National Library of Energy BETA

Sample records for municipal electric utility

  1. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  2. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  3. Energy Department Works with Sacramento Municipal Utility District on Renewable Electricity Generation and Delivery

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables in 2020.

  4. Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables by 2020. To help achieve this goal, the U.S. Department of Energy (DOE) provided more than $5 million in funding for several SMUD Community Renewable Energy Deployment (CommRE) projects.

  5. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  6. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  7. Willmar Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Willmar Municipal Utilities Jump to: navigation, search Name: Willmar Municipal Utilities Place: Minnesota Phone Number: 320.235.4422 Website:...

  8. Delano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Delano Municipal Utilities Jump to: navigation, search Name: Delano Municipal Utilities Place: Minnesota Website: www.dmumn.com Outage Hotline: (763)972-0557 References: EIA Form...

  9. Indianola Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Indianola Municipal Utilities Jump to: navigation, search Name: Indianola Municipal Utilities Place: Iowa Phone Number: 515.961.9444 Website: www.i-m-u.com Outage Hotline:...

  10. Philippi Municipal Electric | Open Energy Information

    Open Energy Info (EERE)

    Philippi Municipal Electric Jump to: navigation, search Name: Philippi Municipal Electric Place: West Virginia Phone Number: 304-457-3700 Outage Hotline: 304-457-3700 References:...

  11. Kenyon Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Kenyon Municipal Utilities Jump to: navigation, search Name: Kenyon Municipal Utilities Place: Minnesota References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  12. Working With Municipal Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With Municipal Utilities Working With Municipal Utilities Better Buildings Residential Network Program Sustainability / Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities, Call Slides and Summary, June 27, 2013. Call Slides and Summary (490.27 KB) More Documents & Publications Better Buildings Working with Utilities Peer Exchange Call: Kick-off Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Tracking and Using Data to Support

  13. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  14. Shawano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Wisconsin Phone Number: 715-526-3131 Website: www.shawano.tv Facebook: https:www.facebook.compagesShawano-Municipal-Utilities156410777732483 Outage...

  15. Watertown Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: South Dakota Phone Number: (605)882-6233 Website: watertownmu.com Twitter: @watertownmu Facebook: https:www.facebook.compagesWatertown-Municipal-Utiliti...

  16. New London Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Jump to: navigation, search Name: New London Municipal Utilities Place: Iowa References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  17. Indianola Municipal Utilities- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Indianola Municipal Utilities offers a number of energy efficiency rebates to residential, commercial and industrial customers. The program provides rebates for commercial lighting, central air...

  18. Canton Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesCanton-Municipal-Utilities332942860232523?refhl Outage Hotline: 601.859.2474 References: EIA Form EIA-861 Final Data File for 2010 -...

  19. Minnkota Power Cooperative (17 Utilities) - PowerSavers Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Cooperative Roseau Municipal Utilities Fosston Municipal Utilities City of Stephen Municipal Utilities Halstad Municipal Utilities Thief River Falls Municipal Utilities...

  20. Denton Municipal Electric- GreenSense Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Denton Municipal Electric pays residential and small commercial customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce...

  1. Energy Department Works with Sacramento Municipal Utility District...

    Energy Savers [EERE]

    EERE Investment More than 5 million Location Sacramento, California Partners Sacramento Municipal Utility District California Energy Commission The Sacramento Municipal Utility ...

  2. Cap May County Municipal Utilities Authority | Open Energy Information

    Open Energy Info (EERE)

    Cap May County Municipal Utilities Authority Jump to: navigation, search Name: Cap May County Municipal Utilities Authority Place: Cape May Court House, New Jersey Zip: 8210...

  3. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  4. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988, -94.327403 Show Map Loading map... "minzoom":false,"mappings...

  5. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592, -94.559029 Show Map Loading map... "minzoom":false,"mappings...

  6. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  7. Project Profile: The Sacramento Municipal Utility District Consumnes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar ...

  8. Atlantic Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Iowa Phone Number: 712-243-1395 Website: www.a-m-u.net Twitter: @AMUAtlantic Facebook: https:www.facebook.comAtlanticMunicipalUtilities Outage Hotline: 712-243-1395...

  9. Denton Municipal Electric- Standard Offer Rebate Program

    Broader source: Energy.gov [DOE]

    Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

  10. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  11. Saint Peter Municipal Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    With help from the Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its commercial and industrial customers to improve the energy...

  12. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    With help from Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its residential and commercial customers to improve the energy efficiency...

  13. Municipal Electric Authority | Open Energy Information

    Open Energy Info (EERE)

    Electric Authority Jump to: navigation, search Name: Municipal Electric Authority Place: Georgia Phone Number: 1-800-333-MEAG; 770-563-0300 Website: www.meagpower.org Twitter:...

  14. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  15. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs

    Broader source: Energy.gov [DOE]

    OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

  16. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of ``traditional`` electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states` least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  17. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of traditional'' electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states' least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  18. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  19. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  20. Energy utilization: municipal waste incineration. Final report

    SciTech Connect (OSTI)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  1. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  2. Project Profile: The Sacramento Municipal Utility District Consumnes Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Solar Augmentation Project | Department of Energy The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project SMUD Logo -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP

  3. Hercules Municipal Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

  4. Municipal Utilities' Investment in Smart Grid Technologies Improves...

    Office of Environmental Management (EM)

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; ...

  5. Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install energy efficient equipment. Contact LMUD for information regarding which local...

  6. State Clean Energy Policies Analysis: State, Utility, and Municipal...

    Open Energy Info (EERE)

    Utility, and Municipal Loan Programs AgencyCompany Organization National Renewable Energy Laboratory Partner Eric Lantz Focus Area People and Policy, Renewable Energy Phase...

  7. PSNH- Municipal Smart Start Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

  8. Shanghai Municipal Electric Power Company SMEPC | Open Energy...

    Open Energy Info (EERE)

    Shanghai Municipal Electric Power Company is a large enterprise engaging in Shanghai electric power transmission, distribution and sales. Coordinates: 31.247709,...

  9. Delaware Municipal Electric Corporation- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Green Energy Fund was created in 1999 as the part of the deregulation of Delaware's electric utilities. Under the 2005 Delaware renewable portfolio standard (RPS) legislation,...

  10. Massachusetts Municipal Commercial Industrial Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Rebate Varies depending on utility Program Info Sector Name Utility Administrator Massachusetts Municipal Wholesale Electric Company in collaboration with municipal utilities...

  11. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  12. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    For energy savings measures not listed above, Elk River Municipal Utilities offers a custom grant program. In order to qualify for the grant, the benefit cost ratio (BCR) of the project must be...

  13. Iowa Association of Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Iowa Association of Municipal Utilities Place: Ankeny, IA Website: www.iamu.org References: SGIC1 This article is a stub. You can help OpenEI...

  14. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    To invest in a renewable resource, consider an ENERGY STAR Solar Thermal Water Heater and use free energy from the sun to heat your water. Marshall Municipal Utilities (MMU) offers rebates of $20...

  15. Mansfield Municipal Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Mansfield Municipal Electric Department encourages energy efficiency through the ENERGY STAR Appliance Rebate Incentive Program. Cash rebates are offered for ENERGY STAR central air conditioners,...

  16. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  17. Sacramento Municipal Utility District | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 SGIC3 EIA Form 861 Data Utility Id 16534 Utility Location Yes...

  18. Eversource- Municipal Smart Start Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eversource (previously Public Service of New Hampshire), an electric utility, offers the Smart Start Program to municipal customers. This program assists municipalities in reducing energy...

  19. Bancroft Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: 515.885.2382 Website: www.bancroftiowa.comUtilities Facebook: https:www.facebook.compagesTown-of-Bancroft240590092735268 Outage Hotline: 515.885.2382...

  20. Madisonville Municipal Utils | Open Energy Information

    Open Energy Info (EERE)

    Utils Place: Kentucky Phone Number: (270) 824-2102 Website: madisonvilleky.usindex.phpgo Twitter: @TBTOE Facebook: https:www.facebook.compagesThe-City-of-Madisonville...

  1. Trenton Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Missouri Phone Number: (660) 359-2281 Website: www.trentonmo.com Facebook: https:www.facebook.compagesCity-of-Trenton-Missouri722728794469660 Outage...

  2. Cascade Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    cascade-util Facebook: https:www.facebook.compagesCascade-Iowa1485913095031925?refaymthomepagepanel Outage Hotline: 563-852-3614 or 563-852-3114 References: EIA Form...

  3. Lassen Municipal Utility District - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Lighting Heat Pumps Air conditioners Other EE LED Lighting Program Info Sector Name Utility Administrator Public Benefits Specialist Website http:www.lmud.org...

  4. Photovoltaics for municipal planners. Cost-effective municipal applications of photovoltaics for electric power

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  5. Gowrie Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Iowa Phone Number: 515-352-3065 Website: www.gowrie.orgutilitiesgmu.h Outage Hotline: 515-352-3065 References: EIA Form EIA-861 Final Data File for 2010 -...

  6. Winner Municipal Utility | Open Energy Information

    Open Energy Info (EERE)

    Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  7. QER- Comment of Sacramento Municipal Utility District

    Broader source: Energy.gov [DOE]

    As SMUD is the largest preference power customer of the Western Area Power Administration (Western) we purchase a substantial amount of electric energy from Western and we are very concerned about the rising costs. Specifically, we have concerns and question regarding the restoration programs on the Central Valley Project that are administered by the United States Bureau of Reclamation. SMUD would like to respectfully request that a review be conducted to address the current sharing of Restoration Fund Charges between Power and Water Customers of the Central Valley Project.

  8. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  9. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies ...

  10. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon "List of Covered Electric Utilities" under the Public Utility Regulatory Policies ... Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy ...

  11. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  12. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid ...

  13. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  14. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy announced today.

  15. Columbia Utilities Electricity | Open Energy Information

    Open Energy Info (EERE)

    Electricity Jump to: navigation, search Name: Columbia Utilities Electricity Place: New York Phone Number: (877) 726-5862 Website: www.columbiautilities.com Twitter:...

  16. Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

  17. Page Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Page Electric Utility Jump to: navigation, search Name: Page Electric Utility Place: Arizona Phone Number: (928) 645-2419 Website: pageutility.com Outage Hotline: (928) 645-2419...

  18. Assessment of electric-utility supply plans, 1978-2000

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    An assessment of the utilities' forecasts of future electricity supply is presented. An analysis of the demand forecast is contained in a separate document. California Energy Demand 1978 to 2000: A preliminary Assessment (August 1979). An evaluation of the feasibility and implications of supply plans, formulated by the State's electric utilities, to meet their forecasted demand is presented. The report is a critique of the supply plans; therefore, it establishes the foundation for the examining alternatives. Utility resource plans and underlying supply planning assumptions were submitted between March and June 1978 for evaluation, but updated resource plans of July 1979 were used as the basis for the assessment. Supply plans were evaluated from utilities (PG and E, SCE, SDG and E, LADWP, Sacramento Municipal Utility District); cities (Burbank, Anaheim, Glendale, Pasadena, Riverside); Northern California Power Agency; Modesto Irrigation District; Turlock Irrigation District; Imperial Irrigation District; and Department of Water Resources.

  19. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine ...

  20. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  1. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2014 Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Page 1 U.S. Department of Energy |October 2014 Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Page ii Table of Contents Executive Summary ...................................................................................................................................... iii 1. Introduction

  2. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for October 2008. Monthly Electric Utility...

  3. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for February 2009. Monthly Electric Utility Sales and Revenue Data Short...

  4. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for November 2008. Monthly Electric Utility Sales and Revenue Data Short...

  5. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for September 2008. Monthly Electric Utility Sales and Revenue Data Short...

  6. Proceedings: 1989 conference on municipal solid waste as a utility fuel

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This volume contains papers presented at the 1989 Electric Power Research Institute (EPRI) Conference on Municipal Solid Waste as a Utility Fuel. The subject areas included are: Utility cofiring experience, refuse-derived fuel production, firing 100% refuse-derived fuel, mass burn technology, fluidized bed combustion, research reports, environmental control technology, and papers on permitting, environmental risk assessment, and the impact of recycling. The conference was held on October 10--12, 1989, and was proceeded by similar conferences held 11/85 (EPRI publication CS-4900-SR, 1986); 1/82 (EPRI publication CS-2723, 1982) and 1/80 (EPRI Publication WS-79-225, 1980). Individual projects are processed separately for on the databases. (MHB)

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  9. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Note: Lodi Electric Utility accepted applications for program year 2015 from January 2 - 30, 2015. The program is fully subscribed for 2015.  

  10. Utilization of municipal wastewater for cooling in thermoelectric power plants

    SciTech Connect (OSTI)

    Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

    2013-09-01

    A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH3 and CO2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., kNH3 < 4×10-3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., kCO2<4×10-6 m/s).

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  12. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  14. Category:Monthly Electric Utility Sales and Revenue Data | Open...

    Open Energy Info (EERE)

    Monthly Electric Utility Sales and Revenue Data Jump to: navigation, search Category for Monthly Electric Utility Revenue and Sales Information. Pages in category "Monthly Electric...

  15. Utilization of ash from municipal solid waste combustion

    SciTech Connect (OSTI)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  16. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Name: Galena Electric Utility Place: Alaska Phone Number: (907) 656-1301 Website: www.ci.galena.ak.usindex.asp? Outage Hotline: (907) 656-1503 AFTER HOURS References: EIA Form...

  17. Tatitlek Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Electric Utility Place: Alaska Phone Number: 907-562-4155 or 1-800-478-4155 - toll free in Alaska Website: www.chugachmiut.orgtribestat Outage Hotline: 907-562-4155 or...

  18. Electric utility antitrust issues in an era of bulk power market competition

    SciTech Connect (OSTI)

    Green, D.G.; Bouknight, J.A. Jr.

    1994-12-31

    The electric utility industry is facing a new spectrum of antitrust issues reflecting its transformation from an industry that is fully regulated to one that is partly regulated, partly competitive. There are two principal antitrust issues: claims of price squeezes and claims by municipal and cooperative utilities that their traditional utility supplier is refusing to wheel power from other suppliers. This article discusses the following related topics: new antitrust issues; regional transmission groups and other joint ventures; mergers.

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  1. Wind Energy for Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    utility service territories express consistently high levels of interest in renewable energy alternatives. In most cases, the preferred renewable technologies are solar and...

  2. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  3. MuniHELPS- Offered by 17 Utilities through the MMWEC

    Broader source: Energy.gov [DOE]

    The Massachusetts Municipal Wholesale Electric Company (MMWEC) provides the Home Energy Loss Prevention Services (HELPS) Program to eighteen municipal utilities in Massachusetts. 

  4. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Energy Savers [EERE]

    An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. ...

  5. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid ...

  6. Cost analysis of energy storage systems for electric utility...

    Office of Scientific and Technical Information (OSTI)

    Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility ...

  7. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  8. Economic analysis of municipal wastewater utilization for thermoelectric power production

    SciTech Connect (OSTI)

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Theregowda, R.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents the development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.

  9. New Hampshire Electric Co-Op- Commercial and Municipal New Equipment and Construction Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Hampshire Electric Co-op offers incentives to commercial and municipal members for both new construction and retrofit projects. Incentives vary by demand and size of the customer:-Large...

  10. New Hampshire Electric Co-Op- Commercial and Municipal Retrofit Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Hampshire Electric Co-op offers incentives to commercial and municipal members for both new construction and retrofit projects. Incentives vary by demand and size of the customer:

  11. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  12. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs (October 2014)

    Broader source: Energy.gov [DOE]

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; and Danvers, Massachusetts are mid-sized cities that implemented grid modernization activities in multiple areas including advanced metering infrastructure, distribution automation, and customer systems.

  13. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect (OSTI)

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  18. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  19. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    SciTech Connect (OSTI)

    Not Available

    1980-12-31

    A study has been made of the engineering and economic feasibility of utilizing the geothermal resource underlying Glenwood Springs Colorado, to heat a group of public buildings. The results have shown that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection. Considerable study was done to examine the impact of reduced operating temperature on the existing heating systems. Several options to minimize this problem were identified. Economic analyses were completed to determine the present values of heat from the geothermal system and from the present natural gas over a 30 year projected system life. For the base case savings of over $1 million were shown. Sensitivities of the economics to capital cost, operating cost, system size and other parameters were calculated. For all reasonable assumptions, the geothermal system was cheaper. Financing alternatives were also examined. An extensive survey of all existing data on the geology of the study has led to the prediction of resource parameters. The wellhead temperature of produced fluid is suspected to lie between 140 and 180/sup 0/F (60 and 82/sup 0/C). Flowrates may be as high as 1000 gpm (3800 liters per minute) from a reservoir formation that is 300 ft (90 m) thick beginning about 500 ft (150 m) below the suggested drill site in the proposed Two Rivers Park.

  20. High slot utilization systems for electric machines

    DOE Patents [OSTI]

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Texas. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Texas is generally vested in the Public Utilities Commission. The Commission is comprised of three members appointed by the governor, with the advice of at least two-thirds of the senate, for a six-year term. Prior to the passage of the Texas Public Utility Regulatory Act (PURA) in 1975, the power to regulate public utilities was vested almost exclusively in municipalities. Under PURA, municipalities retain exclusive original jurisdiction over all electric, water, and sewer utilities within the municipality. PURA provides that all regulations pertaining to public utilities promulgated by local regulatory agencies remain in effect unless they are superceded by Commission rules. The municipality's governing body is required to exercise its regulatory authority under rules and standards consistent with those promulgated by the Commission. The Commission has exclusive appellate jurisdiction to review orders and ordinances of regulatory municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  3. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    2011-05-03

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  4. El Paso Electric- SCORE Program for Counties, Municipalities, and Schools

    Broader source: Energy.gov [DOE]

    El Paso Electric offers a targeted incentive program for public institutions, local governments and higher education.

  5. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  6. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  7. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  9. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  14. Inventory of Electric Utility Power Plants in the United States

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  15. New London Electric&Water Util | Open Energy Information

    Open Energy Info (EERE)

    Electric&Water Util Jump to: navigation, search Name: New London Electric&Water Util Place: Wisconsin Phone Number: (920) 982-8516 Website: newlondonutilities.org Outage Hotline:...

  16. Electric-resistance furnace for melting ash from municipal solid waste incinerator

    SciTech Connect (OSTI)

    Nakao, Tsuyoshi; Nakahara, Keisuke; Akashi, Tetsuo

    1997-12-31

    Existing landfill capacity is dwindling in Japan and it is difficult to find new landfill sites because of strong opposition from residents. Under the Waste Disposal and Public Cleaning Law in 1991 in Japan, fly ashes from municipal solid waste (MSW) incinerator have to be treated by one of the four methods: (1) vitrification, (2) solidification by cement, (3) stabilization using chemical agents, or (4) extraction with acid or other solvent. In these four technologies, the vitrification technology has some advantages: decreasing ash volume which can solve the landfill problem, de-taxiing ash, and utilization of its products from residues. NKK has developed an electric resistance furnace for melting MSW incineration residues and built a demonstration plant (24t/d). The performance test results showed as follows; (1) Si, Al, and Ca tended to become the molten slag. Cu, P, and Fe tended to become the molten metal. Pb, Zn, and Cd tended to become the molten fly ash. (2) HCl from the slag resistance electric furnace was 60 ppm and very low compared with other melting systems. (3) Decomposition rate of dioxins was 99 % in the melting furnace. (4) Concentration of heavy metals in the molten slag was low and leaching of heavy metals was below Japanese regulation.

  17. Studying the Communications Requirements of Electric Utilities to Inform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Policies- Public Meeting | Department of Energy Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Transcript of public meeting on Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies Studying the Communications Requirements of Electric Utilities

  18. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2010 | Department of Energy New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid Seismic Zone Electric Utilities Workshop, held in Memphis, TN, in July 2010 for the electric utilities in the seismic zone was a chance to bring together a diverse set of industry partners to discuss the potential effects of an earthquake in the New Madrid and Wabash Valley

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003_deer_algrain.pdf (5.77 MB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  20. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  1. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  2. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  3. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  4. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  5. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  6. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  7. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  8. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  9. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  10. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  11. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  12. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  13. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry

  14. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  15. City of Aurelia, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Aurelia, Iowa (Utility Company) Jump to: navigation, search Name: Aurelia Municipal Electric Utility Place: Iowa Phone Number: 712-434-2025 Website: www.aureliaia.com...

  16. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  17. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  18. An Updated Assessement of Copper Wire Thefts from Electric Utilities -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2010 | Department of Energy An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric

  19. Approaches to Electric Utility Energy Efficiency for Low Income...

    Open Energy Info (EERE)

    Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches...

  20. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. 

  1. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  2. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar ... benefits and challenges of incorporating solar generation into the resource planning ...

  3. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  4. Orange and Rockland Utilities (Electric)- Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities offers electric energy efficiency program that provides rebates to replace various appliances. To apply for rebate, submit rebate application form along with required...

  5. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  6. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  7. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Policies Act of 1978 (PURPA) - 2006 Revised | Department of Energy 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978

  8. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Policies Act of 1978 (PURPA) - 2008 | Department of Energy 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) (52.14 KB) More

  9. "List of Covered Electric Utilities" under the Public Utility Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies Act of 1978 (PURPA) - 2009 | Department of Energy 9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) (2.43 MB

  10. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in South Dakota. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The South Dakota Public Utilities Commission is authorized by statute to regulate gas and electric utilities. The Commission consists of three elected commissioners each of whom serves for a six year term. The Commissioners are elected by district and each must, at the time of election, be a resident of the district from which he has been elected. Each Commissioner must reside in the state capital and devote his entire time to the duties of his office. The Commission is part of the Department of Commerce and Consumer Protection. Municipal power to regulate privately owned electric and gas public utilities was terminated in 1975. A municipally-owned electric utility has the authority to regulate the sale, use, and rates of electric power and energy which it provides. The Commission has no authority to regulate steam, heat, and refrigeration systems; that power resides in cities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  11. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    SciTech Connect (OSTI)

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  12. PPL Electric Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt...

  13. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Ohio. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Public Utilities Commission (PUCO) is a body created by the Ohio State legislature to administer the provisions of the Ohio Public Utilities Act. It is composed of three commissioners appointed by the governor with the advice and consent of the senate. Once appointed, a commissioner serves for a six-year period. The PUCO is vested with the power and jurisdiction to supervise and regulate public utilities and railroads... . The term public utility includes every corporation, company, co-partnership, person or association, their lessees, trustees, or receivers, as defined in the Ohio Code. Among the various services enumerated in the Code under the definition of public utility are an electric light company; a gas company; a pipeline company transporting gas, oil or coal; a waterworks company; a heating or cooling company. The power to regulate public utilities is shared by the PUCO and municipal governments. The municipal regulatory authority is derived from the Ohio Constitution, statutory provisions, and municipal franchising authority. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  14. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    SciTech Connect (OSTI)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. 2002_deer_hopmann.pdf (828.29 KB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  16. Ashland Electric Utility - Photovoltaic Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either 0.50 per watt (residential) or 0.75 per watt...

  17. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  18. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  19. DEMEC Member Utilities- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  20. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  1. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  2. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  3. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  4. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  5. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Massachusetts. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Department of Public Utilities. The Department is under the supervision and control of a commission consisting of three members appointed by the governor for terms of four years. No more than two of the commissioners may be members of the same political party. Commissioners must be freee from any employment or financial interests which are incompatible with the duties of the Department. The Department is responsible for regulating public utilities. The Department is specifically granted general supervisory authority over all gas and electric companies. Specific provisions for the appeal of local decisions exist only in the case of a municipality's approval or disapproval of new operaions by an electric or gas company in a municipality already being served by another such utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  6. Wholesale service obligation of electric utilities

    SciTech Connect (OSTI)

    Norton, F.L. IV; Spivak, M.R.

    1985-01-01

    The basic concepts of public utility status and utility regulation intertwine the obligation to provide service to the public as reasonably demanded with rate regulation and shielding from competitive interference. While a common law service obligation was not part of the Federal Power Act, the Federal Energy Regulatory Commission has taken the position that service, once commenced, may not be terminated without its approval. This view of Commission authority may not be supported by the legislative history of the Federal Power Act or by judicial precedent. The requirement to serve apart from recognition of a right to serve may result in increased rates in the near term and insufficient capacity, or both, in the long run. A review by the Commission and the courts is examining ways to introduce competition and shift risks from ratepayers to shareholders.

  7. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  8. A model for IPP sales to electric utilities

    SciTech Connect (OSTI)

    Norman, G.L.; Anderson, R.W.

    1996-11-01

    This paper shows several constraints that an unregulated plant would encounter. Florida Power Corporation has built a plant that has the characteristics of an IPP operating in the future deregulated electricity market. This plant, the University of Florida Cogeneration Plant undergoes the same conditions experienced in an IPP selling energy to the electric utilities when its contractual electric customer was unable to take the energy. It is a model of the future deregulated IPP.

  9. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  10. Development of the electric utility dispersed use PAFC stack

    SciTech Connect (OSTI)

    Horiuchi, Hiroshi; Kotani, Ikuo; Morotomi, Isamu

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  11. Reshaping the electric utility industry: Competitive implications for Illinois

    SciTech Connect (OSTI)

    Maschoff, D.C.

    1995-12-31

    This paper briefly outlines some of the issues in the electric power industry restructuring. In addition, the impacts of these changes on the energy marketplace are discussed. Federal policy initiatives, state regulatory response, and utility management response are each described. Management skills are identified as the critical success factor for competition in the utility market.

  12. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  13. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  14. Waseca Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  15. DSM and electric utility competitiveness: An Illinois perspective

    SciTech Connect (OSTI)

    Jackson, P.W.

    1994-12-31

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-side management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility`s ability to compete in the energy services marketplace. In this context, the term `DSM` is used in this paper to refer to those demand-side services and programs which provide resources to the utility`s system. Depending on one`s perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility`s ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy.

  16. Managing an evolution: Deregulation of the electric utility industry

    SciTech Connect (OSTI)

    Skinner, S.K.

    1994-12-31

    The author discusses the emerging competitive situation in the electric power industry as deregulation of electric utilities looms on the horizon. The paper supports this change, and the competition it will bring, but urges caution as changes are instituted, and the regulatory bodies decide how and how much to free, and at what rates. The reason for his urge for caution comes from historical experience of other industries, which were smaller and had less direct impact on every American.

  17. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the

  18. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Denton Municipal Electric * Jennifer Smith, Executive Director, Congregation Beth Israel * Tonya Baer, Public Counsel, Texas Office of Public Utility Counsel * Michelle Foss, ...

  19. Positioning the electric utility to build information infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  20. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  1. Consumer's Guide to the economics of electric-utility ratemaking

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  2. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  3. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. ); Sabo, C. )

    1991-10-01

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  4. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  5. A primer on incentive regulation for electric utilities

    SciTech Connect (OSTI)

    Hill, L.J.

    1995-10-01

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  6. Annual Electric Utility Data - Form EIA-906 Database

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net generation, fuel consumption, fuel stocks, prime mover and fuel type. Data sources are surveys -- Form EIA-906, "Power Plant Report" and Form EIA-759, "Monthly Power Plant Report." Beginning with 1996, two separate files are available for each year: Monthly (M) data submitted by those respondents

  7. A knowledge based model of electric utility operations. Final report

    SciTech Connect (OSTI)

    1993-08-11

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  8. Homeostatic control: the utility/customer marketplace for electric power

    SciTech Connect (OSTI)

    Schweppe, F.C.; Tabors, R.D.; Kirtley, J.L.

    1981-09-01

    A load management system is proposed in which the electric utility customer controls his on-site power demand to coincide with the lowest possible cost of power generation. Called Homeostatic Control, this method is founded on feedback between the customer and the utility and on customer independence. The utility has no control beyond the customer's meter. Computers located at the customer's site are continuously fed data on weather conditions, utility generating costs, and demand requirements for space conditioning, lighting, and appliances. The customer then directs the computer to schedule and control the power allotted for these functions. On-site generation by the customer can be incorporated in the system. It is argued that homeostatic control is technically feasible, that the level of control equipment sophistication can be adapted to the benefits received by the customer, that such a system would encourage the use of customer-site energy storage and energy conservation equipment, and that it represents a realistic method for allowing the customer to decide how he will use electric power during an era of increasing costs for power generation. (LCL)

  9. Factors that affect electric-utility stranded commitments

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-07-01

    Estimates of stranded commitments for U.S. investor-owned utilities range widely, with many falling in the range of $100 to $200 billion. These potential losses exist because some utility-owned power plants, long-term power-purchase contracts and fuel-supply contracts, regulatory assets, and expenses for public-policy programs have book values that exceed their expected market values under full competition. This report quantifies the sensitivity of stranded- commitment estimates to the various factors that lead to these above- market-value estimates. The purpose of these sensitivity analyses is to improve understanding on the part of state and federal regulators, utilities, customers, and other electric-industry participants about the relative importance of the factors that affect stranded- commitment amounts.

  10. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  11. Municipal solid waste as a utility fuel in the United States

    SciTech Connect (OSTI)

    McGowin, C.R.

    1985-01-01

    The paper considers alternate utility roles in refuse to energy projects and alternate technologies including co-firing of refuse and coal in utility boilers and refuse burning in dedicated boilers. Energy recovery efficiency and economics of technologies are compared.

  12. Adapting On-site Electrical Generation Platforms for Producer Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  13. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Environmental Management (EM)

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable ... change, is captured and destroyed Manure wastes are stabilized, reducing odor and flies ...

  14. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  15. Recovery and utilization of cellulosic feedstock from steam classified municipal solid wastes

    SciTech Connect (OSTI)

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1994-12-31

    Steam classification is a process for treatment of commingled municipal solid wastes that transforms the pulp and paper materials and most food and soft yard wastes into a fairly uniform product. After processing and partial drying, most of the transformed cellulosic material can be easily separated from the non-biomass materials by conventional screening and air classification to yield a biomass feedstock. The focus of this report is the enzymatic hydrolysis of the cellulosic component of this feedstock to produce glucose for fermentation to ethanol. Several commercially available cellulases were tested on the feedstock, and optimum conditions were found for glucose production, including enzyme loading, feedstock concentration, hydrolysis rate, conversion efficiency, and glucose yield.

  16. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0

  17. Financial Statistics of Major U.S. Investor-Owned Electric Utilities

    Reports and Publications (EIA)

    1997-01-01

    1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

  18. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  19. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging at Home and Work Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work to someone by E-mail Share Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Facebook Tweet about Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Twitter Bookmark Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at

  20. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kentucky. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Until April 1, 1979, the Public Service Commission had been vested with exclusive jurisdiction over the regulation of rates and service of utilities. As of that date two new agencies, the Energy Regulatory Commission (ERC) and the Utility Regulatory Commission (URC), have replaced the Public Service Commission. The ERC consists of three full-time members appointed by the governor for four year terms and is responsible for enforcing the provisions of the Kentucky statutes relating to electric and gas utilities. The three-member URC is responsible for enforcing the provisions relating to non-energy utilities such as telephone, sewer, and water utilities. The statutes vest all regulatory authority over public utilities in either the ERC or the URC. Local governments retain only the power to grant local franchises. However, it should be noted, that any utility owned or operated by a political subdivision of the state is exempt from regulation. Thus, local government has complete authority over utilities which are self-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  3. Overview of U.S. electric utilities: Transmission and distribution systems

    SciTech Connect (OSTI)

    Brown, R.D.

    1994-12-31

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all.

  4. FERC must fix its electric utility merger policy

    SciTech Connect (OSTI)

    Grankena, M.

    1996-10-01

    In evaluating mergers, FERC should adopt the approach of the federal antitrust agencies to prevent firms from gaining and exercising market power. Doing so will require changes in everything from how FERC defines product and geographic markets, and how market concentration, entry conditions and cost saving are evaluated, to how discovery is conducted - in short, to virtually every aspect of how FERC reaches a merger decision. Reliance on competition to benefit consumers carries with it the necessity to preserve competition that is threatened by mergers or other structural changes. Faced with numerous mergers of large and medium-size electric utilities and the expectation of more to come, in January 1996 the Federal Energy Regulatory Commission requested comments on how it should evaluate mergers. This paper addresses that need. Section I explains how FERC and the federal antitrust agencies have responded to the competitive issues raised by utility mergers during the past decade. Section II introduces the analytical approach used by the antitrust agencies to evaluate mergers. Section III highlights features of the electric power industry that make analysis of market power unusually complex. Section IV evaluates FERC`s past reliance on comparable open access transmission as a sufficient remedy for competitive concerns relating to the availability, reliability and pricing of transmission service. Section V suggests changes to FERC`s merger policy that would make it consistent with antitrust principles and FERC`s public interest responsibilities. The final section draws conclusions.

  5. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    SciTech Connect (OSTI)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  6. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  7. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect (OSTI)

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  8. Electric utilities sales and revenue monthly report (EIA-826), 1987. Data file

    SciTech Connect (OSTI)

    Curry, J.; Wilkins, S.

    1987-01-01

    The purpose of Form EI-826 formerly FERC-5, Electric Utility Company Monthly Statement, is to collect data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  9. Electric Utilities Monthly Sales and Revenue Report (EIA-826), current. Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Form EI-826, formerly FERC-5, Electric Utility Company Monthly Statement, collects data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  10. Lakeland Electric- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lakeland Electric, a municipal utility in Florida, offers solar-heated domestic hot water on a "pay-for-energy" basis. The utility bills the customer $34.95 per month regardless of use. The $34.95...

  11. Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

  12. Electric Utility Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CX-004355: Categorical Exclusion Determination Industrial Customer Perspectives on Utility Energy Efficiency Programs Partnering with Utilities and ...

  13. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  14. Annual Public Electric Utility data - EIA-412 data file

    U.S. Energy Information Administration (EIA) Indexed Site

    412 Archive Data (The EIA-412 survey has been terminated.) The EIA-412 "Annual Electric Industry Financial Report" collected information such as income statements, balance sheets, sales and purchases, and transmission line data. Form EIA-412 data Schedules Year 2 Electric Balance Sheet 3 Electric Income Statement 4 Electric Plant 5 Taxes, Tax Equivalents, Contributions, and Services During Year 6 Sales of Electricity for Resale (Account 447) 7 Electric Operation and Maintenance

  15. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  16. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  17. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  18. American Municipal Power | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Jump to: navigation, search Name: American Municipal Power Place: Columbus, Ohio Zip: 43219 Product: AMP is a non-profit corporation that owns and operates electric...

  19. Wakefield Municipal Gas & Light Department - Residential Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats: 25 Water Heater: 100 Summary The Wakefield Municipal Gas & Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric...

  20. ORFIN: An electric utility financial and production simulator

    SciTech Connect (OSTI)

    Hadley, S.W.

    1996-03-01

    With the coming changes in the electrical industry, there is a broad need to understand the impacts of restructuring on customers, existing utilities, and other stakeholders. Retail wheeling; performance-based regulation; unbundling of generation, transmission, and distribution; and the impact of stranded commitments are all key issues in the discussions of the future of the industry. To quantify these issues, financial and production cost models are required. The authors have created a smaller and faster finance and operations model call the Oak Ridge Financial Model (ORFIN) to help analyze the ramifications of the issues identified above. It combines detailed pricing and financial analysis with an economic dispatch model over a multi-year period. Several types of ratemaking are modeled, as well as the wholesale market and retail wheeling. Multiple plants and purchased power contracts are modeled for economic dispatch, and separate financial accounts are kept for each. Transmission, distribution, and other functions are also broken out. Regulatory assets such as deferred tax credits and demand-side management (DSM) programs are also included in the income statement and balance sheet. This report describes some of the key features of the model. Examples of the financial reports are shown, with a description of their formulation. Some of the ways these results can be used in analyzing various issues are provided.

  1. Energy data report: Sales, Revenue, and Income of Electric Utilities. Monthly report, October 1981

    SciTech Connect (OSTI)

    Woods, T.F.

    1982-01-19

    This is the last issue of Sales, Revenue, and Income of Electric Utilities. The data contained in this report are being published in Section 10 of the Electric Power Monthly.

  2. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economics of Photovoltaic Systems | Department of Energy The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the

  3. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  4. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  5. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  6. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Illinois. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Illinois Commerce Commission, comprised of five members appointed by the governor with the advice and consent of the senate and appointed for five year terms. They must be free from any employment or pecuniary interests in any business subject to regulation by the Commission. Local governments may exercise a large degree of regulatory authority over public utilities providing services within a municipality. The question of whether a municipality will exercise regulatory control over local public utilities must be put to the voters of the city. If the proposition is approved by a majority of the voters, the municipality may regulate services and rates and exercise most of the regulatory functions otherwise assigned to the Commission. If any public utility is dissatisfied with any action of a municipality, the utility is entitled to apply to the Commission for review of the action. On review, the Commission may take any determination which it deems just and reasonable. In addition, municipally-owned utilities are excluded specifically from the definition of public utility. These utilities are not within the jurisdiction of the Commission and are regulated locally. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  7. Financial Statistics of Major U.S. Publicly Owned Electric Utilities

    Reports and Publications (EIA)

    2001-01-01

    2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

  8. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  9. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect (OSTI)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  10. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.