie verdoppelt werden.Auch der im Bau befindliche "Large Hadron Collider" am CERN wird supraleitende Magnete

418

Magnetic nanotubes  

DOE Patents (OSTI)

A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

2010-11-16T23:59:59.000Z

419

Non-universal, Non-anomalous U(1)' in a Model with Anomaly Mediated SUSY Breaking  

E-Print Network (OSTI)

We construct a Minimum Supersymmetry Standard Model expanded by a non-anomalous family (NAF) U(1)'_{NAF} gauge symmetry. All gauge anomalies are cancelled with no additional exotics other than the three right-handed neutrinos. The FI D-terms associated with the U(1)'_{NAF} symmetry lead to additional positive contributions to slepton squared masses. In a RG invariant way, this thus solves the tachyonic slepton mass problem in Anomaly Mediated Supersymmetry Breaking. In addition, the U(1)'_{NAF} symmetry naturally gives rise to the fermion mass hierarchy and mixing angles, and determines the mass spectrum of the sparticles. Our model also provides a counter example to the previous claim that the only U(1)' that can give rise to realistic fermion mass hierarchy and mixing pattern must be anomalous.

Mu-Chun Chen; Jinrui Huang

2010-11-29T23:59:59.000Z

420

$B_s \\to ?^+ ?^-$ and the upward-going muon flux from the WIMP annihilation in the sun or the earth  

E-Print Network (OSTI)

We consider the upward-going muon flux due to the WIMP annihilations in the cores of the sun and the earth, including the upper bound on the branching ratio for $B_s \\to \\mu^+ \\mu^-$ decay. We find that the constraint from $B_s \\to \\mu^+ \\mu^-$ is very strong in most parameter space, and exclude the supergravity parameter space regions where the expected upward-going muon fluxes are within the expected reach of AMANDA II.

Seungwon Baek; Yeong Gyun Kim; P. Ko

2005-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals  

E-Print Network (OSTI)

We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.

V. A. Chechin; V. A. Tsarev; M. Rabinowitz; Y. E. Kim

2003-03-22T23:59:59.000Z

422

Mining anomalous events against frequent sequences in surveillance videos from commercial environments  

Science Conference Proceedings (OSTI)

In the UK alone there are currently over 4.2 million operational CCTV cameras, that is virtually one camera for every 14th person, and this figure is increasing at a fast rate throughout the world (especially after the tragic events of 9/11 and 7/7) ... Keywords: Anomalous events mining, Business intelligence, Data mining, Knowledge discovery, Periodicity mining, Sequential pattern mining, Surveillance videos, Video mining

Fahad Anwar; Ilias Petrounias; Tim Morris; Vassilis Kodogiannis

2012-03-01T23:59:59.000Z

423

COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES  

DOE Green Energy (OSTI)

In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.

Shanahan, K.

2009-10-01T23:59:59.000Z

424

Roles of Anomalous Tibetan Plateau Warming on the Severe 2008 Winter Storm in Central-Southern China  

Science Conference Proceedings (OSTI)

Anomalous warming occurred over the Tibetan Plateau (TP) before and during the disastrous freezing rain and heavy snow hitting central and southern China in January 2008. The relationship between the TP warming and this extreme event is ...

Qing Bao; Jing Yang; Yimin Liu; Guoxiong Wu; Bin Wang

2010-06-01T23:59:59.000Z

425

Anomalous Cloud-to-Ground Lightning in an F5-Tornado-Producing Supercell Thunderstorm on 28 August 1990  

Science Conference Proceedings (OSTI)

An F5 tornado that devastated Plainfield, Illinois, and environs on 28 August 1990, killing 29 people, is shown to be preduced by a thunderstorm characterized by highly anomalous could-to-ground (CG) lightning activity. Unlike typical summertime ...

Anton Seimon

1993-02-01T23:59:59.000Z

426

Three-dimensional simulations of anomalous absorption of laser radiation by plasma with supercritical density  

Science Conference Proceedings (OSTI)

A three-dimensional (3D) model of the interaction of laser radiation with plasma in the framework of Maxwell-Vlasov equations has been used to calculate the anomalous optical absorption in plasma of supercritical density. The results of calculations confirmed the development of anomalous absorption that was previously revealed by 2D models, which were insufficient for comparison to the experiment. Calculations were performed for a system containing about 10{sup 6} macroparticles that allowed the absorption coefficient and other characteristics of anomalous absorption in plasma with an inhomogeneous surface to be determined as functions of various parameters of the incident radiation and plasma target. Results are analyzed and estimations are obtained for the contributions of ionization processes and pair collisions of electrons, which show that these factors were quite reasonably ignored in the model. All quantitative results are obtained for the third harmonic of neodymium laser ({lambda} = 0.351 {mu}m) at a tenfold excess of the substance density over a critical value for this radiation.

Ginzburg, S. L.; Dyachenko, V. F. [Russian Academy of Sciences, Keldysh Institute for Applied Mathematics (Russian Federation); Imshennik, V. S. [Alikhanov Institute for Theoretical and Experimental Physics (Russian Federation); Paleychik, V. V.

2012-02-15T23:59:59.000Z

427

Anomalous Behavior of D-Layer Preparation Time of the Ionosphere Due to Earthquakes as observed from Malda (India)  

SciTech Connect

The anomalous behavior of D-layer preparation time of the ionosphere are observed only before, during and after the earthquakes, which took place in the neighbouring region by monitoring the Very Low Frequency (VLF) signal using Gyrator II loop antenna. The anomalies were also observed in the sunrise terminator times during seismically active days. These anomalous behavior may be due to the Lithosphere-Ionosphere coupling. These anomalies may be a precursor of earthquake.

Chatterjee, Achintya K.; Nandy, Nilmadhab; Bari, Md. Washimul; Choudhury, Asit K. [Indian Centre for Space Physics (Malda Branch), Atul Market, Malda, West Bengal, Inda, 732101 (India)

2010-10-20T23:59:59.000Z

428

The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC  

E-Print Network (OSTI)

The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton--proton collision data at sqrt(s) = 7 TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 inverse picobarns. The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80-120 micrometers in the DTs, 40-150 micrometers in the CSCs, and 0.8-1.2 centimeters in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95-98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds.

The CMS Collaboration

2013-06-28T23:59:59.000Z

429

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

430

Electric-Magnetic Duality in Massless QED?  

E-Print Network (OSTI)

The possibility that QED and recently developed non-Hermitian, or magnetic, versions of QED are equivalent is considered. Under this duality the Hamiltonians and anomalous axial currents of the two theories are identified. A consequence of such a duality is that particles described by QED carry magnetic as well as electric charges. The proposal requires a vanishing zero bare fermion mass in both theories; Dirac mass terms are incompatible with the conservation of magnetic charge much as Majorana masses spoil the conservation of electric charge. The physical spectrum comprises photons and massless spin-1/2 particles carrying equal or opposite electric and magnetic charges. The four particle states described by the Dirac fermion correspond to the four possible charge assignments of elementary dyons. This scale invariant spectrum indicates that the quantum field theory is finite. The Johnson Baker Willey eigenvalue equation for the fine structure constant in finite spinor QED is interpreted as a Dirac-like charge quantisation condition for dyons.

Chris Ford

2009-09-08T23:59:59.000Z

431

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

432

Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model  

E-Print Network (OSTI)

We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

Rodriguez, Lien; Rodriguez, Oscar

2013-01-01T23:59:59.000Z

433

Measurement of the ATLAS di-muon trigger efficiency in proton-proton collisions at 7 TeV  

E-Print Network (OSTI)

At the LHC, muons are produced in many final states and used in a variety of analysis, such as Standard Model precision measurements and searches for new physics. The B-physics programme in ATLAS includes the measurement of CP violating effects in B meson decays, the search for rare b decay signatures, as well as the study of the production cross sections. The ATLAS detector can identify muons with high purity in a transverse momentum ($p_{T}$) range from a few GeV to several TeV. In order to achieve a high trigger efficiency for low $p_{T}$ di-muon events and at the same time keep an acceptable trigger rate, dedicated trigger algorithms have been designed and implemented in the trigger menu since the 2010 data taking period. There are two categories of B-physics triggers, one topological and one non-topological. Both of these have been studied and their performance assessed using collision data at $\\sqrt{s}$ = 7 TeV. The performance found with data has been verified with simulated events.

E. Piccaro; On Behalf of the ATLAS Collaboration

2011-11-18T23:59:59.000Z

434

Publications | Ramesh Gupta | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

for muon collider" (pdf), R. Gupta, et al., 2010 Applied Superconductivity Conference, Washington, DC, August 2010. Slides from the talk (pdf) "Second Generation HTS Quadrupole...

435

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

436

A pre- and post-processor for the ICOOL muon transport code  

SciTech Connect

ICOOL[1] is a Fortran77 macroparticle transport code widely used by researchers to study the front end of a neutrino factory/muon collider[2]. In part due to the desire that ICOOL be usable over multiple computer platforms and operating systems, the code uses simple text files for input/output services. This choice together with user-driven requests for greater and greater choice of lattice element type and configuration has led to ICOOL input decks becoming rather difficult to compose and modify easily. Moreover, the lack of a standard graphical post-processor has prevented many ICOOL users from extracting all but the most simple results from the output files. Here I present two attempts to improve this situation: First, a simple but quite general graphical pre-processor (NIME) written in the Tcl/TK[3] to permit users to write and maintain ASCII-formatted input files by use of simple macro definitions and expansions. Second, an interactive post-processor written in Fortran90 and NCAR graphics, which allows users to define, extract, and then examine the behavior of various particle subsets. In this paper I show some examples of use of both the pre- and post-processor for a standard ICOOL run.

Fawley, W.M.

2001-05-30T23:59:59.000Z

437

Neutrino-nucleus reactions and muon capture in {sup 12}C  

SciTech Connect

The neutrino-nucleus cross section and the muon-capture rate are discussed within a simple formalism that facilitates nuclear structure calculations. The corresponding formulas depend on only four types of nuclear matrix elements currently used in nuclear {beta} decay. We have also considered nonlocality effects arising from the velocity-dependent terms in the hadronic current. We show that for both observables in {sup 12}C the higher order relativistic corrections are of the order of {approx}5% only and therefore do not play a significant role. As a nuclear model framework we use the projected quasiparticle random-phase approximation and show that the number projection plays a crucial role in removing the degeneracy between the proton-neutron two-quasiparticle states at the level of the mean field. Comparison is done with both the experimental data and the previous shell model calculations. The possible consequences of the present study on the determination of the {nu}{sub {mu}}{yields}{nu}{sub e} neutrino oscillation probability are briefly addressed.

Krmpotic, F. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo-SP (Brazil); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Samana, A. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo-SP (Brazil); Mariano, A. [Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Departamento de Fisica, Universidad Nacional de La Plata, C. C. 67, 1900 La Plata (Argentina)

2005-04-01T23:59:59.000Z

438

Development of a GEM based detector for the CBM Muon Chamber (MUCH)  

E-Print Network (OSTI)

The characteristics of triple GEM detectors have been studied systematically by using cosmic ray muons. The minimum ionizing particle (MIP) spectra has been taken for different GEM voltage setting. Efficiency of GEM detector has been measured for cosmic ray. At high rate operation of GEMs the value of the protection resistor influences the gain and the stability. This feature has been investigated varying both the rate and the value of the protection resistor. This measurement has been performed using both X-ray generator and Fe55 source. The ageing and long-term stability of GEM based detectors has been studied employing both X-ray generator and Fe55 source. The ageing study of one GEM module is performed by using a 8 keV Cu X-ray generator to verify the stability and integrity of the GEM detectors over a longer period of time. The accumulated charge on the detector is calculated from the rate of the X-ray and the average gain of the detector. The details of the measurement and results has been described in this article.

S. Biswas; D. J. Schmidt; A. Abuhoza; U. Frankenfeld; C. Garabatos; J. Hehner; V. Kleipa; T. Morhardt; C. J. Schmidt; H. R. Schmidt; J. Wiechula

2013-10-02T23:59:59.000Z

439

A "Muon Mass Tree" with alpha-quantized Lepton, Quark and Hadron Masses  

E-Print Network (OSTI)

A "muon mass tree" is displayed that contains the excitation systematics for accurately reproducing the masses of the six Standard Model quarks (u,d,s,c,b,t); the heavy leptons; the proton; the phi, J/Psi and Upsilon vector meson thrshold states; the Bc meson; and the mass-averaged W and Z gauge bosons, using a unified mass formalism based on the electron ground state. Multiples of an alpha-quantized 105.04 MeV fermion mass quantum reproduce the states below 12 GeV, and multiples of a doubly-alpha-quantized 14,394 Mev fermion mass quantum reproduce the W-Z and t states above 12 GeV, where alpha ~ 1/137 is the fine structure constant. Masses are additive, and the overall mass accuracy for these states is in the 1% range. A similar "pion mass tree" based on an alpha-quantized 70.03 MeV boson mass quantum accurately reproduces the pseudoscalar meson masses. The mass alpha-quantization follows from a corresponding experimental alpha-spacing of the long-lived particle lifetimes, which occur in well-defined lifetime groups that are each determined by a dominant Standard Model quark substate.

Malcolm H. Mac Gregor

2006-07-20T23:59:59.000Z

440

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "muon anomalous magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Magnetization Characterization Laboratory  

Science Conference Proceedings (OSTI)

... use of magnetic materials for motors, generators, transformers ... all depend on the specific magnetic characteristics of ... For example, a magnet used in ...

2012-10-23T23:59:59.000Z

442

MAGNETIC GRID  

DOE Patents (OSTI)

An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

Post, R.F.

1960-08-01T23:59:59.000Z

443

ANOMALIES IN THE APPLIED MAGNETIC FIELDS ON DIII-D AND THEIR IMPLICATIONS FOR THE UNDERSTANDING OF STABILITY EXPERIMENTS  

Science Conference Proceedings (OSTI)

Small non-axisymmetric magnetic fields are known to cause serious loss of stability in tokamaks leading to loss of confinement and abrupt termination of plasma current (disruptions). The best known examples are the locked mode and the resistive wall mode. Understanding of the underlying field anomalies (departures in the hardware-related fields from ideal toroidal and poloidal fields on a single axis) and the interaction of the plasma with them is crucial to tokamak development. Results of both locked mode experiments and resistive wall mode experiments done in DIII-D tokamak plasmas have been interpreted to indicate the presence of a significant anomalous field. New measurements of the magnetic field anomalies of the hardware systems have been made on DIII-D. The measured field anomalies due to the plasma shaping coils in DIII-D are smaller than previously reported. Additional evaluations of systematic errors have been made. New measurements of the anomalous fields of the ohmic heating and toroidal coils have been added. Such detailed in situ measurements of the fields of a tokamak are unique. The anomalous fields from all of the coils are one third of the values indicated from the stability experiments. These results indicate limitations in the understanding of the interaction of the plasma with the external field. They indicate that it may not be possible to deduce the anomalous fields in a tokamak from plasma experiments and that we may not have the basis needed to project the error field requirements of future tokamaks.

LUXON,J.L; SCHAFFER,M.J; JACKSON,G.L; LEUER,J.A; NAGY,A; SCOVILLE,J.T; STRAIT,E.J

2003-02-01T23:59:59.000Z

444

When effective theories predict: the inevitability of Mercury's anomalous perihelion precession  

E-Print Network (OSTI)

If the concepts underlying Effective Theory were appreciated from the earliest days of Newtonian gravity, Le Verrier's announcement in 1845 of the anomalous perihelion precession of Mercury would have been no surprise. Furthermore, the size of the effect could have been anticipated through "naturalness" arguments well before the definitive computation in General Relativity. Thus, we have an illustration of how Effective Theory concepts can guide us in extending our knowledge to "new physics", and not just in how to reduce larger theories to restricted (e.g., lower energy) domains.

James D. Wells

2011-06-08T23:59:59.000Z

445

Exploring anomalous top interactions via the final lepton in ttbar productions/decays at hadron colliders  

E-Print Network (OSTI)

We study momentum distributions of the final-state charged lepton in ppbar/pp --> ttbar --> l^+ X (l=e or mu) at hadron colliders, i.e., Tevatron and Large Hadron Collider (LHC) in order to explore possible new-physics effects in the top-quark sector. Assuming general model-independent ttbar g + ttbar gg and tbW interactions beyond the standard model, we first derive analytical formulas for the corresponding parton-parton processes. We then compute the lepton angular, energy and transverse-momentum distributions in ppbar/pp collisions to clarify how they are affected by those anomalous couplings.

Zenro HIOKI; Kazumasa OHKUMA

2011-04-07T23:59:59.000Z

446

Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation  

SciTech Connect

We report the results of investigation of femtosecond laser pulse filamentation in fused silica by varying the wavelength in the range from 800 to 2300 nm. It is shown that in the case of the anomalous group-velocity dispersion, a sequence of 'light bullets' with a high spatial and temporal localisation of the light field is formed along the filament. The relation of the formation and propagation of light bullets with the formation of an isolated anti-Stokes wing of the supercontinuum spectrum is established. (nonlinear optical phenomena)

Smetanina, E O; Kompanets, V O; Chekalin, Sergei V; Kandidov, V P

2012-10-31T23:59:59.000Z

447

Anomalous heat-kernel decay for random walk among polynomial lower tail random conductances  

E-Print Network (OSTI)

We consider the nearest-neighbor simple random walk on $\\Z^{d}$, $d\\geq 4$, driven by a field of i.i.d. random nearest-neighbor conductances $\\omega_{xy}\\in[0,1]$. Our aim is to derive estimates of the heat-kernel decay in a case where ellipticity assumption is absent. We consider the case of independant conductances with polynomial tail near 0 and obtain for almost every environment an anomalous lower bound on the heat-kernel.

Boukhadra, Omar

2008-01-01T23:59:59.000Z

448

Horizontal, Anomalous U(1) Symmetry for the More Minimal Supersymmetric Standard Model  

E-Print Network (OSTI)

We construct explicit examples with a horizontal, ``anomalous'' $U(1)$ gauge group, which, in a supersymmetric extension of the standard model, reproduce qualitative features of the fermion spectrum and CKM matrix, and suppress FCNC and proton decay rates without the imposition of global symmetries. We review the motivation for such ``more'' minimal supersymmetric standard models and their predictions for the sparticle spectrum. There is a mass hierarchy in the scalar sector which is the inverse of the fermion mass hierarchy. We show in detail why DeltaS = 2 FCNC are suppressed when compared with naive estimates for nondegenerate squarks.

Ann E. Nelson; David Wright

1997-02-18T23:59:59.000Z

449

The Operational Experience of the Triple-GEM Detectors of the LHCb Muon System: Summary of 2 Years of Data Taking  

E-Print Network (OSTI)

The LHCb muon system consists of more than a thousand gas detectors, mostly MWPC, located in five different stations. The Muon detector is used to define the muon trigger and to identify muons at the high-level triger and at the recontruction stage. The first station of the muon detector, located in front of the calorimetric system, is made of 274 chambers. The 12 most irradiated chambers, the ones closer to the beam pipe, are double triple-GEM detectors with pad readout. These detectors have an active area of 200x240 mm$^2$ and are routinely operated at rates close to 300 kHz/cm$^2$. With the gas mixture used (Ar/CO$_2$/CF$_4$ at 45/15/40) these detectors have the requested efficiency (>96% in a 20 ns time window for the logical OR of the two sensitive gaps) when operated at gains of about 2300. In this presentation we will report on the performance of these 24 triple-GEM detectors after more than 2 years of operation in the harsh LHCb conditions. We will also show some problems occurred during data taking, ...

Cardini, Alessandro; De Simone, Patrizia

2012-01-01T23:59:59.000Z

450

Questions about Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

off just the north (or just the south) end of a magnet? Are magnets stronger than gravity? Hold a magnet in the air. Place a nail against it. The magnet holds the nail up...

451

The magnetized steel and scintillator calorimeters of the MINOS experiment  

SciTech Connect

The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

Michael, : D.G.

2008-05-01T23:59:59.000Z

452

CONSTRAINTS ON FREE-FREE EMISSION FROM ANOMALOUS MICROWAVE EMISSION SOURCES IN THE PERSEUS MOLECULAR CLOUD  

SciTech Connect

We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency ({approx}1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3{sigma} upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.

Tibbs, C. T. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Paladini, R. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dickinson, C.; Davies, R. D.; Davis, R. J.; Watson, R. A. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Mason, B. S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Casassus, S. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Cleary, K., E-mail: ctibbs@ipac.caltech.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-06-20T23:59:59.000Z

453

AN EMPIRICAL EXPLANATION OF THE ANOMALOUS INCREASES IN THE ASTRONOMICAL UNIT AND THE LUNAR ECCENTRICITY  

Science Conference Proceedings (OSTI)

The subject of this paper is the empirically determined anomalous secular increases of the astronomical unit, of the order of some cm yr{sup -1}, and of the eccentricity of the lunar orbit, of the order of 10{sup -12} yr{sup -1}. The aim is to find an empirical explanation of both anomalies as far as their orders of magnitude are concerned. The methods employed are working out perturbatively with the Gauss equations the secular effects on the semi-major axis a and the eccentricity e of a test particle orbiting a central body acted upon by a small anomalous radial acceleration A proportional to the radial velocity v{sub r} of the particle-body relative motion. The results show that non-vanishing secular variations and (e) occur. If the magnitude of the coefficient of proportionality of the extra-acceleration is of the same order of magnitude as the Hubble parameter H{sub 0} = 7.47 x 10{sup -11} yr{sup -1} at the present epoch, they are able to explain both astrometric anomalies without contradicting other existing observational determinations for the Moon and the other planets of the solar system. Finally, it is concluded that the extra-acceleration might be of cosmological origin, provided that the relative radial particle-body motion is accounted for in addition to that due to the cosmological expansion only. Further data analyses should confirm or disprove the existence of both astrometric anomalies as genuine physical phenomena.

Iorio, L., E-mail: lorenzo.iorio@libero.it [Viale Unita di Italia 68 70125 Bari (Italy)

2011-09-15T23:59:59.000Z

454

Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results  

E-Print Network (OSTI)

Among the class of models with small mixing angles between sterile and ac