Powered by Deep Web Technologies
Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

2

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Broader source: Energy.gov [DOE]

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

3

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

4

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

5

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

6

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

7

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

8

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

9

Municipal Solid Waste Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

10

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

Broader source: Energy.gov [DOE]

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

11

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

12

Experimental analysis of municipal solid waste samples  

E-Print Network [OSTI]

In the analysis of municipal solid waste consolidation, large-scale devices are usually used to measure the compression and hydraulic conductivity parameters. The use of those devices is justified due to difficulties in probing undisturbed samples...

Mendoza Sanchez, Itza

2012-06-07T23:59:59.000Z

13

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

14

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

15

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

16

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

17

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

18

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

19

Energy utilization: municipal waste incineration. Final report  

SciTech Connect (OSTI)

An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

LaBeck, M.F.

1981-03-27T23:59:59.000Z

20

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

. Also, the energy that results from waste combustion is often used to produce heat and/or electricityNonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste

Van den Hof, Paul

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

22

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

23

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

24

Aqueous alteration of municipal solid waste ash  

SciTech Connect (OSTI)

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

25

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Broader source: Energy.gov [DOE]

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

26

E-Print Network 3.0 - art municipal waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion of Municipal Solid Waste," Second Conference... on Municipal, Hazardous and Coal ... Source: Columbia University, Department of Earth and Environmental Engineering,...

27

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

28

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

29

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

30

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

31

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

32

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,7792,074kJkg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290gkg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

33

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

34

Municipal solid waste characteristics and management in Allahabad, India  

E-Print Network [OSTI]

by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

Columbia University

35

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

36

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

37

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

38

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

Not Available

1992-10-01T23:59:59.000Z

39

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

40

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context  

E-Print Network [OSTI]

Composition of Municipal Solid Waste- Need for Thermal Treatment in the present Indian context of estimating heat value of municipal wastes, from the view point of assessing the waste's amenability for thermal treatment in the Indian context at the present juncture. The paper also seeks to reason out

Columbia University

42

Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes  

Science Journals Connector (OSTI)

Abstract In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities.

Gabriela Ionescu; Elena Cristina Rada; Marco Ragazzi; Cosmin M?rculescu; Adrian Badea; Tiberiu Apostol

2013-01-01T23:59:59.000Z

43

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

44

Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste  

Science Journals Connector (OSTI)

Biomass and municipal solid waste offer sustainable sources ... form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil ... an integrated, sustainable waste managemen...

Ren Laryea-Goldsmith; John Oakey; Nigel J Simms

2011-02-01T23:59:59.000Z

45

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network [OSTI]

This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

Mehevec, Adam Wade

2012-06-07T23:59:59.000Z

46

DOE Selects Savannah River Remediation, LLC for Liquid Waste...  

Energy Savers [EERE]

objective of the Liquid Waste contract is to achieve closure of the SRS liquid waste tanks in compliance with the Federal Facilities Agreement, utilizing the Defense Waste...

47

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

48

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems ....  

Science Journals Connector (OSTI)

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems .... ...

1982-08-01T23:59:59.000Z

49

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

50

Control of air pollution emissions from municipal waste combustors  

SciTech Connect (OSTI)

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

51

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the intensive reactor phase, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called final storage quality, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

52

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

53

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect (OSTI)

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

54

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

55

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

56

Hydrogen production by gasification of municipal solid waste  

SciTech Connect (OSTI)

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

57

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect (OSTI)

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

58

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network [OSTI]

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock July 2009 For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among of technologies can be used to create energy from MSW: · Landfill Gas Capture -- Waste in landfills naturally

Columbia University

59

Patterns in Trash: Factors that Drive Municipal Solid Waste Recycling.  

E-Print Network [OSTI]

??Municipal recycling is driven by a variety of factors. Yet how these factors change over time is not well understood. I analyze a suite of (more)

Starr, Jared

2014-01-01T23:59:59.000Z

60

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

far will integrate SWPF with current liquid waste facilities, such as the DWPF and the tanks farms." EM is pleased with the spirit of integration. "A key objective for us over the...

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

62

SRS Liquid Waste Program Partnering Agreement  

Broader source: Energy.gov [DOE]

We the members of the SRS Liquid Waste Partnering Team do hereby mutually agree to work in a collaborative and cooperative manner through open communication and coordination with team members, and...

63

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-Print Network [OSTI]

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment processes well adapted to small rural communities mainly because they are easy to operate

Paris-Sud XI, Université de

64

'Incineration: A burning issue or a load of rubbish? Examining public attitudes to municipal solid waste incineration.  

E-Print Network [OSTI]

??The author set out to investigate public attitudes to municipal solid waste (MSW) incineration. The area chosen for the study was Carlow town, a regional (more)

Dillon, Rachel

2006-01-01T23:59:59.000Z

65

The potential of GHG emission savings for programmatic CDM by municipal solid waste composting in the Western Province - Sri Lanka  

Science Journals Connector (OSTI)

The Western Province (WP) of Sri Lanka, as the most populated province in the country is burdened with a high level of municipal solid waste generation. Out of the 48 administrative local authorities within the WP, only 16 local authorities are practicing municipal solid waste composting. All other local authorities are practicing the most common method of MSW disposal; open dumping. The study was aimed at finding the potential of green house gas emission savings by municipal solid waste composting according to Programmatic Clean Development Mechanism in 32 local authorities of the WP which are not currently practicing MSW composting in order to quantify the certified emission reduction. The daily collection rate of municipal solid waste in the entire WP is around 2,000 tons per day. Biodegradable portion dominates the bulk of municipal solid waste in WP as about 76.30%. There is potential of claiming 231 certified emission reductions annually with regard to MSW composting within the WP.

V.K.D.H. Kariyakarawana; N.J.G.J. Bandara; S. Leelarathne

2014-01-01T23:59:59.000Z

66

Haraldrud Municipal Solid Waste Combustion Plant in Oslo.  

E-Print Network [OSTI]

??This thesis has studied Haraldrud MSW combustion process. Haraldrud is a realcombustion plant burning waste for citizens of Oslo. A thoroughly description ofthe combustion process (more)

Gudim, Simen Johan

2011-01-01T23:59:59.000Z

67

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

68

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

69

Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

70

2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW), INCLUDING NON-RECYCLED PLASTICS (NRP),  

E-Print Network [OSTI]

-to-energy (WTE) plants, 0.27 million tons (0.7%) were used as alternative fuel in cement production, and 32 Earth Engineering Center (EEC) Report to the American Chemistry Council (ACC) which was based on U.S. 2008 data and quantified the energy and economic value of municipal solid wastes (MSW) and non

Columbia University

71

Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

none,

1992-10-01T23:59:59.000Z

72

Savannah River Site's Liquid Waste Operations Adds Multi-Functional...  

Office of Environmental Management (EM)

now been filled. The SDUs play an essential role in the closure of the 45 liquid waste tanks on the site. About 90 percent of the waste in these tanks is salt waste that must be...

73

Ventilation System to Improve Savannah River Site's Liquid Waste Operations  

Broader source: Energy.gov [DOE]

AIKEN, S.C. The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

74

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

Science Journals Connector (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the citys urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592kgcapita?1day?1. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

Guadalupe Gmez; Montserrat Meneses; Lourdes Ballinas; Francesc Castells

2009-01-01T23:59:59.000Z

75

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

SciTech Connect (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita{sup -1} day{sup -1}. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%)

Gomez, Guadalupe [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Meneses, Montserrat [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Ballinas, Lourdes [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Castells, Francesc [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain)], E-mail: francesc.castells@urv.cat

2009-07-15T23:59:59.000Z

76

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

77

Evaluation of HC1 measurement techniques at municipal and hazardous-waste incinerators  

SciTech Connect (OSTI)

Hydrogen chloride (HC1) emissions from hazardous waste incinerators are regulated by the EPA, and the Agency is considering HC1 regulations for municipal waste combustors. Until recently, techniques to adequately quantify these emissions using either instrumentation or wet-chemistry sampling methods have not been evaluated. The EPA has sponsored several field tests to assess the performance of commercially-available HC1 continuous emission monitoring systems (CEMS's) and a proposed manual sampling and analysis methodology for use at municipal and hazardous waste incinerators. Tests were performed (1) to determine the capability of HC1 CEMS's to provide valid measurement data, (2) to develop HC1 CEMS performance specifications, and (3) to develop a suitable performance test method.

Shanklin, S.A.; Steinsberger, S.C.; Logan, T.J.; Rollins, R.

1990-01-01T23:59:59.000Z

78

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner  

Science Journals Connector (OSTI)

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner ... Furthermore, the experiences of the waste incineration industry driven in the past by regulatory as well as technical issues may facilitate their commercial potentials outside the common market, especially in highly populated developing countries such as Korea with scarce landfill sites. ... Recently, several new technologies that involve gasification or combinations of pyrolysis, combustion, and gasification processes are currently being brought into the market for energy-efficient, environmentally friendly and economically sound methods of thermal processing of wastes. ...

Tae-Heon Kwak; Seungmoon Lee; Sanjeev Maken; Ho-Chul Shin; Jin-Won Park; Young Done Yoo

2005-08-24T23:59:59.000Z

79

Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste  

Science Journals Connector (OSTI)

Abstract The aim of this work is to study the feasibility and operational performance of plasmatron (plasma torch) gasification of municipal solid waste mixed with raw wood (MSW/RW) derived from the pretreatment of Steam Mechanical Heat Treatment (SMHT), as the target material (MRM). A 10kW plasmatron reactor is used for gasification of the MRM. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2min of reaction time, with relatively high reaction rates. The syngas yield is between 88.59 and 91.84vol%, and the recovery mass ratio of syngas from MRM is 45.19 down to 27.18wt% with and without steam with the energy yields of 59.07111.89%. The concentrations of gaseous products from the continuous feeding of 200g/h are stable and higher than the average concentrations of the batch feeding of 10g. The residue from the plasmatron gasification with steam is between 0 and 4.52wt%, with the inorganic components converted into non-leachable vitrified lava, which is non-hazardous. The steam methane reforming reaction, hydrogasification reaction and Boudouard reaction all contribute to the increase in the syngas yield. It is proved that MSW can be completely converted into bioenergy using SMHT, followed by plasmatron gasification.

Je-Lueng Shie; Li-Xun Chen; Kae-Long Lin; Ching-Yuan Chang

2014-01-01T23:59:59.000Z

80

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies  

SciTech Connect (OSTI)

This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

none,

1992-10-01T23:59:59.000Z

82

The effect of developing nations' municipal waste composition on PCDD/PCDF emissions from open burning  

Science Journals Connector (OSTI)

Abstract Open burning tests of municipal waste from two countries, Mexico and China, showed composition-related differences in emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/PCDFs). Twenty-six burn tests were conducted, comparing results from two laboratory combustion facilities. Waste was shredded to isolate composition-specific effects from those due to random waste orientation. Emissions ranged from 5 to 780ng toxic equivalent/kg carbon burned (ng TEQ (kg Cb)?1) with an average of 140ng TEQ (kg Cb)?1 (stdev=170). The waste from Mexico (17ng TEQ (kg Cb)?1) had a statistically lower average emission factor than waste from China (240ng TEQ (kg Cb)?1. This difference was attributed primarily to waste composition differences, although one time-integrated combustion quality measure, ?CO/?CO2, showed statistical significance between laboratories. However, waste composition differences were far more determinant than which laboratory conducted the tests, illustrated using both statistical techniques and comparison of cross-over samples (wastes tested at both facilities). Comparison of emissions from previous waste combustion tests in Sweden and the U.S.A, showed emission factors within the range of those determined for Mexico and China waste. For laboratory-scale combustion, existing emission factors and test methodologies are generally applicable to both developed and developing countries.

Lisa Lundin; Brian Gullett; William F. Carroll Jr.; Abderrahmane Touati; Stellan Marklund; Heidelore Fiedler

2013-01-01T23:59:59.000Z

83

Boiler tube failures in municipal waste-to-energy plants  

SciTech Connect (OSTI)

Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

84

Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals  

Science Journals Connector (OSTI)

A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. ... highly suitable as a feedstock for conversion to fuel, fe...

Michael H. Eley; Gerald R. Guinn; Joyita Bagchi

1995-09-01T23:59:59.000Z

85

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

86

Application of Geographical Information System (GIS) in optimisation of waste collection for Alandur Municipality in South Chennai, India  

Science Journals Connector (OSTI)

The population outburst in urban areas had resulted in a substantial increase in the generation of Municipal Solid Waste (MSW) and challenged with waste management. Issam et al. (2007) pointed out that most of the cities which is burning the waste in open dumps lacks in proper health and safety requirements. Alandur which is under Alandur Municipal Corporation (AMC) generate nearly 80 MT MSW every day. Due to improper institutional mechanism for collection and conveyance of waste, an engineered design for storage, collection and conveyance using GIS incorporating route optimisation had been discussed in this paper.

T.E. Kanchanabhan; Srinivasan Selvaraj; V. Lenin Kalyana Sundaram; J. Abbas Mohaideen

2011-01-01T23:59:59.000Z

87

Multiple regression analysis for the estimation of energy content of municipal solid waste  

Science Journals Connector (OSTI)

A regression equation is proposed to predict the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) from the waste data of 86 cities of 35 countries. A mathematical model is developed, by using Statistical Package for Social Sciences (SPSS-10.0), to correlate the energy content of waste with the variables derived from its physical composition. Performance of the proposed multiple regression model is superior to available models. For validation, the proposed model is applied to the waste data of Jaipur City (India), nine cities of EEC countries and also to the MSW of USA. Energy content values obtained by proposed regression model and Modified Dulong's Equation (MDE) are closer to the measured mean energy content values for EEC countries compared to the values obtained by Khan's method. Objective of the paper is to propose a simple model, which can replace the lengthy MDE and which has universal applicability for the predication of HHVs.

G.D. Agrawal; A.P.S. Rathore; A.B. Gupta

2007-01-01T23:59:59.000Z

88

Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries  

Science Journals Connector (OSTI)

Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants. This is particularly true for developing countries. Emission factors for \\{POPs\\} such as PCDD/PCDF, dioxin-like polychlorinated biphenyls (dl-PCB) and penta- and hexachlorobenzenes (PeCBz/HCB) from open burning of municipal solid waste in China and Mexico are reported herein. Six different waste sources were studied varying from urban-industrial to semi-urban to rural. For PCDD/PCDF, the emission factors to air ranged from 3.0 to 650ngTEQkg?1waste and for dl-PCB from 0.092 to 54ngTEQkg?1waste. Emission factors for PeCBz (171200ngkg?1waste) and HCB (241300ngkg?1waste) spanned a wide but similar range. Within the datasets there is no indication of significant waste composition effect on emission factor with the exception of significantly higher Mexico rural samples.

Tingting Zhang; Heidelore Fiedler; Gang Yu; Gustavo Solorzano Ochoa; William F. Carroll Jr.; Brian K. Gullett; Stellan Marklund; Abderrahmane Touati

2011-01-01T23:59:59.000Z

89

Vitrified municipal waste as a host form for high-level nuclear waste  

Science Journals Connector (OSTI)

Using glass as a safe and long term hosting matrix for hazardous wastes and for the immobilization of heavy metals and nuclear wastes has become an attractive method [3]. The most known glasses used as nuclear waste

N. A. El-Alaily; E. M. Abou-Hussein

2014-01-01T23:59:59.000Z

90

Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?  

SciTech Connect (OSTI)

The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

2012-11-15T23:59:59.000Z

91

Municipal solid waste energy conversion study on Guam and American Samoa  

SciTech Connect (OSTI)

In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

Not Available

1984-03-31T23:59:59.000Z

92

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

SciTech Connect (OSTI)

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

93

Stabilisation of biodried municipal solid waste fine fraction in landfill bioreactor  

Science Journals Connector (OSTI)

The biodrying process of solid waste is a pre-treatment for the bio-stabilisation of the municipal solid waste. This study aims to investigate the fate of the municipal solid waste fine fraction (MSWFF) resulting from a biodrying treatment when disposed in landfills that are operated as bioreactors. Biodried MSWFF was apparently stable due to its low moisture content that slows down the microbial activity. The lab-scale anaerobic bioreactors demonstrated that a proper moisture content leads to a complete biodegradation of the organic matter contained in the biodried MSWFF. Using a pilot-scale landfill bioreactor (LBR), MSWFF stabilisation was achieved, suggesting that the leachate recirculation could be an effective approach to accomplish the anaerobic biodegradation and biostabilisation of biodried MSWFF after landfilling. The biostabilisation of the material resulting from the LBR treatment was confirmed using anaerobic and aerobic stability indices. All anaerobic and aerobic indices showed a stability increase of approximately 80% of the MSWFF after treatment in the LBR. The similar values of OD7 and BMP stability indices well agree with the relationship between the aerobic and anaerobic indices reported in literature.

Selene Grilli; Andrea Giordano; Alessandro Spagni

2012-01-01T23:59:59.000Z

94

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

95

Strategies for continuous monitoring of hydrogen chloride emissions from municipal solid-waste incinerators  

SciTech Connect (OSTI)

The paper presents a discussion of sampling and analytical techniques for continuous monitoring of hydrogen chloride (HCl) emissions from incineration sources. The discussion focuses on commercially available systems for sample conditioning and measurement. Six HCl continuous-emission monitors were evaluated at a municipal facility for solid-waste incineration. Field-test results indicate that several techniques for continuous monitoring of HCl concentrations are available. Most of the analyzers tested, regardless of the detection or calibration techniques, indicated the same trend in the effluent HCl concentrations and produced data that was in good agreement with wet-chemistry results.

Jernigan, J.R.; Shanklin, S.; Rollins, R.; Logan, T.J.; Midgett, M.R.

1988-04-01T23:59:59.000Z

96

Evaluation of a sequential aerobic??anaerobic treatment of municipal solid waste in a bioreactor landfill  

Science Journals Connector (OSTI)

A sequential aerobic-anaerobic bioreactor landfill was operated and monitored over a period of 184 days. The bioreactor was filled with 120 kg of organic fraction of Municipal Solid Waste. Leachate recirculation was applied. The results showed rapid degradation of organic matter with rapid settlement during the aerobic period. The initial COD and BOD5 were reduced from 46,500 and 41,500 mg/L to 9000 and 6000 mg/L, respectively, within one month. The SO42? concentration, during the anaerobic period, was decreased from 1500 mg/L to 250 mg/L. The sequential treatment had positive effects on nitrification and denitrification efficiencies.

Aris Nikolaou; Apostolos Giannis; Evangelos Gidarakos

2011-01-01T23:59:59.000Z

97

Existing data on the 216-Z liquid waste sites  

SciTech Connect (OSTI)

During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.

Owens, K.W.

1981-05-01T23:59:59.000Z

98

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Broader source: Energy.gov (indexed) [DOE]

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

99

Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics  

Science Journals Connector (OSTI)

Abstract Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

JeongIn Gug; David Cacciola; Margaret J. Sobkowicz

2014-01-01T23:59:59.000Z

100

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus  

Science Journals Connector (OSTI)

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus ... When the reaction kinetics is not known, a rigorous reactor and multiphase equilibrium based on the minimization of the total Gibbs free energy of the product mixture (an RGibbs block) is preferred to predict the equilibrium composition of the produced syngas. ... Catalytic steam gasification of municipal solid waste (MSW) to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. ...

Miaomiao Niu; Yaji Huang; Baosheng Jin; Xinye Wang

2013-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

SciTech Connect (OSTI)

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Chanakya, H.N. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India)], E-mail: chanakya@astra.iisc.ernet.in; Sharma, Isha [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Ramachandra, T.V. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

2009-04-15T23:59:59.000Z

102

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

103

The multiple market-exposure of waste management companies: A case study of two Swedish municipally owned companies  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market that determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.

Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se [Department of Service Management, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden); Bramryd, Torleif [Department of Environmental Strategy, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden)

2012-09-15T23:59:59.000Z

104

Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content  

Science Journals Connector (OSTI)

Abstract The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization.

Barbara Scaglia; Silvia Salati; Alessandra Di Gregorio; Alberto Carrera; Fulvia Tambone; Fabrizio Adani

2013-01-01T23:59:59.000Z

105

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

106

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

107

Detection of free liquid in containers of solidified radioactive waste  

DOE Patents [OSTI]

A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

Greenhalgh, Wilbur O. (Richland, WA)

1985-01-01T23:59:59.000Z

108

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

109

A direct steam heat option for hydrothermal treatment of municipal solid waste  

SciTech Connect (OSTI)

A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

Thorsness, C.B.

1995-04-12T23:59:59.000Z

110

A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels  

Science Journals Connector (OSTI)

Pelletized recovered solid waste fuel is often applied in gasification systems to provide feedstock with a stabilized quality and high heating value and to avoid the bridging behavior caused by high moisture content, low particle density, and irregular particle size. However, the swelling properties and the sticky material generated from pyrolysis of the plastic group components also tend to trigger bridging in the retorting zone. It is well known that the plastic group materials, which occupy a considerable proportion of municipal solid waste, can melt together easily even under low temperature. This study investigates the pyrolysis behaviors of typical recovered solid waste pellets, including the devolatilization rate, heat transfer properties, char properties, and swelling/shrinkage properties, in a small fixed-bed facility over a wide temperature range, from 900C to 450C. The results are also compared with those from wheat straw pellets, a typical cellulosic fuel. Moreover, the SEM images and BET analysis of the char structure are further analyzed to provide additional explanation for the mechanisms of swelling/shrinkage phenomena observed during heating.

Chunguang Zhou; Qinglin Zhang; Leonie Arnold; Weihong Yang; Wlodzimierz Blasiak

2013-01-01T23:59:59.000Z

111

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

112

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

SciTech Connect (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

113

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

114

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

115

Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility  

SciTech Connect (OSTI)

Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

1998-06-01T23:59:59.000Z

116

Modeling and comparative assessment of municipal solid waste gasification for energy production  

SciTech Connect (OSTI)

Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

2013-08-15T23:59:59.000Z

117

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility  

Broader source: Energy.gov [DOE]

AIKEN, S.C. Officials with the EM program at Savannah River Site (SRS) recently announced a key milestone in preparation for the startup of the Salt Waste Processing Facility (SWPF): workers installed more than 1,200 feet of new transfer lines that will eventually connect existing liquid waste facilities to SWPF.

118

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

119

China's Scientific Investigation for Liquid Waste Treatment Solutions  

SciTech Connect (OSTI)

Post World War II created the nuclear age with several countries developing nuclear technology for power, defense, space and medical applications. China began its nuclear research and development programs in 1950 with the establishment of the China Institute of Atomic Energy (CIAE) located near Beijing. CIAE has been China's leader in nuclear science and technical development with its efforts to create advanced reactor technology and upgrade reprocessing technology. In addition, with China's new emphasis on environmental safety, CIAE is focusing on waste treatment options and new technologies that may provide solutions to legacy waste and newly generated waste from the full nuclear cycle. Radioactive liquid waste can pose significant challenges for clean up with various treatment options including encapsulation (cement), vitrification, solidification and incineration. Most, if not all, nuclear nations have found the treatment of liquids to be difficult, due in large part to the high economic costs associated with treatment and disposal and the failure of some methods to safely contain or eliminate the liquid. With new environmental regulations in place, Chinese nuclear institutes and waste generators are beginning to seek new technologies that can be used to treat the more complex liquid waste streams in a form that is safe for transport and for long-term storage or final disposal. [1] In 2004, CIAE and Pacific Nuclear Solutions, a division of Pacific World Trade, USA, began discussions about absorbent technology and applications for its use. Preliminary tests were conducted at CIAE's Department of Radiochemistry using generic solutions, such as lubricating oil, with absorbent polymers for solidification. Based on further discussions between both parties, it was decided to proceed with a more formal test program in April, 2005, and additional tests in October, 2005. The overall objective of the test program was to apply absorbent polymers to various waste streams to determine leach rates, stability (immobilization), effective bonding ratios, compression capability, waste minimization and effects of irradiation on the solidified samples. (authors)

Liangjin, B.; Meiqiong, L. [China Institute of Atomic Energy, P.O. Box 275(87), Beijing, 102413 (China); Kelley, D. [Pacific Nuclear Solutions, 450 East 96th Street, Suite 335, Indianapolis, Indiana 46240 (United States)

2006-07-01T23:59:59.000Z

120

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland  

Science Journals Connector (OSTI)

Abstract For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (5060%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

M. Horttanainen; N. Teirasvuo; V. Kapustina; M. Hupponen; M. Luoranen

2013-01-01T23:59:59.000Z

122

Process for immobilizing radioactive boric acid liquid wastes  

DOE Patents [OSTI]

A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

Greenhalgh, Wilbur O. (Richland, WA)

1986-01-01T23:59:59.000Z

123

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

124

Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach  

SciTech Connect (OSTI)

Highlights: 110 French incinerators are compared with LCA based on plant-specific data. Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

2013-12-15T23:59:59.000Z

125

Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors  

SciTech Connect (OSTI)

Highlights: The use of an passively aerated reactor enables effective stabilization of OFMSW. Convective air flow does not inhibit the aerobic stabilization of waste. The use of an passively aerated reactor reduces the heat loss due to convection. The volume of supplied air exceeds 1.72.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcys equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.72.88-fold.

Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

2014-02-15T23:59:59.000Z

126

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

127

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

128

Design Case Summary: Production of Mixed Alcohols from Municipal...  

Office of Environmental Management (EM)

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via...

129

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

130

The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case  

SciTech Connect (OSTI)

The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

Park, Sangwon; Choi, Jun-Ho [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jinwon, E-mail: jwpark@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

2011-08-15T23:59:59.000Z

131

Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.

Fernandez, Jose M., E-mail: joseman@sas.upenn.edu [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States); Plaza, Cesar; Polo, Alfredo [Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain); Plante, Alain F. [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States)

2012-01-15T23:59:59.000Z

132

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect (OSTI)

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

133

E-Print Network 3.0 - antimony sbfrom municipal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

municipal... solid waste in a municipal waste combustor (MWC). In an attempt to "turn the tide", officials from Polk Source: Columbia University - Waste-to-Energy Research and...

134

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

135

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12 defining High Level Waste: For the purpose of this statement of policy, "high-level liquid radioactive

136

Municipal solid waste management in the Southern Province of Sri Lanka: Problems, issues and challenges  

SciTech Connect (OSTI)

This paper describes the problems, issues and challenges faced by Sri Lanka based on the outcome of a recent study conducted in the country's Southern Province. The study consists of a public survey, discussions with local authority staff involved in waste management, discussions with Provincial Council and Government officials, dialogue with local politicians, review of documents and field observations. The study revealed that only 24% of the households have access to waste collection and that in rural areas it was less than 2%. A substantial number of households in areas without waste collection expect local authorities to collect their waste. The study also showed that most sites in the province are under capacity to handle any increased demand. Urgent and immediate improvement of the waste disposal sites is necessary to meet the current demand for improved waste collection. The study also revealed that there is a high willingness of people for home composting.

Vidanaarachchi, Chandana K. [Department of Civil and Environmental Engineering, University of Melbourne, Parkville, Vic. 3010 (Australia)]. E-mail: c.vidanaarachchi@civenv.unimelb.edu.au; Yuen, Samuel T.S. [Department of Civil and Environmental Engineering, University of Melbourne, Parkville, Vic. 3010 (Australia); Pilapitiya, Sumith [World Bank (Colombo Office), P.O. Box 1761, Colombo 3 (Sri Lanka)

2006-07-01T23:59:59.000Z

137

The Savannah River Site's liquid radioactive waste operations involves the man  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site's liquid radioactive waste operations involves the management of space in the Site's Site's liquid radioactive waste operations involves the management of space in the Site's 49 underground waste tanks, including the removal of waste materials. Once water is removed from the waste tanks, two materials remain: salt and sludge waste. Removing salt waste, which fills approximately 90 percent of the tank space in the SRS tank farms, is a major step toward closing the Site's waste tanks that currently contain approximately 38 million gallons of waste. Due to the limited amount of tank space available in new-style tanks, some salt waste must be dispositioned in the interim to ensure sufficient tank space for continued sludge washing and to support the initial start-up and salt processing operations at the Salt Waste Processing Facility (SWPF).

138

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan

2014-01-01T23:59:59.000Z

139

Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

140

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect (OSTI)

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su Fan, Xueping Zhang, Qing Zhang, Jiping Chen *  

E-Print Network [OSTI]

Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su February 2009 Available online 21 March 2009 Keywords: MSWIs PCDD/Fs Congener patterns Emission factor a b s t r a c t Gas emission of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD

Columbia University

142

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

143

Critical review of size-reduction and separation equipment used on municipal solid waste  

E-Print Network [OSTI]

municipal refuse for further processing as incineration, pyrolysis or biodegradation. Combinations of separation and size-reduction steps often are referred to as "front-end" systems because this is the first step in the overall con- version process... refuse for further processing by incineration, pyrolysis or biodegradation methods in the conversion and recovery of energy products and resources. Because of this first position in the overall conversion system, such com- binations of separation...

Chin, Billy Show-Ming

1975-01-01T23:59:59.000Z

144

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

145

Leaching behavior and possible resource recovery from air pollution control residues of fluidized bed combustion of municipal solid waste  

SciTech Connect (OSTI)

Ash residues are generated at several points during combustion of municipal solid waste (MSW), i.e., in cyclones, electrostatic precipitators and fabric filters. Such residues are of a complex physical and chemical nature and are often enriched in soluble salts and heavy metals such as Pb, Cd and Zn. Fluidized bed combustion (FBC) of MSW is a relatively new technique and very little information is available about the leaching behavior of its residues. In this study, the total elemental composition, mineralogy and leaching behavior of cyclone and bag-house filter ashes from a bubbling fluidized bed (BFB) boiler fired with municipal solid waste have been investigated. In addition, the possibilities of recovery heavy metals from these ashes were studied. The long-term leaching behavior of the ash constituents was evaluated using a two-step batch leaching test known as the CEN-test, whereas short and medium term leaching behavior was evaluated using a Column test. The extraction of elements from cyclone and filter ashes with various acidic solutions was also investigated. The leaching behavior of acid washed ashes was evaluated using the CEN test. The cyclone ash was mainly composed of aluminosilicate minerals, whereas the filter ash consisted of chlorides and hydroxides of alkali and alkaline earth metals. The concentration of heavy metals such as Zn, Cu, Cd and Pb was higher in the filter ash than in the cyclone ash. The leached amounts of sulfates and Pb from the cyclone ash decreased with leaching test contact time, indicating the formation of secondary mineral phases. Large amounts of chlorides, sulfates, Ca, Cu and Pb were leached from the filter ash. Acid extraction removed large amounts ({gt}50%) of Zn, Pb and Cu from the filter ash and approximately 56% of the total amount of Zn present in the cyclone ash. An efficient removal of heavy metal species from these types of ashes can probably be achieved by application of a recycling or multi-step process.

Abbas, Z.; Andersson, B.A.; Steenari, B.M.

1999-07-01T23:59:59.000Z

146

Mercury in Municipal Solid Waste in China and Its Control: A Review  

Science Journals Connector (OSTI)

Regulation on mercury content limitation for batteries; China Light Industry Association: Beijing, China, 1997. ... The 2015 scheme 2 assumes mercury use by the battery industry is reduced to 26 Mg,(95) and mercury use by the lighting industry increases to 90 Mg (due to market growth), while the production and disposal patterns of mercury-containing medical devices are the same as the base case. ... Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, elec. ...

Hefa Cheng; Yuanan Hu

2011-12-02T23:59:59.000Z

147

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

148

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

149

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

150

Solute transport under steady and transient conditions in biodegraded municipal solid waste  

E-Print Network [OSTI]

for water movement, presented in a previous paper, and a strict convective solute flux law. The waste medium is conceptualized as a three-domain system consisting of a mobile domain (channels), an immobile fast domain, and an immobile slow domain. The mobile...

Bendz, David; Singh, Vijay P.

151

Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste  

E-Print Network [OSTI]

EXPERIMENTAL. . 26 PGNAA Assembly. Detection System Background Determination of Detector Shielding. Self-Shielding. Optimal Bag Size and Orientation. . . . . . . . . . . . . . . Detection Limit and Sensitivity. . . . . . . . . . . . . . . . Neutron Flux... solid waste. This study modified a previous setup that was in a shadow- shield arrangement using Pu-Be neutron sources by: more elaborate detector shielding to reduce background levels; and, irradiating the target bilaterally. The system background...

Dendahl, Katherine Hoge

2012-06-07T23:59:59.000Z

152

The feasibility of source segregation as the first step for a municipal solid waste disposal scheme  

E-Print Network [OSTI]

Analysis Incineration. Pyrolysis Composting. Anaerobic Digestion. Material Recovery. . 28 . 28 . 29 . 30 ~ 30 . 49 . 53 . 61 CHAPTER V APPLICATION AND IMPLEMENTATION. Waste Stream Balance. . . Collection Equipment Implementation of Source... Factor A. . 71 Materials Value Versus Compost Valu Factor B. . 74 LIST OF PLATES Plate Page Water-wall Incinerator Schematic. ~ ~ 33 Nodular Incinerator Schematic. . . 34 RDF Process Flowchart ~ ~ 35 Pyrolysis Process Schematic. 50 Pyrolysis...

Fiedler, Charles Walter

1982-01-01T23:59:59.000Z

153

Resource recovery potential from secondary components of segregated municipal solid wastes  

E-Print Network [OSTI]

(MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash for decentralized biogas plants to be operated in the vicinity. We characterized the fermen- tation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using

Columbia University

154

Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool  

Science Journals Connector (OSTI)

Abstract The establishment of an integrated rational waste management system is a complex issue, which has to be clearly investigated and a widespread variety of environmental, social and economic criteria should be taken into consideration. Each different waste treatment alternative provides a specific environmental, social and economic performance. Therefore, the crucial environmental, social and economic criteria need to be identified, estimated and thoroughly examined. In this manuscript, mechanical biological aerobic treatment without RDF energy recovery, mechanical biological anaerobic treatment and incineration with energy recovery are compared and finally ranked according to their environmental, social and economic performance. Analytical hierarchical process was used to rank the performance in three examined pillars in the capacity range of 7090kt. Incineration with energy recovery provides best performance due to the high amount of generated energy, whereas the other two options provide less capital costs. However, the performance of each treatment alternative is strongly dependent on the selection and weight of criteria.

I.-S. Antonopoulos; G. Perkoulidis; D. Logothetis; C. Karkanias

2014-01-01T23:59:59.000Z

155

Boiler tube failures in municipal waste-to-energy plants: Case histories  

SciTech Connect (OSTI)

Waste-to-energy plants experienced boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls with superheat, adopted from coal-firing technology. The fireside attack by chlorine and sulfur compounds in the refuse combustion products caused many forced outages in early European plants with high steam temperatures and pressures. In spite of conservative steam conditions in the first US plants, some failures occurred. As steam temperatures increased in later US plants, corrosion problems multiplied. Over the years these problems have been alleviated by covering the waterwalls with either refractories or weld overlays of nickel-base alloys and using high nickel-chromium alloys for superheater tubes. Various changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped to minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1995-12-01T23:59:59.000Z

156

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

157

Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds  

Science Journals Connector (OSTI)

Combustion of biomass and municipal solid wastes is one of the key areas in the global cleaner energy strategy. But there is still a lack of detailed and systematically theoretical study on the packed bed burning of biomass and municipal solid wastes. The advantage of theoretical study lies in its ability to reveal features of the detailed structure of the burning process inside a solid bed, such as reaction zone thickness, combustion staging, rates of individual sub-processes, gas emission and char burning characteristics. These characteristics are hard to measure by conventional experimental techniques. In this paper, mathematical simulations as well as experiments have been carried out for the combustion of wood chips and the incineration of simulated municipal solid wastes in a bench-top stationary bed and the effects of primary air flow rate and moisture level in the fuel have been assessed over wide ranges. It is found that volatile release as well as char burning intensifies with an increase in the primary air flow until a critical point is reached where a further increase in the primary air results in slowing down of the combustion process; a higher primary airflow also reduces the char fraction burned in the final char-burning-only stage, shifts combustion in the bed to a more fuel-lean environment and reduces CO emission at the bed top; an increase in the moisture level in the fuel produces a higher flame front temperature in the bed at low primary air flow rates.

Y.B Yang; V.N Sharifi; J Swithenbank

2004-01-01T23:59:59.000Z

158

Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill  

Science Journals Connector (OSTI)

Abstract The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 20072012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream?s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 20072010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 20102012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F for determining water toxicity should be considered. Microtox showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

A. Melnyk; K. Kukli?ska; L. Wolska; J. Namie?nik

2014-01-01T23:59:59.000Z

159

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

160

Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria  

SciTech Connect (OSTI)

Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

Quina, Margarida J., E-mail: guida@eq.uc.pt [Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, 3030-790 Coimbra (Portugal); Bordado, Joao C.M. [Department of Chemical and Biological Engineering, IBB, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Quinta-Ferreira, Rosa M. [Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, 3030-790 Coimbra (Portugal)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Savannah River Remediation, LLC for Liquid Waste DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site December 8, 2008 - 4:58pm Addthis Washington, D.C. -The U.S. Department of Energy (DOE) today announced the award to Savannah River Remediation, LLC as the liquid waste contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $3.3 billion over the entire contract, consisting of a base period of six years, plus an option to extend for up to two additional years. The base performance period of the contract will be from April 1, 2009 through March 31, 2015. A 90-day transition period will begin January 2, 2009.

162

DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Savannah River Remediation, LLC for Liquid Waste DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site December 8, 2008 - 4:58pm Addthis Washington, D.C. -The U.S. Department of Energy (DOE) today announced the award to Savannah River Remediation, LLC as the liquid waste contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $3.3 billion over the entire contract, consisting of a base period of six years, plus an option to extend for up to two additional years. The base performance period of the contract will be from April 1, 2009 through March 31, 2015. A 90-day transition period will begin January 2, 2009.

163

Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator  

SciTech Connect (OSTI)

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

Deckers, Jan; Mols, Ludo [Belgoprocess NV, Operations Department, Gravenstraat 73, B-2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

164

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

165

Clean energy from municipal solid waste. ERIP technical progress report {number_sign}6  

SciTech Connect (OSTI)

The ground carbonized RDF slurry from the grinding trials at IKA Works at approximately 50 wt.% solids was sealed in drums and shipped to the Energy and Environmental Research Corporation (EER) for the dioxin/furan and trace heavy metal combustion tests. In addition, a fuel characterization and trace component analysis was completed for this final carbonized RDF slurry fuel. This final fuel was a blend of several fuels from the pilot scale slurry carbonization experiments. As can be seen from the data, the final carbonized RDF has an exceptional heating value and volatile matter content. In addition, trace components are significantly lower than the raw RDF pellets. The report summarizes results from combustion tests and air pollution monitoring of these tests. For the upcoming time period 10/96--01/97, it is anticipated that the analysis of the dioxin/furan and trace heavy metal combustion test will be completed. This analysis includes rheology and particle size distribution analysis of the carbonized RDF slurry fuel, carbon content and TCLP of the combustion ash, trace heavy metal balances around combustor, and dioxin/furan emissions. Finally, the slurry carbonization computer model and computer simulations will be completed in the next reporting period (including the waste water treatment subsystem). Based upon this computer model, initial economic estimates and optimizations of the slurry carbonization process will be completed in the next reporting period.

NONE

1996-10-08T23:59:59.000Z

166

Clean energy from municipal solid waste. Technical progress report number 3  

SciTech Connect (OSTI)

Development of the computer models for slurry carbonization have begun and were based upon the collected data (mass balances, yield, temperatures, and pressures) from the previous pilot plant campaigns. All computer models are being developed with Aspen`s SpeedUp{trademark} software. The primary flow sheet with major alternatives has been developed and the majority of equipment descriptions and models, cost algorithms, and baseline parameters have been input to SpeedUp. The remaining modeling parameters will be input in the next reporting period and the initial flow sheet skeleton and model will be completed. The computer models will focus on optimizing capital and operating costs, and evaluating alternative waste water recycling technologies. The weaknesses of the previous pilot plant data and the data required for design of the commercial demonstration facility were identified. The identified weaknesses of the existing data included mass balance precision and accuracy, reactor residence time control (i.e. reactor level control), reactor temperature variations, and air entrainment in the feed RDF slurry. To improve mass balance precision and accuracy, an alternative carbonization gas flow meter will be designed and installed on the pilot plant. EnerTech`s carbonization gas flow meter design has been submitted to the EERC for final approval. In addition, an appropriate number of feed RDF samples will be characterized for moisture content just prior to the next pilot plant run to estimate incoming moisture variation. A pumping test also will be performed with the feed RDF slurry to determine the amount of air entrainment with the feed slurry.

Klosky, M.

1996-01-05T23:59:59.000Z

167

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

168

Preliminary characterization of deposits formed on super heater surfaces in an FBC-boiler fired with municipal solid waste  

SciTech Connect (OSTI)

A preliminary study of the chemical and mineralogical composition of deposits formed on super heater tubes in a CFB fired with 100% sorted municipal solid waste has been carried out. Samples of deposits formed on both the windward and leeward side of the tubes were analyzed with the aim to identify the ash species involved in fouling and to get information about chemical interaction between the tube alloys and the deposits. The metal temperatures in the super heater region were in the range 460--540 C during the sampling period. The identified deposit constituents show the importance of alkali metal chlorides in the deposit forming process. Alkali metal chlorides (NaCl and KCl) were found both on the windward side deposits and on the leeward side. Other components were CaSO{sub 4}m MgO and some oxide and phosphate compounds. Some of these components have probably been formed through reaction between the alloy and the deposit but more work will be done in co-operation with the Competence Centre for High Temperature Corrosion, Sweden in order to elucidate such interactions and the influence of deposits on the corrosion rates. The presence of chlorides on an alloyed steel at the temperatures used here may cause a rapid deterioration of the protective oxide scale on the alloy. First, a layer of molten chlorides may dissolve species from the protective oxide layer on the steel tube. Secondly, corrosion may occur according to a mechanism called active oxidation, which involves diffusion of chlorine to the metal/oxide interface and breakdown of the scale due to formation of new products.

Steenari, B.M.; Lindqvist, O.; Andersson, B.A.

1999-07-01T23:59:59.000Z

169

Power estimation and reliability evaluation of municipal waste water and self-excited induction generator-based micro hydropower generation system  

Science Journals Connector (OSTI)

This paper presents power estimation and reliability evaluation of the micro hydro power generation system based on municipal waste water. Self-excited induction generator was used in the developed power plant, situated at IIT (BHU) campus, Varanasi, India. The hydro potential of the waste water flowing through sewage system of the Banaras Hindu University has been determined for annual flow duration and daily flow duration curves by ordering the recorded waste water from maximum to minimum flows. This paper estimates output power and determines reliability indices like: failure rate, repair rate, MTTF, MTTR and MTBF of the MWW-based developed generation plant. Design parameters of the SEIG with suitable values of the capacitor have been used and recommended for improvement of the power generation quality and reliability of the system.

Lokesh Varshney; R.K. Saket; Saeid Eslamian

2013-01-01T23:59:59.000Z

170

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect (OSTI)

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

171

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

172

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

173

Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Liquid Waste Process Savannah River Site Liquid Waste Process June 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM Sahid C. Smith Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process June 2009 ACKNOWLEDGEMENTS The Review Team thanks Ms. Sonitza Blanco, Team Lead Planning and Coordination Waste Disposition Project U.S. Department of Energy Savannah River Operations Office and Mr. Pete Hill, Liquid Waste Planning Manager for Washington Savannah River Company, for their

174

The mathematical modelling of biomethane production and the growth of methanogenic bacteria in batch reactor systems fed with organic municipal solid waste  

Science Journals Connector (OSTI)

A mathematical model was developed and validated for an anaerobic digestion system of the Organic Fraction of Municipal Solid Wastes (OFMSWs) by using a laboratory-scale system of two Packed Bed Reactors (PBRs). The equations were obtained by the mass balances of methanogenic bacteria of affluent and effluent lixiviated, as well as the interior in each reactor. The methane rate was obtained by multiplying the methanogenic activity. A differential equation was fitted with experimental results to obtain the parameters that best describe methanogenic behaviour. These kinetic parameters were used with the modified logistic equation with the special case n = 1.

Liliana Alzate-Gaviria; Antonino Perez-Hernandez; Hector M. Poggi-Varaldo; P.J. Sebastian

2009-01-01T23:59:59.000Z

175

Contact glow discharge electrolysis for liquid waste processing  

E-Print Network [OSTI]

for an alka- line water electrolysis at a small pin verticaldischarge electrolysis applied to waste water treatment.water treatment induced by plasma with contact glow discharge electrolysis.

Sharma, Neeraj

2014-01-01T23:59:59.000Z

176

PROBABILITY BASED CORROSION CONTROL FOR LIQUID WASTE TANKS - PART III  

SciTech Connect (OSTI)

The liquid waste chemistry control program is designed to reduce the pitting corrosion occurrence on tank walls. The chemistry control program has been implemented, in part, by applying engineering judgment safety factors to experimental data. However, the simple application of a general safety factor can result in use of excessive corrosion inhibiting agents. The required use of excess corrosion inhibitors can be costly for tank maintenance, waste processing, and in future tank closure. It is proposed that a probability-based approach can be used to quantify the risk associated with the chemistry control program. This approach can lead to the application of tank-specific chemistry control programs reducing overall costs associated with overly conservative use of inhibitor. Furthermore, when using nitrite as an inhibitor, the current chemistry control program is based on a linear model of increased aggressive species requiring increased protective species. This linear model was primarily supported by experimental data obtained from dilute solutions with nitrate concentrations less than 0.6 M, but is used to produce the current chemistry control program up to 1.0 M nitrate. Therefore, in the nitrate space between 0.6 and 1.0 M, the current control limit is based on assumptions that the linear model developed from data in the <0.6 M region is applicable in the 0.6-1.0 M region. Due to this assumption, further investigation of the nitrate region of 0.6 M to 1.0 M has potential for significant inhibitor reduction, while maintaining the same level of corrosion risk associated with the current chemistry control program. Ongoing studies have been conducted in FY07, FY08, FY09 and FY10 to evaluate the corrosion controls at the SRS tank farm and to assess the minimum nitrite concentrations to inhibit pitting in ASTM A537 carbon steel below 1.0 molar nitrate. The experimentation from FY08 suggested a non-linear model known as the mixture/amount model could be used to predict the probability of corrosion in ASTM A537 in varying solutions as shown in Figure 1. The mixture/amount model takes into account not only the ratio (or mixture) of inhibitors and aggressive species, but also the total concentration (or amount) of species in a solution. Historically, the ratio was the only factor taken into consideration in the development of the current chemistry control program. During FY09, an experimental program was undertaken to refine the mixture/amount model by further investigating the risk associated with reducing the minimum molar nitrite concentration required to confidently inhibit pitting in dilute solutions. The results of FY09, as shown in Figure 2, quantified the probability for a corrosion free outcome for combinations of nitrate and nitrite. The FY09 data predict probabilities up to 70%. Additional experimental data are needed to increase the probability to an acceptable percentage.

Hoffman, E.; Edwards, T.

2010-12-09T23:59:59.000Z

177

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

178

Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999  

SciTech Connect (OSTI)

A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

Maddox, J.J.; Scott, C.B.

2000-03-01T23:59:59.000Z

179

US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative  

SciTech Connect (OSTI)

This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

Dyer, R.S. [Environmental Protection Agency, Washington, DC (United States); Penzin, R. [Association for Advanced Technologies, Moscow (Russian Federation); Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Sorlie, A. [Norwegian Radiation Protection Authority, Osteras (Norway)

1996-12-31T23:59:59.000Z

180

Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission  

Broader source: Energy.gov (indexed) [DOE]

Role of Liquid Waste Pretreatment Technologies in Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission W. R. Wilmarth March 5 2009 March 5, 2009 HLW Corporate Board Phoenix AZ HLW Corporate Board, Phoenix, AZ Co-authors M. E. Johnson, CH2M Hill Plateau Remediation Company G. Lumetta, Pacific Northwest National Laboratory N Machara DOE Office of Engineering and Technology N. Machara, DOE Office of Engineering and Technology M. R. Poirier, Savannah River National Laboratory P C S DOE S h Ri P. C. Suggs, DOE Savannah River M. C. Thompson, Savannah River National Laboratory, Retired Retired 2 Background Separations is a fundamental business within DOE. The role of separations today is to expedite waste retrieval The role of separations today is to expedite waste retrieval, processing and closure. Recognized as part of E&T Roadmap

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect (OSTI)

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

182

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect (OSTI)

Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

2005-06-15T23:59:59.000Z

183

Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027  

SciTech Connect (OSTI)

About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9?11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 ?m. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

Hsiao, Hsien-Ming; Pen, Ben-Li [Chemical Engineering Division, Institute of Nuclear Energy Research, P.O. Box 3-7, Longtan 32546 Taiwan, Republic of China (China)] [Chemical Engineering Division, Institute of Nuclear Energy Research, P.O. Box 3-7, Longtan 32546 Taiwan, Republic of China (China)

2013-07-01T23:59:59.000Z

184

ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and  

E-Print Network [OSTI]

, The Texas A&M University System. #12;Pumping Pumping from the lagoon should be conducted annually, at least the designed life of sludge storage, frequent agitation and pumping may be necessary. In addition, solidsL ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage

Mukhtar, Saqib

185

Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal  

SciTech Connect (OSTI)

Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

2008-07-01T23:59:59.000Z

186

A Full-scale Study on the Partitioning of Trace Elements in Municipal Solid Waste IncinerationEffects of Firing Different Waste Types  

Science Journals Connector (OSTI)

The changes in waste composition were applied by adding (one-by-one): dedicated waste fractions, comprising road salt (NaCl), household batteries, automotive shredder waste, CCA (copper?chromate?arsenate)-impregnated wood, PVC, and, shoes, to a base-load waste. ... What is left after removing recyclables from vehicles is shredded. ... Automotive shredder waste (residues) is then the light shredder fraction from the airflow separator that separates it from the heavier metallic fraction, which is fully recyclable as a secondary raw material. ...

Anne J. Pedersen; Flemming J. Frandsen; Christian Riber; Thomas Astrup; Sren N. Thomsen; Kasper Lundtorp; Leif F. Mortensen

2009-03-23T23:59:59.000Z

187

Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste  

E-Print Network [OSTI]

wastes and contaminated sites is an important economic and environmental problem. The regula- tions, France Abstract The management of contaminated soils and wastes is a matter of considerable human concern (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic

Mailhes, Corinne

188

External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site Liquid Waste Process Hanford Site Liquid Waste Process September 2009 Monica C. Regalbuto Office of Waste Processing DOE/EM Kevin G. Brown Vanderbilt University and CRESP David W. DePaoli Oak Ridge National Laboratory Candido Pereira Argonne National Laboratory John R. Shultz Office of Waste Processing DOE/EM External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process September 2009 Acknowledgements The Review Team thanks Mr. Glyn Trenchard, Team Lead for Planning and Coordination Waste Disposition Project, U.S. Department of Energy--Office of River Protection, Mr. Paul Rutland, RPP System Planning Manager for Washington River Protection Solutions, and Mr. Ernie Lee,

189

The effect of changing waste compositions on the incineration process of Municipal Solid Wastes in packed-bed systems: a CFD approach  

Science Journals Connector (OSTI)

With the recent changes in waste management policy across many EU countries, more and more efforts are now being made on wastes recycling and minimisation. In this paper, the effects of the changing compositions of wastes on the operation of incineration plants are addressed. CFD technique is used to simulate the incineration processes in grate systems and advanced mathematical models are employed. The incineration characteristics have been expressed as functions of the percentage of combustible materials in wastes taken away for recycling. To offset the deteriorated performance of incineration in some cases, alternative operation modes have been suggested and simulated.

Yao Bin Yang; Vida N. Sharifi; Jim Swithenbank

2007-01-01T23:59:59.000Z

190

Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274  

SciTech Connect (OSTI)

Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)] [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

191

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect (OSTI)

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

192

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

193

Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312  

SciTech Connect (OSTI)

Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

2012-07-01T23:59:59.000Z

194

Economic impact analysis for proposed emission standards and guidelines for municipal waste combustors: A description of the basis for, and impacts of, proposed revisions to air pollutant emission regulations for new and existing municipal waste combustors under Clean Air Act Sections 111(b), 111(d), and 129. Final report  

SciTech Connect (OSTI)

EPA is proposing revised and expanded air pollutant emission standards for new, and guidelines for existing, municipal waste combustors (MWCs), pursuant to Sections 111(b), 111(d), and 129 of the Clean Air Act of 1990. The regulations will replace or supplement those promulgated by EPA on February 11, 1991. The standards and guidelines will apply to MWCs with a capacity to combust 35 or more Mg of municipal solid waste per day. The pollutants to be regulated are particulate matter (total and fine), opacity, sulfur dioxide, hydrogen chloride, oxides of nitrogen, carbon monoxide, lead, cadmium mercury, and dibenzofurans and dioxins. The report describes the standards and guidelines, their potential economic impacts, and related matters. EPA estimates the national annual cost of the standards in 1994 will be $44 million, plus the cost of the 1991 standards, $157 million, for a total of $201 million. EPA estimates the equivalent cost of the guidelines at $280 million plus $168 million for a total of $448 million.

Jellicorse, B.L.; Dempsey, J.L.

1994-03-01T23:59:59.000Z

195

Microsoft PowerPoint - S05-07_Varona_Solid-Liquid Waste Interface.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Interface Monitor Liquid Interface Monitor (SLIM) Jose Varona D. Roelant, A. Awwad, D. McDaniel Florida International University's Applied Research Center EM Waste Processing Technical Exchange November 17, 2010 Print Close Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States government (Department of Energy, Office of Environmental Management, under Grant No. DE-FG01-05EW07033). Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,

196

SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486  

SciTech Connect (OSTI)

This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France)] [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France); Fournel, B.; Barre, Y. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France)] [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Huc, V. [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)] [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)

2013-07-01T23:59:59.000Z

197

Physicochemical Processes Occurring in Long-Term Storage of Liquid Radioactive Waste in Deep Underground Collector Beds  

Science Journals Connector (OSTI)

Interaction under hydrothermal conditions (pressure 3 MPa; temperature 80-170C; contact time up to 2500 h) of intermediate-level acidic waste with bed rock of the underground repository for liquid radioactive...

E. V. Zakharova; E. P. Kaimin; E. N. Darskaya; K. A. Menyailo

2001-07-01T23:59:59.000Z

198

Identification and differentiation of individual beta emitters in waste mixtures by liquid scintillation spectrometry  

E-Print Network [OSTI]

carbon-14, tritium, and iodine-125 liquid scintillation wastes, provided that the activity and isotopes present can be documented. This legislation has generated a significant interest in developing a quick, cost efficient method of identificatior.... Differentiation of various components within a two isotope mixture, and the detection level of a small activity of one nuclide in a large activity of a second radioisotope was examined. A catalogue of spectra, including the isotopic ratio of each component...

Siskel, Robin Lynn

1988-01-01T23:59:59.000Z

199

EA-437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory  

Broader source: Energy.gov (indexed) [DOE]

437; Environmental Assessment Process Equipment Waste and 437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory TABLE OF CONTENTS Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory 1. INTRODUCTION 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2.1 Purpose and Need of the Proposed Action 2.2 Description of the Affected Facilities 2.3 Description of Proposed Action 2.4 Alternatives to the Proposed Action 2.5 Separate But Related Actions 3. AFFECTED ENVIRONMENT 3.1 Introduction 3.2 Physical Environment 3.3 Biological Resources 3.4 Cultural Resources 3.5 Environmental Quality and Monitoring Programs

200

Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178  

SciTech Connect (OSTI)

In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)

Prod'homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Waste-to-Energy Workshop Agenda  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key technical barriers to the commercial deployment of liquid transportation fuels from waste feedstocks. As a part of this effort, BETO is organizing a Waste-to-Energy Roadmapping workshop. Workshop participants will join facilitated breakout sessions to discuss anaerobic digestion, hydrothermal liquefaction, and other processes that make productive use of wastewater residuals, biosolids, foodstuffs, and organic municipal solid waste. These discussions will be synthesized and used in developing a waste-to-energy technology roadmap.

202

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

203

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect (OSTI)

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

204

LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION  

SciTech Connect (OSTI)

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very vulnerable. Each of these obstacles can be overcome when there is a common goal and vision shared by all parties and adequate funds are provided to accomplish the task. The upgrading and expansion of this facility and the construction of a similar facility on the Far East coast of Russia will enable the Russians to sign the London Convention dumping prohibition. This project is one of the first waste management construction projects in the north-west of Russia with foreign contribution. Its success may open for additional co-operative projects with Russia in the future.

BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

2000-03-01T23:59:59.000Z

205

Treatment requirements for decontamination of ORNL low-level liquid waste  

SciTech Connect (OSTI)

Experimental studies have been made to provide data for the development of improved processes for decontaminating low-level liquid wastes (LLLWs) that exist and continue to be generated at Oak Ridge National Laboratory. The concept underlying this work is that there is a net benefit if the major radionuclides ({sup 137}Cs, {sup 134}Cs, {sup 90}Sr, and actinides) can be separated into small volumes, thereby reducing the activity of the bulk of the waste so that it can be disposed of or managed at a lower total cost. Data-base calculations on the LLLW supernate and sludges contained in the active Melton Valley Storage Tanks and evaporator storage and service tanks are essential in order to define and determine the extent of the problem. These calculations indicate to what extent alpha- and beta-gamma-emitting radionuclides must be removed and/or treated before final disposition of the waste can be made. They also show that many of the inorganic constitutents (e.g., regulated metals and nitrate) and minor radionuclides such as {sup 14}C and actinides (in terms of quantity present) must be removed before the LLLW can be disposed of as either liquid to the environment or solidified and disposed of as solid NUS Class L-1 or L-2 LLW. 25 refs., 31 tabs.

Lee, D.D.; Campbell, D.O.

1991-10-01T23:59:59.000Z

206

Treatment of low-level radioactive waste liquid by reverse osmosis  

SciTech Connect (OSTI)

The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations.

Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

1995-12-31T23:59:59.000Z

207

Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103  

SciTech Connect (OSTI)

A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

Pool, K.H.; Bean, R.M.

1994-03-01T23:59:59.000Z

208

E-Print Network 3.0 - alkaline waste solutions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

89 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: Leaching of Dioxins from Municipal Waste Combustor Residues June 2004 Dr. Karsten Millrath Research......

209

Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual.

Not Available

1993-06-01T23:59:59.000Z

210

EMSL - liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate...

211

Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste  

SciTech Connect (OSTI)

This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

Trzcinski, Antoine P., E-mail: a.trzcinski05@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom); Stuckey, David C., E-mail: d.stuckey@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom)

2011-07-15T23:59:59.000Z

212

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

none,

1993-05-01T23:59:59.000Z

213

Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

Coenenberg, J.G.

1997-08-15T23:59:59.000Z

214

EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING  

SciTech Connect (OSTI)

One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercurys IDLH or PAC-III levels for future cleaning initiatives.

Brown, A.

2014-04-27T23:59:59.000Z

215

Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL  

SciTech Connect (OSTI)

The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

1990-09-01T23:59:59.000Z

216

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

217

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

least two seconds. The waste heat from the co-processingis drawn from the waste heat of the associated cementSewage sludge drying using waste heat from cement plant flue

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

218

Isolation of metals from liquid wastes: Reactive scavenging in turbulent thermal reactors. 1998 annual progress report  

SciTech Connect (OSTI)

'The objective of this project is to develop the fundamental science base necessary to assess the utility of high-temperature processes to volatilize metals in DOE metal-bearing liquid wastes, so that they can be reactively scavenged by sorbents. The problem is addressed through a collaborative research program involving a team of five senior scientists and their respective laboratories, at four institutions. Specific goals are to: (1) Understand high-temperature reaction kinetics between sorbent substrates and certain volatile and semi-volatile metals in the DOE liquid waste inventory (e.g., Cs and Sr), using a laminar-flow reactor for which extraction of kinetic data is not complicated by turbulence; (2) Develop models to predict both trajectories of individual droplets in turbulent high-temperature reactors, and rates of metal evolution from droplets, and compare model predictions with experimental data from a pilot-scale turbulent thermal reactor; (3) Connect the reaction kinetic models with the droplet trajectory/mass evolution models, in order to predict and optimize metal scavenging processes in turbulent-flow reactors, and to test these combined models against data taken from a turbulent high temperature reactor. This report summarizes work at a point midway through the first year of a 3-year project. At the University of Arizona (UA), two tasks are underway. The first task is concerned with attempting to understand high-temperature reaction kinetics between sorbent substrates and certain volatile and semi-volatile metals. The second task is concerned with applying Kerstein''s One Dimensional Turbulence model to prediction of droplet trajectories in turbulent flow.'

Wendt, J.O.L. [Univ. of Arizona, Tucson, AZ (US); Linak, W.P. [Environmental Protection Agency, Research Triangle Park, NC (US); Kerstein, A.R. [Sandia National Labs., Livermore, CA (US); Pearlstein, A.J.; Scheeline, A. [Univ. of Illinois, Urbana, IL (US)

1998-06-01T23:59:59.000Z

219

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

220

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

NONE

1995-01-01T23:59:59.000Z

222

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

223

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

224

New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134  

SciTech Connect (OSTI)

The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross-flow ultrafiltration membrane, the permeate then goes through a total of 14 fixed ion exchange and adsorbent columns followed by a disposable polishing column to polish the residual isotopes down to allowable levels. At the end of the system, the effluent is filtered for a final time to removal any particulates that may have been picked up from the media columns and then stored prior to analysis. (authors)

Sylvester, Paul; Milner, Tim; Ruffing, Jennifer; Poole, Scott [EnergySolutions, 100 Center Point Circle, Suite 100, Center Point II, Columbia, SC 29210 (United States)] [EnergySolutions, 100 Center Point Circle, Suite 100, Center Point II, Columbia, SC 29210 (United States); Townson, Paul; Jensen, Jesse [EnergySolutions, 2345 Stevens Drive, Suite 240, Richland, WA 99354 (United States)] [EnergySolutions, 2345 Stevens Drive, Suite 240, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

225

Microsoft Word - FINAL 7-12-10 Site Visit Report - LANL Radioactive Liquid Waste Facility FCA.docx  

Broader source: Energy.gov (indexed) [DOE]

Site Visit Report Facility Centered Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility - June 2010 This site visit report documents the results of the Office of Health, Safety and Security's (HSS) review of the Facility Centered Assessment (FCA) of the Los Alamos National Laboratory (LANL) Radioactive Liquid Waste Treatment Facility (RLW). This review, conducted June 9-25, 2010, was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and LANL, and conducted jointly by HSS, LASO, and LANL staff. The Office of Environment, Safety and Health Evaluations was the overall lead organization for evaluation of the FCA process with the participation of the LASO Facility Representative assigned to RLW.

226

Precipitation of cesium jointly with uranium from nitric acid liquid radioactive wastes to obtain solid matrices for long-term storage  

Science Journals Connector (OSTI)

The possibility of converting liquid radioactive wastes containing Cs into chemically and thermodynamically stable...4U5O17...can be prepared by different procedures. The resulting compounds are characterized by ...

Yu. I. Korneiko; A. A. Murzin; O. V. Shmidt

2009-08-01T23:59:59.000Z

227

Evaluation of DMDOHEMA based supported liquid membrane system for high level waste remediation under simulated conditions  

Science Journals Connector (OSTI)

Abstract N,N?-dimethyl-N,N?-dioctyl-2,(2?-hexyloxyethyl) malonamide (DMDOHEMA) has been proposed as solvent for the partitioning of radiotoxic minor actinides from high-level waste (HLW) solutions. The facilitated transport of 241Am(III), 239Pu(IV), 233U(VI), 237Np(V) across supported liquid membrane (SLM) impregnated with DMDOHEMA solution in n-dodecane was investigated under varying conditions of feed acidity, receiver phase composition, carrier concentration, and membrane thickness. Micro porous PTFE membrane was used as the polymeric support. There was a decrease in the transport of metal ions under the pressurized heavy water reactor simulated HLW (PHWR-SHLW) conditions. The physical stability of the SLM impregnated with the carrier was investigated for ~60 days by performing Am(III) permeation studies. Marginal variation in the transport behavior suggested reasonably good stability of the impregnated carrier in the membrane pores. A simple mathematical model has been developed to simulate experimental data and to explain quantitatively the role of different parameters.

Ajay B. Patil; Pankaj Kandwal; V.S. Shinde; P.N. Pathak; P.K. Mohapatra

2013-01-01T23:59:59.000Z

228

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network [OSTI]

composition is 6-percent coal/petcoke/animal meal mix, 16-sawdust Coal, plastic, and tires Tires Petcoke, plastic, andwaste oil Petcoke, sunflower shells, and waste oil Tire

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

229

Impact of Municipal Solid Waste (MSW) Quality on the Behavior of Alkali Metals and Trace Elements during Combustion: A Thermodynamic Equilibrium Analysis  

Science Journals Connector (OSTI)

Light, thermal- and bacterial-resistant, and inexpensive leathers, especially in the footwear industry, are obtained by the Cr tanning method. ... The selected waste items are representing the major combustible fractions found in MSW, i.e. paper, plastic, textile, and biogenic materials (both food and biomass), but also the other waste fraction (a mixed and poorly defined fraction). ... Pedersen et al.(6) studies six different waste fractions separately under different operational conditions in a full-scale incinerator: NaCl (road salt), household batteries, automotive shredder waste (rubber and plastics), Cu?Cr?As (CCA)-impregnated wood, PVC, and shoes (leather mainly). ...

Michae?l Becidan; Lars Srum; Daniel Lindberg

2010-05-21T23:59:59.000Z

230

EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this statement to analyze the environmental and socioeconomic impacts resulting from the Departments proposed action to construct and operate facilities necessary to solidify the liquid high level wastes currently stored in underground tanks at Wes t Valley, New York.

231

German Company Offers to Transform Sofia Waste to Energy The German company AlphaKat has filed a bid at Sofia municipality to construct an  

E-Print Network [OSTI]

is produced from 1.2kg waste and the expenses for 1 liter of diesel from an installation with power 2000 into diesel would cost EUR 65 M. Under their project Sofia would need two installations of that type. The company also claims that the diesel that will be produced from the waste would be of high quality

Columbia University

232

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

233

Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium  

SciTech Connect (OSTI)

A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

None

1980-01-01T23:59:59.000Z

234

E-Print Network 3.0 - aqueous waste streams Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 49 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: Leaching of Dioxins from Municipal...

235

THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION  

SciTech Connect (OSTI)

The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

Wilmarth, B; Sheryl Bush, S

2008-10-31T23:59:59.000Z

236

Projected ocean dumping rates for municipal and industrial wastes in the year 2000. Report for 26 March 1984-26 August 1985  

SciTech Connect (OSTI)

The amounts of coal ash, flue gas desulfurization (FGD) sludge, sewage sludge, industrial waste, and seafood-processing wastes currently ocean dumped were determined, and ocean dumping of these wastes was projected for the year 2000. The projected rates were made using three different scenarios: Scenario I assumed continued ocean dumping only by current permittees, Scenario II assumed some relaxation of ocean dumping regulation, and Scenario III, to provide a maximum estimate, assumed that future ocean-dumping would be based solely on economic considerations. Coal ash and FGD sludge are projected to be the most voluminous waste dumped under Scenarios II and III, and the East coast of the U.S. would produce the greatest amounts to be dumped.

Cura, J.; Menzie, C.; Borchardt, J.

1985-08-01T23:59:59.000Z

237

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

238

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

239

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2012-01-01T23:59:59.000Z

240

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. (Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering); Spence, R.D. (Oak Ridge National Lab., TN (United States))

1993-01-01T23:59:59.000Z

242

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network [OSTI]

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500 (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

243

Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds  

SciTech Connect (OSTI)

Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier to mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.

Phillips, S.J.; Fischer, D.D.; Crawford, R.C. [Westinghouse Hanford Co., Richland, WA (United States); Rising, J.L. [Pacific Northwest Lab., Richland, WA (United States)

1982-06-01T23:59:59.000Z

244

Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids  

SciTech Connect (OSTI)

Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

1994-12-01T23:59:59.000Z

245

State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404  

SciTech Connect (OSTI)

The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

Defferding, L.J.

1980-06-01T23:59:59.000Z

246

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

247

Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion  

SciTech Connect (OSTI)

The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

Dyer, R.S.; Diamante, J.M. [Environmental Protection Agency, Washington, DC (United States). Office of International Activities; Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States)] [and others

1996-07-01T23:59:59.000Z

248

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

249

Savannah River Sites Liquid Waste Operations Adds Multi-Functional Laboratory  

Broader source: Energy.gov [DOE]

AIKEN, S.C. A new multi-functional laboratory supporting high-level waste processing at the Savannah River Site (SRS) gives workers a new and improved place to provide back-up laboratory support and more space for chemical storage.

250

E-Print Network 3.0 - assessment waste characterization Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 > >> 41 Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context Summary: of estimating heat value of municipal wastes, from the view point...

251

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

252

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

253

Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods  

SciTech Connect (OSTI)

The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction.

Dziewinski, J.J.

1998-09-28T23:59:59.000Z

254

E-Print Network 3.0 - ash waste encapsulated Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for By-Products Utilization Collection: Engineering ; Materials Science 49 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: ......

255

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

256

E-Print Network 3.0 - aluminium dross waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copyright 2008 by ASME Proceedings of NAWTEC16 16th Annual North American Waste... analysis of the mass streams and the properties of residual Municipal Solid Waste (MSW)....

257

E-Print Network 3.0 - asme solid waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -21, 2008, Philadelphia, Pennsylvania, USA NAWTEC16-1901 PLASMA ARC GASIFICATION FOR SOLID WASTE DISPOSAL... in municipal solid waste destruction since 1999 in...

258

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

259

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect (OSTI)

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30T23:59:59.000Z

260

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Representation in Municipal Government  

E-Print Network [OSTI]

Municipal governments play a vital role in American democracy, as well as in governments around the world. Despite this, little is known about the degree to which cities are responsive to the views of their citizens. In ...

Tausanovitch, Chris

2014-07-30T23:59:59.000Z

262

Solid Waste Planning and Recycling Act (Illinois)  

Broader source: Energy.gov [DOE]

It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

263

Flowsheet model for the electrochemical treatment of liquid radioactive wastes. Final report  

SciTech Connect (OSTI)

The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95 percent destruction. The flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

Hobbs, D.T. [Westinghouse Savannah River Co., Aiken, SC (United States); Prasad, S.; Farell, A.E.; Weidner, J.W.; White, R.E. [South Carolina Univ., Columbia, SC (United States). Dept. of Chemical Engineering

1995-12-31T23:59:59.000Z

264

Development of low level liquid waste treatment systems: April-September 1981  

SciTech Connect (OSTI)

The pilot plant reverse osmosis system was demonstrated to be effective in removing large percentages of cobalt-60, iodine-125, and a mixture of cesium-137, cobalt-60, and iodine-125 from two types of aqueous streams. The effectiveness of three membrane porosities, 0, 50, and 97% salt rejection, were explored with each isotope. The 97% salt rejection membrane was the most effective in each experiment. Removals as high as 97.5% of the cobalt, 92.9% of the iodine and 95.1% of the combined isotopes were achieved. The effect of possibly interfering factors on the adsorbence of cobalt-60 and iodine-129 on selected ion exchange resins were investigated. The factors thought to affect cobalt-60 adsorption were (OH/sup -/), (NH/sub 4//sup +/), and (SO/sub 3//sup =/). None of the seven factors investigated had any effect on iodine-129 adsorption. Cesium-137 was removed from a 4600-gal aqueous waste containing a large amount of sodium hydroxide by treatment with sodium tetraphenyl boron. The cesium concentration of the supernatant portion was reduced from 570 to 4 counts/min/ml.

Williams, M.K.; Colvin, C.M.; Bond, W.H.

1982-03-05T23:59:59.000Z

265

Waste IncIneratIon and Waste PreventIon  

E-Print Network [OSTI]

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity emissions annu- ally. About 50 percent of the energy contained in residual municipal waste comes from- sions from the fossil waste fraction and the fos- sil energy purchased from external sources

266

Managing America`s solid waste  

SciTech Connect (OSTI)

This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

Not Available

1998-03-02T23:59:59.000Z

267

Studies on fish waste management practices in Aroor Seafood Industrial Belt, Kerala and conversion of seafood waste into a liquid plant growth supplement.  

E-Print Network [OSTI]

??This study was materialized to analyze the management issues regarding the seafood processing waste generated including its impact on the coastal community in one of (more)

Abhilash, S

2013-01-01T23:59:59.000Z

268

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

269

Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.  

SciTech Connect (OSTI)

It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

Ehst, D.; Nuclear Engineering Division

2010-08-04T23:59:59.000Z

270

Report No. PA 14 of 2008 Compliance to rules governing municipal solid, bio-medical and plastic  

E-Print Network [OSTI]

-medical and plastic waste Objective 5: Whether effective compliance to rules/laws regulating municipal solid waste, bio-medical waste and plastic waste was taking place in the state. The United Nations Conference of 2008 54 · The Recycled Plastics Manufacture and Usage Rules were notified in 1999 with an amendment

Columbia University

271

Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal  

E-Print Network [OSTI]

Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

Hunt, Andrew Robert

2007-01-01T23:59:59.000Z

272

Clean energy from municipal solid waste  

SciTech Connect (OSTI)

This progress report describes a slurry grinding trial where a carbonized refuse derived fuel was dispersed in water. The RDF slurry produced in this study is to subjected to dioxin combustion tests.

Klosky, M.

1996-07-02T23:59:59.000Z

273

SYNERGIA Forum Integrated Municipal Solid Waste Management  

E-Print Network [OSTI]

ERT Germany "Biogas utilization: Comparison between sanitary landfills and anaerobic digestionERT Germany, WTE Plants in Germany" Michael Jakuttis, Dipl.Ing. Wt

Columbia University

274

Tapping Resources in Municipal Solid Waste  

Science Journals Connector (OSTI)

...operation: ferrous losses in the light fraction resulting from air classifica-tion...by air classifica-tion into light and heavy fractions, and the 20 FEBRUARY 1976 MINOR...screening after fracture in a shredder. It lends itself well to gravity...

S. L. Blum

1976-02-20T23:59:59.000Z

275

Anaerobic digestion of organic solid waste for energy production.  

E-Print Network [OSTI]

??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms (more)

Nayono, Satoto Endar

2009-01-01T23:59:59.000Z

276

Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616  

SciTech Connect (OSTI)

Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

2013-07-01T23:59:59.000Z

277

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

278

On the effect of demographic characteristics on the formulation of solid waste charging policy  

E-Print Network [OSTI]

On the effect of demographic characteristics on the formulation of solid waste charging policy A. Karagiannidis *, A. Xirogiannopoulou, N. Moussiopoulos Laboratory of Heat Transfer and Environmental Engineering of municipal charges in Greece, as the fees paid by municipal waste producers to the municipal authorities

Columbia University

279

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network [OSTI]

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

280

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, Radioactive Waste Management Manual. This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Capacity-to-Act in India's Solid Waste Management and Waste-to-  

E-Print Network [OSTI]

, for example, Oppili, P., "Waste Burning, A Health Hazard at Pallikaranai," The Hindu, Sept. 9, 2003; "MPPCB1 Capacity-to-Act in India's Solid Waste Management and Waste-to- Energy Industries Perinaz Bhada and disposal of garbage, or municipal solid waste, compounded by increasing consumption levels. Another serious

Columbia University

282

Resource-Limited Multiattribute Value Analysis of Alternatives for Immobilizing Radioactive Liquid Process Waste Stored in Saluggia, Italy  

Science Journals Connector (OSTI)

This large Italian public works project started with the development of engineering data to support the evaluation of three alternatives for processing nuclear waste. After an analysis of the alternatives' performance from an engineering perspective ... Keywords: EUREX, Sogin, alternatives, applications, decision analysis, decision making, decision theory, energy, environment, multiattribute value analysis, nuclear waste

Alan J. Brothers; Shas V. Mattigod; Denis M. Strachan; Gordon H. Beeman; Paul K. Kearns; Angelo Papa; Carlo Monti

2009-06-01T23:59:59.000Z

283

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1993-01-01T23:59:59.000Z

284

Low-Level Liquid Waste Processing Pilot Studies Using a Vibratory Shear Enhancing Process (VSEP) for Filtration  

SciTech Connect (OSTI)

A previous EPRI study evaluated potential treatment methods for the removal of iron from BWR waste streams. Of the methods investigated, high shear filtration using the vibratory shear-enhanced process (VSEP) showed the most promise to effectively and economically remove high iron concentrations from backwash receiving tank waste. A VSEP filter uses oscillatory vibration to create high shear at the surface of the filter membrane. This high shear force significantly improves the filter's resistance to fouling thereby enabling high throughputs with very little secondary waste generation. With a VSEP filter, the waste feed stream is split into two effluents- a permeate stream with little or no suspended solids and a concentrate stream with a suspended solids concentration much higher than that of the feed stream. To evaluate the feasibility of using a VSEP concept for processing typical high iron containing BWR radwaste, a surrogate feedstream containing up to 1,700 ppm iron oxide (as Fe2O3) was used. This surrogate waste simulates radioactive waste found at Exelon's Limerick and Peach Bottom (powdered resin condensate) plants, and in Hope Creek's (deep bed condensate) radwaste systems. Testing was done using a series L (laboratory scale) VSEP unit at the manufacturer's and contractor's laboratories. These tests successfully demonstrated the VSEP capability for producing highly concentrated waste streams with totally ''recyclable'' permeate (e.g., greater than 95% recovery).

Bushart, S.; Tran, P.; Asay, R.

2002-02-25T23:59:59.000Z

285

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the melter handling system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal...

286

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

287

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

288

Assessment of fission product content of high-level liquid waste supernate on E-Area vault package criteria  

SciTech Connect (OSTI)

This report assesses the tank farm`s high level waste supernate to determine any potential impacts on waste certification for the E-Area vaults (EAV). The Waste Acceptance Criteria procedure (i.e., WAC 3.10 of the 1S manual) imposes administrative controls on radioactive material in waste packages sent to the EAV, specifically on six fission products. Waste tank supernates contain various fission products, so any waste package containing material contaminated with supernate will contain these radioactive isotopes. This report develops the process knowledge basis for characterizing the supernate composition for these isotopes, so that appropriate controls can be implemented to ensure that the EAV WAC is met. Six fission products are listed in the SRS 1S Manual WAC 3.10: Se-79, which decays to bromine; Sr-90, which decays to niobium; Tc-99, which decays to ruthenium; Sn-126, which decays to tellurium; I-129, which decays to xenon; and Cs-137, which decays to barium.

Brown, D.F.

1994-06-30T23:59:59.000Z

289

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

290

South Carolina Municipalities - Green Power Purchasing | Department of  

Broader source: Energy.gov (indexed) [DOE]

South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing South Carolina Municipalities - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State South Carolina Program Type Green Power Purchasing Provider Santee Cooper Santee Cooper's Green Power Program was launched in September of 2001. All of the state's 20 electric cooperatives and the City of Georgetown participate in the Green Power Program, which is Green-e accredited. The renewable resources sold under the Green Power Program are comprised of 99% landfill gas (methane) and less than 1% solar energy. Santee Cooper is currently using landfill gas (methane) to produce electricity at six facilities in South Carolina: Horry Solid Waste

291

Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review  

SciTech Connect (OSTI)

Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

Miller, C.J.

1995-03-01T23:59:59.000Z

292

Watertown Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Watertown Municipal Utilities Jump to: navigation, search Name: Watertown Municipal Utilities Place: South Dakota References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

293

Illinois Municipal Electric Agency- Electric Efficiency Program  

Broader source: Energy.gov [DOE]

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

294

Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...  

Broader source: Energy.gov (indexed) [DOE]

Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon....

295

Savannah River Site Achieves Waste Transfer First  

Broader source: Energy.gov [DOE]

AIKEN, S.C. The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

296

The largest radioactive waste glassification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

297

E-Print Network 3.0 - aqueous waste sites Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Collection: Energy Storage, Conversion and Utilization 43 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: -disposal site in the U.S. accepting...

298

E-Print Network 3.0 - american ref-fuel waste-to-energy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 50 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: 12, 12th North American...

299

E-Print Network 3.0 - american waste-to-energy conference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 20 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: 12, 12th North American...

300

Potential use of feebate systems to foster environmentally sound urban waste management  

SciTech Connect (OSTI)

Waste treatment facilities are often shared among different municipalities as a means of managing wastes more efficiently. Usually, management costs are assigned to each municipality depending on the size of the population or total amount of waste produced, regardless of important environmental aspects such as per capita waste generation or achievements in composting or recycling. This paper presents a feebate (fee+rebate) system aimed to foster urban waste reduction and recovery. The proposal suggests that municipalities achieving better results in their waste management performance (from an ecological viewpoint) be recompensated with a rebate obtained from a fee charged to those municipalities that are less environmentally sound. This is a dynamic and flexible instrument that would positively encourage municipalities to reduce waste whilst increasing the recycling.

Puig-Ventosa, Ignasi

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Guide to Clean Development Mechanism Projects Related to Municipal Solid  

Open Energy Info (EERE)

Guide to Clean Development Mechanism Projects Related to Municipal Solid Guide to Clean Development Mechanism Projects Related to Municipal Solid Waste Management Jump to: navigation, search Tool Summary Name: A Guide to Clean Development Mechanism Projects Related to Municipal Solid Waste Management Agency/Company /Organization: United Nations Economic and Social Commission for Asia and the Pacific Sector: Energy, Land Focus Area: - Landfill Gas, - Waste to Energy Topics: Implementation, Co-benefits assessment Resource Type: Guide/manual, Lessons learned/best practices Website: www.unescap.org/esd/environment/publications/cdm/Guide.pdf UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

302

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

303

Solid Waste Management (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

304

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network [OSTI]

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

305

Fuel Gas Production from Organic Wastes by Low Capital Cost Batch Digestion  

Science Journals Connector (OSTI)

The technical background is reviewed on energy recovery from biomass--i.e., all organic wastes, especially municipal solid wastes, but also including agricultural residues and crops grown specifically for ener...

Donald L. Wise; Alfred P. Leuschner

1986-01-01T23:59:59.000Z

306

Optimization of ethanol production from spent tea waste by Saccharomyces cerevisiae using statistical experimental designs  

Science Journals Connector (OSTI)

The aim of this study was to investigate the prospect for the use of spent tea waste (STW), an important municipal waste, as a potential substrate to generate hydrolysates for fuel ethanol production. Acid pretre...

Yasin Ycel; Sezer Gyc?nc?k

2014-07-01T23:59:59.000Z

307

Emissions of metals, chromium and nickel species, and organics from municipal waste-water-sludge incinerators. Volume 5. Site 7 test report CEMS evaluation. Final report, 1989-91  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) Office of Water Regulations and Standards (OWRS) has recently revised the risk-based sludge regulations under Section 405d of the Clean Water Act. The revised regulations include a provision for monitoring total hydrocarbon (THC) and/or carbon monoxide (CO) emissions as a surrogate for organic emissions measurements. With the assistance of EPA's Risk Reduction Engineering Laboratory (RREL), OWRS has implemented a research program to investigate the relationship of CO and hydrocarbon emissions and the viability of the monitoring systems used to continuously measure these emissions. The test report presents the results obtained at the Site 7 municipal wastewater treatment facility. The CO and THC emission levels showed good agreement during the test program, i.e., increases in CO are accompanied by increases in THC. The actual correlation coefficients ranged from .73-.93 using one-minute averaged data from six test runs. Comparisons of CO and THC values corrected to 7% oxygen levels do not provide the same measure of correlation (r-values from .11 to .83). Possible explanation of the apparent change in agreement is being investigated further. The report presents uncorrected and corrected emission data in both tabular and graphic formats.

Cone, A.L.; Shanklin, S.A.

1992-03-01T23:59:59.000Z

308

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

/spills and subsequent clean up costs ($20,000) Sewage Sludge Volume Reduction 234,000 Radioactive Waste $910,000 $193,400 $716,600 60,000 gallons of radioactive STP liquid waste could have been disposed of through,000) Digital Imaging System Substitution 282 Hazardous Waste / Radioactive Waste / Industrial Waste $25,000 $25

309

Savannah River Site Achieves Transuranic Waste Disposition Goal...  

Office of Environmental Management (EM)

liquid waste contractor, Savannah River Remediation (SRR): Closed two more underground tanks containing radioactive waste, helping reduce a significant environmental risk to South...

310

Savannah River Site Waste Disposition Project  

Broader source: Energy.gov (indexed) [DOE]

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

311

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

312

HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)  

SciTech Connect (OSTI)

This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

313

Study on separation of platinum group metals from high level liquid waste using macroporous (MOTDGA-TOA)/SiO{sub 2}-P silica-based absorbent  

SciTech Connect (OSTI)

The recovery of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO{sub 2}-P has been developed by impregnating two extractants of N,N'-dimethyl-N,N'-di-n-octyl-thio-diglycolamide (MOTDGA) and tri-n-octylamine (TOA) into a silica/polymer composite support (SiO{sub 2}-P). The adsorption of Ru(III), Rh(III) and Pd(II) have been investigated in simulated HLLW by batch method. The adsorbent has shown good uptake property for Pd(II). In addition, the combined use of MOTDGA and TOA improved the adsorption of Ru(III) and Rh(III) better than the individual use of them. The usability of adsorbent in radiation fields was further confirmed by irradiation experiments. The adsorbent remained to have the uptake capability for PGMs over the absorbed dose of 100 kGy, corresponding with one really adsorbed by the adsorbent, and showed good retention capability for Pd(II) even at the absorbed dose of 800 kGy. The chromatographic separation of metal ions was demonstrated with the adsorbent packed column, there is no influence of Re(VII) (instead of Tc) on the excellent separation behavior of Pd(II). (authors)

Ito, Tatsuya [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibarak319-1195 (Japan); Kim, Seong-Yun; Xu, Yuanlai; Hitomi, Keitaro [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Nagaishi, Ryuji; Kimura, Takaumi [Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibarak319-1195 (Japan)

2013-07-01T23:59:59.000Z

314

Laboratory solvent reuse -- Liquid chromatography  

SciTech Connect (OSTI)

The objective of this work was to develop a method for reduction of waste solvent in the Process Engineering Chemistry Laboratory. The liquid chromatographs are the largest generators of explosive-contaminated waste in the laboratory. We developed a successful process for the reuse of solvents from the liquid chromatographs and demonstrated the utility of the process in the assay of hexanitrostilbene.

Quinlin, W.T.; Schaffer, C.L.

1992-11-01T23:59:59.000Z

315

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

316

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

317

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

318

Massachusetts Municipal Commercial Industrial Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

319

Mansfield Municipal Electric Department - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Mansfield Municipal Electric Department - Residential Energy Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Maximum Rebate $100 limit per customer account for appliances purchased in the same calendar year. Program Info Expiration Date 12/31/2014 State Massachusetts Program Type Utility Rebate Program Rebate Amount Central AC: $100 Refrigerators: $100 Clothes Washing Machines: $100 Dishwashers: $75 Dehumidifiers: $50 Window Air Conditioners: $50 Provider Mansfield Municipal Electric Department Mansfield Municipal Electric Department encourages energy efficiency

320

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

322

Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,  

E-Print Network [OSTI]

-gas emissions, water pollution, air pollution and noise/visual impact (of recycling/waste disposal facilities including construction/demolition, mining, quarrying, manufacturing and municipal waste. Much of the focus

Columbia University

323

American Municipal Power | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Municipal Power Jump to: navigation, search Name American Municipal Power Place Columbus, Ohio Zip 43219 Product AMP is a non-profit corporation that owns and operates electric facilities. AMP purchases wholesale electric power and energy, and develops alternate power resources for its members. References American Municipal Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Municipal Power is a company located in Columbus, Ohio . References ↑ "American Municipal Power" Retrieved from "http://en.openei.org/w/index.php?title=American_Municipal_Power&oldid=342122" Categories: Clean Energy Organizations Companies Organizations Stubs

324

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

325

Management of Solid Waste (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid waste and/or waste tires. The following solid waste disposal facilities require a solid waste permit prior to construction and/or operation: land disposal facilities; solid waste processing facilities, including: transfer stations; solid waste incinerators receiving waste from off-site sources; regulated medical waste

326

Basis for Section 3116 Determination for Salt Waste Disposal...  

Office of Environmental Management (EM)

gallons 1 2 (Mgal) of liquid radioactive waste stored in underground waste storage tanks at SRS. Much of this waste resulted from the reprocessing of spent nuclear fuel for...

327

Hazardous Waste Management (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

328

Bubblers Speed Nuclear Waste Processing at SRS  

ScienceCinema (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2014-08-06T23:59:59.000Z

329

Bubblers Speed Nuclear Waste Processing at SRS  

SciTech Connect (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2010-11-14T23:59:59.000Z

330

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

331

Waste Heat Boilers for Incineration Applications  

E-Print Network [OSTI]

Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

Ganapathy, V.

332

Summary of research on waste minimization studies by Japan Waste Research Foundation (JWRF)  

SciTech Connect (OSTI)

Japan is trying to provide a qualitatively better environment and the treatment of incinerator gas emissions is an indispensable part of pollution prevention programs. Therefore, a large part of incinerator wastes will be disposed of in landfills for municipal solid waste, and volume reduction and stabilization are major items on the technology agenda. For these reasons, the purpose of this research is waste minimization, namely reducing the volume of wastes that must be disposed of in landfills. This is being done by studying ways to use heat treatment to reduce the volume of incinerator ash, to develop technology for the effective use of treated material and to render fly ash and fused salts harmless. In addition, the author seeks to establish more advanced municipal solid waste treatment systems that reduce (slim) waste by using space efficiently and recovering metals in incinerator residue and fly ash for recycling.

Nabeshima, Yoshiro [Tamagawa Univ., Machida City, Tokyo (Japan)] [Tamagawa Univ., Machida City, Tokyo (Japan)

1996-12-31T23:59:59.000Z

333

Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Municipal Alternative Municipal Alternative Fuel Tax Regulation to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Municipal Alternative Fuel Tax Regulation

334

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

335

2011 Municipal Consortium Northwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011.

336

Denton Municipal Electric- Standard Offer Rebate Program  

Broader source: Energy.gov [DOE]

Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

337

Waste2Energy Holdings | Open Energy Information  

Open Energy Info (EERE)

Holdings Holdings Jump to: navigation, search Name Waste2Energy Holdings Place Greenville, South Carolina Zip 29609 Sector Biomass, Renewable Energy Product The Waste2Energy Holdings is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into clean renewable energy. References Waste2Energy Holdings[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Waste2Energy Holdings is a company located in Greenville, South Carolina . References ↑ "Waste2Energy Holdings" Retrieved from "http://en.openei.org/w/index.php?title=Waste2Energy_Holdings&oldid=352938

338

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

339

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

340

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

342

Use of Climate Information in Municipal Drought  

E-Print Network [OSTI]

. Kenney W WA Western Water Assessment Report Number WWA01-06 The University of Colorado and the NationalUse of Climate Information in Municipal Drought Planning in Colorado Roberta Klein Douglas S Oceanic and Atmospheric Administration #12;Klein and Kenney: Municipal Drought Planning 2Western Water

Neff, Jason

343

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

344

E-Print Network 3.0 - aqueous tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

345

Hull Municipal Light Plant | Open Energy Information  

Open Energy Info (EERE)

Municipal Light Plant Municipal Light Plant Jump to: navigation, search Name Hull Municipal Light Plant Place Massachusetts Utility Id 8797 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights Rate 150 WATT Lighting Area Lights Rate 250 WATT Lighting Area Lights Rate 400 WATT Lighting Large Power Rate 35 Industrial Large Power Taxable Rate 39 Industrial Municipal Lighting Rate 33 Lighting Municipal Rate 36 Commercial Residential Rate 31 Residential

346

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Grant Program Rebate Amount Refrigerator Replacement: Up to $100 Second Refrigerator Pickup: $35 CFLs: 3 free replacement bulbs Motors: $0.18/per kWh saved Lighting: $0.20/per kWh saved HVAC: $0.22/per kWh saved Refrigeration: $0.22/per kWh saved Provider Alameda Municipal Power Alameda Municipal Power (AMP) has multiple program in place to help

347

Solid Waste Policies (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policies (Iowa) Policies (Iowa) Solid Waste Policies (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are required to establish and operate a comprehensive solid waste reduction program. These regulations discuss land application of processed wastes as well as requirements for sanitary landfills and for groundwater monitoring near land disposal sites

348

Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Municipal Consortium 0 Municipal Consortium Southwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Municipal Consortium Southwest Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

349

Municipal Utilities' Investment in Smart Grid Technologies Improves...  

Broader source: Energy.gov (indexed) [DOE]

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Municipal Utilities' Investment in Smart Grid Technologies Improves Services and...

350

Municipal Bond - Power Purchase Agreement Model Continues to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar...

351

Business Case for Compressed Natural Gas in Municipal Fleets...  

Broader source: Energy.gov (indexed) [DOE]

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and...

352

Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Municipal Consortium 1 Municipal Consortium Southeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

353

Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Municipal Alternative Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com...

354

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

355

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

356

Montana Hazardous Waste Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

357

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Broader source: Energy.gov (indexed) [DOE]

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

358

SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin  

E-Print Network [OSTI]

1 SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin Advisor: Prof. Nickolas J. Themelis for large Waste-to-Energy (WTE) facilities is combustion on a moving grate of "as-received" municipal solid, in particular, the Energos technology. The Energos technology was developed in Norway, in order to provide

359

Ammonia fiber explosion (AFEX) pretreatment of municipal solid waste components  

E-Print Network [OSTI]

as follows: Combine 50 mL pH 4. 6 1. 0 M citrate buffer 500 mL distilled H, O 1. 8939 g Genencor 300P cellulase or Cytolase 300 5. 695 mL NOVOZYM Beta-glucosidase 03 g sodium azide Complete to 1 L with HrO Adjust pH to 4. 8 with 1. 0 M Na... is found in Appendix 8. 2. Novozym 188 cellobiose with an activity of 250 CBU/mL was added giving a loading of 285 CBU/g dry substrate. Both enzymes contain some sugars that must be subtracted from the sugar yields. A complete procedure is given...

Lundeen, Joseph Eric

2012-06-07T23:59:59.000Z

360

Clean energy from municipal solid waste. Final report  

SciTech Connect (OSTI)

The aim of the project was to demonstrate the environmental and combustion performance advantages of a carbonized refuse derived fuel (RDF) slurry, produced from EnerTech`s slurry carbonization process, using continuous pilot scale equipment and its suitability as an alternative fuel for utility and industrial boilers.

Klosky, M.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gaseous missions rduction from arobic MBT of municipal solid waste  

E-Print Network [OSTI]

recovery (by collecting biogas generated during anaerobic digestion) and/or return of organic matter the composting process, and the sec- ond one focused on the biogas génération from the associated landfill surface fluxes and biogas composition. ineris-00973342,version1-4Apr2014 Author manuscript, published

Boyer, Edmond

362

Kinematic wave model for water movement in municipal solid waste  

E-Print Network [OSTI]

conductivity and capillary potential suggested by Clapp and Hornberger [1978] have been employed. However, as pointed out by Bendz et at. (1997), the process assumptions on which the Richards equation and the ensuing CDE rely for their applicability have... and Environ- mental Impact, edited by T. H. Christensen, R. Cossu, and R. Steg- mann, pp. 29-49, Academic, San Diego, Calif., 1989. Clapp, R. B., and G. M. Hornberger, Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601...

Bendz, David; Singh, Vijay P.; Rosqvist, H??kan; Bengtsson, Lars

363

The Economics of Resource Recovery from Municipal Solid Waste  

Science Journals Connector (OSTI)

...Eq. 2 when the unrecovered fraction is disposed of by incineration...worth of resource recovery in light of other demands such as those...Utilization of the Organic Fraction Figure 4 shows that 47 percent...that the value of the organic fraction as a fuel exactly offsets the...

James G. Abert; Harvey Alter; J. Frank Bernheisel

1974-03-15T23:59:59.000Z

364

Integrated Plant for the Municipal Solid Waste of Madrid  

E-Print Network [OSTI]

such as steam- boiler water treatment, compressed-air, control and instrumentation, etc. The incinerator of the project was to recover the energy content of RDF generated by the recycling plant of the city of Madrid and Composting Plant The MSW is brought by the collecting trucks which unload in the storage area with a two

Columbia University

365

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network [OSTI]

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

366

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

immobilizing liquid and slurry waste. Steve said bulk vitrification has a TRL of five, meaning there have been lab experiments and a similar system has been validated in a relevant...

367

Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials  

E-Print Network [OSTI]

to the oceans is essential if ocean dumping is to be continued. The author has surveyed the available literature, bioassay studies, and pertinent research concerning chronic effects and the risk they impose on the marine ecosystem. The main purpose... OPERATIONS 10 History of Ocean Dumping Corps of Engineers' Letters of No Objection 10 12 Types of Materials Dumped Dredge Spoils Industrial Wastes Municipal Wastes Radioactive Wastes Solid Wastes Military Wastes Construction Debris 13 13 15 15...

Zapatka, Thomas Francis

1976-01-01T23:59:59.000Z

368

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

369

Page 1 of 3 Building or Facility Demolition / Waste Hauling Contractor  

E-Print Network [OSTI]

Page 1 of 3 Building or Facility Demolition / Waste Hauling Contractor Prequalification Procedures member, of a facility together with any related handling operations or the intentional burning held (e.g. PA Residual and Municipal Waste Hauling, etc.). If your company does not haul waste simply

Yener, Aylin

370

Waste to energy facilities. (Latest citations from the NTIS database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

371

Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

372

Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

373

Solid Waste Management (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Management (Kansas) Solid Waste Management (Kansas) Solid Waste Management (Kansas) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct, alter or operate a solid waste processing facility or a solid waste disposal area of a solid waste management system, except for clean rubble disposal sites, without first obtaining a permit from the secretary. Every person desiring to obtain a permit shall make application for such a permit on forms

374

Osage Municipal Utilities Wind | Open Energy Information  

Open Energy Info (EERE)

Osage Municipal Utilities Wind Osage Municipal Utilities Wind Jump to: navigation, search Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage Municipal Utilities Developer Osage Municipal Utilities Energy Purchaser Osage Municipal Utilities Location West of Osage IA Coordinates 43.298363°, -92.84096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.298363,"lon":-92.84096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

376

Municipal Energy Reduction Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

377

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

378

Liquefaction of cellulosic wastes. 6: Oxygen compounds in pyrolytic oil and water fractions  

SciTech Connect (OSTI)

Liquid hydrocarbon oil and water have been produced from the liquefaction of cellulosic matter present in municipal solid wastes. The produced pyrolytic oil and water fraction seemed to be contaminated with considerable amounts of oxygen compounds as compared with fuels derived from a petroleum origin. The oxygen compounds included organic acids (fatty and naphthenic acids), phenols, and carbonyl compounds. These classes of oxygen compounds were extracted selectively from the pyrolytic oils and water using chemical extraction methods. Methyl esters of fatty acids and 2,4-dinitrophenylhydrazones of carbonyl compounds were identified by gas chromatography and thin layer chromatography, respectively. It was suggested that the identified oxygen compounds could be produced from the pyrolysis of volatiles (e.g., levoglucosane, which is the primary product of cellulose depolymerization) via different mechanistic pathways.

Gharieb, H.K.; Faramawy, S.; El-Amrousi, F.A.; El-Sabagh, S.M. [Egyptian Petroleum Research Inst., Cairo (Egypt)

1998-07-01T23:59:59.000Z

379

A new theory of the creation of biomethane from aluminium-containing inorganic wastes  

Science Journals Connector (OSTI)

Energy by-products from the co-combustion of municipal solid waste with coal or biomass are monitored only in terms of oxides; the amount of metallic aluminium is not determined. When these energy by-products are...

Petr Buryan; Tomas Hlincik

2014-10-01T23:59:59.000Z

380

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

382

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

383

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

384

Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Minnesota Municipal Power Agny) (Redirected from Minnesota Municipal Power Agny) Jump to: navigation, search Name Minnesota Municipal Power Agency Place Minnesota Utility Id 12667 Utility Location Yes Ownership A NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Minnesota_Municipal_Power_Agency&oldid=412260

385

Texas Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Agency Municipal Power Agency Jump to: navigation, search Name Texas Municipal Power Agency Place Texas Utility Id 18715 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Texas_Municipal_Power_Agency&oldid=411659" Categories:

386

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

387

American Municipal Power (Public Electric Utilities) - Residential  

Broader source: Energy.gov (indexed) [DOE]

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

388

Woodstock Municipal Wind | Open Energy Information  

Open Energy Info (EERE)

Municipal Wind Municipal Wind Jump to: navigation, search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind Energy Purchaser Xcel Energy Location Woodstock MN Coordinates 44.009957°, -96.100552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.009957,"lon":-96.100552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

New London Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

New London Municipal Utilities New London Municipal Utilities Place Iowa Utility Id 13468 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City All-Electric Residential Residential City Residential Residential General Service and Municipal Commercial Large General Service and Municipal (Demand) Commercial Rural Resident and Farm Residential Rural Resident and Farm All-Electric Residential Security Lights 100w HPS Metered light Lighting

390

2011 Municipal Consortium Southwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 2526, 2011.

391

Municipal performance: does mayoral quality matter?  

E-Print Network [OSTI]

This research addresses the question of what explains municipal performance in terms of delivering social services and fiscal performance. While the existing literature explains governmental performance with political, institutional and socio...

Avellaneda, Claudia Nancy

2009-05-15T23:59:59.000Z

392

2011 Municipal Consortium Northeast Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 1920, 2011.

393

Concord Municipal Light Plant- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

394

2010 Municipal Consortium Southwest Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in Los Angeles on September 30, 2010.

395

2011 Municipal Consortium Southeast Region Workshop Materials  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southeast Region Workshop, held in Tampa, FL, February 1718, 2011.

396

Process removes Sr from nuclear wastes  

Science Journals Connector (OSTI)

Process removes Sr from nuclear wastes ... Scientists at Argonne National Laboratory have devised a chemical process for extracting and recovering strontium-90 from liquid nuclear wastes. ... Argonne chemist E. Philip Horwitz, head of the team, says it could be a significant aid in managing such radioactive wastes. ...

WARD WORTHY

1990-09-10T23:59:59.000Z

397

Daily Gazette, Schenectady NY Letters to the Editor for Thursday, July 10, 2008 Nothing to fear, and much to gain, from waste-to-energy  

E-Print Network [OSTI]

, and much to gain, from waste-to-energy Schenectady is one of those misguided cities that sends its municipal solid wastes to distant landfills, costing much money, wasting valuable energy and increasing global warming and pollution of our environment. Waste-to-energy (WTE) is safe. I advised the Israel

Columbia University

398

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

399

Nebraska Hazardous Waste Regulations (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal restrictions

400

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Georgia Waste Control Law (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Control Law (Georgia) Waste Control Law (Georgia) Georgia Waste Control Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Provider Georgia Department of Natural Resources The Waste Control Law makes it unlawful to dump waste in any lakes, streams

402

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

403

Hazardous Waste Management (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

404

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

405

Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

2006-07-01T23:59:59.000Z

406

Integrated solid waste management of Minneapolis, Minnesota  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

NONE

1995-11-01T23:59:59.000Z

407

NDAA Section 3116 Waste Determinations with Related Disposal...  

Office of Environmental Management (EM)

The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste) are Office of River Protection and...

408

Secondary Waste Forms and Technetium Management  

Broader source: Energy.gov (indexed) [DOE]

Secondary Waste Forms and Secondary Waste Forms and Technetium Management Joseph H. Westsik, Jr. Pacific Northwest National Laboratory EM HLW Corporate Board Meeting November 18, 2010 What are Secondary Wastes? Process condensates and scrubber and/or off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP. Sent from WTP to the Effluent Treatment Facility (ETF) for treatment and disposal Treated liquid effluents under the ETF State Wastewater Discharge Permit Solidified liquid effluents under the Dangerous Waste Permit for disposal at the Integrated Disposal Facility (IDF) Solidification Treatment Unit to be added to ETF to provide capacity for WTP secondary liquid wastes 2 Evaporator Condensate Solution Evaporator Pretreatment Melter SBS/ WESP Secondary

409

To be published in Waste Management (2010) Bodnan et al. MINERALOGY AND PORE WATER CHEMISTRY OF A BOILER ASH  

E-Print Network [OSTI]

) or for burning relatively homogeneous wastes such as sewage sludge (Van de Velden et al., 2008, Toledo et alTo be published in Waste Management (2010) ­ Bodénan et al. MINERALOGY AND PORE WATER CHEMISTRY a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large

Boyer, Edmond

410

Investigation of the organic matter in inactive nuclear tank liquids  

SciTech Connect (OSTI)

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

411

Influence of assumptions about household waste composition in waste management LCAs  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2013-01-15T23:59:59.000Z

412

Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst  

E-Print Network [OSTI]

such as switchgrass, sorghum and miscanthus, agriculture crops such as corn and sugarcane, municipal solid waste, agriculture wastes and forest residues. Energy crops are more preferred since they produce high yield, low fertilizer application requirements and low...), plastic wastes (Bhattacharya et al., 2009; Karaduman et al., 2001; Rutkowski and 7 Kubacki, 2006; Scott et al., 1990), waste biomass like oil cakes (?zbay et al., 2001), energy crops (He et al., 2009), and forest residues (Ingram et al., 2007...

Santos, Bjorn Sanchez

2013-05-01T23:59:59.000Z

413

Oklahoma Municipal Power Authority - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Commercial and Industrial Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $100,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount Matching Funds up to $100,000 Provider Oklahoma Municipal Power Authority The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal

414

The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes  

SciTech Connect (OSTI)

Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, was developed to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution, surface area), and macrostructure (density, compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste.

Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.

2013-06-01T23:59:59.000Z

415

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

416

Canton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Canton Municipal Utilities Canton Municipal Utilities Jump to: navigation, search Name Canton Municipal Utilities Place Mississippi Utility Id 2974 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E01 RESIDENTIAL ALL ELECTRIC Residential E04 COMMERCIAL ELECTRIC Commercial E08 LARGE INDUSTRIAL ELECTRIC Industrial E09 RESIDENTIAL ELECTRIC Residential E12 SMALL INDUSTRIAL ELECTRIC Industrial E13 ELECTRIC WATER HEATER Commercial Average Rates Residential: $0.0978/kWh

417

Delano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Delano Municipal Utilities Place Minnesota Utility Id 5015 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commerical Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1060/kWh Commercial: $0.0995/kWh Industrial: $0.0854/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

418

Illinois Municipal Elec Agency | Open Energy Information  

Open Energy Info (EERE)

Illinois Municipal Elec Agency Illinois Municipal Elec Agency Place Illinois Utility Id 9286 Utility Location Yes Ownership A NERC Location RFC & SERC NERC RFC Yes NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Illinois_Municipal_Elec_Agency&oldid=410862

419

Bancroft Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Bancroft Municipal Utilities Bancroft Municipal Utilities Jump to: navigation, search Name Bancroft Municipal Utilities Place Iowa Utility Id 1172 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rates Commercial Schedule 1 Residential Schedule 2 Commercial Schedule 3 Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0990/kWh Industrial: $0.0932/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

420

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Indianola Municipal Utilities - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Indianola Municipal Utilities - Energy Efficiency Rebate Program Indianola Municipal Utilities - Energy Efficiency Rebate Program Indianola Municipal Utilities - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Central AC: $250 maximum; 10 unit maximum per customer per year Commercial Lighting: $5,000 per customer per year Air Source Heat Pumps: $500 maximum; 10 units per customer per year Geothermal Heat Pumps: $1,000 maximum, 5 units per customer per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central AC: $100/unit; $50 for each SEER above minimum Commercial Lighting: $2 - $25/fixture depending on type and efficiency

422

Thurmont Municipal Light Co | Open Energy Information  

Open Energy Info (EERE)

Thurmont Municipal Light Co Thurmont Municipal Light Co Jump to: navigation, search Name Thurmont Municipal Light Co Place Maryland Utility Id 18901 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Primary Voltage Industrial LARGE GENERAL SERVICE Secondary Voltage Industrial MEDIUM GENERAL SERVICE Industrial OUTDOOR LIGHTING SERVICE(11,000) Lighting OUTDOOR LIGHTING SERVICE(20,000) Lighting OUTDOOR LIGHTING SERVICE(400w) Lighting OUTDOOR LIGHTING SERVICE(7,000) Lighting RESIDENTIAL SERVICE Residential

423

Cascade Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Cascade Municipal Utilities Cascade Municipal Utilities Jump to: navigation, search Name Cascade Municipal Utilities Place Iowa Utility Id 3137 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Rate Residential City/Interdept. Rate Commercial Commercial Rate 3-phase Commercial Commercial Rate Single-phase Commercial Demand Rate Industrial Residential Rates Residential Average Rates Residential: $0.1040/kWh

424

Indianola Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Indianola Municipal Utilities Indianola Municipal Utilities Jump to: navigation, search Name Indianola Municipal Utilities Place Iowa Utility Id 9275 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates Commercial Electric Heat Source Commercial Government Commercial Large Industrial Industrial Outside City Limits Residential Residential Rates Residential Small Industrial Industrial

425

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

426

Marblehead Municipal Light Department - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Marblehead Municipal Light Department - Residential Energy Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Insulation: $1,600 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerators: $100, plus $25 for disposal of old refrigerator Clothes Washers: $50 - $100 Dishwashers: $25 - $50 Room A/C Units: 50% of purchase price up to $50 Central A/C: $325 - $525, varies by efficiency and technology Heat Pumps: $325 - $675, varies by efficiency and technology Programmable Thermostat: up to 50% of the purchase price

427

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

428

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

429

Winner Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Winner Municipal Utility Winner Municipal Utility Jump to: navigation, search Name Winner Municipal Utility Place South Dakota Utility Id 20823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Mutiple Dwelling Rate Residential Residential Rate Residential Security Lighting Rate Lighting Small Commercial Rate Commercial Average Rates Residential: $0.0929/kWh Commercial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

430

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

431

Albertville Municipal Utils Bd | Open Energy Information  

Open Energy Info (EERE)

Albertville Municipal Utils Bd Albertville Municipal Utils Bd Jump to: navigation, search Name Albertville Municipal Utils Bd Place Alabama Utility Id 241 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - SGSC Commercial General Power Rate - SGSD Industrial General Power Rate(Schedule GSA)-Part 1 Commercial General Power Rate(Schedule GSA)-Part 2 Commercial General Power Rate(Schedule GSA)-Part 3 Commercial Manufacturing Service Rate - SMSB Industrial Manufacturing Service Rate - SMSC Industrial

432

Madisonville Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Madisonville Municipal Utils Madisonville Municipal Utils Jump to: navigation, search Name Madisonville Municipal Utils Place Kentucky Utility Id 11488 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service-less than 50 KW Commercial Demand Commercial Electric Service-50 KW per month or more Commercial Residential Electric Service Residential Security Lights Overhead Flood Light HPS 400 W Lighting Security Lights Overhead Flood Light MH 400 W Lighting Security Lights Overhead HPS 150 W Lighting

433

Trenton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Trenton Municipal Utilities Trenton Municipal Utilities Jump to: navigation, search Name Trenton Municipal Utilities Place Missouri Utility Id 19150 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Rate Commercial Commercial All Electric Rate Commercial Commercial General Electric Rate Commercial Commercial Power Rate Commercial Grundy Electric Rate for City Line Usage Commercial

434

Philippi Municipal Electric | Open Energy Information  

Open Energy Info (EERE)

Philippi Municipal Electric Philippi Municipal Electric Place West Virginia Utility Id 14954 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Economic Development Rate Industrial General Service Commercial Large Power Commercial Outdoor Lighting- 175W High Pressure Sodium Lighting Residential Residential Average Rates Residential: $0.0904/kWh Commercial: $0.0800/kWh Industrial: $0.0976/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Philippi_Municipal_Electric&oldid=411361

435

Rancho Cucamonga Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rancho Cucamonga Municipal Utility Rancho Cucamonga Municipal Utility Jump to: navigation, search Name Rancho Cucamonga Municipal Utility Place California Utility Id 56224 Utility Location Yes Ownership M NERC WECC Yes ISO CA Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Systems Commercial Large Commercial Commercial Medium Commercial Commercial Medium Commercial (Time-Of-Use) Commercial Net Energy Metering Commercial Outdoor Area Lighting Lighting Small Comercial Commercial Small Commercial Three Phase Commercial

436

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Wyoming Municipal Power Agency Wyoming Municipal Power Agency Place Wyoming Utility Id 40603 Utility Location Yes Ownership A NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wyoming_Municipal_Power_Agency&oldid=412214

437

Mohawk Municipal Comm | Open Energy Information  

Open Energy Info (EERE)

Municipal Comm Municipal Comm Jump to: navigation, search Name Mohawk Municipal Comm Place New York Utility Id 12759 Utility Location Yes Ownership M NERC Location NPCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Rate Industrial Large Commercial Commercial Public Street Lighting Lighting Security Lighting 150 w lamp Lighting Security Lighting 175 w lamp Lighting Security Lighting 250 w lamp Lighting Security Lighting 400 w lamp Lighting Single-Phase Residential Residential Small Commercial Business Commercial Average Rates Residential: $0.0366/kWh

438

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

439

Willmar Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Willmar Municipal Utilities Place Minnesota Website wmu.willmar.mn.us/main/ Utility Id 20737 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service rate Commercial Heat pump rate Commercial Industrial(≥500KW;Primary Service) Industrial Industrial;≥500KW(Secondary Service) Industrial

440

Price Municipal Corporation | Open Energy Information  

Open Energy Info (EERE)

Municipal Corporation Municipal Corporation Jump to: navigation, search Name Price Municipal Corporation Place Utah Utility Id 14198 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical substation delivery discount Commercial General Service- Large Industrial General service-small Industrial Residential Residential Security area lighting-250 watts and up Lighting Security area lighting-Less than 250 watts Lighting Special service-Non profit charitable organization Commercial

Note: This page contains sample records for the topic "municipal waste liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rochelle Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Rochelle Municipal Utilities Place Illinois Utility Id 16179 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Large General Service Time of Day Commercial

442

Edinburg Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Edinburg Municipal Utilities Edinburg Municipal Utilities Jump to: navigation, search Name Edinburg Municipal Utilities Place Indiana Utility Id 5655 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Residential and Farm Residential Electric Commercial Commercial Electric General Power Industrial Industrial Power(Transformer capacity Greater than 999kVA) Industrial Residential Residential Rural Commercial Commercial Rural Residential and Farm Residential Average Rates Residential: $0.0912/kWh

443

Indiana Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Agency Municipal Power Agency Place Indiana Utility Id 9234 Utility Location Yes Ownership A NERC Location RFC NERC RFC Yes RTO PJM Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Indiana_Municipal_Power_Agency&oldid=41086

444

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Program Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single family, duplex, or triplex: $960 per unit Multi-family dwelling (four or more units): $480 per unit. Program Info State California Program Type Utility Grant Program Rebate Amount Weatherization: 80% of the cost Do-It-Yourself Weatherization: 70% of the cost Provider Alameda Municipal Power Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency.

445

Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study  

SciTech Connect (OSTI)

Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

Bernstad, Anna, E-mail: anna.bernstad@chemeng.lth.se [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Cour Jansen, Jes la [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Aspegren, Henrik [VA SYD, City of Malmoe (Sweden)

2011-03-15T23:59:59.000Z

446

Determination of Polycyclic Aromatic Hydrocarbons in Fresh Milk by Hollow Fiber Liquid-Phase MicroextractionGas Chromatography Mass Spectrometry  

Science Journals Connector (OSTI)

......my 1 Department of Chemistry, Faculty of Science...Pharmaceutical and Medicinal Chemistry, National Research...products of the incomplete combustion of carbon-containing material, such as coal, oil or municipal waste...aromatic hydrocarbons: Chemistry and analysis. (2000......

Mohd Marsin Sanagi; Saw Hong Loh; Wan Aini Wan Ibrahim; Mohamed Noor Hasan; Hassan Y. Aboul Enein

2013-02-01T23:59:59.000Z

447

Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Municipal WWTPs From Municipal WWTPs Fuel Cells Viewed as a Value Proposition Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 12, 2012 WWTP Anaerobic Digestion * Common method of processing sludge to reduce volume of solids & volatile content * Reduces sludge disposal cost & increases outlets for disposal * Since motivation is disposal rather than digester gas (DG) production, the DG is available at no cost * This is unlike many other organic waste digestion facilities, where the energy project must bear cost of the digester(s) WWTP Anaerobic Digestion * WWTP anaerobic digesters require heat * Typically a portion of the DG is used to produce steam or hot water to provide the heat * The heat required varies seasonally,

448

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Broader source: Energy.gov (indexed) [DOE]

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

449

Solid-State Lighting: 2011 Municipal Consortium North Central Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Municipal Consortium North 2011 Municipal Consortium North Central Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium North Central Region Workshop Materials on AddThis.com... Conferences & Meetings

450

Georgia: Data Center and Historic Municipal Building Go Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

451

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

452

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

453

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

454

Federal, Municipal, Universities and Other ESPC Case Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of various federal, municipal, and university case Energy Savings Performance Contracting implementation case studies. Author: National Association of Energy Service...

455

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

456

Biosolids are the solids produced during municipal wastewater treatment. Composts are made from a variety of organic materials, including both urban and agriculture  

E-Print Network [OSTI]

ISSUE Biosolids are the solids produced during municipal wastewater treatment. Composts are made resources, restoring soils, and combating climate change. Biosolids are still viewed as harmful wastes County and a number of smaller treatment plants is applied to dryland wheat in Douglas County. More than

Collins, Gary S.

457

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

458