Powered by Deep Web Technologies
Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An Economic Assessment of Market-Based Approaches to Regulating the Municipal Solid Waste Stream  

E-Print Network [OSTI]

Rates for Municipal Solid Waste: Implementation Experience,RCRA) and the Hazardous and Solid Waste Amendments of 1984,by the EPA, states, and solid waste organizations throughout

Menell, Peter S.

2004-01-01T23:59:59.000Z

2

Municipal waste processing apparatus  

DOE Patents [OSTI]

This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

Mayberry, J.L.

1988-04-13T23:59:59.000Z

3

Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.

Fernandez, Jose M., E-mail: joseman@sas.upenn.edu [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States); Plaza, Cesar; Polo, Alfredo [Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain); Plante, Alain F. [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States)

2012-01-15T23:59:59.000Z

4

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

5

Municipal Solid Waste in The United States  

E-Print Network [OSTI]

2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

Barlaz, Morton A.

6

Advanced Characterisation of Municipal Solid Waste Ashes  

E-Print Network [OSTI]

Advanced Characterisation of Municipal Solid Waste Ashes Preparatory thesis Randi Skytte Pedersen is to investigate Municipal Solid Waste (MSW) ashes with respect to particle sizes, structures and composition with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant M°abjergværket, Holstebro. MSW

7

Municipal Solid Waste Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

8

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum pro- duction wastes. Some aluminum-bearing waste materials, particularly aluminum production wastes

9

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

10

Experimental analysis of municipal solid waste samples  

E-Print Network [OSTI]

EXPERIMENTAL ANALYSIS OF MUNICIPAL SOLID WASTE SAMPLES A Thesis by ITZA MENDOZA SANCHEZ Submitted to the Office of Graduate Studies of Texas ASM University tn partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 2002 Major Subject: Civil Engmeering EXPERIMENTAL ANALYSIS OF MUNICIPAL SOLID WASTE SAMPLES A Thesis by ITZA MENDOZA SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M Umversity in partial fulfillment of the requirements...

Mendoza Sanchez, Itza

2002-01-01T23:59:59.000Z

11

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network [OSTI]

1996 19950414. Municipal solid waste processing facility andconversion of municipal-solid-waste to ethanol. Biotechnol.Bioconversion of municipal solid waste to glucose for bio-

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

12

QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE  

E-Print Network [OSTI]

QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE OF DIFFERENT ORIGINS I. ZDANEVITCH AND O countries. One of the outputs of this treatment is a compost prepared from the organic matter of the waste the total MSW in the plant. Unlike in Germany or Austria, where only the compost from selective collection

Paris-Sud XI, Universit de

13

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste combus- tion Abstract : Combustion of municipal solid waste (MSW; = household waste) is used to reduce

Van den Hof, Paul

14

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

15

Department of Environmental Engineering Leaching from Municipal Solid Waste  

E-Print Network [OSTI]

Department of Environmental Engineering Leaching from Municipal Solid Waste Incineration Residues Ji í Hyk s #12;#12;Leaching from Municipal Solid Waste Incineration Residues Ji í Hyks Ph.D. Thesis Municipal Solid Waste Incineration Residues Cover: Torben Dolin & Julie Camilla Middleton Printed by: Vester

16

Improved Economic Performance Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control #12;#12;Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based-of-the-art and challenges in the operation of MSWC plants . . . 1 1.1.1 The aims of municipal solid waste combustion

Van den Hof, Paul

17

Municipal solid waste combustion: Fuel testing and characterization  

SciTech Connect (OSTI)

The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

1990-10-01T23:59:59.000Z

18

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from untreated raw curbside trash MSW , industrial waste, and aluminum production wastes variously called dross

19

Olefin Recovery from Chemical Industry Waste Streams  

SciTech Connect (OSTI)

The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

2003-11-21T23:59:59.000Z

20

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

22

Energy utilization: municipal waste incineration. Final report  

SciTech Connect (OSTI)

An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

LaBeck, M.F.

1981-03-27T23:59:59.000Z

23

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, recycling'' refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

Not Available

1992-10-01T23:59:59.000Z

24

Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

1994-12-01T23:59:59.000Z

25

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

26

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect (OSTI)

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

27

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

28

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

29

Energy Recovery from Municipal Solid WasteEnergy Recovery from Municipal Solid Waste WASTE TO ENERGY PLANT AT VIJAYAWADAWASTE TO ENERGY PLANT AT VIJAYAWADA  

E-Print Network [OSTI]

Energy Recovery from Municipal Solid WasteEnergy Recovery from Municipal Solid Waste WASTE TO ENERGY PLANT AT VIJAYAWADAWASTE TO ENERGY PLANT AT VIJAYAWADA #12;UNIQUE PROCESSUNIQUE PROCESS DEVELOPED PRIMARY SIZE REDUCTION Stones / Inert Soil Enricher COARSE FLUFF SORTING Large stone, Tyres etc. HOT AIR

Columbia University

30

Utilization of waste heat stream in distillation  

SciTech Connect (OSTI)

Cost of separation can be reduced by utilizing all available energy streams at various temperature levels. In the simplest case a waste energy heat stream can be used to partially vaporize a liquid feed stream. A more beneficial process involves an entire evaporation of a portion of the feed and introducing it into a column below the liquid portion of the feed. One can also use the waste energy stream as a heating medium in an intermediate reboiler in the column. There is, however, a limit to the amount of the waste energy that can be utilized in each case, beyond which this approach is no longer beneficial. Detailed analysis of the waste heat utilization enables one to determine this limit and compare each of these flowsheet options.

Fidkowski, Z.T.; Agrawal, R. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1995-04-01T23:59:59.000Z

31

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Broader source: Energy.gov [DOE]

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

32

E-Print Network 3.0 - art municipal waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion of Municipal Solid Waste," Second Conference... on Municipal, Hazardous and Coal ... Source: Columbia University, Department of Earth and Environmental Engineering,...

33

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

34

THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Mathematical Models in Municipal Solid Waste Management  

E-Print Network [OSTI]

THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Mathematical Models in Municipal Solid Waste¨oteborg University G¨oteborg, Sweden February 15, 2007 #12;Mathematical Models in Municipal Solid Waste Michael K waste planners in decisions concerning the overall management of solid waste in a municipality

Patriksson, Michael

35

INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected in  

E-Print Network [OSTI]

INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected: Collect representative and typical yard trash samples throughout Florida; Characterize the wastes these wastes. WORK ACCOMPLISHED Visited two compost and mulch processing facilities in Gainesville on 10

Ma, Lena

36

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect (OSTI)

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

37

Environmental evaluation of municipal waste prevention  

SciTech Connect (OSTI)

Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

Gentil, Emmanuel C.; Gallo, Daniele [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

2011-12-15T23:59:59.000Z

38

Environmental Audit of Municipal Solid Waste T. V. Ramachandra Shruthi Bachamanda  

E-Print Network [OSTI]

1 Environmental Audit of Municipal Solid Waste Management T. V. Ramachandra Shruthi Bachamanda Abstract The management of municipal solid waste has become an acute problem due to enhanced economic to handle this problem in a safe and hygienic manner. In this regard, Municipal Solid Waste Management (MSWM

Columbia University

39

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

40

Heavy metals in composted municipal solid wastes for  

E-Print Network [OSTI]

Heavy metals in composted municipal solid wastes for amendment of agricultural soils/ Mtaux lourds dans le compost de dchets municipaux pour application agricole Valrie Duchesneau, #4634809 EVS4904 mtaux lourds des compostes de dchets municipaux? http://www.ecometiers.com/fiche/images/43.jpg La

Blouin-Demers, Gabriel

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Municipal solid waste characteristics and management in Allahabad, India  

E-Print Network [OSTI]

by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

Columbia University

42

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

43

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

44

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

Not Available

1992-10-01T23:59:59.000Z

45

GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: GHG emission factors for local recycling of municipal waste are presented. GHG emission factors for two composting technologies for garden waste are included. Local GHG emission factors were compared to international ones and discussed. Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO{sub 2} e (glass) to ?19 111 kg CO{sub 2} e (metals Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

2013-11-15T23:59:59.000Z

46

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

47

Baseline Glass Development for Combined Fission Products Waste Streams  

SciTech Connect (OSTI)

Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

2009-06-29T23:59:59.000Z

48

Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies  

SciTech Connect (OSTI)

This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

none,

1992-10-01T23:59:59.000Z

49

Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication  

SciTech Connect (OSTI)

This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea ROK) and United States of America (US) centric in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

2014-12-01T23:59:59.000Z

50

Municipal solid waste management in Rasht City, Iran  

SciTech Connect (OSTI)

Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

Alavi Moghadam, M.R. [Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: alavi@aut.ac.ir; Mokhtarani, N. [Jahesh Kimia Company, No. 26, Sadeghi St., Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: mokhtarani@jaheshkimia.com; Mokhtarani, B. [Chemistry and Chemical Engineering Research Center, P.O. Box 14335-186 Tehran (Iran, Islamic Republic of)], E-mail: mokhtaranib@ccerci.ac.ir

2009-01-15T23:59:59.000Z

51

Taiwan`s experience with municipal waste recycling  

SciTech Connect (OSTI)

Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recycling program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.

Lee, C.H. [Da-Yeh Univ., Chang-Hwa (Taiwan, Province of China)

1998-12-31T23:59:59.000Z

52

ORIGINAL ARTICLE Shear strength of municipal solid waste for stability analyses  

E-Print Network [OSTI]

ORIGINAL ARTICLE Shear strength of municipal solid waste for stability analyses Timothy D. Stark ? solid waste (MSW) using the back analysis of failed waste slopes as well as field and laboratory test analyses. Keywords Municipal solid waste Á Shear strength Á Slope stability Á Landfill Introduction

53

MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH  

E-Print Network [OSTI]

1 MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH Waste Management (in source such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so is proposed. Key words: Leaching, Waste, Incineration ash, Chromium, L/S ratio, Modelling. hal-00656672

Paris-Sud XI, Université de

54

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

55

Financial sustainability in municipal solid waste management Costs and revenues in Bahir Dar, Ethiopia  

SciTech Connect (OSTI)

Highlights: Cost-revenue analysis over 2 years revealed insufficient cost-recovery. Expenses for motorized secondary collection increased by 82% over two years. Low fee collection rate and reliance on only one revenue stream are problematic. Different options for cost reduction and enhanced revenue streams are recommended. Good publicprivate alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dars SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service. We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value chain by sales of organic waste recycling products; (iii) diversifying revenue streams and financing mechanisms (polluter-pays-, cross-subsidy- and business-principles); and (iv) cost reduction and improved cost-effectiveness. We argue that in a PPP setup such as in Bahir Dar, a strong alliance between the municipality and private enterprise is important so that appropriate solutions for improved financial sustainability of a SWM system can be sought and implemented.

Lohri, Christian Riuji, E-mail: christian.lohri@eawag.ch; Camenzind, Ephraim Joseph, E-mail: ephraimcamenzind@hotmail.com; Zurbrgg, Christian, E-mail: christian.zurbruegg@eawag.ch

2014-02-15T23:59:59.000Z

56

Municipal Waste Combustion (New Mexico) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotionMunicipal Waste

57

A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

Reaven, S.J.

1994-08-01T23:59:59.000Z

58

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

Co-processing Municipal Solid Waste and Sewage Sludge in theno date. Integrated Solid Waste Management. Presentationincineration of Municipal Solid Waste in Cement Industry. :

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

59

Co-firing coal and municipal solid waste  

SciTech Connect (OSTI)

The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

60

E-Print Network 3.0 - aqueous waste streams Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 49 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: Leaching of Dioxins from Municipal...

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

Aydilek, Ahmet

62

Briquette comprising caking coal and municipal solid waste  

SciTech Connect (OSTI)

Briquettes of specified geometry and composition are produced to serve as feed material or ''burden'' in a moving-burden gasifier for the production of a synthesis or fuel gas from organic solid waste materials and coal, including especially, the so-called ''caking'' coals, as in the process of copending application number 675,918. The briquettes are formed from a well-blended mixture of shredded organic solid wastes, including especially, municipal solid waste (Msw) or biomass, and crushed caking coal, including coal fines. A binder material may or may not be required, depending on the coal/msw ratio and the compaction pressure employed. The briquettes may be extruded, stamped, or pressed, employing compaction pressures in excess of 1000 psi, and preferably in the range of 2000 to 10,000 psi. The briquettes may be circular, polygonal, or irregular in cross-section; they may be solid, or concentrically perforated to form a hollow cylinder or polygon; they may be formed into saddles, pillows or doughnuts. The ratio of caking coal to shredded municipal solid waste is controlled so that each part of the predominantly cellulosic organic solid waste will be blended with 0.5 to 3.0 parts of crushed coal. Suitable binder materials include dewatered sewage slude (Dss), ''black liquor'' rich in lignin derivatives, black strap molasses, waste oil, and starch. The binder concentration is preferably in the range of 2 to 6 percent. If coals high in sulfur content are to be processed, at least a stoichiometric equivalent of dolomite may be included in the briquette formulation to eliminate a major fraction of the sulfur with the slag.

Schulz, H.W.

1980-09-30T23:59:59.000Z

63

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

64

Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams  

SciTech Connect (OSTI)

Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

2014-01-01T23:59:59.000Z

65

LCA comparison of container systems in municipal solid waste management  

SciTech Connect (OSTI)

The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

Rives, Jesus, E-mail: Jesus.Rives@uab.ca [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Rieradevall, Joan; Gabarrell, Xavier [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Department of Chemical Engineering, Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain)

2010-06-15T23:59:59.000Z

66

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

67

Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols  

E-Print Network [OSTI]

Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols Leona incineration fly ash at 200 °C under nitrogen atmosphere. Thermodynamic calculations have been carried out ash produced by municipal waste incineration (MWI) have clearly demonstrated that MWI fly ash can

Cirkva, Vladimir

68

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

waste by windrow composting, in-vessel composting, vermi-composting, anaerobic digestion, pelletisation etc. Processing of MSW #12;Processing of MSW Windrow composting In-vessel composting Vermi-composting

Columbia University

69

Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing  

SciTech Connect (OSTI)

This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

Lee, V.E. [ed.; Watts, R.L.

1993-04-01T23:59:59.000Z

70

Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.  

SciTech Connect (OSTI)

The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

1990-10-01T23:59:59.000Z

71

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

72

Control of air pollution emissions from municipal waste combustors  

SciTech Connect (OSTI)

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

73

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

74

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect (OSTI)

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

75

E-Print Network 3.0 - aluminium dross waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copyright 2008 by ASME Proceedings of NAWTEC16 16th Annual North American Waste... analysis of the mass streams and the properties of residual Municipal Solid Waste (MSW)....

76

Medium term municipal solid waste generation prediction by autoregressive integrated moving average  

SciTech Connect (OSTI)

Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2014-09-12T23:59:59.000Z

77

Characterization of flue gas residues from municipal solid waste combustors  

SciTech Connect (OSTI)

Solid residues recovered from treatment of flue gas resulting from the combustion of municipal solid waste (MSW) are of particular concern because of ever-increasing worldwide production rates and their concentrations of potentially hazardous transition elements and heavy metals. Three main residue types have been studied in this study: electrostatic precipitator ashes, wet filter cakes, and semidry scrubber residues. Using a large number of residues from two French MSW combustion (MSWC) facilities, the aim of this work is to determine their chemistry and mineralogy in order to shed light on their potential toxicity. The authors find that pollutant concentrations are dependent not only on the composition of MSW but also on the size of particles and flue gas treatment process. Using a procedure based on leaching, grain-size, density, and magnetic separations, the authors present a detailed description of the mineralogy of MSWC solid residues. These residues consist of a very heterogeneous assemblage of glasses, metals, and other crystals in which polluting elements are distributed. The results of this characterization will therefore help to contribute to the development of adequate waste management strategies.

Forestier, L.L. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [ENSG, Vandoeuvre-les-Nancy (France); Libourel, G. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [Univ. H. Poincare, Vandoeuvre-les-Nancy (France)

1998-08-01T23:59:59.000Z

78

Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context  

E-Print Network [OSTI]

Composition of Municipal Solid Waste- Need for Thermal Treatment in the present Indian context of an eternally inherent low heating value on the other. Current status of Solid Waste Management The MSW Rules front in India17 . None of the major metros have any projects of significant scale of Solid Waste

Columbia University

79

Sudhakar Yedla* and Sarika Kansal Economic insight into municipal solid waste  

E-Print Network [OSTI]

Sudhakar Yedla* and Sarika Kansal Economic insight into municipal solid waste management in Mumbai: a critical analysis 511 " Economic insight into solid waste management Conventional MSW management fails metropolitan city in India, presents the most critical solid waste management system in India. The present

Columbia University

80

Solute transport under steady and transient conditions in biodegraded municipal solid waste  

E-Print Network [OSTI]

, Sweden Vijay P. Singh Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge Abstract. The transport of a conservative tracer (lithium) in a large (3.5 m 3) undisturbed municipal solid waste sample has been...

Bendz, David; Singh, Vijay P.

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2013-04-15T23:59:59.000Z

82

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

83

Hydrogen production by gasification of municipal solid waste  

SciTech Connect (OSTI)

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

84

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

85

Development of a purpose built landfill system for the control of methane emissions from municipal solid waste  

E-Print Network [OSTI]

solid waste Sudhakar Yedla*, Jyoti K. Parikh Indira Gandhi Institute of Development Research, Vaidya (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW Generation of municipal solid waste (MSW) increases with socio-economic development. In developing coun

Columbia University

86

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

87

IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle -An Economic Proposition for a  

E-Print Network [OSTI]

IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle - An Economic Proposition for a Developing the disposal problem in an environmentally acceptable manner is, DO doubt, an economic proposition features of the pyrolysis process in particular. Suitability of the waste recycle techniques in the context

Columbia University

88

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-Print Network [OSTI]

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment processes well adapted to small rural communities mainly because they are easy to operate

Paris-Sud XI, Université de

89

Modeling and comparative assessment of municipal solid waste gasification for energy production  

SciTech Connect (OSTI)

Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

2013-08-15T23:59:59.000Z

90

Alternative approaches for better municipal solid waste management in Mumbai, India  

SciTech Connect (OSTI)

Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

Rathi, Sarika [International Research Institute for Climate Prediction, Earth Institute, Columbia University, 61 Rt. 9W, Monell, Palisades, NY 10964 (United States)]. E-mail: sarika@iri.columbia.edu

2006-07-01T23:59:59.000Z

91

Electrochemical and photochemical treatment of aqueous waste streams  

SciTech Connect (OSTI)

Carbon aerogel electrodes have been used to remove NH{sub 4}ClO{sub 4} and heavy metals from aqueous waste streams. Photochemical oixdation with H{sub 2}O{sub 2} has been used to destroy organic contamination and is proposed as a means of avoiding the fouling of carbon aerogel electrodes.

Farmer, J.C.; Pekala, R.W.; Wang, F.T.; Fix, D.V.; Volpe, A.M.; Dietrich, D.D.; Siegel, W.H.; Carley, J.F.

1996-03-01T23:59:59.000Z

92

Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994  

SciTech Connect (OSTI)

U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

None

1995-09-01T23:59:59.000Z

93

Removal of Pertechnetate from Simulated Nuclear Waste Streams Using Supported Zerovalent Iron  

E-Print Network [OSTI]

Removal of Pertechnetate from Simulated Nuclear Waste Streams Using Supported Zerovalent Iron John and reduction of pertechnetate anions (TcO4 -) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams

94

Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark  

SciTech Connect (OSTI)

An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categories and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.

Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Andersen, Jacob K.; Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2011-07-15T23:59:59.000Z

95

Future radioactive liquid waste streams study  

SciTech Connect (OSTI)

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01T23:59:59.000Z

96

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect (OSTI)

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

97

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

E-Print Network [OSTI]

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid the inlet of a function- ing plug-flow biogas fermentor. These were removed at periodic intervals cab- bage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor

Columbia University

98

2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW), INCLUDING NON-RECYCLED PLASTICS (NRP),  

E-Print Network [OSTI]

-to-energy (WTE) plants, 0.27 million tons (0.7%) were used as alternative fuel in cement production, and 32 Earth Engineering Center (EEC) Report to the American Chemistry Council (ACC) which was based on U.S. 2008 data and quantified the energy and economic value of municipal solid wastes (MSW) and non

Columbia University

99

Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993  

SciTech Connect (OSTI)

US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

Shepherd, P.

1994-07-01T23:59:59.000Z

100

Municipal Solid Waste as an Energy Source by Roller-Grate Incineration  

E-Print Network [OSTI]

The Grumman/VKW (Duesseldorf) Roller-Grate System was developed specifically to mass-burn municipal solid wastes achieving efficient combustion by a rolling and mixing action of the fuel bed, and independent control of primary air and roller speed...

Karnoski, P. J.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

102

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

103

Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

none,

1992-10-01T23:59:59.000Z

104

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

. The advancement of programmable controls has also dramatically increased the capability and reliability of Alternate Fuel Systems. 148 ESL-IE-92-04-24 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992... ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

105

Separation of technetium from nuclear waste stream simulants. Final report  

SciTech Connect (OSTI)

The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

1995-09-11T23:59:59.000Z

106

Country report Municipal solid waste composition determination supporting  

E-Print Network [OSTI]

for classifying the collected wastes into the following cate- gories: plastics, paper, metals, aluminium, leather categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total management demands. 2005 Elsevier Ltd. All rights reserved. 1. Introduction The cornerstone of successful

Columbia University

107

Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams  

SciTech Connect (OSTI)

In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.

Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

2010-09-23T23:59:59.000Z

108

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

109

Municipal Solid Waste Generation: Feasibility of Reconciling Measurement Methods  

E-Print Network [OSTI]

. Indirect measurement by a materials flow analysis (MFA) and published by the U.S. Environmental Protection Agency (EPA) and 2. Direct measurement of the MSW stream at the local, state, or regional level. The MFA used by EPA to estimate the quantity of MSW...

Schneider, Shelly H.

2014-07-25T23:59:59.000Z

110

Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities  

SciTech Connect (OSTI)

Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

Young, J C; Johnson, L D

1980-09-01T23:59:59.000Z

111

Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)  

SciTech Connect (OSTI)

Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

Larsen, A.W., E-mail: awl@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Merrild, H.; Moller, J.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-05-15T23:59:59.000Z

112

Production of degradable polymers from food-waste streams  

SciTech Connect (OSTI)

In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

1992-07-01T23:59:59.000Z

113

Cleaning of municipal-waste incinerator flue gas in Europe  

SciTech Connect (OSTI)

This paper gives an overview of a substantial ongoing air-pollution-control program in West Germany, as it relates to emission of acid gases and other pollutants from municipal-refuse incineration. It details emission regulations, control means used, and technical advancements accomplished and foreseen. It gives results and the approximate effectiveness of various controls in reducing acid gas, trace organic, trace heavy metal, and particulate-matter emissions. Available data indicate that lime spray dryer/electrostatic precipitator (ESP) and spray-dryer/fabric-filter systems can attain 70-90% acid-gas removal and 97% or more control of dioxins and furans, while limiting mercury emissions to about 0.01-0.07 mg/N-cu m (dry). In comparison, some wet-scrubber systems can attain 90-plus % acid-gas removal with substantial removal of NOx and comparable control of dioxins and furans, while possibly providing consistently lower mercury emissions.

Brna, T.G.; Ellison, W.; Jorgensen, C.

1988-01-01T23:59:59.000Z

114

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

Balasundaram, Balabhaskar "Baski"

115

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

116

Data analysis and radionuclide scaling factor for the B-Cell waste stream  

SciTech Connect (OSTI)

This report documents a statistical data analysis of radiological data obtained to characterize the 324 Facility B-Cell decontamination and decommissioning waste stream.

HILL, R.L.

2000-04-25T23:59:59.000Z

117

Development of a Web-based Emissions Reduction Calculator for Retrofits to Municipal Water Supply and Waste Water Facilities  

E-Print Network [OSTI]

DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR RETROFITS TO MUNICIPAL WATER SUPPLY AND WASTE WATER FACILITIES Juan-Carlos Baltazar Research Associate Zi Liu, Ph.D. Research Engineer Don R. Gilman, P.E. Senior Software... and used to calculate the electricity savings from potential retrofits to municipal water supply and waste water facilities. The methodology integrates the ASHRAE Inverse Model Toolkit (IMT) 1 used for weather normalization, a peak...

Baltazar-Cervantes, J. C.; Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

118

Boiler tube failures in municipal waste-to-energy plants  

SciTech Connect (OSTI)

Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

119

Heavy metal characterization of municipal solid waste compost  

E-Print Network [OSTI]

Committee: Dr. Bill Batchelor Dr. Kirk W. Brown Waste incineration and composting create solid residues which are later applied to or buried under soils. Although incinerator ash has been studied extensively for heavy metal content, much less is known... Digestion of Sediments, Sludges, and Soils does not fully recover all heavy metals in MSW compost. Neutron activation analysis (NAA) of undigested solid residues remaining after Method 3050 digestion of MSW compost showed that residues contained...

Worsham, Michael Craig

1992-01-01T23:59:59.000Z

120

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

SciTech Connect (OSTI)

This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of GeothermalMethanol Incentives383Waste

122

Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream  

SciTech Connect (OSTI)

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

1998-03-01T23:59:59.000Z

123

Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams  

SciTech Connect (OSTI)

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

1998-07-01T23:59:59.000Z

124

Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams  

SciTech Connect (OSTI)

This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)] [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

125

Waste Information Management System with 2012-13 Waste Streams - 13095  

SciTech Connect (OSTI)

The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

2013-07-01T23:59:59.000Z

126

The feasibility of source segregation as the first step for a municipal solid waste disposal scheme  

E-Print Network [OSTI]

Analysis Incineration. Pyrolysis Composting. Anaerobic Digestion. Material Recovery. . 28 . 28 . 29 . 30 ~ 30 . 49 . 53 . 61 CHAPTER V APPLICATION AND IMPLEMENTATION. Waste Stream Balance. . . Collection Equipment Implementation of Source... Factor A. . 71 Materials Value Versus Compost Valu Factor B. . 74 LIST OF PLATES Plate Page Water-wall Incinerator Schematic. ~ ~ 33 Nodular Incinerator Schematic. . . 34 RDF Process Flowchart ~ ~ 35 Pyrolysis Process Schematic. 50 Pyrolysis...

Fiedler, Charles Walter

1982-01-01T23:59:59.000Z

127

A historical perspective of Global Warming Potential from Municipal Solid Waste Management  

SciTech Connect (OSTI)

Highlights: Five scenarios are compared based on different waste management systems from 1970 to 2010. Technology development for incineration and vehicular exhaust system throughout the time period is considered. Compared scenarios show continuous improvement regarding environmental performance of waste management system. Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup ?1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup ?1} of MSWM.

Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

2013-09-15T23:59:59.000Z

128

Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste  

SciTech Connect (OSTI)

Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

Levin, V.

1995-10-01T23:59:59.000Z

129

Municipal solid waste energy conversion study on Guam and American Samoa  

SciTech Connect (OSTI)

In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

Not Available

1984-03-31T23:59:59.000Z

130

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

the Solid Waste Disposal Act and shifted the emphasis from disposal practices to recycling, resource recovery, and energy conversion of wastes. ' The Resource Conservation and Recovery Act of 1976 (RCRA) provided for the disposal of solid waste in such a... was constructed in 1930 in New York City. " But waste- to-energy technology development was hindered by poor reliability, poor efficiency, and low cost effectiveness. " The Resource Recovery Act of 1970 and RCRA of 1976, shifted the em- phasis in solid waste...

Haney, Brenda Ann

1989-01-01T23:59:59.000Z

131

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

Studies (IPTS). 1999. The Incineration of Waste in Europe:Seemann, A. 2007. Co-incineration of Municipal Solid Wastefacilities Composting Incineration Uncontrolled landfill

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

132

Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

none,

1992-10-01T23:59:59.000Z

133

Assessment of municipal solid waste for energy production in the western United States  

SciTech Connect (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

134

A comparison of municipal solid waste management in Berlin and Singapore  

SciTech Connect (OSTI)

A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.

Zhang Dongqing, E-mail: dqzhang@ntu.edu.s [DHI-NTU Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Keat, Tan Soon [Maritime Research Centre, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Gersberg, Richard M. [Graduate School of Public Health, San Diego State University, Hardy Tower 119, 5500 Campanile, San Diego CA 92182-4162 (United States)

2010-05-15T23:59:59.000Z

135

Municipal solid waste management challenges in developing countries - Kenyan case study  

SciTech Connect (OSTI)

This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored.

Henry, Rotich K. [College of Environment and Resources, Jilin University, Changchun 130026 (China); Zhao Yongsheng [College of Environment and Resources, Jilin University, Changchun 130026 (China)]. E-mail: zhaoyongsheng@jlu.edu.cn; Dong Jun [College of Environment and Resources, Jilin University, Changchun 130026 (China)

2006-07-01T23:59:59.000Z

136

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network [OSTI]

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

137

Department of Energy and Mineral Engineering Spring 2013 Solar Innovations -HVAC and Waste Stream Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Mineral Engineering Spring 2013 Solar Innovations - HVAC and Waste Stream Analysis Overview There are two problems that were voiced by Solar Innovations, HVAC system

Demirel, Melik C.

138

The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan  

SciTech Connect (OSTI)

The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-01-15T23:59:59.000Z

139

The multiple market-exposure of waste management companies: A case study of two Swedish municipally owned companies  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market that determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.

Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se [Department of Service Management, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden); Bramryd, Torleif [Department of Environmental Strategy, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden)

2012-09-15T23:59:59.000Z

140

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pervaporation process and use in treating waste stream from glycol dehydrator  

DOE Patents [OSTI]

Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

Kaschemekat, Jurgen (Campbell, CA); Baker, Richard W. (Palo Alto, CA)

1994-01-01T23:59:59.000Z

142

Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW  

SciTech Connect (OSTI)

While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

none,

1992-10-01T23:59:59.000Z

143

A direct steam heat option for hydrothermal treatment of municipal solid waste  

SciTech Connect (OSTI)

A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

Thorsness, C.B.

1995-04-12T23:59:59.000Z

144

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

SciTech Connect (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

145

RD & D priorities for energy production and resource conservation from municipal solid waste  

SciTech Connect (OSTI)

This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

Not Available

1992-08-01T23:59:59.000Z

146

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

SciTech Connect (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

147

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

148

Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

2010-01-30T23:59:59.000Z

149

STREAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STREAM Description STREAM is a simple, synthetic benchmark designed to measure sustainable memory bandwidth (in MBs) and a corresponding computation rate for four simple...

150

Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW  

SciTech Connect (OSTI)

This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

none,

1992-10-01T23:59:59.000Z

151

Hybrid sensor for metal grade measurement of a falling stream of solid waste particles  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer A new sensor system is developed for metal grade measurement of falling bottom ash particles. Black-Right-Pointing-Pointer The system is hybrid, consisting of an optical and an electromagnetic sensor. Black-Right-Pointing-Pointer Grade of ECS concentrated bottom ash in 1-6 mm sieve size accurately measured up to 143 p/s feed rate. Black-Right-Pointing-Pointer Accuracy reached was 2.4% with respect to manual analysis. Black-Right-Pointing-Pointer Measures for elimination of both stationary and stochastic errors are discussed. - Abstract: A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6 mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 {+-} 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation.

Abdur Rahman, Md., E-mail: rahman@tudelft.nl; Bakker, M.C.M., E-mail: m.c.m.bakker@tudelft.nl

2012-07-15T23:59:59.000Z

152

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

Chaiko, D.J.

1993-01-01T23:59:59.000Z

153

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

Chaiko, D.J.

1995-03-07T23:59:59.000Z

154

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

Chaiko, David J. (Woodridge, IL)

1995-01-01T23:59:59.000Z

155

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

156

Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

NONE

1996-07-01T23:59:59.000Z

157

COMPARISON BETWEEN FRESH AND AGED MUNICIPAL SOLID WASTES AND THEIR RECYCLING METHODS IN CHINA  

E-Print Network [OSTI]

SUMMARY: Fresh municipal solid wastes (MSW) and aged MSW including MSW from landfills and dumpsite have been characterized and compared by their components, moisture content and lower heat value (LHV) in order to recycle and dispose them properly. Firstly the characterizing experiments were performed and the results showed that generally the fresh MSW are of high moisture contents and their LHV is below 6500kJ/kg; and when 40 % of plastics were separated, their LHV is less than 5000kJ/kg. Combustibles in aged MSW were easily to be separated and their LHV is higher than 11000kJ/kg as just separated. Analysis of aged MSW of different years old showed that as MSW became older the moisture and paper contents decreased. No leachate produced from aged MSW during the analysis and separation process. For both fresh MSW and aged MSW the main contributor to LHV is plastics. Secondly a simple separating system consisting of a roller screen and a winnower is used to separate plastics from fresh MSW and aged MSW, and the quality of plastics were compared by their physical parameters after made into pellets; the results showed that plastics from fresh MSW can be recycled as raw material for secondary product; while plastics separated from aged MSW are of lower quality and only suitable to be recycled as fuel material. Finally different recycling methods were suggested for fresh and aged MSWs based on their characteristics. 1.

G. Zhou; D. Chen; W. Cui

2007-01-01T23:59:59.000Z

158

Life cycle assessment of four municipal solid waste management scenarios in China  

SciTech Connect (OSTI)

A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

Hong Jinglan, E-mail: hongjing@sdu.edu.c [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li Xiangzhi [Department of Pathology, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109 (United States); Zhaojie Cui [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

2010-11-15T23:59:59.000Z

159

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

160

The Effect of Simulated Barium Carbonate Waste Stream on the Hydration of Composite Cement Systems  

E-Print Network [OSTI]

The Effect of Simulated Barium Carbonate Waste Stream on the Hydration of Composite Cement Systems cements, comprised of ordinary Portland cement (OPC) and blast furnace slag (BFS), are used to encapsulate it is not uncommon for up to 90% of the OPC to be replaced by BFS, which will have significant effects

Sheffield, University of

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

SciTech Connect (OSTI)

Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

Lunsford, G.F.

1998-10-26T23:59:59.000Z

162

Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

2012-08-15T23:59:59.000Z

163

Design Case Summary: Production of Mixed Alcohols from Municipal...  

Office of Environmental Management (EM)

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via...

164

Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach  

SciTech Connect (OSTI)

Highlights: 110 French incinerators are compared with LCA based on plant-specific data. Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

2013-12-15T23:59:59.000Z

165

Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors  

SciTech Connect (OSTI)

Highlights: The use of an passively aerated reactor enables effective stabilization of OFMSW. Convective air flow does not inhibit the aerobic stabilization of waste. The use of an passively aerated reactor reduces the heat loss due to convection. The volume of supplied air exceeds 1.72.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcys equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.72.88-fold.

Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

2014-02-15T23:59:59.000Z

166

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

167

Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams  

SciTech Connect (OSTI)

Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

2007-04-01T23:59:59.000Z

168

Grout formulation for disposal of low-level and hazardous waste streams containing fluoride  

DOE Patents [OSTI]

A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

1987-06-02T23:59:59.000Z

169

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

170

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

171

State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams  

SciTech Connect (OSTI)

This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

Not Available

1993-12-01T23:59:59.000Z

172

RCRA, superfund and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria updated July 1996  

SciTech Connect (OSTI)

The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs) and provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It gives the part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in part 258 to the corresponding requirements for hazardous waste TSDFs in part 264, which are generally more stringent.

NONE

1996-07-01T23:59:59.000Z

173

LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow  

SciTech Connect (OSTI)

An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.

Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk [Environment Institute, University College London, Pearson Building, Gower Street, WC1E 6BT London (United Kingdom)

2011-03-15T23:59:59.000Z

174

Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory

2014-08-31T23:59:59.000Z

175

Use Of Stream Analyzer For Solubility Predictions Of Selected Hanford Tank Waste  

SciTech Connect (OSTI)

The Hanford Tank Waste Operations Simulator (HTWOS) models the mission to manage, retrieve, treat and vitrify Hanford waste for long-term storage and disposal. HTWOS is a dynamic, flowsheet, mass balance model of waste retrieval and treatment activities. It is used to evaluate the impact of changes on long-term mission planning. The project is to create and evaluate the integrated solubility model (ISM). The ISM is a first step in improving the chemistry basis in HTWOS. On principal the ISM is better than the current HTWOS solubility. ISM solids predictions match the experimental data well, with a few exceptions. ISM predictions are consistent with Stream Analyzer predictions except for chromium. HTWOS is producing more realistic results with the ISM.

Pierson, Kayla [Washington River Protection Solutions, Richland, WA (United States); Belsher, Jeremy [Washington River Protection Solutions, Richland, WA (United States); Ho, Quynh-dao [Washington River Protection Solutions, Richland, WA (United States)

2012-11-02T23:59:59.000Z

176

Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell  

SciTech Connect (OSTI)

The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.

Olivier, Franck [Environment, Energy and Waste Research Center (CREED), 291, avenue Dreyfous Ducas, 78520 Limay (France) and Laboratoire LIRIGM - Maison des Geosciences, 1381, rue de la piscine 38400 Saint-Martin d'Heres (France)]. E-mail: franck.olivier@ujf-grenoble.fr; Gourc, Jean-Pierre [Laboratoire LIRIGM - Maison des Geosciences, 1381, rue de la piscine 38400 Saint-Martin d'Heres (France)]. E-mail: gourc@ujf-grenoble.fr

2007-07-01T23:59:59.000Z

177

Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET  

SciTech Connect (OSTI)

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

Lunsford, G.F.

2001-01-24T23:59:59.000Z

178

Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron  

SciTech Connect (OSTI)

The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO4-) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy's Hanford Site: (1) the direct removal of pertechnetate from highly alkaline solutions, typical of those found in Hanford tank waste, and (2) the removal of dilute pertechnetate from near-neutral solutions, typical of the eluate streams from commercial organic ion-exchange resins that may be used to remediate Hanford tank wastes. It was envisioned that both applications would involve the subsequent encapsulation of the loaded sorbent material into a separate waste form. A high surface area (>200 M2/g) base-stable, nanocrystalline zirconia was used as a support for nanoiron for tests with highly alkaline solutions, while a silica gel support was used for tests with near-neutral solutions. It was shown that after 24 h of contact time, the high surface area zirconia supported nanoiron sorbent removed about 50percent (K-d = 370 L/kg) of the pertechnetate from a pH 14 tank waste simulant containing 0.51 mM TCO4- and large concentrations of Na+, OH-, NO3-, and CO32- for a phase ratio of 360 L simulant per kg of sorbent. It was also shown that after 18 h of contact time, the silica-supported nanoiron removed>95percent pertechnetate from a neutral pH eluate simulant containing 0.076 mM TcO4_ for a phase ratio of 290 L/kg. It was determined that in all cases, nanoiron reduced the Tc(VII) to Tc(IV), or possibly to Tc(V), through a redox reaction. Finally, it was demonstrated that a mixture of 20 mass percent of the solid reaction products obtained from contacting zirconia- supported nanoiron with an alkaline waste solution containing Re(VII), a surrogate for Tc(VII), with 80 mass percent alkali borosilicate based frit heat-treated at 700 degrees C for 4 h sintered into an easily handled glass composite waste form.

Darab, John; Amonette, Alexandra; Burke, Deborah; Orr, Robert; Ponder, Sherman; Schrick, Bettina; Mallouk, Thomas; Lukens, Wayne; Caulder, Dana; Shuh, David

2007-07-11T23:59:59.000Z

179

A multi-echelon supply chain model for municipal solid waste management system  

SciTech Connect (OSTI)

In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

2014-02-15T23:59:59.000Z

180

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP  

SciTech Connect (OSTI)

Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

Jantzen, C; Michael Williams, M

2008-01-11T23:59:59.000Z

182

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su Fan, Xueping Zhang, Qing Zhang, Jiping Chen *  

E-Print Network [OSTI]

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su February 2009 Available online 21 March 2009 Keywords: MSWIs PCDD/Fs Congener patterns Emission factor a b s t r a c t Gas emission of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD

Columbia University

183

Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D  

SciTech Connect (OSTI)

This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

WINTERHALDER, J.A.

1999-09-29T23:59:59.000Z

184

Critical review of size-reduction and separation equipment used on municipal solid waste  

E-Print Network [OSTI]

municipal refuse for further processing as incineration, pyrolysis or biodegradation. Combinations of separation and size-reduction steps often are referred to as "front-end" systems because this is the first step in the overall con- version process... refuse for further processing by incineration, pyrolysis or biodegradation methods in the conversion and recovery of energy products and resources. Because of this first position in the overall conversion system, such com- binations of separation...

Chin, Billy Show-Ming

1975-01-01T23:59:59.000Z

185

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network [OSTI]

Waste: A Technical and Economic Evaluation" Jian Shi, Mirvatwaste: A Technical and Economic Evaluation Jian Shi, MirvatIn addition, techno- economic evaluation of large scale

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

186

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

187

PART I. THERMAL BREAKDOWN CHARACTERISTICS OF MUNICIPAL SOLID WASTE COMPONENTS IN  

E-Print Network [OSTI]

Engineering Columbia University in the City of New York - 3 - waste is an area of deep concern both within and Environmental Engineering Columbia University in the City of New York - 2 - Thermal Breakdown Characteristics to the increasing use of and investment in waste- to-energy technologies in Asia, these two realms of knowledge

Columbia University

188

Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2007-07-01T23:59:59.000Z

189

Linking two modeling approaches for the strategic municipal waste management planning. The MIMES/Waste model and LCA  

SciTech Connect (OSTI)

This paper describes how a systems engineering model for the strategic waste management, the MIMES/Waste model, is improved by using fife cycle assessment (LCA). The MIMES/Waste model, which is an one-step nonlinear optimization model, is designed to facilitate new solutions for future waste management systems that are both cost-efficient and environmentally acceptable. The objective of the model is cost minimization. Emissions control has so far been analyzed by using emissions restrictions and fees. However, emissions control is not sufficient in order to evaluate the environmental impacts from different waste management strategies. The method proposed in this paper shows how a linkage between the two modeling approaches can be used in order to find solutions that minimizes both costs and environmental impacts. Two parts of the MIMES/Waste model is improved by using LCA. The first improvement is to use LCA methodology for describing and comparing environmental impacts. The main improvement here, is the results gained from using the methods for impacts assessment (i.e. classification, characterization and valuation). The integration of the two objectives, the existing cost minimization and the impact assessment, opens new and interesting opportunities for the model since it couples the two main decision criteria used for the strategic planning. The second improvement is to link complete life-cycles for the separated and recovered materials. This expansion of the system boundary makes it possible, for the MIMES/Waste model to compare different material recovery options from an environmental point of view. A procedure with soft linking is used where existing and evaluated LCA descriptions are linked. Results from a case study that illustrates the benefits from using the new model for the strategic planning is presented.

Sundberg, J.; Ljunggren, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Systems Technology Div.

1997-12-31T23:59:59.000Z

190

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

government substantially increased its role in managing solid waste when Congress passed the Resource Conservation and Recovery Act (RCRA, 1976). Subtitle D of this act requires the Federal government to establish guidelines and provide technical... assistance to the States for the planning and developing of nonhazardous solid waste management programs. Under authority of Sections 1003(a)(3) and 40D4(a) of RCRA, the EPA issued the "Criteria for Classification of Solid Maste Disposal Facilities...

Hart, Steven Charles

1989-01-01T23:59:59.000Z

191

High Waste Loading Glass Formulations for Hanford High-Aluminum High-Level Waste Streams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHigh SchoolHighHIGH WASTE

192

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

193

DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS  

SciTech Connect (OSTI)

This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

2009-12-30T23:59:59.000Z

194

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

SciTech Connect (OSTI)

Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

Lunsford, G.F.

1999-08-23T23:59:59.000Z

195

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network [OSTI]

, known as GasPro, which was developed by Stallard (1990) and an automatic gridding and filling scheme constructed by Beck (1994). Both the leachate production and the waste compaction portions of the model were found to be sensitive to the sequence...

Mehevec, Adam Wade

1994-01-01T23:59:59.000Z

196

STATUS OF MUNICIPAL SOLID WASTE GENERATION IN KERALA AND THEIR CHARACTERISTICS  

E-Print Network [OSTI]

and management capacity of the existing waste management systems. Therefore, there is an urgent necessity of improved planning and implementation of comprehensive MSW management systems for upgrading, transportation, processing and disposal system. It requires reliable data on quantity and quality of MSW

Columbia University

197

Resource recovery potential from secondary components of segregated municipal solid wastes  

E-Print Network [OSTI]

(MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash for decentralized biogas plants to be operated in the vicinity. We characterized the fermen- tation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using

Columbia University

198

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

Not Available

1993-04-01T23:59:59.000Z

199

Boiler tube failures in municipal waste-to-energy plants: Case histories  

SciTech Connect (OSTI)

Waste-to-energy plants experienced boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls with superheat, adopted from coal-firing technology. The fireside attack by chlorine and sulfur compounds in the refuse combustion products caused many forced outages in early European plants with high steam temperatures and pressures. In spite of conservative steam conditions in the first US plants, some failures occurred. As steam temperatures increased in later US plants, corrosion problems multiplied. Over the years these problems have been alleviated by covering the waterwalls with either refractories or weld overlays of nickel-base alloys and using high nickel-chromium alloys for superheater tubes. Various changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped to minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1995-12-01T23:59:59.000Z

200

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1  

SciTech Connect (OSTI)

US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

NONE

1996-09-01T23:59:59.000Z

202

Clean energy from municipal solid waste. Technical progress report number 3  

SciTech Connect (OSTI)

Development of the computer models for slurry carbonization have begun and were based upon the collected data (mass balances, yield, temperatures, and pressures) from the previous pilot plant campaigns. All computer models are being developed with Aspen`s SpeedUp{trademark} software. The primary flow sheet with major alternatives has been developed and the majority of equipment descriptions and models, cost algorithms, and baseline parameters have been input to SpeedUp. The remaining modeling parameters will be input in the next reporting period and the initial flow sheet skeleton and model will be completed. The computer models will focus on optimizing capital and operating costs, and evaluating alternative waste water recycling technologies. The weaknesses of the previous pilot plant data and the data required for design of the commercial demonstration facility were identified. The identified weaknesses of the existing data included mass balance precision and accuracy, reactor residence time control (i.e. reactor level control), reactor temperature variations, and air entrainment in the feed RDF slurry. To improve mass balance precision and accuracy, an alternative carbonization gas flow meter will be designed and installed on the pilot plant. EnerTech`s carbonization gas flow meter design has been submitted to the EERC for final approval. In addition, an appropriate number of feed RDF samples will be characterized for moisture content just prior to the next pilot plant run to estimate incoming moisture variation. A pumping test also will be performed with the feed RDF slurry to determine the amount of air entrainment with the feed slurry.

Klosky, M.

1996-01-05T23:59:59.000Z

203

A delayed-neutron monitor for a liquid-waste stream with high gamma-ray intensity  

SciTech Connect (OSTI)

An instrument has been built to monitor the uranium concentration in a liquid-waste stream to avoid a criticality accident in a downstream holding tank. The measurement technique is based on the production and counting of delayed neutrons using the shuffler'' process because the waste contains enough fission products to produce a gamma-ray dose rate of 10 R/h on the surface of the assay tank. The design goal was a sensitivity of 0.034 g/L (1{sigma} = 10%) in 100 s as the stream flows at 80 L/h through the assay chamber. The instrument is to run unattended for at least three months; during this time it it to transmit assay results to the plant computer and generate warnings and alarms when necessary.

Rinard, P.M.; Crane, T.W.; Van Lyssel, T.; Kroncke, K.M.; Schneider, C.M.; Bourret, S.C. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

204

Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D  

SciTech Connect (OSTI)

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

Lunsford, G.F.

2001-10-02T23:59:59.000Z

205

Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro  

SciTech Connect (OSTI)

Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

2013-05-15T23:59:59.000Z

206

SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Ston

Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

2011-09-20T23:59:59.000Z

207

RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria, updated as of July 1995  

SciTech Connect (OSTI)

The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs). It provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It also provides the Part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of Part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in Part 258 to the corresponding requirements for hazardous waste TSDFs in Part 264, which are generally more stringent.

NONE

1995-11-01T23:59:59.000Z

208

Municipal Solid Waste:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale Subsurface Biogeochemical Modeling Multiscale

209

Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

2012-06-15T23:59:59.000Z

210

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

211

Characterization of past and present waste streams from the 325 Radiochemistry Building  

SciTech Connect (OSTI)

The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-01T23:59:59.000Z

212

Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.

Waters, R.D.; Pohl, P.I.; Cheng, W.C.; Gruebel, M.M.; Wheeler, T.A.; Langkopf, B.S.

1998-03-01T23:59:59.000Z

213

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

SciTech Connect (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

214

Solid Waste Management Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

215

actinide-contaminated waste streams: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the device geometry. Wang, Cheng; Hilgenfeldt, Sascha 2010-01-01 436 METO 621METO 621 Lesson 12: Two-stream Solution Geosciences Websites Summary: METO 621METO 621 Lesson 12:...

216

Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2008-07-01T23:59:59.000Z

217

Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams  

DOE Patents [OSTI]

A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

Soong, Yee (Monroeville, PA); Allen, Douglas E. (Salem, MA); Zhu, Chen (Monroe County, IN)

2011-04-12T23:59:59.000Z

218

Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal  

SciTech Connect (OSTI)

Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

2008-07-01T23:59:59.000Z

219

Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs  

SciTech Connect (OSTI)

This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

2009-01-07T23:59:59.000Z

220

Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste  

E-Print Network [OSTI]

wastes and contaminated sites is an important economic and environmental problem. The regula- tions, France Abstract The management of contaminated soils and wastes is a matter of considerable human concern (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic

Mailhes, Corinne

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterization of past and present solid waste streams from the plutonium finishing plant  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)] [Los Alamos Technical Associates, Kennewick, WA (United States)

1993-02-01T23:59:59.000Z

222

Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia  

SciTech Connect (OSTI)

The efficiency of providing a waste management system in the coastal part of Croatia consisting of four Dalmatian counties has been modelled. Two multi-criteria decision-making (MCDM) methods, PROMETHEE and GAIA, were applied to assist with the systematic analysis and evaluation of the alternatives. The analysis covered two levels; first, the potential number of waste management centres resulting from possible inter-county cooperation; and second, the relative merits of siting of waste management centres in the coastal or hinterland zone was evaluated. The problem was analysed according to several criteria; and ecological, economic, social and functional criteria sets were identified as relevant to the decision-making process. The PROMETHEE and GAIA methods were shown to be efficient tools for analysing the problem considered. Such an approach provided new insights to waste management planning at the strategic level, and gave a reason for rethinking some of the existing strategic waste management documents in Croatia.

Vego, Goran [Civil Engineering Institute of Croatia, Environmental and Hydrotechnics Department, Matice Hrvatske 15, 21000 Split (Croatia)], E-mail: goran.vego@igh.hr; Kucar-Dragicevic, Savka [Croatian Environmental Agency, Director's Office, Trg Marsala Tita 8, 10000 Zagreb (Croatia)], E-mail: savka.kucar-dragicevic@azo.hr; Koprivanac, Natalija [Faculty of Chemical Engineering and Technology, Environmental Engineering Department, Marulicev Trg 19, 10000 Zagreb (Croatia)], E-mail: nkopri@fkit.hr

2008-11-15T23:59:59.000Z

223

Waste characterization at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Most industries generate limited types of solid wastes of a result of their manufacturing processes. The Los Alamos National Laboratory (LANL), a research and development facility, generates a large variety of solid wastes, some exotic. Over 50,000 distinct waste streams are currently generated in the 43 square mile area defining LANL. These wastes include refuse, medical, infectious, hazardous, radioactive, and mixed wastes. LANL is subject to federal and State oversight on matters concerning management of solid wastes. In order to assure regulatory agencies such as the New Mexico Environment Department (NMED) and the US Environmental Protection Agency (EPA) that the Laboratory is properly managing and disposing all solid wastes. LANL has undertaken an extensive waste characterization program to identify sources and ultimate disposition of all solid wastes. Given the number of solid waste streams expected, LANL has taken a two-pronged approach to characterizing wastes: (a) physical identification of all sources of solid wastes including interviews with waste generators; and (b) characterization of wastes from the point of generation. The former approach consists of canvassing all structures within the LANL complex, interviewing waste generators, and identifying sources of waste generation. Data gathered by these interviews are compiled in a database in order to identify the types and rates of waste generation and correct mismanagement of wastes identified during the interviews. The latter approach consists of characterizing all solid wastes which are controlled administratively or subject to stricter controls than municipal solid wastes (i.e., infectious, hazardous, radioactive, and mixed wastes). This characterization forms the basis by which LANL will manage solid waste in accordance to NMED/EPA regulations and US Department of Energy Orders. 8 refs., 3 figs.

Corpion, J.C.; Grieggs, A.R.

1991-01-01T23:59:59.000Z

224

Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs  

SciTech Connect (OSTI)

Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

Lynch, J F; Young, J C

1980-09-01T23:59:59.000Z

225

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

226

Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron  

E-Print Network [OSTI]

be to use a technetium ion- exchange or sorbent materialtechnetium problem is to remove pertechnetate from the waste using commercially available polymeric ion exchangetechnetium-containing eluate that would be generated in removing pertechnetate from the commercial ion-exchange

Darab, John

2008-01-01T23:59:59.000Z

227

Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron  

E-Print Network [OSTI]

3. ?? TM/JD 2. Westinghouse Hanford Co. , Report WHC-SD-WM-Department of Energys Hanford Site: (1) the direct removaltypical of those found in Hanford tank waste; and (2) the

Darab, John

2008-01-01T23:59:59.000Z

228

Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant  

SciTech Connect (OSTI)

During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

1993-04-01T23:59:59.000Z

229

Economic impact analysis for proposed emission standards and guidelines for municipal waste combustors: A description of the basis for, and impacts of, proposed revisions to air pollutant emission regulations for new and existing municipal waste combustors under Clean Air Act Sections 111(b), 111(d), and 129. Final report  

SciTech Connect (OSTI)

EPA is proposing revised and expanded air pollutant emission standards for new, and guidelines for existing, municipal waste combustors (MWCs), pursuant to Sections 111(b), 111(d), and 129 of the Clean Air Act of 1990. The regulations will replace or supplement those promulgated by EPA on February 11, 1991. The standards and guidelines will apply to MWCs with a capacity to combust 35 or more Mg of municipal solid waste per day. The pollutants to be regulated are particulate matter (total and fine), opacity, sulfur dioxide, hydrogen chloride, oxides of nitrogen, carbon monoxide, lead, cadmium mercury, and dibenzofurans and dioxins. The report describes the standards and guidelines, their potential economic impacts, and related matters. EPA estimates the national annual cost of the standards in 1994 will be $44 million, plus the cost of the 1991 standards, $157 million, for a total of $201 million. EPA estimates the equivalent cost of the guidelines at $280 million plus $168 million for a total of $448 million.

Jellicorse, B.L.; Dempsey, J.L.

1994-03-01T23:59:59.000Z

230

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31T23:59:59.000Z

231

Price regulation for waste hauling franchises in California: an examination of how regulators regulate pricing and the effects of competition on regulated markets  

E-Print Network [OSTI]

and Residential Municipal Solid Waste. Journal of PolicyA Cost Analysis of Municipal Solid Waste Services. Landand Dean Schreiner. Solid Waste Management for Rural Areas:

Seltzer, Steven A.

2011-01-01T23:59:59.000Z

232

Recovering Americium and Curium from Mark-42 Target Materials- New Processing Approaches to Enhance Separations and Integrate Waste Stream Disposition - 12228  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) is investigating flowsheets to enhance processing efficiencies and to address waste streams associated with recovery of americium (Am) and curium (Cm) from Mark-42 (Mk-42) target materials stored at ORNL. The objective of this work was to identify the most effective flowsheet with which to process the 104 Mk-42 oxide capsules holding a total of 80 g of plutonium (Pu), 190 g of Cm, 480 g of Am, and 5 kg of lanthanide (Ln) oxides for the recovery and purification of the Am/Cm for future use as feedstock for heavy actinide production. Studies were also conducted to solidify the process flowsheet waste streams for disposal. ORNL is investigating flowsheets to enhance processing efficiencies and address waste streams associated with recovery of Am and Cm from Mk-42 target materials stored at ORNL. A series of small-scale runs are being performed to demonstrate an improved process to recover Am/Cm and to optimize the separations of Ln fission products from the Am/Cm constituents. The first of these runs has been completed using one of the Am/Cm/Ln oxide capsules stored at ORNL. The demonstration run showed promising results with a Ln DF of 40 for the Am/Cm product and an Am/Cm DF of 75 for the Ln product. In addition, the total losses of Am, Cm, and Ln to the waste solvents and raffinates were very low at <0.2%, 0.02%, and 0.04%, respectively. However, the Ln-actinide separation was less than desired. For future Reverse TALSPEAK demonstration runs, several parameters will be adjusted (flow rates, the ratio of scrub to strip stages, etc.) to improve the removal of Ln from the actinides. The next step will also include scale-up of the processing flowsheet to use more concentrated solutions (15 g/L Ln versus 5 g/L) and larger volumes and to recycle the HDEHP solvent. This should improve the overall processing efficiency and further reduce losses to waste streams. Studies have been performed with simulated wastes to develop solidification processes for disposal of the secondary waste streams generated by this flowsheet. Formulations were successfully developed for all the waste simulants. Additional tests with actual waste will be the next step in this effort. Future plans are to process all of the remaining 103 capsules in storage at ORNL. A nine-capsule test is now under way to provide additional information to scale-up the process to a target 20-capsule batch size for future processing runs. (authors)

Patton, Brad D.; Benker, Dennis; Collins, Emory D.; Mattus, Catherine H.; Robinson, Sharon M.; Wham, Robert M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2012-07-01T23:59:59.000Z

233

Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement  

SciTech Connect (OSTI)

Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

1995-04-01T23:59:59.000Z

234

On the effect of demographic characteristics on the formulation of solid waste charging policy  

E-Print Network [OSTI]

On the effect of demographic characteristics on the formulation of solid waste charging policy A. Trends in municipal solid waste charging policies Municipal waste services constitute a very important of municipal charges in Greece, as the fees paid by municipal waste producers to the municipal authorities

Columbia University

235

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network [OSTI]

on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat... recovery that typically can save energy equivalent to 40% of the furnace firing rate. Previous attempts to recovery energy conven tionally on this type of furnace were unsuccessful due to fouling. The resolution of this fouling problem by using...

Kreeger, A. H.

236

Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream  

SciTech Connect (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, {sup 203}Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl{sub 2} from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO{sub 3} and 0.077 with 0.25 M Na{sub 2}CO{sub 3}. An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides.

Brewer, K.N.; Herbst, R.S.; Tranter, T.J. [and others

1995-12-01T23:59:59.000Z

237

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

238

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

239

A criticism of applications with multi-criteria decision analysis that are used for the site selection for the disposal of municipal solid wastes  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer The existing structure of the multi-criteria decision analysis for site selection is criticized. Black-Right-Pointing-Pointer Fundamental problematic points based on the critics are defined. Black-Right-Pointing-Pointer Some modifications are suggested in order to provide solutions to these problematical points. Black-Right-Pointing-Pointer A new structure for the decision making mechanism is proposed. Black-Right-Pointing-Pointer The feasibility of the new method is subjected to an evaluation process. - Abstract: The main aim of this study is to criticize the process of selecting the most appropriate site for the disposal of municipal solid wastes which is one of the problematic issues of waste management operations. These kinds of problems are pathological symptoms of existing problematical human-nature relationship which is related to the syndrome called ecological crisis. In this regard, solving the site selection problem, which is just a small part of a larger entity, for the good of ecological rationality and social justice is only possible by founding a new and extensive type of human-nature relationship. In this study, as a problematic point regarding the discussions on ecological problems, the existing structure of the applications using multi-criteria decision analysis in the process of site selection with three main criteria is criticized. Based on this critique, fundamental problematic points (to which applications are insufficient to find solutions) will be defined. Later, some modifications will be suggested in order to provide solutions to these problematical points. Finally, the criticism addressed to the structure of the method with three main criteria and the feasibility of the new method with four main criteria is subjected to an evaluation process. As a result, it is emphasized that the new structure with four main criteria may be effective in solution of the fundamental problematic points.

Kemal Korucu, M., E-mail: kemal.korucu@kocaeli.edu.tr [University of Kocaeli, Department of Environmental Engineering, 41380 Kocaeli (Turkey); Erdagi, Bora [University of Kocaeli, Department of Philosophy, 41380 Kocaeli (Turkey)

2012-12-15T23:59:59.000Z

240

E-Print Network 3.0 - alkaline waste solutions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

89 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: Leaching of Dioxins from Municipal Waste Combustor Residues June 2004 Dr. Karsten Millrath Research......

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Measuring bulky waste arisings in Hong Kong  

SciTech Connect (OSTI)

All too often, waste authorities either assume that they know enough about their bulky waste stream or that it is too insignificant to deserve attention. In this paper, we use Hong Kong as an example to illustrate that official bulky waste figures can actually be very different from the reality and therefore important waste management decisions made based on such statistics may be wrong too. This study is also the first attempt in Hong Kong to outline the composition of bulky waste. It was found that about 342 tonnes/day of wood waste were omitted by official statistics owing to incomplete records on actual bulky waste flow. This is more than enough to provide all the feedstock needed for one regular-sized wood waste recycling facility in Hong Kong. In addition, the proportion of bulky waste in the municipal solid waste (MSW) streams in Hong Kong should be about 6.1% instead of the officially stated 1.43%. Admittedly, there are limitations with this study. Yet, present findings are suggestive of significant MSW data distortion in Hong Kong.

Chung Shanshan, E-mail: sschung@hkbu.edu.h [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Lau, Ka-yan Winifred; Zhang Chan [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

2010-05-15T23:59:59.000Z

242

Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation  

SciTech Connect (OSTI)

This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

Testoni, A. L.

2011-10-19T23:59:59.000Z

243

FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY  

SciTech Connect (OSTI)

This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

DUNCAN JB; GUTHRIE MD

2008-08-29T23:59:59.000Z

244

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

Demonstration LLNL Lawrence Livermore National Laboratory MSW Municipal Solid Waste OSHA Occupational Safety and Health Administration PPE Personal Protective Equipment POTW Publicly Owned Treatment Works RCRA Resource

245

The effects of the mechanicalchemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste  

SciTech Connect (OSTI)

Highlights: ? Milling extracted MSWI fly ash. ? Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ? Increasing heavy metal stability. ? Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calciumsilicatehydrates (CSH) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

Chen, Cheng-Gang [Department of Water Resources and Environmental Engineering, Tamkang University, 151, Ying-chung Road, Tamsui Dist., New Taipei City 251, Taiwan, ROC (China); Sun, Chang-Jung, E-mail: sun.3409@hotmail.com [Department of Environmental Technology and Management, Taoyuan Innovation Institute of Technology, 414, Sec. 3, Jhongshan E. Rd., Zhongli City, Taoyuan County 320, Taiwan, ROC (China); Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun [Department of Water Resources and Environmental Engineering, Tamkang University, 151, Ying-chung Road, Tamsui Dist., New Taipei City 251, Taiwan, ROC (China)

2013-04-15T23:59:59.000Z

246

Inventory of miscellaneous streams  

SciTech Connect (OSTI)

Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

Haggard, R.D.

1998-08-14T23:59:59.000Z

247

Technical resource document for assured thermal processing of wastes  

SciTech Connect (OSTI)

This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

1994-06-01T23:59:59.000Z

248

Conversion of Waste Biomass into Useful Products  

E-Print Network [OSTI]

Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

Holtzapple, M.

249

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

least two seconds. The waste heat from the co-processingis drawn from the waste heat of the associated cementSewage sludge drying using waste heat from cement plant flue

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

250

Waste-to-energy: Decision making and the decisions made  

SciTech Connect (OSTI)

During the early 1980s, it was projected that waste-to-energy (WTE) facilities would manage as much as half of all municipal solid waste by the turn of the century. However, during the latter part of the 1980s, the cancellation rate for WTE facilities grew to the point that the portion of the waste stream WTE will handle in the long-term future is less certain. This study, conducted as part of a larger study, identifies factors that influence municipalities, decisions regarding WTE. This study takes a broad perspective about decision-making within communities, emphasizing the context within which decisions were made and the decision-making process. It does not seek to judge the correctness of the decisions.

Schexnayder, S.M. (Tennessee Univ., Knoxville, TN (United States)); Wolfe, A.K. (Oak Ridge National Lab., TN (United States))

1993-01-01T23:59:59.000Z

251

Waste-to-energy: Decision making and the decisions made  

SciTech Connect (OSTI)

During the early 1980s, it was projected that waste-to-energy (WTE) facilities would manage as much as half of all municipal solid waste by the turn of the century. However, during the latter part of the 1980s, the cancellation rate for WTE facilities grew to the point that the portion of the waste stream WTE will handle in the long-term future is less certain. This study, conducted as part of a larger study, identifies factors that influence municipalities, decisions regarding WTE. This study takes a broad perspective about decision-making within communities, emphasizing the context within which decisions were made and the decision-making process. It does not seek to judge the correctness of the decisions.

Schexnayder, S.M. [Tennessee Univ., Knoxville, TN (United States); Wolfe, A.K. [Oak Ridge National Lab., TN (United States)

1993-05-01T23:59:59.000Z

252

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

253

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

SciTech Connect (OSTI)

A process of using fast pyrolysis in a carrier gas to convert a polyamide containing a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polyamide and its high value monomeric constituent or derived high value products occurs prior to pyrolysis of other plastic components is described therein comprising: (a) selecting a first temperature program range to cause pyrolysis of said given polyamide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; (b) selecting a catalyst and a support and treating said feed stream with said catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent or high value product of said polyamide in said first temperature program range; (c) differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of said high value monomeric constituent or high value product of said polyamide prior to pyrolysis of other plastic components therein; (d) separating said high value monomer constituent or derived high value product of said polyamide; (e) selecting a second higher temperature program range to cause pyrolysis to a different high value monomeric constituent of said plastic waste and differentially heating said feed stream of said higher temperature program range to cause pyrolysis of said plastic into a different high value monomeric constituent or derived product; and (f) separating said different high value monomeric constituent or derived high value product.

Evans, R.J.; Chum, H.L.

1993-06-01T23:59:59.000Z

254

Integrated Solid Waste Management Act (Nebraska)  

Broader source: Energy.gov [DOE]

This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

255

Solid Waste Disposal Act (Texas)  

Broader source: Energy.gov [DOE]

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

256

Proposal for optimizing a biological treatment system for denitrification of Y-12 waste stream. Final report, March 16, 1987--September 15, 1987  

SciTech Connect (OSTI)

Over the past 6 months quite a bit of information was gathered on the denitrification of plating rinse waste by microorganisms present in Y-12 process tanks. Work efforts under the contract assigned to us by Martin Marietta Y-12 engineers was perceived by Oak Ridge Research Institute (ORRI) as being a successful undertaking, completed on time as targeted by three milestone progress reports and a final summary report. The following suggestions were made for improving their rates of denitrification in their waste stream process tanks: (1) Substitute succinate for acetate as C-source. (2) Temperature controls on the process tanks to maintain them at 35--39C; and (3) Three-stage seed of their dentrification process.

McKinstry, G.; Osborne, T.; King, A.; Tolman, C.

1987-12-31T23:59:59.000Z

257

http://wmr.sagepub.com Waste Management & Research  

E-Print Network [OSTI]

. Barton and Efstratios Kalogirou Municipal solid waste management scenarios for Attica://www.sagepub.co.uk/journalsPermissions.nav Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact Asterios SYNERGIA, Greece Disposal of municipal solid waste in sanitary landfills is still the main waste management

Columbia University

258

Alloy 45TM in waste incineration applications  

SciTech Connect (OSTI)

Industrial and municipal wastes produced in the western society are being increasingly destroyed and managed by controlled high temperature incineration. Depending on the chemical make-up of the waste stream and operational parameters of the incinerator, a variety of high temperature corrosive environments are generated. Typically most of the modern incineration systems consist of a high temperature incinerator chamber, a heat recovery system, a quench section to further reduce the temperature of the flue gas stream and a host of air pollution control equipment to scrub acidic gases and control the particulate emissions. This paper describes the development of a new nickel-base high chromium-high silicon alloy, which has shown good resistance to high temperature corrosion in incinerator environments. Some field test data are also presented.

Agarwal, D.C. [VDM Technologies, Houston, TX (United States); Kloewer, J.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany)

1997-08-01T23:59:59.000Z

259

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1993-01-01T23:59:59.000Z

260

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

Evans, R.J.; Chum, H.L.

1994-04-05T23:59:59.000Z

262

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

263

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

Evans, R.J.; Chum, H.L.

1994-10-25T23:59:59.000Z

264

,2009,)3(1,Report and Opinionnet.sciencepub.www://http,com.gmail@sciencepub Studies on Municipal Solid Waste Management in Mysore City-A case study  

E-Print Network [OSTI]

associated with solid waste management in the city. MATERIALS AND METHODS 15 #12;,2009,)3(1,Report Solid Waste Management in Mysore City- A case study Yadav Ishwar Chandra and N.Linthoingambi Devi_ishwar@yahoo.com, Phone no: +919873453116 Abstract: Solid waste management is a worldwide phenomenon. It is a big

Columbia University

265

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households Willingness to Pay Advanced Recycling Fees  

E-Print Network [OSTI]

DC: Office of Solid Waste and Emergency Response.J. , 1999. Reducing solid waste: Linking recycling to135. EPA, 2005. Municipal Solid Waste in the United States:

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

266

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

Office of Solid Waste and Emergency Response: 151. EPA (et al. (2004). "Solid Waste Disposal, Naval FacilitiesComposting Yard Trimmings and Municipal Solid Waste."

Borglin, S.

2010-01-01T23:59:59.000Z

267

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

268

German Company Offers to Transform Sofia Waste to Energy The German company AlphaKat has filed a bid at Sofia municipality to construct an  

E-Print Network [OSTI]

is produced from 1.2kg waste and the expenses for 1 liter of diesel from an installation with power 2000 into diesel would cost EUR 65 M. Under their project Sofia would need two installations of that type. The company also claims that the diesel that will be produced from the waste would be of high quality

Columbia University

269

Comparative evaluation of DHDECMP (dihexyl-N,N-diethylcarbamoyl-methylphosphonate) and CMPO (octylphenyl-N,N,-diisobutylcarbamoylmethylphosphine oxide) as extractants for recovering actinides from nitric acid waste streams  

SciTech Connect (OSTI)

Certain neutral, bifunctional organophosphorous compounds are of special value to the nuclear industry. Dihexyl-N,N-diethylcarbomoylmethylphosphonate (DHDECMP) and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) are highly selective extractants for removing actinide and lanthanide elements from nitric acid. We obtained these two extractants from newly available commercial sources and evaluated them for recovering Am(III), Pu(IV), and U(VI) from nitric acid waste streams of plutonium processing operations. Variables included the extractant (DHSECMP or CMPO), extractant/tributylphosphate ratio, diluent, nitrate concentration, nitrate salt/nitric acid ratio, fluoride concentration, and contact time. Based on these experimental data, we selected DHDECMP as the perferred extractant for this application. 18 refs., 30 figs.

Marsh, S.F.; Yarbro, S.L.

1988-02-01T23:59:59.000Z

270

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

SciTech Connect (OSTI)

This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

Lunsford, G.F.

1999-06-14T23:59:59.000Z

271

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

272

Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site  

SciTech Connect (OSTI)

One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

Marceau, Thomas E. [Mission Support Alliance, Richland, WA (United States); Watson, Thomas L. [Mission Support Alliance, Richland, WA (United States)

2013-11-13T23:59:59.000Z

273

Biotechnology for environmental control and waste treatment  

SciTech Connect (OSTI)

A slide show is reproduced here to review the technology of anaerobic digestion as a process for cleaning waste waters from municipal and industry wastes. Radioactive wastes are addressed also. (PSB)

Donaldson, T.L.; Harris, M.T.; Lee, D.D.; Walker, J.F.; Strandberg, G.W.

1985-01-01T23:59:59.000Z

274

OVERVIEW OF MUNICIPAL AND INDUSTRIAL LAND APPLICATION  

E-Print Network [OSTI]

BE "RIGHT IN YOUR BACKYARD" Variety of municipal and industrial wastes Inexpensive supply of plant - Heavy metals, organic compounds, pathogens - Nutrient loading (N and P) - Nitrate leaching or P loss Beneficially re-use nutrients and/or organic material Protect the quality of the soil, and surface water

Balser, Teri C.

275

SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.

Eibling, R.

2011-09-28T23:59:59.000Z

276

future science group 133ISSN 1758-300410.4155/CMT.12.11 2012 Future Science Ltd Municipal solid waste (MSW) is a ubiquitous byprod-  

E-Print Network [OSTI]

or electricity (waste-to-energy [WTE]) could reduce net GHG emissions in the USA compared with combusting methane. One alternative to LFGTE is the combustion of MSW to generate electricity or heat in a process com [2]; 77% of the WTE facilities in the USA already have this capacity [3]. If WTE facilities

Jackson, Robert B.

277

A Review of Today's Anaerobic Diges6on Technology of Organic Municipal Solid Waste and Its Implementa6on in California  

E-Print Network [OSTI]

Don 1603 of the American Reinvestment and Recovery Act · Rural Energy for America of methane into the atmosphere 3. Energy ProducDon · 65,412 million T3 of methane] Zero Waste Energy. (2013). SMARTFERM. Retrieved from: h

Iglesia, Enrique

278

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO)

1992-01-01T23:59:59.000Z

279

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals  

DOE Patents [OSTI]

A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

Chum, H.L.; Evans, R.J.

1992-08-04T23:59:59.000Z

280

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

SciTech Connect (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Municipal Utility Districts (Texas)  

Broader source: Energy.gov [DOE]

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

282

Georgia Waste Control Law (Georgia)  

Broader source: Energy.gov [DOE]

The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

283

Waste incineration and the community -  

E-Print Network [OSTI]

strategy followed by the operator of Amsterdam's waste-to- energy plant has convinced the public and other growing amounts of waste In 1992, the City of Amsterdam created Afval Energie Bedrijf (AEB), a waste-to-energy as much energy and materials as possible from municipal waste while protecting the environment. It seeks

Columbia University

284

Waste-to-Energy Evaluation: U.S. Virgin Islands  

SciTech Connect (OSTI)

This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

Davis, J.; Hasse, S.; Warren, A.

2011-08-01T23:59:59.000Z

285

Phase I chemical speciation modeling of stream mixing in the LAW/HLW Envelope A Treatment  

SciTech Connect (OSTI)

The intent of this work was to provide a first approximation of the effect of stream mixing and waste stream composition on precipitation.

Kaplan, D.I.

2000-03-07T23:59:59.000Z

286

E-Print Network 3.0 - ash waste encapsulated Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for By-Products Utilization Collection: Engineering ; Materials Science 49 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: ......

287

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

288

PSNH- Municipal Smart Start Program  

Broader source: Energy.gov [DOE]

Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

289

Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis  

E-Print Network [OSTI]

municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

Schrab, Gregory Ernst

1990-01-01T23:59:59.000Z

290

E-Print Network 3.0 - asme solid waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -21, 2008, Philadelphia, Pennsylvania, USA NAWTEC16-1901 PLASMA ARC GASIFICATION FOR SOLID WASTE DISPOSAL... in municipal solid waste destruction since 1999 in...

291

E-Print Network 3.0 - additive waste stabilization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Council (WTERT) Collection: Renewable Energy 82 THE BURNING ISSUES OF MUNICIPAL SOLID WASTE DISPOSAL WHAT WORKS AND WHAT DOESN'T Summary: on the stabilized ash from waste...

292

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect (OSTI)

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30T23:59:59.000Z

293

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1993-12-28T23:59:59.000Z

294

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

295

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

296

Case Studies of Waste Heat Driven Industrial Heat Pumps from the North Carolina State University Industrial Assessment Center.  

E-Print Network [OSTI]

??Waste heat driven heat pumps can produce useful heat streams for manufacturing facilities. A heat pump system that uses a waste heat stream as the (more)

Lewis, Nathaniel Bates

2007-01-01T23:59:59.000Z

297

Solid Waste Planning and Recycling Act (Illinois)  

Broader source: Energy.gov [DOE]

It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

298

Cost savings associated with landfilling wastes containing very low levels of uranium  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

1996-03-01T23:59:59.000Z

299

Nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

300

Municipal Energy Reduction Fund  

Broader source: Energy.gov [DOE]

In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the states municipal governments to invest in energy efficiency and...

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Managing America`s solid waste  

SciTech Connect (OSTI)

This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

Not Available

1998-03-02T23:59:59.000Z

302

Results of Toxicity Identification Evaluations (TIE`S) conducted on the A-01 outfall and its contributory waste streams, July 1996--February 1997  

SciTech Connect (OSTI)

Toxicity tests were conducted at nine locations during the summer of 1996. The results indicated that A-01B, A-01C, A-03, A-04, A-05 and A-01 were toxic to the test species, Ceriodaphnia dubia, while A-01A, A-06, and WE-01 were not toxic. Beginning in August 1996, Toxicity Identification Evaluations (TIE`s) were initiated on all toxic outfalls in order to identify the toxicants responsible for the observed toxicity. A complete TIE was performed on A-01 because it is the regulatory compliance point for all of the combined waste streams that were tested. Only the portions of a TIE that are related to metal and chlorine toxicity were performed on the remaining locations because existing data indicated that metals and chlorine were present in potentially toxic quantities at these locations, and there was no evidence that other toxicants would be expected to be present in toxic amounts. The results of the TIE`s indicate that metals are responsible for most of the toxicity at all of the outfalls that were toxic and that chlorine contributed to the toxicity at two of the outfalls. Specifically, the toxicity at A-01B, A-01C, and A-01 was due to copper; the toxicity at A-03 was due to primarily to copper, although zinc also contributed to the toxicity; the toxicity at A-04 was due primarily to copper, with residual chlorine and zinc contributing to the toxicity; and the toxicity at A-05 was due primarily to copper, with residual chlorine contributing to the toxicity. A-03 was the most toxic outfall, with 100% mortality occurring at concentrations as low as 12.5% effluent. A-03 was found to have concentrations of copper, lead, and zinc that exceeded EPA water quality criteria by approximately two orders of magnitude. The metal concentrations at A-01 and WE-01, which is located approximately 0.5 miles downstream from A-01 were similar. However, A-01 was toxic, while WE-01 was not.

Specht, W.L.

1997-03-01T23:59:59.000Z

303

Waste in a land of plenty -Solid waste generation and management  

E-Print Network [OSTI]

of recycling and waste-to- energy, according to the latest in an annual series of national surveys on municipal waste numbers using tonnages only, with any percentages - for recycling, landfilling, waste-to-energyWaste in a land of plenty - Solid waste generation and management in the US The US generates

Columbia University

304

Waste IncIneratIon and Waste PreventIon  

E-Print Network [OSTI]

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity emissions annu- ally. About 50 percent of the energy contained in residual municipal waste comes from- sions from the fossil waste fraction and the fos- sil energy purchased from external sources

305

BEE 476. Solid Waste Engineering Spring Semester 2008  

E-Print Network [OSTI]

1 BEE 476. Solid Waste Engineering Spring Semester 2008 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

Walter, M.Todd

306

BEE 4760. Solid Waste Engineering Spring Semester 2010  

E-Print Network [OSTI]

1 BEE 4760. Solid Waste Engineering Spring Semester 2010 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

Walter, M.Todd

307

Report No. PA 14 of 2008 Compliance to rules governing municipal solid, bio-medical and plastic  

E-Print Network [OSTI]

-medical and plastic waste Objective 5: Whether effective compliance to rules/laws regulating municipal solid waste, bio-medical waste and plastic waste was taking place in the state. The United Nations Conference of 2008 54 · The Recycled Plastics Manufacture and Usage Rules were notified in 1999 with an amendment

Columbia University

308

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

309

Anaerobic digestion of organic solid waste for energy production.  

E-Print Network [OSTI]

??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms (more)

Nayono, Satoto Endar

2009-01-01T23:59:59.000Z

310

Sustainable Waste Management; Case study of Nagpur INDIA Dr. Vivek S. Agrawal  

E-Print Network [OSTI]

Municipal Solid Waste (Management and Handling) Rules 2000, under the Environmental Protection Act, 1986 a significant increase in municipal solid waste (MSW) generation in India in the last few decades increase in solid waste generation will have significant impacts in terms of the land required for waste

Columbia University

311

SYNERGIA Forum Integrated Municipal Solid Waste Management  

E-Print Network [OSTI]

ERT Germany "Biogas utilization: Comparison between sanitary landfills and anaerobic digestionERT Germany, WTE Plants in Germany" Michael Jakuttis, Dipl.Ing. Wt

Columbia University

312

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformationMultnomah County,

313

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

314

Waste Heat Management Options for Improving Industrial Process...  

Broader source: Energy.gov (indexed) [DOE]

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

315

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1  

SciTech Connect (OSTI)

This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database.

NONE

1995-02-01T23:59:59.000Z

316

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

317

Technical Note: Evaluation of Effective Microorganisms (EM) In Solid Waste Management  

E-Print Network [OSTI]

Microorganisms (EM) In Solid Waste Management V. Sekeran C.is the treatment, disposal and/or recycling of solid wastes.Generally solid waste from a municipality consists of

Sekeran, V.; Balaji, C.; Bhagavathipushpa, T.

2005-01-01T23:59:59.000Z

318

Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah  

SciTech Connect (OSTI)

The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

1996-04-01T23:59:59.000Z

319

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network [OSTI]

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

320

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1  

SciTech Connect (OSTI)

This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

NONE

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996  

SciTech Connect (OSTI)

The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

NONE

1996-07-01T23:59:59.000Z

322

Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources  

SciTech Connect (OSTI)

Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

2006-04-01T23:59:59.000Z

323

Environmental and economic analyses of waste disposal options for traditional markets in Indonesia  

SciTech Connect (OSTI)

Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.

Aye, Lu [International Technologies Centre (IDTC), Department of Civil and Environmental Engineering, University of Melbourne, Vic. 3010 (Australia)]. E-mail: lua@unimelb.edu.au; Widjaya, E.R. [International Technologies Centre (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Vic. 3010 (Australia)

2006-07-01T23:59:59.000Z

324

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum| Open Energy Information

325

Eastern oil shale research involving the generation of retorted and combusted oil shale solid waste, shale oil collection, and process stream sampling and characterization: Final report  

SciTech Connect (OSTI)

Approximately 518 tons of New Albany oil shale were obtained from the McRae quarry in Clark County, Indiana and shipped to Golden, CO. A portion of the material was processed through a TOSCO II pilot plant retort. About 273 tons of crushed raw shale, 136 tons of retorted shale, 1500 gallons of shale oil, and 10 drums of retort water were shipped to US Department of Energy, Laramie, WY. Process conditions were documented, process streams were sampled and subjected to chemical analysis, and material balance calculations were made. 6 refs., 12 figs., 14 tabs.

Not Available

1989-02-01T23:59:59.000Z

326

CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A  

E-Print Network [OSTI]

CEWEP - Confederation of European Waste-to- Energy Plants Boulevard Clovis 12A B-1000 Brussels Tel energy from waste Waste-to-Energy A cost effective and reliable sustainable energy source Waste for additional renewable energy which can be exploited from municipal solid waste (MSW) and comparable waste

327

Energy from Waste: A good practice guide  

E-Print Network [OSTI]

including central and local Government, the public and professional waste managers. Since the publication of a more sustainable approach to waste management, involving public participation, greater levels new to municipal waste management, and drawing on good practice from the UK and overseas, I am sure

Columbia University

328

Municipal Energy Plan Program (Ontario, Canada)  

Broader source: Energy.gov [DOE]

Ontario is supporting local energy planning by introducing the Municipal Energy Plan (MEP) program. The MEP program is designed to help municipalities better understand their local energy needs ...

329

Massachusetts Municipal Commercial Industrial Incentive Program  

Broader source: Energy.gov [DOE]

Certain municipal utilities in Massachusetts, in cooperation with Massachusetts Municipal Wholesale Electric Company ([http://www.mmwec.org/ MMWEC]), have begun offering energy efficiency...

330

Illinois Municipal Electric Agency- Electric Efficiency Program  

Broader source: Energy.gov [DOE]

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

331

E-Print Network 3.0 - aqueous waste sites Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Collection: Energy Storage, Conversion and Utilization 43 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: -disposal site in the U.S. accepting...

332

E-Print Network 3.0 - american ref-fuel waste-to-energy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 50 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: 12, 12th North American...

333

E-Print Network 3.0 - american waste-to-energy conference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 20 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: 12, 12th North American...

334

E-Print Network 3.0 - actual waste sample Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Council (WTERT) Collection: Renewable Energy 62 THE BURNING ISSUES OF MUNICIPAL SOLID WASTE DISPOSAL WHAT WORKS AND WHAT DOESN'T Summary: 1 THE BURNING ISSUES OF...

335

activity-long living wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the appeal of some scientific disciplines. Sparavigna, A C 2012-01-01 7 Municipal solid waste characteristics and management in Allahabad, India Renewable Energy Websites...

336

Recover heat from waste incineration  

SciTech Connect (OSTI)

Using these guidelines, engineers can address critical design problems associated with burning process-waste streams and select cost-effective waste-heat boilers. Incinerating contaminant streams is a win-win situation: (1) complete destruction of pollutant(s) is attained and (2) valuable thermal energy is recovered as steam and returned to process, thus conserving energy. However, recovering thermal energy from incinerated flue-gas streams contains some caveats. This treatment method creates a large high-temperature flue gas from which valuable thermal energy is recovered as saturated or superheated steam. Unfortunately, because a process-waste stream is used as feed, this stream will have variations in contaminant and component concentrations which influence the load on the boiler. Also, burning contaminants may create acid gases which will accelerate corrosion problems for the boiler at elevated temperatures. The following guidelines and checklist clarify the do`s and don`ts when designing waste-heat boilers.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1995-09-01T23:59:59.000Z

337

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

SciTech Connect (OSTI)

This is the Technical Progress Report for the fifteenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1998. Described in this report are the following activities: (1) CONSOL characterized 41 process stream samples obtained from HTI Run PB-01 (227-90), in which Black Thunder Mine coal, Hondo VTB resid, municipal solid waste (MSW) plastics, and virgin plastics were co-liquefaction feedstocks with all-dispersed Fe and Mo catalysts. (2) A request was made for samples from the Nippon Coal Oil NEDOL pilot plant in Kashima, Japan. (3) Phenols were extracted from two samples of separator overhead oil from HTI Run PB-03 Periods 10A and 10B. The phenols were converted to ethylphenyl ethers, and the ethers were distilled to produce a sample within the diesel fuel boiling range. The ethers were mixed with diesel fuel to make 1%, 5%, 10%, and 20% solutions. The four mixtures and a control sample (0% ether) were tested for diesel fuel properties by Intertek Testing Services, Caleb Brett. (4) Computational studies related to the University of Delaware's resid conversion model were continued on the Hewlett Packard Apollo HP-735 RISC workstation at CONSOL R and D. The Structure Optimization Program and the Structure Once-Through Program were used to generate physicochemical properties and structure models for the 15 coal resid samples which have been under study.

G.A. Robbins; S.D. Brandes; D.J. Pazuchanics; D.G. Nichols; R.A. Winschel

1998-12-01T23:59:59.000Z

338

Early periphyton accumulation and composition in a wastewater effluent dominated stream: effects of season, distance from discharge, and flow regime  

E-Print Network [OSTI]

Municipal wastewater effluent can alter the receiving stream's algal production and community structure by affecting natural hydrologic patterns and nutrient availability. In this thesis, early succession periphyton assemblages were studied...

Murdock, Justin Neal

2002-01-01T23:59:59.000Z

339

Waste Heat Boilers for Incineration Applications  

E-Print Network [OSTI]

Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

Ganapathy, V.

340

E-Print Network 3.0 - agriculture process waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agricultural and food processing plants can turn waste into power can turn... . Wastewater treatment plants (WWTPs), waste streams from food and beverage processing plants,...

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Institutes of Health: Mixed waste minimization and treatment  

SciTech Connect (OSTI)

The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

NONE

1995-08-01T23:59:59.000Z

342

Municipal Support of Projects (Iowa)  

Broader source: Energy.gov [DOE]

Municipalities may choose to support projects, such as those which will generate electricity through the use of a renewable energy source, by tax-exempt bond financing; easements for roads, water...

343

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

344

Photovoltaics for municipal planners  

SciTech Connect (OSTI)

This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

Not Available

1993-04-01T23:59:59.000Z

345

Waste classification sampling plan  

SciTech Connect (OSTI)

The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

Landsman, S.D.

1998-05-27T23:59:59.000Z

346

Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

NONE

1995-03-31T23:59:59.000Z

347

ICDF Complex Operations Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

348

MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008  

E-Print Network [OSTI]

k MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008 Safety Services #12;MANAGEMENT OF SOLID RADIOACTIVE WASTES Page Minimisation 1 Streaming 2 Procedures 2 Keeping track of the activities placed for Appendices 4 and 5 22 Appendix 10 Flow chart of waste-streaming 23 #12;1 MANAGEMENT OF SOLID RADIOACTIVE

Davidson, Fordyce A.

349

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

350

Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A  

SciTech Connect (OSTI)

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

351

Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P  

SciTech Connect (OSTI)

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

352

http://wmr.sagepub.com/ Waste Management & Research  

E-Print Network [OSTI]

of metallic wastes Published by: http://www.sagepublications.com On behalf of: International Solid Waste carried out on two solid waste streams from a metal recycling industry. The concentrations of heavy metals The amount of waste produced in our society is rapidly increas- ing and the mountains of solid waste

Short, Daniel

353

Municipal performance: does mayoral quality matter?  

E-Print Network [OSTI]

-demographic factors, I suggest that the greatest influence on municipal performance comes from having qualified managers. Specifically, I argue that that mayoral qualifications influence municipal performance. By qualifications I mean mayors human capital, that is...

Avellaneda, Claudia Nancy

2009-05-15T23:59:59.000Z

354

RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report  

SciTech Connect (OSTI)

This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

Arnold, Patrick [NSTec] [NSTec

2014-02-14T23:59:59.000Z

355

Camargo Waste to Energy Power Plant Hamed Zamenian1  

E-Print Network [OSTI]

Camargo Waste to Energy Power Plant Hamed Zamenian1 , Eminou Nasser 1 , Matt Ray2 , Tom Iseley3 1 and Technology, IUPUI The Camargo Waste to Energy Power plant project is being proposed to dispose of Municipal are discarded in landfills. The Camargo Waste to Energy (WTE) power station is an opportunity to continue

Zhou, Yaoqi

356

Sustainable Decentralized Model for Solid Waste Management in Urban India  

E-Print Network [OSTI]

Sustainable Decentralized Model for Solid Waste Management in Urban India Hita Unnikrishnan, Brunda the sustenance of a decentralized solid waste management system in urban India. Towards this end, two a national legislation ­ the Municipal Solid Waste (Management and Handling) rules, 2000 (Ministry

Columbia University

357

Global Nuclear Energy Partnership Waste Treatment Baseline  

SciTech Connect (OSTI)

The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

2008-05-01T23:59:59.000Z

358

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

359

Secondary Waste Cast Stone Waste Form Qualification Testing Plan  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

Westsik, Joseph H.; Serne, R. Jeffrey

2012-09-26T23:59:59.000Z

360

FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL  

SciTech Connect (OSTI)

Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

Williams, M

2008-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,  

E-Print Network [OSTI]

-gas emissions, water pollution, air pollution and noise/visual impact (of recycling/waste disposal facilities including construction/demolition, mining, quarrying, manufacturing and municipal waste. Much of the focus

Columbia University

362

Ecohydrologic Effects of Stream Restoration  

E-Print Network [OSTI]

and D. E. Wise. 2003. Stream Restoration: A Natural ChannelDesign Handbook. NC Stream Restoration Institute, NC Statethe Hydrological Effects of Stream Restoration in a Montane

Mount, Jeffrey F; Hammersmark, Christopher T

2007-01-01T23:59:59.000Z

363

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Solid waste programs, updated as of July 1995  

SciTech Connect (OSTI)

Solid waste is primarily regulated by the states and municipalities and managed on the local level. The only exception is the 40 CFR Part 258 Federal Solid Waste Disposal Facility Criteria which provides EPA`s requirements for the design and operation of landfills. EPA`s role in implementing solid waste management programs includes setting national goals, providing leadership and technical assistance, and developing educational materials. The module focuses on EPA`s efforts in municipal and industrial solid waste.

NONE

1995-11-01T23:59:59.000Z

364

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

365

Summary of research on waste minimization studies by Japan Waste Research Foundation (JWRF)  

SciTech Connect (OSTI)

Japan is trying to provide a qualitatively better environment and the treatment of incinerator gas emissions is an indispensable part of pollution prevention programs. Therefore, a large part of incinerator wastes will be disposed of in landfills for municipal solid waste, and volume reduction and stabilization are major items on the technology agenda. For these reasons, the purpose of this research is waste minimization, namely reducing the volume of wastes that must be disposed of in landfills. This is being done by studying ways to use heat treatment to reduce the volume of incinerator ash, to develop technology for the effective use of treated material and to render fly ash and fused salts harmless. In addition, the author seeks to establish more advanced municipal solid waste treatment systems that reduce (slim) waste by using space efficiently and recovering metals in incinerator residue and fly ash for recycling.

Nabeshima, Yoshiro [Tamagawa Univ., Machida City, Tokyo (Japan)] [Tamagawa Univ., Machida City, Tokyo (Japan)

1996-12-31T23:59:59.000Z

366

Combustible radioactive waste treatment by incineration and chemical digestion  

SciTech Connect (OSTI)

A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L.A.; Crippen, M.D.; Allen, C.R.

1980-05-28T23:59:59.000Z

367

Pollution Prevention Opportunity Assessment for Landscape Waste  

SciTech Connect (OSTI)

DOE orders mandate the development of a waste minimization program. The program`s goals are to: reduce volumes of wastes and toxicity; implement a system of tracking and reporting improvements; and devise a method for performing tasks. To satisfy the requirements of this program, Sandia conducts pollution prevention opportunity assessments (PPOAs) to identify waste-generating processes. The information collected from a PPOA then is used to identify waste minimization opportunities. This pollution prevention opportunity assessment was conducted using Sandia`s new methodology for prioritizing, evaluating and managing site-wide waste streams. This new methodology and the list of priority waste streams are described in the wastes revision of the Pollution Prevention Opportunity Assessment Plant. This PPOA addresses landscape waste minimization, partially in response to recent legislation and regulations.

Phillips, N.M.; Raubfogel, S.J.

1996-08-01T23:59:59.000Z

368

Lassen Municipal Utility District- PV Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

369

Denton Municipal Electric- Standard Offer Rebate Program  

Broader source: Energy.gov [DOE]

Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

370

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

,

2013-02-21T23:59:59.000Z

371

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011  

SciTech Connect (OSTI)

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

NSTec Environmental Restoration

2012-02-16T23:59:59.000Z

372

ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE  

SciTech Connect (OSTI)

Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar{reg_sign} L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring.

Fondeur, F; Michael Poirier, M; Samuel Fink, S

2007-07-12T23:59:59.000Z

373

Vitrification of high sulfate wastes  

SciTech Connect (OSTI)

The US Department of Energy (DOE) through the Mixed Waste Integrated Program (MWIP) is investigating the application of vitrification technology to mixed wastes within the DOE system This work involves identifying waste streams, laboratory testing to identify glass formulations and characterize the vitrified product, and demonstration testing with the actual waste in a pilot-scale system. Part of this program is investigating process limits for various waste components, specifically those components that typically create problems for the application of vitrification, such as sulfate, chloride, and phosphate. This work describes results from vitrification testing for a high-sulfate waste, the 183-H Solar Evaporation Basin waste at Hanford. A low melting phosphate glass formulation has been developed for a waste stream high in sodium and sulfate. At melt temperatures in the range of 1,000 C to 1,200 C, sulfate in the waste is decomposed to gaseous oxides and driven off during melting, while the remainder of the oxides stay in the melt. Decomposition of the sulfates eliminates the processing problems typically encountered in vitrification of sulfate-containing wastes, resulting in separation of the sulfate from the remainder of the waste and allowing the sulfate to be collected in the off-gas system and treated as a secondary waste stream. Both the vitreous product and intentionally devitrified samples are durable when compared to reference glasses by TCLP and DI water leach tests. Simple, short tests to evaluate the compatibility of the glasses with potential melter materials found minimal corrosion with most materials.

Merrill, R.A.; Whittington, K.F.; Peters, R.D.

1994-09-01T23:59:59.000Z

374

An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste Glass Compositions  

E-Print Network [OSTI]

An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste of Mo in glasses containing simplified simulated high level nuclear waste (HLW) streams has been originating from the reprocessing of spent nuclear fuel. Experiments using simulated nuclear waste streams

Sheffield, University of

375

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

376

Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

377

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

378

State Clean Energy Policies Analysis: State, Utility, and Municipal...  

Open Energy Info (EERE)

State, Utility, and Municipal Loan Programs Jump to: navigation, search Name State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs AgencyCompany...

379

Municipal Bond - Power Purchase Agreement Model Continues to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar...

380

Waste-to-Energy Workshop Agenda  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key technical barriers to the commercial deployment of liquid transportation fuels from waste feedstocks. As a part of this effort, BETO is organizing a Waste-to-Energy Roadmapping workshop. Workshop participants will join facilitated breakout sessions to discuss anaerobic digestion, hydrothermal liquefaction, and other processes that make productive use of wastewater residuals, biosolids, foodstuffs, and organic municipal solid waste. These discussions will be synthesized and used in developing a waste-to-energy technology roadmap.

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

382

Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials  

E-Print Network [OSTI]

to the oceans is essential if ocean dumping is to be continued. The author has surveyed the available literature, bioassay studies, and pertinent research concerning chronic effects and the risk they impose on the marine ecosystem. The main purpose... OPERATIONS 10 History of Ocean Dumping Corps of Engineers' Letters of No Objection 10 12 Types of Materials Dumped Dredge Spoils Industrial Wastes Municipal Wastes Radioactive Wastes Solid Wastes Military Wastes Construction Debris 13 13 15 15...

Zapatka, Thomas Francis

1976-01-01T23:59:59.000Z

383

DRAFT TECHNICAL GUIDANCE DOCUMENT ON STATIC AND SEISMIC SLOPE STABILITY FOR SOLID WASTE  

E-Print Network [OSTI]

STRENGTH OF GEOSYNTHETIC CLAY LINERS Page 51 I GCL SLOPE DESIGN Page 52 II. SHEAR STRENGTH TESTING OF GCLs IN GEOSYNTHETIC MATERIALS Page 33 5.0 ENGINEERING PROPERTIES OF MUNICIPAL SOLID WASTE Page 36 I. STATIC PROPERTIES OF WASTE Page 36 II. DYNAMIC PROPERTIES OF WASTE Page 36 6.0 SHEAR STRENGTH OF GEOSYNTHETIC INTERFACES Page

384

Waste to energy facilities. (Latest citations from the NTIS database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

385

Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

386

Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

387

Composting Waste Alternatives University of Florida Soil and Water Science Department  

E-Print Network [OSTI]

Department Disposal of organic waste generated by humans is becoming a problem due to increasing population et al., 2001). Composting organic wastes is a low external energy input microbial decomposition In Florida alone, about 37 tons of municipal solid waste was collected for recycling in 2005 (Li et al., 2010

Ma, Lena

388

Waste Incineration in China page 1 Figure 1: Visit to MWI in Harbin  

E-Print Network [OSTI]

of hard coal is also wide-spread. The flue gas cleaning is done using dry or semi dry systemsWaste Incineration in China page 1 Figure 1: Visit to MWI in Harbin Waste Incineration in China Balz Solenthaler, Rainer Bunge Summary China currently operates 19 municipal waste incinerators (MWI

Columbia University

389

QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI-URBAN COMMUNITY  

E-Print Network [OSTI]

i QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI transfer station and the households who helped me in getting food waste samples. It should thing in my life with this little effort. #12;iii Abstract The growth of municipal solid waste

Richner, Heinz

390

Ammonia fiber explosion (AFEX) pretreatment of municipal solid waste components  

E-Print Network [OSTI]

enzymatic reactivity. Concluding the project will be a study designed to separate the effect of the physical disruption and ammoniation caused by the ~ pretreatment. 1. 2 LIGNOCELLULOSE STRUCTURE The enzymatic conversion of lignocellulose to soluble...

Lundeen, Joseph Eric

1991-01-01T23:59:59.000Z

391

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

392

Integrated Plant for the Municipal Solid Waste of Madrid  

E-Print Network [OSTI]

such as steam- boiler water treatment, compressed-air, control and instrumentation, etc. The incinerator of the project was to recover the energy content of RDF generated by the recycling plant of the city of Madrid and Composting Plant The MSW is brought by the collecting trucks which unload in the storage area with a two

Columbia University

393

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network [OSTI]

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

394

Kinematic wave model for water movement in municipal solid waste  

E-Print Network [OSTI]

convection-dispersion equation (CDE). Furthermore, the soil water diffusivity, defined by Klute [1952], and the forms of Department of Water Resources Engineering, Lund University, Lund, Sweden. 2Department of Civil and Environmental Engineering..., Louisiana State University, Baton Rouge. 3Division of Land and Water Resources, Royal Institute of Tech- nology, Stockholm, Sweden. Copyright 1998 by the American Geophysical Union. Paper number 98WR01109. 0043-1397/98/98 WR-01109509.00 hydraulic...

Bendz, David; Singh, Vijay P.; Rosqvist, H??kan; Bengtsson, Lars

395

Gaseous missions rduction from arobic MBT of municipal solid waste  

E-Print Network [OSTI]

recovery (by collecting biogas generated during anaerobic digestion) and/or return of organic matter the composting process, and the sec- ond one focused on the biogas génération from the associated landfill surface fluxes and biogas composition. ineris-00973342,version1-4Apr2014 Author manuscript, published

Boyer, Edmond

396

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving AwayAvailability of Feedstock and

397

Municipal Solid Waste Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012 MonthlyYear Schedule Multi-Year

398

District heating from electric-generating plants and municipal incinerators: local planner's assessment guide  

SciTech Connect (OSTI)

This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

Pferdehirt, W.; Kron, N. Jr.

1980-11-01T23:59:59.000Z

399

Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant  

SciTech Connect (OSTI)

The work presented in this paper is a part of a major technology program supported by the US Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

1993-12-31T23:59:59.000Z

400

Discussion of and reply to ``The characteristics of two-stage municipal combustor ash (Example: Harford County resource recovery facility in Maryland)``  

SciTech Connect (OSTI)

This paper, by Klaus S. Feindler, is a good contribution to the understanding of two-stage municipal combustors. He has mixed and quartered the ash from the one-half inch by one-half inch under stream in accordance with ASTM-D346-78. It is suggested that this mixing and quartering procedure be used earlier in the field processing procedure. Also, with a high level of consistently good annual performance, why was there such a concern with the month-to-month SAR? There is hardly any mention of the fact that continuously-fired, two-stage combustors produce a heavy loading of fixed carbon in the furnace residue and a high unburned combustible loss. Rather, the paper draws a number of conclusions from a small amount of test data. In addition, some of the data appear to have been incorrectly interpreted. Additional information is requested on the following: mass balancing of the facility; ash sampling; correlation of operational data to lab data; ash model/solid waste model calibration/validation; and improvement/Test I data. This article also contains the original author`s reply to the comments and questions.

Eppich, J.D. [HDR Engineering, Irvine, CA (United States); Hecklinger, R.S. [Roy F. Weston, Inc., Valhalla, NY (United States); Winka, M. [NJDEP/DSWM, Trenton, NJ (United States); Feindler, K.S. [Beaumont Environmental Inc., Wheatley Heights, NY (United States)

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sulfur polymer cement for macroencapsulation of mixed waste debris  

SciTech Connect (OSTI)

In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory.

Mattus, C.H.

1998-06-01T23:59:59.000Z

402

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

403

Concord Municipal Light Plant- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

404

River Falls Municipal Utilities- Distributed Solar Tariff  

Broader source: Energy.gov [DOE]

River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

405

Hydraulic waste energy recovery  

SciTech Connect (OSTI)

Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

1990-12-01T23:59:59.000Z

406

Daily Gazette, Schenectady NY Letters to the Editor for Thursday, July 10, 2008 Nothing to fear, and much to gain, from waste-to-energy  

E-Print Network [OSTI]

, and much to gain, from waste-to-energy Schenectady is one of those misguided cities that sends its municipal solid wastes to distant landfills, costing much money, wasting valuable energy and increasing global warming and pollution of our environment. Waste-to-energy (WTE) is safe. I advised the Israel

Columbia University

407

Energy implications of mechanical and mechanicalbiological treatment compared to direct waste-to-energy  

SciTech Connect (OSTI)

Highlights: Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} Savings magnitude is foremost determined by chosen primary energy and materials production. Energy consumption and process losses can be upset by increased technology efficiency. Material recovery accounts for significant shares of primary energy savings. Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanicalbiological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 39.5%, 118% and 18% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

2013-07-15T23:59:59.000Z

408

Waste incinerator to be built on campus By GAVIN WILSON  

E-Print Network [OSTI]

I::---- - - . . Waste incinerator to be built on campus ~~~ By GAVIN WILSON UBC hasapplied streaming of other waste products." The incinerators will be used to dispose of waste solvents and bio. "It is the sensible thing to bring these materials to UBC rather than building three incinerators

Farrell, Anthony P.

409

Waste Inventory for Near Surface Repository (NSR) - 13482  

SciTech Connect (OSTI)

The main characteristics, physical, chemical as well as radiological of the waste intended to be disposed of in the planned NSR are described. This description is mainly based on the waste inventory investigations performed by the Ignalina Nuclear Power Plant (INPP). The four different waste streams to be disposed of in the NSR are described and investigated. (authors)

Vaidotas, Algirdas [Lithuania Enterprise Company Radioactive Waste Management Agency, Luksio 5, Vilnius (Lithuania)] [Lithuania Enterprise Company Radioactive Waste Management Agency, Luksio 5, Vilnius (Lithuania)

2013-07-01T23:59:59.000Z

410

Pierre Y. Julien Stream Rehabilitation  

E-Print Network [OSTI]

Part I - Stream restoration and rehabilitation: 1. Present and discuss important concepts, laws to stream restoration projects. Three Laws of Stream Restoration Example Showing the Impact of Deforestation their Government #12;6 #1 There is no cookbook approach to stream restoration projects. #2 Solutions normally seek

Julien, Pierre Y.

411

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

412

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

413

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

414

Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573  

SciTech Connect (OSTI)

The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

2013-07-01T23:59:59.000Z

415

Secondary Waste Form Down-Selection Data PackageFluidized Bed Steam Reforming Waste Form  

SciTech Connect (OSTI)

The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

2011-09-12T23:59:59.000Z

416

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

417

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect (OSTI)

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

418

Visit of Professor Avraam Karagiannidis to the Toulon Waste-to-Energy plant Toulon-France, December 11, 2009  

E-Print Network [OSTI]

organizes recycling in the greater Toulon area. The Toulon WTE facility is being used also as an argument to promote prevention, reuse and recycling of municipal solid wastes! All recycling and waste collectionVisit of Professor Avraam Karagiannidis to the Toulon Waste-to-Energy plant Toulon-France, December

Columbia University

419

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive waste" means-- (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12

420

Waste Management Facilities Cost Information Report  

SciTech Connect (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste stream" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, Anne K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, Dann [IT Corporation, Albuquerque, NM (United States); Rellergert, Carla A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, Joseph A. [Automated Solutions of Albuquerque, Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

422

An effective waste management process for segregation and disposal of legacy mixed waste at Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2,500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well-defined, properly characterized, and accurately inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this report is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, A.K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, D. [IT Corp., Albuquerque, NM (United States); Rellergert, C.A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-04-01T23:59:59.000Z

423

Influence of assumptions about household waste composition in waste management LCAs  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2013-01-15T23:59:59.000Z

424

Combined Waste Form Cost Trade Study  

SciTech Connect (OSTI)

A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE.

Dirk Gombert; Steve Piet; Timothy Trickel; Joe Carter; John Vienna; Bill Ebert; Gretchen Matthern

2008-11-01T23:59:59.000Z

425

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network [OSTI]

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

426

Waste minimization in the oil and gas industries  

SciTech Connect (OSTI)

Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

Smith, K.P.

1992-01-01T23:59:59.000Z

427

Waste minimization in the oil and gas industries  

SciTech Connect (OSTI)

Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

Smith, K.P.

1992-09-01T23:59:59.000Z

428

Military Munitions Waste Working Group report  

SciTech Connect (OSTI)

This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

Not Available

1993-11-30T23:59:59.000Z

429

Precipitation process for the removal of technetium values from nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, D.D.; Ebra, M.A.

1985-11-21T23:59:59.000Z

430

Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

431

Mora Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

432

Georgia: Data Center and Historic Municipal Building Go Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

433

Chemical treatment of mixed waste at the FEMP  

SciTech Connect (OSTI)

The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

1996-05-01T23:59:59.000Z

434

Chemical treatment of mixed waste can be done.....Today!  

SciTech Connect (OSTI)

The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Dilday, D.; Cook, D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Sattler, J. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

435

Stream aquifer interactions: analytical solution to estimate stream depletions caused by stream stage fluctuations and pumping wells near streams  

E-Print Network [OSTI]

This dissertation is composed of three parts of contributions. Systems of a fully penetrating pumping well in a confined aquifer near a fully penetrating stream with and without streambeds are discussed in Chapter II. In Chapter III, stream-aquifer...

Intaraprasong, Trin

2009-05-15T23:59:59.000Z

436

Federal, Municipal, Universities and Other ESPC Case Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of various federal, municipal, and university case Energy Savings Performance Contracting implementation case studies. Author: National Association of Energy Service...

437

B-Cell waste classification sampling and analysis plan  

SciTech Connect (OSTI)

This report documents the methods used to collect and analyze samples to obtain data necessary to verify and/or determine the radionuclide content of the 324 Facility B-Cell decontamination and decommissioning waste stream.

HOBART, R.L.

1999-09-22T23:59:59.000Z

438

Low-Value Waste Gases as an Energy Source  

E-Print Network [OSTI]

Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

Waibel, R. T.

439

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to enhance waste stream collection. The cost ofthe bins was 2,717. 70. * Light-emitting diode (LED) task lights were purchased to replace fluorescent units with the purpose...