National Library of Energy BETA

Sample records for multiple fracture stimulation

  1. Induced fractures: well stimulation through fracturing

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    Seven fracture stimulation treatments were planned and executed under the Department of Energy-funded Geothermal Well Stimulation Program. The objective of this program is to demonstrate that geothermal well stimulation offers a technical alternative to additional well drilling and redrilling for productivity enhancement which can substantially reduce development costs. Well stimulation treatments have been performed at Raft River, Idaho; East Mesa, California; The Geysers, California; and the Baca Project Area in New Mexico. Six of the seven stimulation experiments were technically successful in stimulating the wells. The two fracture treatments in East Mesa more than doubled the production rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. The acid etching treatment in the well at the Geysers did not have any material effect on production rate.

  2. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect (OSTI)

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  3. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a ...

  4. In situ experiments of geothermal well stimulation using gas fracturing technology

    SciTech Connect (OSTI)

    Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

    1988-07-01

    The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

  5. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

  6. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  7. AltaRock Energy Announces Successful Multiple-Zone Stimulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cold water at moderate pressure to enhance the permeability of existing fractures. ... to the water and partially plugged the first set of stimulated fractures at the wellbore. ...

  8. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  9. Design and modeling of small scale multiple fracturing experiments

    SciTech Connect (OSTI)

    Cuderman, J F

    1981-12-01

    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  10. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect (OSTI)

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  11. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Unknown

    1999-12-01

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

  12. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; Andr Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  13. Geothermal fracture stimulation technology. Volume 1. Fracturing proppants and their properties

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    A review of previously published literature on proppant permeability is presented. This data will be used in the subsequent phases of the geothermal stimulation project. Much information comes from the oil and gas industry which has tested various proppants during the past thirty years over a range of different closure stresses at the lower temperatures found in oil reservoirs. The historical development of proppants is summarized and reviewed and a variety of data on proppants found in today's literature is presented. Also included are several standard test procedures and equipment setups used in measuring proppant properties and in proppant testing.

  14. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect (OSTI)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  15. AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Newberry Enhanced Geothermal Systems Demonstration | Department of Energy AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration January 22, 2013 - 3:41pm Addthis SEATTLE -- AltaRock Energy today announced that it has created multiple stimulated zones from a single wellbore at the

  16. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, Apr 1--June 30, 1997

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-08-31

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near-horizontal well has been drilled and completion operations are in progress. Upon initial review of log data, two hydraulic fracture treatments were planned. However, the probability of the lower frac growing into thick sands previously swept by waterflood has called for additional information to be obtained prior to proceeding with hydraulic fracture treatments. Should permeabilities prove to be as favorable as some data indicate, produced water volumes could be excessively high. Prior to pumping the first frac, the well will be perforated and produced from lower pay intervals. These perfs will not impact future frac work. Rate data and pressure transient analysis will dictate the need for the lower frac.

  17. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  18. Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: identify tracers with sorption properties favorable for EGS applications; apply reversibly sorbing tracers to determine the fracture-matrix interface area available for heat transfer; and; explore the feasibility of obtaining fracture-matrix interface area from non-isothermal; single-well injection-withdrawal (SWIW) tests.

  19. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  20. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic rock properties: the formation was shaly with low porosities, and water saturations were in line with expectations, including the presence of some intervals swept out by the waterflood. High water saturations at the bottom of the well eliminated one of the originally planned hydraulic fracture treatments. Although porosities proved to be low, they were more uniform across the formation than expected. Permeabilities of the various intervals continue to be evaluated, but appear to be better than expected from the porosity log model derived in Budget Period One. The well was perforated in all pay sections behind the 5 in. liner. Production rates and phases agree nicely with log calculations, fractional flow calculations, and an analytical technique used to predict the rate performance of the well.

  1. Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

  2. Stimulated Raman scattering of laser dye mixtures dissolved in multiple scattering media

    SciTech Connect (OSTI)

    Yashchuk, V P; Komyshan, A O; Tikhonov, E A; Olkhovyk, L A

    2014-10-31

    Stimulated Raman scattering (SRS) of a mixture of rhodamine 6G and pyrromethene 605 laser dyes in vesicular films is studied. It is shown that a peculiar interaction of dyes occurs under conditions of multiple scattering of light from vesicles. This interaction manifests itself as SRS excitation of one of the dyes by random lasing of the other dye, provided that the random lasing spectrum overlaps the Stokes lines of the first dye. In addition, there is energy transfer between molecules of these dyes if their luminescence and absorption spectra overlap. The results obtained confirm that the mechanism of SRS from laser dyes in multiple scattering media is similar to that in coherent-active Raman spectroscopy. These results extend the possibility of determining the vibrational spectrum of dye molecules from their secondary radiation in these media. (nonlinear optical phenomena)

  3. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

  4. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  5. Influence of reabsorption and reemission on stimulated Raman scattering of polymethine dyes in multiple scattering media

    SciTech Connect (OSTI)

    Yashchuk, V P; Komyshan, A O; Smaliuk, A P; Prygodiuk, O A; Ishchenko, A A; Olkhovyk, L A

    2013-12-31

    It is shown that reabsorption of the luminescence radiation in the range of its overlapping with the absorption spectrum and the following reemission to a long-wavelength range may noticeably affect the process of stimulated Raman scattering (SRS) in polymethine dyes in multiple scattering media (MSM). This is related to the fact that SRS in such media occurs jointly with the random lasing (RL), which favors SRS and makes up with it a united nonlinear process. Reemission into the long-wavelength spectrum range amplified in MSM causes the RL spectrum to shift to longer wavelengths and initiates the long-wavelength band of RL, in which a main part of the lasing energy is concentrated. This weakens or completely stops the SRS if the band is beyond the range of possible spectral localisation of Stokes lines. This process depends on the efficiency of light scattering, dye concentration, temperature and pump intensity; hence, there exist optimal values of these parameters for obtaining SRS in MSM. (nonlinear optical phenomena)

  6. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic fractures.

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-08-31

    The long radius, near-horizontal well has been drilled and completion operations are in progress. Upon initial review of log data, two hydraulic fracture treatments were planned. However, the probability of the lower frac growing into thick sands previously swept by waterflood has called for additional information to be obtained prior to proceeding with hydraulic fracture treatments. Should permeabilities prove to be as favorable as some data indicate, produced water volumes could be excessively high. Prior to pumping the first frac, the well will be perforated and produced from lower pay intervals. These perfs will not impact future frac work. Rate data and pressure transient analysis will dictate the need for the lower frac.

  7. High-energy gas-fracturing development. Annual report, April 1981-March 1982

    SciTech Connect (OSTI)

    Cuderman, J.F.

    1982-04-01

    The objective of this program is to develop and optimize the High Energy Gas Fracturing technique for producing multiple fractures about a wellbore and thereby stimulate natural gas production. Most gas wells in Devonian shales require stimulation to obtain commercially economic production. A propellant based technology has been developed which permits control of pressure loading to obtain multiple fracturing in a borehole. The High Energy Fracturing technique uses a full borehole charge of propellant tailored to produce multiple fractures radiating from the wellbore. The multiple fracture regime has been defined as a function of borehole size, pressure risetime, and surface wave velocity. The pressure risetime and peak pressure obtained in a borehole have been measured for different propellants and borehole diameters. These data make possible propellant specifications for a given peak pressure and pressure risetime. Semiempirical models using results from earlier experiments successfully predict stress and acceleration levels and fracture radii in surrounding rock. A finite element model has been developed which predicts fracture type, and direction of fractures as a function of pressure loading, in situ stress, and material properties. The High Energy Gas Fracturing program consists of three parts: (1) In situ experiments at DOE's Nevada Test Site (NTS), (2) modeling activities, and (3) a full scale experimemt in a Devonian shale gas well.

  8. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996

    SciTech Connect (OSTI)

    Niemeyer, B.L.

    1997-09-01

    The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.

  9. Microearthquake Technology for EGS Fracture Characterization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Microearthquake Technology for EGS Fracture Characterization Microearthquake Technology for EGS Fracture Characterization Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks. PDF icon seismic_foulger_microearthquake.pdf More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Newberry EGS

  10. Use of Tracers to Characterize Fractures in Engineered Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment. reservoirrosetracerscharacterizefractures.pdf More...

  11. High-energy gas-fracturing development. Quarterly report, October-December 1982

    SciTech Connect (OSTI)

    Cuderman, J.F.

    1983-02-01

    The purpose of this study is to develop and optimize the High Energy Gas Fracturing (HEGF) technique to produce multiple fractures around a wellbore in order to stimulate natural-gas production in Devonian shale. The HEGF technique uses a wellbore charge of a propellant tailored to produce pressure loading in the borehole that avoids crushing yet produces multiple fractures radiating from the wellbore. The multiple-fracture regime has been characterized and releated to parameters such as borehole size, pressure risetime, and surface-wave velocity. Pressure risetimes and peak pressures, measured for different propellants in boreholes to specify a propellant for a desired peak pressure and pressure risetime. Semiempirical models, using results from previous experiments, successfully relate stress, acceleration, and fracture radii in surrounding rock to peak pressure and pressure risetime. A finite-element model also has been developed which predicts fracture type and direction of fractures as a function of pressure loading, in situ stress, and material properties. A full-scale HEGF system has been developed for application in gas-well-stimulation experiments in Devonian shale. During this quarter, a proof test of the full-scale HEGF was conducted at the Nevada Test Site (NTS). The designed pressure pulse of 0.5 ms risetime was achieved, and the tamp remained in place during the test. The borehole was successfully cleared posttest. Multiple fracturing was verified with a downhole TV camera. The test of the full-scale hardware and its operational capability was successful. As a result, the HEGF system is ready for application in gas-well-stimulation experiments in Devonian shale. Tests were conducted to determine worst-case accident scenarios to establish sensitivity to shock and fire. There appears to be no risk of initiation resulting from shock or breakage of the propellant-canister segments.

  12. Microseismic Tracer Particles for Hydraulic Fracturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large increase in the use of hydraulic fracture stimulation of these inherently low permeability reservoir rocks. Operators and service companies require data that can be used to...

  13. Coiled tubing isolates zones, fractures wells with single trip service

    SciTech Connect (OSTI)

    Silverman, S.A.

    1999-04-01

    A system has been devised that combines high pressure coiled tubing (CT) and a selective isolation technique to frac multiple zones in a single operation. Multiple zones in one well can be individually isolated, fractured and flowed back simultaneously which results in reduced exposure to kill fluids and therefore higher retained conductivity for newly created fractures. The technique has been named CoilFRAC{trademark} by Dowell. The key benefits to the entire operation are reduced rig and operations time compared to conventional fracturing processes. Time savings, increased production, and environmental benefits are the economic drivers that result in rapid return on investment for production operators. The single trip concept for perforating and stimulation crews also brings additional benefits over multiple mobilizations. Wells which previously had only major zones perforated and stimulated and which are currently depleted can be revived economically using this system, giving the well a second life. The paper describes the equipment and its safety and contingency features, optimized shallow gas production in Alberta, and results from a South Texas oil well fracturing.

  14. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

  15. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  16. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

  17. Characterizing Fractures in Geysers Geothermal Field by Micro...

    Open Energy Info (EERE)

    cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the...

  18. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trenton T. Cladouhos

    2015-09-03

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  19. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trenton T. Cladouhos

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  20. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  1. Method for enhancement of sequential hydraulic fracturing using control pulse fracturing

    SciTech Connect (OSTI)

    Jennings, A.R. Jr.; Strubhar, M.K.

    1993-07-20

    A method is described for creating multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing where two wells are utilized comprising: (a) drilling and completing a first and second well so that the wells will be in fluid communication with each other after subsequent fracturing in each well; (b) creating more than two simultaneous multiple vertical fractures via a controlled pulse fracturing method in the second well; (c) thereafter hydraulically fracturing the reservoir via the first well thereby creating fractures in the reservoir and afterwards shutting-in the first well without any induced pressure; (d) applying thereafter hydraulic pressure to the reservoir via the second well in an amount sufficient to fracture the reservoir thereby forming a first hydraulic fracture perpendicular to the least principal in-situ stress; (e) maintaining the hydraulic pressure on the reservoir while pumping via the second well alternate slugs of a thin-fluid spacer and a temporary blocking agent having a proppant therein whereupon a second hydraulic fracture is initiated; (f) maintaining the hydraulic pressure on the second well while pumping alternate slugs of spacer and blocking agent into the second hydraulic fracture thereby causing the second hydraulic fracture to propagate away from the first hydraulic fracture in step (e) in a curved trajectory which intersects a fracture created in the first well; (g) maintaining the hydraulic pressure while pumping as in step (f) whereupon another hydraulic fracture initiates causing another curved fracture trajectory to form and intersect the fracture created in the first well; and (h) repeated steps (f) and (g) until a desired number of hydraulic fractures are created which allows a substantial improvement in removing a natural resource from the reservoir.

  2. Acid fracturing of carbonate gas reservoirs in Sichuan

    SciTech Connect (OSTI)

    Meng, M.

    1982-01-01

    The paper presents the geological characteristics of Sinian-furassic carbonate gas reservoirs in the Sichuan basin, China. Based on these characteristics, a mechanism of acid fracturing is proposed for such reservoirs. Included are the results of a research in acid fracturing fluids and field operation conditions for matrix acidizing and acid fracturing in Sichuan. The acid fracturing method is shown to be an effective stimulation technique for the carbonate strata in this area.

  3. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  4. A compendium of fracture flow models, 1994

    SciTech Connect (OSTI)

    Diodato, D.M.

    1994-11-01

    The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.

  5. Natural fracture characterization using passive seismic illumination

    SciTech Connect (OSTI)

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  6. Geothermal-Reservoir Well-Stimulation Program. Program status report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

  7. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  8. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  9. Fracturing And Liquid CONvection

    Energy Science and Technology Software Center (OSTI)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modelingmore » for the coupled thermal-hydrological-mechanical processes. Conventionally, these types of problems are solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. FALCON eliminates the need for using operator-splitting methods to simulate these systems, and the scalability of the underlying MOOSE architecture allows for simulating these tightly coupled processes at the reservoir scale, allowing for examination of the system as a whole (something the operator-splitting methodologies generally cannot do).« less

  10. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  11. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  12. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-11-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  13. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.

  14. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect (OSTI)

    Fred Sabins

    2005-03-31

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  15. Geothermal Ultrasonic Fracture Imager

    Broader source: Energy.gov [DOE]

    Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to 300°C and depths up to 10; 000 m.

  16. Fracture detection logging tool

    DOE Patents [OSTI]

    Benzing, William M.

    1992-06-09

    A method and apparatus by which fractured rock formations are identified and their orientation may be determined includes two orthogonal motion sensors which are used in conjunction with a downhole orbital vibrator. The downhole vibrator includes a device for orienting the sensors. The output of the sensors is displayed as a lissajou figure. The shape of the figure changes when a subsurface fracture is encountered in the borehole. The apparatus and method identifies fractures rock formations and enables the azimuthal orientation of the fractures to be determined.

  17. Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objectives: Using existing LLNL computer programs, develop realistic models of EGS stimulation-response scenarios involving hydraulic and explosive propagation of tensile/shear fracture systems in hard rock formations where a pre-existing fracture network may be present along with regional stress and temperature distributions. Evaluate resulting heat transfer improvement of enhanced target formations using LLNL NUFT subsurface flow and transport program.

  18. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  19. Newberry Volcano EGS Demonstration Stimulation Modeling

    SciTech Connect (OSTI)

    Trenton T. Cladouhos, Matthew Clyne, Maisie Nichols,; Susan Petty, William L. Osborn, Laura Nofziger

    2011-10-23

    As a part of Phase I of the Newberry Volcano EGS Demonstration project, several data sets were collected to characterize the rock volume around the well. Fracture, fault, stress, and seismicity data has been collected by borehole televiewer, LiDAR elevation maps, and microseismic monitoring. Well logs and cuttings from the target well (NWG 55-29) and core from a nearby core hole (USGS N-2) have been analyzed to develop geothermal, geochemical, mineralogical and strength models of the rock matrix, altered zones, and fracture fillings (see Osborn et al., this volume). These characterization data sets provide inputs to models used to plan and predict EGS reservoir creation and productivity. One model used is AltaStim, a stochastic fracture and flow software model developed by AltaRock. The software's purpose is to model and visualize EGS stimulation scenarios and provide guidance for final planning. The process of creating an AltaStim model requires synthesis of geologic observations at the well, the modeled stress conditions, and the stimulation plan. Any geomechanical model of an EGS stimulation will require many assumptions and unknowns; thus, the model developed here should not be considered a definitive prediction, but a plausible outcome given reasonable assumptions. AltaStim is a tool for understanding the effect of known constraints, assumptions, and conceptual models on plausible outcomes.

  20. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  1. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    SciTech Connect (OSTI)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

  2. Fracture Evolution Following a Hydraulic Stimulation within an EGS

    Broader source: Energy.gov (indexed) [DOE]

    Energy Download presentation slides from the DOE Fuel Cell Technologies Program webinar, "Material Characterization of Storage Vessels for Fuel Cell Forklifts," presented by Sandia National Laboratories on August 14, 2012. PDF icon Material Characterization of Storage Vessels for Fuel Cell Forklifts Webinar Slides More Documents & Publications Hydrogen Compatibility of Materials US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Fuel Cell Technologies Program

  3. Fracture mechanics: 26. volume

    SciTech Connect (OSTI)

    Reuter, W.G.; Underwood, J.H.; Newman, J.C. Jr.

    1995-12-31

    The original objective of these symposia was to promote technical interchange between researchers from the US and worldwide in the field of fracture. This objective was recently expanded to promote technical interchange between researchers in the field of fatigue and fracture. The symposium began with the Swedlow Memorial Lecture entitled ``Patterns and Perspectives in Applied Fracture Mechanics.`` The remaining 42 papers are divided into the following topical sections: Constraint crack initiation; Constraint crack growth; Weldments; Engineered materials; Subcritical crack growth; Dynamic loading; and Applications. Papers within the scope of the Energy Data Base have been processed separately.

  4. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  5. Geothermal reservoir well stimulation program. Final program summary report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Eight field experiments and the associated theoretical and laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Overall results have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formation zones. Seven of the eight stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or reservoir transmissivity. The Beowawe chemical stimulation treatment appears to have significantly improved the well's injectivity, but production data were not obtained because of well mechanical problems. The acid etching treatment in the well at the Geysers did not have any material effect on producing rate. Evaluations of the field experiments to date have suggested improvements in treatment design and treatment interval selection which offer substantial encouragement for future stimulation work.

  6. Shale Gas Development Challenges: Fracture Fluids | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Fluids Shale Gas Development Challenges: Fracture Fluids PDF icon Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: ...

  7. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2007-12-15

    We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.

  8. DEM Particle Fracture Model

    SciTech Connect (OSTI)

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  9. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  10. Method and apparatus for determining two-phase flow in rock fracture

    DOE Patents [OSTI]

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  11. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for ...

  12. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization; ...

  13. Infiltration into Fractured Bedrock

    SciTech Connect (OSTI)

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  14. Injection through fractures

    SciTech Connect (OSTI)

    Johns, R.A.

    1987-05-01

    Tracer tests are conducted in geothermal reservoirs as an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field data were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot be judged solely on the quality of the match between field data and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment. In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured data. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, as estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

  15. Evaluation of EL836 explosive stimulation of Devonian gas shale

    SciTech Connect (OSTI)

    Barbour, T G

    1980-07-01

    This report presents an evaluation of EL836, an explosive developed at E.I. duPont de Nemours and Company Laboratories, in stimulating gas shale. EL836 is a water gel type explosive with a high aluminum content. The computational evaluation of EL836 involved four one-dimensional cyclindrical geometry calculations to assess the influence of two equation-of-state descriptios of EL836, the effect or rock yielding and the effect of internal crack pressurization. Results of a computational evaluation of the EL836 explosive in stimulating Devonian gas shale suggest the following: Extensive plastic yielding will occur in a region immediate to the borehole. Extensive tensile fracture will occur in a region that begins at the outer boundary of plastic deformation and terminates at more than 100 borehole radii. Without a mechanism of ;near-wellbore fracture, such as crushing or pre-cracking during drilling or intentional borehole grooving, the plastic flow that occurs adjacent to the wellbore causes stress redistributions which prohibit early-time (less than a millisecond) tensile fracture immediate to the wellbore and thus prohibits gas penetration from the wellbore into the crack system. The barrier that the near-wellbore plastic zone presents to gas flow from the wellbore is reduced in radial dimension as time increases. Natural fractures in the wellbore wall or cataclysmic deformation and fracture adjacent to the wellbore, as a result of the explosive detonation, will likely assist in breaking down the barrier to gas flow. Very significatn enhancement is achieved in the EL836 stimulation treatment when gases penetrate the stress-wave induced radial cracks. Only minor differences were observed in the EL836 stimulation effects when comparison is made between two different explosive equations-of-state. 33 figures, 2 tables.

  16. GEOTHERMAL WELL STIMULATION

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL WELL STIMULATION crj D. A . Campbell & C. W. Morris A . R.. Sinclair Republic Geothermal, Inc. Maurer Engineering Inc. R. J. Hanold Los Alamos National Laboratory 0 . J. Vetter Vetter Research The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600'F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated

  17. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  18. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  19. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  20. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    SciTech Connect (OSTI)

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  1. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E.

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  2. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  3. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture SNL has 40+ years ...

  4. Development of an Advanced Stimulation/Production Predictive Simulator for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical simulator to model the following aspects of stimulation and long-term operation: (1)perturbation of natural stress, pore pressure, and formation temperature distributions caused by cold water injection, (2) shear slippage and aperture increase along fracture patchesŽ and aperture change caused by changes in effective normal stress,(3) fracture patchŽ linkup to form connected permeable volume and both reversible and irreversible permeability changes.

  5. NETL Releases Hydraulic Fracturing Study

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory has released a technical report on the results of a limited field study that monitored a hydraulic fracturing operation in Greene County, PA.

  6. FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY

    SciTech Connect (OSTI)

    Raymond L. Mazza

    2004-11-30

    These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

  7. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

  8. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    SciTech Connect (OSTI)

    Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

  9. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  10. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    SciTech Connect (OSTI)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  11. Multiplicity Counting

    SciTech Connect (OSTI)

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  12. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Daniel R. Burns; M. Nafi Toksoz

    2003-07-10

    A 3-D elastic wave propagation finite difference model, including effects of attenuation, has been implemented and compared with other existing modeling codes for validation. Models of seismic scattering from discrete large-scale fractures as well as equivalent anisotropic medium representations of small-scale fractures have been generated and used to develop data analysis methods for applications to seismic field data. An inversion scheme has been developed to estimate fracture orientation and fracture density from amplitude variations with offset and azimuth (AVOA). The method has been tested on synthetic data and field data from an offshore fractured carbonate reservoir with promising results. Spectral characteristics of the numerical model data of the seismic wavefield scattered from aligned fractures with different spacing between fracture zones have been analyzed. Results indicate that the spacing of these large, open fracture zones can be estimated from the wavenumber spectra of the scattered wave amplitude as a function of offset in pre-stack data. Two approaches for converting seismically derived fracture parameters into fluid-flow parameters for use in reservoir simulators have been identified. The first is the numerical modeling of Stoke's flow in fracture networks, and the second uses a statistical model of a fracture distribution that allows for the calculation of the elastic properties and permeability tensor of the resulting equivalent medium. These approaches will be compared in the coming year. Multiple meetings have been held with our industry partner, Shell Oil, to identify a field test site for the project. We are focusing our efforts on a fractured carbonate field. The field application test site selection and data transfer will be completed in the coming year.

  13. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  14. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  15. Fracture mapping in geothermal fields with long-offset induction logging

    SciTech Connect (OSTI)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro; Kasameyer, P.; Lee, Ki Ha; Lippmann, M.

    1997-01-01

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orientating, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have strong source-receiver separations of 1 m, this device has multiple sensors with separation of 8 m, allowing for deeper penetrations and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This in turn allows for accurate projection of these structures into the space between wells.

  16. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.

  17. Hydraulic fracturing utilizing a refractory proppant

    SciTech Connect (OSTI)

    Jennings, A.R.; Stowe, L.R.

    1990-01-01

    This patent describes a method for hydraulically fracturing a formation where a fused refractory proppant is used. It comprises: placing into a fracturing fluid a fused refractory proppant consisting essentially of silicon carbide or silicon nitride having a mohs hardness of about 9 and in an amount sufficient to prop a created fracture where the proppant is substantially crush and acid resistant; injecting into the formation the fracturing fluid with the proppant therein under a pressure sufficient to fracture the formation; and fracturing the formation and thereafter causing the pressure to be released thereby propping at least one fracture which proppant provides for increased heat transfer into the formation.

  18. RELATIVE PERMEABILITY OF FRACTURED ROCK

    Office of Scientific and Technical Information (OSTI)

    ... This hinders the creation of connected fracture networks even if the rock is subjected to ... Bergosh, J.L., Lord, G.D., 1987: "New Developments in the Analysis of Cores From Naturally ...

  19. PNNL Successes with Novel Stimulation Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... material was capable of inducing fractures in rock with a force nearly 70% below ... the mechanisms lending to their successful induced fractures via polymer expansion. ...

  20. The Northwest Geysers EGS Demonstration Project, California. Pre-stimulation Modeling and Interpretation of the Stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Hartline, Craig; Jeanne, Pierre; Oldenburg, Curtis M.; Vasco, Donald W.; Walters, Mark

    2013-10-17

    The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less

  1. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow

    Broader source: Energy.gov (indexed) [DOE]

    in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model | Department of Energy Green version of the EERE PowerPoint template, for use with PowerPoint 97 through 2004. PDF icon lianjie_imaging_modeling_peer2013.pdf More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling

  2. New York Canyon Stimulation

    SciTech Connect (OSTI)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "œNo Go" decision and initiate project termination in April 2012.

  3. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect (OSTI)

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  4. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures ...

  5. Establishment of Stress-Permeabilty relationship of fractured...

    Office of Scientific and Technical Information (OSTI)

    ... hydraulic conductivity for intact and fractured ... D, Hayashi K, Effect of thermal deformation on fracture ... constant (K) Fracture density* (m -2 ) Mean trace ...

  6. Microsoft Word - EPA 6 Analysis of Fracture Propagation_final...

    Office of Scientific and Technical Information (OSTI)

    Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in ... induced by hydraulic fracturing with water injection, using numerical simulation. ...

  7. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  8. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  9. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  10. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  11. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  12. Hydrogen fracture toughness tester completion

    SciTech Connect (OSTI)

    Morgan, Michael J.

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  13. Hydraulic Fracturing | OpenEI Community

    Open Energy Info (EERE)

    Hydraulic Fracturing Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 30 June, 2015 - 03:49 Shale Gas Application in Hydraulic Fracturing Market is likely to grow...

  14. Hydraulic Fracturing Market | OpenEI Community

    Open Energy Info (EERE)

    Hydraulic Fracturing Market Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 30 June, 2015 - 03:49 Shale Gas Application in Hydraulic Fracturing Market is likely...

  15. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  16. Characterization of EGS Fracture Network Lifecycles

    SciTech Connect (OSTI)

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nations resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or EGS) experiments performed at the Coso geothermal field, in order to enhance productivity there. Task 3 was to interpret the results jointly with other geological information in order to provide a consistent physical model. All of the original goals of the project have been achieved. An existing program for calculating accurate relative earthquake locations has been enhanced by a technique to improve the accuracy of earthquake arrival-time measurements using waveform cross-correlation. Error analysis has been added to pre-existing moment tensor software. New seismic tomography software has been written to calculate changes in structure that could be due, for example, to reservoir depletion. Data processing procedures have been streamlined and web tools developed for rapid dissemination of the results, e.g., to on-site operations staff. Application of the new analysis tools to the Coso geothermal field has demonstrated the effective use of the techniques and provided important case histories to guide the style of future applications. Changes in reservoir structure with time are imaged throughout the upper 3 km, identifying the areas where large volumes of fluid are being extracted. EGS hydrofracturing experiments in two wells stimulated a nearby fault to the south that ruptured from south to north. The position of this fault could be precisely mapped and its existence was confirmed by surface mapping and data from a borehole televiewer log. No earthquakes occurred far north of the injection wells, suggesting that the wells lie near the northern boundary of the region of critically stressed faults. Minor en-echelon faults were also activated. Significant across-strike fluid flow occurred. The faults activated had significant crack-opening components, indicating that the hydraulic fracturing created open cavities at depth. The fluid injection changed the local stress field orientation and thus the mode of failure was different from the normal background. Initial indications are that the injections modulated stress release, seismicity and natural fracture system evolution for periods of up to months. The research demon

  17. GMINC: a mesh generator for flow simulations in fractured reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1983-03-01

    GMINC is a pre-processor computer program for generating geometrical meshes to be used in modeling fluid and heat flow in fractured porous media. It is based on the method of multiple interacting continua (MINC) as developed by Pruess and Narasimhan. The meshes generated by GMINC are in integral finite difference form, and are compatible with the simulators SHAFT79 and MULKOM. Applications with other integral finite difference simulators are possible, and require slight modifications in input/output formats. This report describes methodology and application of GMINC, including preparation of input decks and sample problems. A rather comprehensive overview of the MINC-method is also provided to make the presentation self-contained as a guide for modeling of flow in naturally fractured media.

  18. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  19. Optically stimulated differential impedance spectroscopy

    DOE Patents [OSTI]

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  20. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  1. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  2. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  3. Fracture-permeability behavior of shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  4. Permeability Calculation in a Fracture Network - 12197

    SciTech Connect (OSTI)

    Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)

  5. Rock matrix and fracture analysis of flow in western tight gas sands: Annual report, Phase 3

    SciTech Connect (OSTI)

    Dandge, V.; Graham, M.; Gonzales, B.; Coker, D.

    1987-12-01

    Tight gas sands are a vast future source of natural gas. These sands are characterized as having very low porosity and permeability. The main resource development problem is efficiently extracting the gas from the reservoir. Future production depends on a combination of gas price and technological advances. Gas production can be enhanced by fracturing. Studies have shown that many aspects of fracture design and gas production are influenced by properties of the rock matrix. Computer models for stimulation procedures require accurate knowledge of flow properties of both the rock matrix and the fractured regions. In the proposed work, these properties will be measured along with advanced core analysis procedure aimed at understanding the relationship between pore structure and properties. The objective of this project is to develop reliable core analysis techniques for measuring the petrophysical properties of tight gas sands. Recent research has indicated that the flow conditions in the reservoir can be greatly enhanced by the presence of natural fractures, which serve as a transport path for gas from the less permeable matrix. The study is mainly concerned with the dependence of flow in tight gas matrix and healed tectonic fractures on water saturation and confining pressure. This dependency is to be related to the detailed pore structure of tight sands as typified by cores recovered in the Multi-Well experiment. 22 refs., 34 figs., 9 tabs.

  6. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, Norman R.; Steinfort, Terry D.; Branagan, Paul T.; Wilmer, Roy H.

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

  7. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

  8. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  9. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  10. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect (OSTI)

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  11. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George Scott III

    2003-08-01

    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly increase future petroleum well recoveries in the United States, onshore and offshore, and in vertical and horizontal wells.

  12. Detecting Fractures Using Technology at High Temperatures and Depths -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal

  13. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  14. Hydraulic Fracturing Technology | Department of Energy

    Energy Savers [EERE]

    Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to ...

  15. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  16. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  17. Demultiplexer circuit for neural stimulation

    DOE Patents [OSTI]

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  18. Small-scale experiments with an analysis to evaluate the effect of tailored pulse loading on fracture and permeability. Final report for phase I, June 11, 1979-June 11, 1980

    SciTech Connect (OSTI)

    McHugh, S.

    1980-06-01

    To determine the applicability of the tailored pulse-loading technique to full-scale stimulation, a two-year program was conducted to examine the effects of pulse tailoring on fracture. Results of the field, laboratory, and calculational program demonstrate that: (1) the material and fracture properties derived from laboratory measurements can be used successfully in the NAG-FRAG calculational simulations to reproduce the main features of fracturing in the field; and (2) the fracture patterns produced in these experiments show a strong dependence on the borehole pressure pulse shape. The material and fracture properties will have a significant influence on the fracture patterns. Therefore, shale and tuff will have different optimum pulse shapes.

  19. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  20. FRACTURE ENHANCED SOIL VAPOR EXTRACTION TECHNOLOGY DEMONSTRATION AT THE A-014 OUTFALL

    SciTech Connect (OSTI)

    Riha, B; Warren Hyde, W; Richard Hall , R

    2008-03-12

    Data collected during this study show that the performance of hydraulically fractured wells (with respect to mass removal rates) may tend to decrease with time following precipitation events. These effects are due to temporary increases in water saturation in the formation within the vicinity of the fractures, therefore, the wells should tend to rebound during subsequent dry periods. The data available for fractured well versus conventional well performance (with respect to flow rate versus vacuum pressure) are limited in this study. However, the data that we have to draw from suggest that, with the possible exception of a few extreme examples, hydraulically fractured wells tend to perform better than conventional wells during soil vapor extraction (SVE) operation at the A-14 Outfall. The pancake like geometry associated with hydraulic fractures also leads to a significant increase in zone of influence (ZOI), as compared to conventional wells. The increase in ZOI is due to the radially extending, horizontal, high-permeability conduit nature of the hydraulic fracture, however, air-flow into the fracture is predominately vertical (occurring at right angles to the fracture plane). Flow rates from above and below the fracture will tend to be equivalent when the formation is homogeneous, however, in the case of directionally fining depositional sequences flow rates will be greater from the direction of increasing permeability. The Upland Unit is a fining upward sequence, therefore flow rates (and contaminant mass flow rates) will tend to be higher below the fracture. This suggests that emplacing the fractures slightly above the source zone is an important strategy for accelerating contaminant removal at the A-014 Outfall site and in the Upland Unit at the SRS. However, due to the multitude of previous borings at the A-014 Outfall site, the shallower fractures failed. More than 2500 lbs of chlorinated volatile organic compounds (cVOCs) were removed during approximately 6 months of fractured well SVE operation at the A-014 field site. Plotting total mass removed over this time period shows a roughly linear relationship Figure 7. This occurs because the mass removal rate remains fairly constant with time. When mass removal comes predominately from cVOCs stored in the vapor phase there is a marked decline in mass removal rate over a short period of time due to the limiting nature of diffusion. Constant mass removal rates suggest that a source zone has been directly targeted and, therefore, is providing a constant supply of cVOC that partitions into the vapor phase and is removed through the well. Directly targeting and removing source zones is the most efficient approach to remediating contaminated sites. Results of this study show that utilization of hydraulic fractures during SVE is an effective approach for increasing remediation efficiency at the A-014 Outfall field site and in the Upland Unit at the SRS. Hydraulically fractured wells tend to produce greater flow rates and create larger ZOI's than do conventional wells. These attributes allow fractured wells to effectively treat larger volumes of formation. The unique sand-emplacement geometry associated with hydraulically fractured wells also allows direct targeting of multiple zones located at similar elevations within a fairly large radius of the well. The ability to directly target source zones significantly decreases diffusion pathways, therefore, significantly decreasing the time required to reach remediation goals.

  1. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    SciTech Connect (OSTI)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo; Kabilan, Senthil; Um, Wooyong; Carroll, Kenneth C.; Varga, Tamas; Suresh, Niraj; Stephens, Sean A.; Fernandez, Carlos A.

    2014-12-14

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  2. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael

    1999-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  3. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, Frederick S.; Geesey, Gill G.; Gillis, Richard J.; Lehman, R. Michael

    1997-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  4. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1997-11-11

    A method and apparatus is described for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  5. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1999-07-13

    A method and apparatus are disclosed for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for microorganisms in the sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  6. Fracture of solid state laser slabs

    SciTech Connect (OSTI)

    Marion, J.E.

    1986-07-01

    Fracture due to thermal stress limits the power output potential of modern, high average power slab lasers. Here the criteria for slab fracture and the nature of the surface flaws which constitute the strength-controlling defects are reviewed. Specific fracture data for gadolinium scandium gallium garnet and LHG-5 phosphate glass with different surface finishes are evaluated in the context of assigning appropriate slab operating parameters using Wiebull statistics. These examples illustrate both the danger of design using brittle components without adequate fracture testing, and the inadequacy of design methods which use a fixed safety factor, for this class of materials. Further consideration reveals that operation of slab lasers in contact with an aqueous coolant may lead to strength degradation with time. Finally, the evolution of the failure process in which a characteristic midplane crack forms is outlined, and the pertinent parameters for avoiding slab fracture are identified.

  7. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  8. Scale-Dependent Fracture-Matrix Interactions and Their Impact...

    Office of Scientific and Technical Information (OSTI)

    ... network models with variability in apertures across a network of fractures and within individual fractures. less Authors: Rajaram, Harihar 1 ; Brutz, Michael 1 ; Klein, ...

  9. Controlling Subsurface Fractures and Fluid Flow: A Basic Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...

  10. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured...

    Office of Scientific and Technical Information (OSTI)

    Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and ...

  11. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    Unusual lithiation and fracture behavior of silicon mesoscale pillars: roles of ultrathin ... Citation Details In-Document Search Title: Unusual lithiation and fracture behavior of ...

  12. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    2014-05-11

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  13. A Research Park for Studying Processes in Unsaturated Fractured...

    Office of Scientific and Technical Information (OSTI)

    A Research Park for Studying Processes in Unsaturated Fractured Media Citation Details In-Document Search Title: A Research Park for Studying Processes in Unsaturated Fractured ...

  14. Fractured rock stress-permeability relationships from in situ...

    Office of Scientific and Technical Information (OSTI)

    Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings Citation Details In-Document Search Title: Fractured...

  15. Stress-dependent permeability of fractured rock masses: A numerical...

    Office of Scientific and Technical Information (OSTI)

    permeability of fractured rock masses: A numerical study Citation Details In-Document Search Title: Stress-dependent permeability of fractured rock masses: A numerical study We ...

  16. Three-dimensional Modeling of Fracture Clusters in Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs;...

  17. Detection and Characterization of Natural and Induced Fractures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems Detection and Characterization of Natural and Induced Fractures for ...

  18. Fracture mechanics based design for radioactive material transport...

    Office of Scientific and Technical Information (OSTI)

    Fracture mechanics based design for radioactive material transport packagings -- Historical review Citation Details In-Document Search Title: Fracture mechanics based design for ...

  19. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field...

  20. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

  1. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong...

  2. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  3. Preface to the Special Issue on the Sandia Fracture Challenge...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preface to the Special Issue on the Sandia Fracture Challenge. Citation Details In-Document Search Title: Preface to the Special Issue on the Sandia Fracture ...

  4. Predicting fracture in micron-scale polycrystalline silicon MEMS...

    Office of Scientific and Technical Information (OSTI)

    Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon ...

  5. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a ...

  6. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...

    Office of Scientific and Technical Information (OSTI)

    Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Title: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ...

  7. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels Abstract not provided. Authors: Somerday,...

  8. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a document from the...

  9. Self-potential observations during hydraulic fracturing

    SciTech Connect (OSTI)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  10. Fracture-resistant lanthanide scintillators

    DOE Patents [OSTI]

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  11. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  12. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect (OSTI)

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  13. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Daniel R. Burns; M. Nafi Toksoz

    2005-08-01

    During the past six months we have adapted our 3-D elastic, anisotropic finite difference code by implementing the rotated staggered grid (RSG) method to more accurately represent large contrasts of elastic moduli between the fractures and surrounding formation, and applying the perfectly matched layer (PML) absorbing boundary condition to minimize boundary reflections. Two approaches for estimating fracture spacing from scattered seismic energy were developed. The first relates notches in the amplitude spectra of the scattered wavefield to the dominant fracture spacing that caused the scattering. The second uses conventional FK filtering to isolate the backscattered signals and then recovers an estimate of the fracture spacing from the dominant wavelength of those signals. Both methods were tested on synthetic data and then applied to the Emilio field data. The spectral notch method estimated the Emilio fracture spacing to be about 30 to 40 m, while the FK method found fracture spacing of about 48 to 53 m. We continue to work on two field data sets from fractured carbonate reservoirs provided by our industry sponsors--the offshore Emilio Field data (provided by ENIAGIP), and an onshore reservoir from the Middle East (provided by Shell). Calibration data in the form of well logs and previous fracture studies are available for both data sets. In previous reports we showed the spatial distribution fractures in the Emilio Field based on our calculated scattering index values. To improve these results we performed a map migration of all the scattering indices. The results of this migration process show a very strong correlation between the spatial distribution and orientation of our estimated fracture distribution and the fault system in the field. We observe that the scattering index clusters tend to congregate around the fault zones, particularly near multiple faults and at fault tips. We have also processed a swath of data from the second data set (the onshore carbonate field). FMI data are available from a number of wells for comparison to our seismic scattering analysis results. The agreement is very good, providing confidence that these methods can be applied to land seismic data that do not have the ideal azimuthal coverage.

  14. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂

    SciTech Connect (OSTI)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.

  15. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  16. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reductionmore » of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less

  17. An Independent Scientific Assessment of Well Stimulation in California Volume I

    SciTech Connect (OSTI)

    Jane C.S. Long; Laura C. Feinstein; Birkholzer, Jens; Jordan, Preston; Houseworth, James; Patrick F. Dobson; Heberger, Matthew; Gautier, Donald L.

    2015-01-01

    In 2013, the California Legislature passed Senate Bill 4 (SB 4), setting the framework for regulation of well stimulation technologies in California, including hydraulic fracturing. SB 4 also requires the California Natural Resources Agency to conduct an independent scientific study of well stimulation technologies in California to assess current and potential future practices, including the likelihood that well stimulation technologies could enable extensive new petroleum production in the state, evaluate the impacts of well stimulation technologies and the gaps in data that preclude this understanding, identify risks associated with current practices, and identify alternative practices which might limit these risks. The study is issued in three volumes. This document, Volume I, provides the factual basis describing well stimulation technologies, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II discusses how well stimulation affects water, the atmosphere, seismic activity, wildlife and vegetation, traffic, light and noise levels; it will also explore human health hazards, and identify data gaps and alternative practices. Volume III presents case studies to assess environmental issues and qualitative

  18. Coiled tubing stimulations eliminate hole failures & condensate losses in Arun field

    SciTech Connect (OSTI)

    Bunnell, F.D.; Daud, M.M.

    1995-12-31

    Stimulation practices have evolved considerably over the life of the Arun Field. From the original HCl matrix treatments in the late 70`s to the organic matrix and acid fracture treatments through the early 90`s these techniques have proven effective. Beginning in recent years however, some problems have been observed. Problems include collapsing shales plugging one well and sharp drops in the condensate/gas ratio following stimulation in others. Open hole completions with a limited casing/cement barrier between the over pressured shale and the depleting Arun reservoir are subject to shale collapse and plugging when directly exposed to acid during conventional stimulations. Most Arun completions are subject to post stimulation condensate losses due to increasingly difficult conditions for effective diversion of acid treatment fluids. Acid stimulation using coiled tubing techniques effectively addresses these problems. In seven stimulations performed to date shale failures and condensate losses have been eliminated. Direct acid washing across deeper intervals helps protect the acid sensitive barrier in open hole completions and effectively treats the lower, condensate rich zones.

  19. Fracture porosimeter: a new tool for determining fracture conductivity under downhole stress

    SciTech Connect (OSTI)

    Wendorff, C.L.

    1982-01-01

    This work describes a procedure for determining fracture conductivity at down-hole stresses. The embedment and crushing of proppant between rock samples from a specific formation are measured at closure stresses. The conductivities of fractures propped with various proppants can be determined rather quickly. As a result, the procedure can supply information useful in determining optimum fracture treatment for a specific well. In the procedure, samples of formation and proppants are placed in an appropriate confinement chamber. Closure stresses are applied and fracture conductivity can be calculated. The study includes examples of permeability and surface areas of conventional proppants. Fracture conductivity determinations, made with a variety of formations and proppants, indicate how this procedure can be useful when making decisions concerning fracture treatment design. An improvement in equipment design also is presented. 11 references.

  20. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  1. Infiltration and Seepage Through Fractured Welded Tuff

    SciTech Connect (OSTI)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  2. Regional Analysis And Characterization Of Fractured Aquifers...

    Open Energy Info (EERE)

    become an important source of basic data that can be used to help characterize the nature and extent of hydraulic conductivity in fractured rocks. We plan to continue to...

  3. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  4. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  5. TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect (OSTI)

    Morgan, M; Michael Tosten, M; Scott West, S

    2006-07-17

    The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

  6. Poroelastic response of orthotropic fractured porous media

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-12-01

    An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

  7. Effects of fracture distribution and length scale on the equivalent

    Office of Scientific and Technical Information (OSTI)

    continuum elastic compliance of fractured rock masses (Journal Article) | SciTech Connect Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Citation Details In-Document Search Title: Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses Authors: Gutierrez, Marte ; Youn, Dong-Joon Publication Date: 2015-12-01 OSTI Identifier: 1224355 Grant/Contract

  8. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect (OSTI)

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcys Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  9. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect (OSTI)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter estimates made.

  10. Fracture porosimeter--a new tool for determining fracture conductivity under downhole stress

    SciTech Connect (OSTI)

    Wedorff, C.L.

    1982-09-01

    This paper describes a new, fast, simplified procedure for determining fracture conductivity at downhole stresses. The embedment and crushing of proppant between rock samples from a specific formation are measured at closure stresses. The conductivities of fractures propped with various proppants can be determined rather quickly. As a result, the procedure can supply information useful in determining optimum fracture treatment for a specific well. In the new procedure, samples of formation and proppants are placed in an appropriate confinement chamber. Closure stresses are applied and fracture conductivity can be calculated. A proppant data base obtained using a modified Cooke conductivity test unit includes permeabilities, porosities and fracture widths measured over a range of closure stresses. These properties are dependent upon the type and amount of proppant tested and the stress applied. The paper includes examples of permeability and surface areas of conventional proppants. Fracture conductivity determinations, made with a variety of formations and proppants, indicate how this procedure can be useful when making decisions concerning fracture treatment design. An improvement in equipment design is also presented. The use of a Hoek triaxial cell as a fracture porosimeter allows the application of both closure and confining stresses, thus more closely simulating downhole conditions.

  11. Modeling and Field Results from Seismic Stimulation

    SciTech Connect (OSTI)

    Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.

    2006-05-30

    Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory.

  12. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineered Geothermal System through Hydraulic and Thermal Stimulation Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Newberry EGS...

  13. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    SciTech Connect (OSTI)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in Chapter 4: use of diesel-fuel to raise the rock temperature by a combustion process in the well. The requirements for such a Gas-Vapor Generator are laid out, and the development of a prototype machine is explained. This is backed up with laboratory experiments showing that the fuel-water mixture used does significantly increase the viscosity of the oil samples. The prototype Gas-Vapor Generator is shown to be able to operate at temperatures of 240 C and pressures of 200 atm. Unfortunately, geopolitical and economic factors outside of our control led to the cancellation of the project before the field testing phase of the generator could be commenced. Nevertheless, it is to be hoped that this report demonstrates both the feasibility and desirability of the Gas-Vapor Generator approach to the application of TDGF technology in both existing and new wells, and provides a foundation for further research in the future.

  14. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  15. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  16. Origin of reservoir fractures in Little Knife field, North Dakota

    SciTech Connect (OSTI)

    Narr, W.; Burrus, R.C.

    1984-09-01

    Thin, vertical, planar fractures observed in the Mission Canyon Formation, at the Little Knife field, are naturally occurring and appear to be extension fractures. The predominant east-west trend of the fractures, measured in oriented core from six wells, parallels the contemporary maximum horizontal compressive stress in the Williston basin. The fractures occur only in carbonate units, but within the carbonates their occurrence is not lithology dependent. Fracture density measured in the cores of the reservoir carbonates averages 1 ft (.3 m) of fracture per 2.3 ft (.7 m) of core. The formation and mineralization of reservoir fractures were the most recent diagenetic events in the Mission Canyon Formation at Little Knife. Study of aqueous and hydrocarbon fluid inclusions associated with the fractures reveals: (1) fractures formed after the strata were buried to at least their present depth of 9,800 ft (2,987 m), which indicates their age is post-Mesozoic; (2) the pore-fluid pressure gradient was normal hydrostatic immediately after, if not during, fracture system development; (3) formation-water salinity has remained fairly constant since fracture initiation; (4) migration of hydrocarbons into the reservoir probably preceded fracture genesis; and (5) methane concentration may have decreased since fracture initiation.

  17. Partially penetrating fractures: Pressure transient analysis of an infinite conductivity fracture

    SciTech Connect (OSTI)

    Rodriguez, F.; Cinco-Ley, H.; Horne, R.N.

    1984-04-01

    The effect of the partial penetration of an infinite conductivity fracture on the transient pressure behavior of a vertically fractured well is investigated. Analysis of results shows that the pressure behavior of a well intersected by a partially-penetrating infinite conductivity vertical fracture can be divided into three flow periods: 1) the early time flow period which is characterized by a formation linear flow as in the case of a fully-penetrating infinite-conductivity vertical fracture, 2) the infinite-acting flow period and 3) the pseudoradial flow period which develops after the effects of the vertical boundaries of the reservoir are felt in the pressure behavior of the well. A log-log graph of log(h /SUB f/ /h)p /SUB wD/ versus log t /SUB Dxf/ shows a slope of one half during the early time flow period of a well with an infinite-conductivity partially penetrating fracture. The time for the end of the early time flow period is directly related to the square of the dimensionless height of the fracture, h /SUB fD/, which is defined as the ratio between the height of the fracture and its half length.

  18. Compartmentalization analysis using discrete fracture network models

    SciTech Connect (OSTI)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  19. Fracture Toughness Prediction for MWCNT Reinforced Ceramics

    SciTech Connect (OSTI)

    Henager, Charles H.; Nguyen, Ba Nghiep

    2013-09-01

    This report describes the development of a micromechanics model to predict fracture toughness of multiwall carbon nanotube (MWCNT) reinforced ceramic composites to guide future experimental work for this project. The modeling work described in this report includes (i) prediction of elastic properties, (ii) development of a mechanistic damage model accounting for matrix cracking to predict the composite nonlinear stress/strain response to tensile loading to failure, and (iii) application of this damage model in a modified boundary layer (MBL) analysis using ABAQUS to predict fracture toughness and crack resistance behavior (R-curves) for ceramic materials containing MWCNTs at various volume fractions.

  20. Multiple protocol fluorometer and method

    DOE Patents [OSTI]

    Kolber, Zbigniew S.; Falkowski, Paul G.

    2000-09-19

    A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.

  1. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect (OSTI)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

  2. Predicting fracture in micron-scale polycrystalline silicon MEMS...

    Office of Scientific and Technical Information (OSTI)

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. ...

  3. Modification of fracture surfaces by dissolution. Part II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Subject: 58 GEOSCIENCES; 15 GEOTHERMAL ENERGY; QUARTZ; DISSOLUTION; QUARTZITES; ROCK-FLUID INTERACTIONS; AQUEOUS SOLUTIONS; EXPERIMENTAL DATA; FRACTURES; SODIUM CARBONATES; ...

  4. 1112323-danimer-abstract-hydraulic-fractures | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fracturing treatments including: less hydraulic horsepower requirements, decreased footprint, simpler execution, lower water utilization, use of non-damaging biodegradable...

  5. Experimental and Analytical Research on Fracture Processes in ROck

    SciTech Connect (OSTI)

    Herbert H.. Einstein; Jay Miller; Bruno Silva

    2009-02-27

    Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

  6. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOE Patents [OSTI]

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  7. Electrode array for neural stimulation

    DOE Patents [OSTI]

    Wessendorf, Kurt O.; Okandan, Murat; Stein, David J.; Yang, Pin; Cesarano, III, Joseph; Dellinger, Jennifer

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  8. Method for describing fractures in subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1977-01-01

    The configuration and directional orientation of natural or induced fractures in subterranean earth formations are described by introducing a liquid explosive into the fracture, detonating the explosive, and then monitoring the resulting acoustic emissions with strategically placed acoustic sensors as the explosion propagates through the fracture at a known rate.

  9. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-06-27

    The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.

  10. San Juan Fracture Characterization Project: Status and current results

    SciTech Connect (OSTI)

    Majer, E.L.; Daley, T.M.; Myer, L.R.; Nihei, K.; Queen, J.; Sinton, J.; Murphy, J.; Fortuna, M.; Lynn, H.B.; Imhoff, M.A.; Wilson, R.

    2001-02-26

    The overall objectives of this report are to extend current state-of-the-art 3-D imaging to extract the optimal information for fracture quantification and to develop next generation capability in fracture imaging for true 3-D imaging of the static and dynamic fracture properties.

  11. Transient Non Lin Deformation in Fractured Rock

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  12. Demultiplexer circuit for neural stimulation (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. ...

  13. Mechanically stimulated bone cells secrete paracrine factors...

    Office of Scientific and Technical Information (OSTI)

    the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating ... but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation ...

  14. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of ...

  15. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report ...

  16. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  17. Effect of long-term thermal aging on the fracture toughness of austenitic stainless steel base and weld metals

    SciTech Connect (OSTI)

    Huang, F.F.

    1995-09-27

    Compact tension specimens taken from FFTF primary piping materials (Type 316 stainless steel (SS) and 16-8-2 SS weld metal) and from reactor vessel materials (304 SS and 308 SS weld metal) were heated in laboratory furnaces from 100,000 hours. Fracture toughness testing was performed on these specimens, which are 7.62- and 25.4-mm thick, respectively at the aging temperature (482 and 427 degrees). Results were analyzed with the multiple-specimen method. Thermal aging continues to reduce the fracture toughness of FFTF component materials. Results show that thermal aging has a strong effect on the toughness degradation of weld metals, particularly for 16-8-2 SS weld whose aged/unaged Jc ratio is only 0.31 after 100,000-hour aging. The fracture toughness of the 308 and 16-8-2 SS weld metals fluctuated during 20,000 to 50,000-hour aging but deteriorated as the aging time increased to 100,000 hours; the toughness degradation is significant. Fracture control based on a fracture mechanics approach should be considered

  18. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2

    SciTech Connect (OSTI)

    Middleton, Richard Stephen; Carey, James William; Currier, Robert Patrick; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Viswanathan, Hari S.; Porter, Mark L.; Martinez, Joaquin Jimenez

    2015-03-23

    In this study, hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO2 as a working fluid for shale gas production. We theorize and outline potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO2. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO2 proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.

  19. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect (OSTI)

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  20. The shear fracture toughness, KIIc, of graphite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burchell, Timothy D.; Erdman, III, Donald L.

    2015-11-05

    In this study, the critical shear stress intensity factor, KIIc, here-in referred to as the shear fracture toughness, KIIc (MPa m), of two grades of graphite are reported. The range of specimen volumes was selected to elucidate any specimen size effect, but smaller volume specimen tests were largely unsuccessful, shear failure did not occur between the notches as expected. This was probably due to the specimen geometry causing the shear fracture stress to exceed the compressive failure stress. In subsequent testing the specimen geometry was altered to reduce the compressive footprint and the notches (slits) made deeper to reduce themore » specimen's ligament length. Additionally, we added the collection of Acoustic Emission (AE) during testing to assist with the identification of the shear fracture load. The means of KIIc from large specimens for PCEA and NBG-18 are 2.26 MPa m with an SD of 0.37 MPa m and 2.20 MPa m with an SD of 0.53 MPa m, respectively. The value of KIIc for both graphite grades was similar, although the scatter was large. In this work we found the ratio of KIIc/KIc ≈ 1.6. .« less

  1. FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-30

    Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  2. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  3. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  4. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling Subsurface Fractures and Fluid Flow.pdf More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Crosscut White Paper

  5. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  6. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  7. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  8. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  9. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or

  10. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Technical Report: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile

  11. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  12. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  13. Orbital apex fractures: the contribution of computed tomography

    SciTech Connect (OSTI)

    Unger, J.M.

    1984-03-01

    The conventional radiographs, computed tomograms, and clinical course of 17 patients with 23 orbital apex fractures were reviewed. The type of fracture was identified, and the presence of optic nerve damage, the superior orbital fissure syndrome, or the orbital apex syndrome was noted. It was concluded that fractures of the orbital apex may frequently be unsuspected clinically and are not as rare as the literature indicates. Computed tomography provides an excellent means of radiologic diagnosis in the acutely traumatized patient.

  14. Numerical solution of sand transport in hydraulic fracturing

    SciTech Connect (OSTI)

    Daneshy, A.A.; Crichlow, H.B.

    1980-02-07

    A numerical solution is developed for the deposition of a propping agent inside a hydraulic fracture. Such parameters as fluid leak-off into the formation, increase in sand concentration caused by leak-off, non-Newtonian fracturing fluids, hindered settling velocity, and an up-to-date geometry are taken into consideration. Three examples investigate the proppant deposition for low-, medium-, and high-viscosity fracturing fluids.

  15. Imbibition well stimulation via neural network design

    DOE Patents [OSTI]

    Weiss, William

    2007-08-14

    A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.

  16. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    SciTech Connect (OSTI)

    Ryan, Joseph

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix. The results of the field experiment suggested that ion exchange, and not organic matter- or colloid-facilitated transport, was the dominant mechanism for mobilization of cesium and strontium through the macropores of the fractured soil.

  17. Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection

    Broader source: Energy.gov [DOE]

    Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection.

  18. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    Conference: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single ...

  19. Poroelastic modeling of fracture-seismic wave interaction (Journal...

    Office of Scientific and Technical Information (OSTI)

    and hydraulic properties are examined. From parametric studies, we found that the hydraulic permeability of a fracture fully saturated with water has little impact on ...

  20. Microseismicity, stress, and fracture in the Coso geothermal...

    Open Energy Info (EERE)

    Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Microseismicity,...

  1. Intrusion Margins and Associated Fractures | Open Energy Information

    Open Energy Info (EERE)

    Rim Margins Lithologically Controlled Fractures caused by igneous activity creates permeability, allowing water to circulate deep beneath the surface thus becoming heated in the...

  2. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...

  4. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the results. The main crack orientations within the...

  5. Fracture orientation analysis by the solid earth tidal strain...

    Open Energy Info (EERE)

    method has been successfully demonstrated at a naturally fractured geothermal field (Raft River) in Southeastern Idaho and at an oil field in Western Canada. Both case studies...

  6. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced ...

  7. A Shallow Attenuating Anomaly Inside The Ring Fracture Of The...

    Open Energy Info (EERE)

    Roberts,Keiiti Aki,Michael C. Fehler. 1995. A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico. Journal of Volcanology and Geothermal...

  8. Project Captures First-Ever Comprehensive Hydraulic Fracturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 6, 2016 - 1:51pm Addthis Data acquisition under the project included- Comprehensive geophysical well logs Side wall cores Diagnostic fracture injection tests Cross-well ...

  9. Interaction and Coalescence of Nanovoids and Dynamic Fracture...

    Office of Scientific and Technical Information (OSTI)

    of Nanovoids and Dynamic Fracture in Silica Glass: Multimiilion-to-Billion Atom Molecular Dynamics Simulations Citation Details In-Document Search Title: Interaction and...

  10. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compare different working models of hydraulic fracturing for shale gas and oil production. ... and drawbacks of using supercritical CO2 as a working fluid for shale gas production. ...

  11. A Simple, Fast Method of Estimating Fractured Reservoir Geometry...

    Open Energy Info (EERE)

    Fractured Reservoir Geometry from Tracer Tests Abstract A simple method of estimating flow geometry and pore geometry from conservative tracer tests in single phase geothermal...

  12. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from ...

  13. International Collaborations on Fluid Flows in Fractured Crystalline...

    Office of Scientific and Technical Information (OSTI)

    International Collaborations on Fluid Flows in Fractured Crystalline Rocks: FY14 Progress Report. Citation Details In-Document Search Title: International Collaborations on Fluid ...

  14. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 ... Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer ...

  15. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    (LANL) Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY; 58 GEOSCIENCES; BEHAVIOR; FRACTURES; GEOTHERMAL SYSTEMS; MEETINGS

  16. Application of the directional hydraulic fracturing at Berezovskaya Mine

    SciTech Connect (OSTI)

    Lekontsev, Y.M.; Sazhin, P.V.

    2008-05-15

    The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

  17. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  18. Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Pressure Testing of a High Temperature Naturally Fractured Reservoir...

    Office of Scientific and Technical Information (OSTI)

    and flow-through tests at the Hot Dry rock (HDR) test site at Fenton Hill, New Mexico. ... FRACTURING; FRESH WATER; GRANITES; NEW MEXICO; PERMEABILITY; POROSITY; PUMPING; ...

  20. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  1. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect (OSTI)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  2. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Offset Surface Seismic Survey Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey DOE ...

  3. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...

    Open Energy Info (EERE)

    natural fractures at low pressures, and to create a geothermal reservoir. Authors Albert Genter and Herve Traineau Published Journal Journal of Volcanology and Geothermal...

  4. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect (OSTI)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  5. Multiple shell fusion targets

    DOE Patents [OSTI]

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  6. Photovoltaics: Separating Multiple Excitons

    SciTech Connect (OSTI)

    Nozik, A. J.

    2012-05-01

    Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

  7. Geomechanical Fracturing with Flow and Heat

    Energy Science and Technology Software Center (OSTI)

    2009-01-01

    The GeoFracFH model is a particle-based discrete element model (DEM) that has been coupled with fluid flow and heat conduction/convection. In this model, the rock matrix material is represented by a network of DEM particles connected by mechanical bonds (elastic beams in this case, see Figure 1, gray particles connected by beams). During the simulation process, the mechanical bonds that have been stretched or bent beyond a critical strain (both tensile and shear failures aremore » simulated) are broken and removed from the network in a progressive manner. Bonds can be removed from the network with rates or probabilities that depend on their stress or strain, or the properties of the discrete elements and bonds can be varied continuously to represent phenomena such as creep, strain hardening, and chemical degradation. The coupling of a DEM geomechanical model with models for Darcy flow and heat transport is also illustrated in Figure 1. Darcy flow and heat transport equations are solved on an underlying fixed finite difference grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as the DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which then deforms and fractures the rock matrix. The deformation/fracturing in turn changes the permeability which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing, fluid flow, and thermal transport makes the GeoFracFH model, rather than conventional continuum mechanical models, necessary for coupled hydro-thermal-mechanical problems in the subsurface.« less

  8. Multiple stage multiple filter hydrate store

    DOE Patents [OSTI]

    Bjorkman, Jr., Harry K.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.

  9. Multiple stage multiple filter hydrate store

    DOE Patents [OSTI]

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  10. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    SciTech Connect (OSTI)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  11. Energetic Materials for EGS Well Stimulation (solids, liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energetic Materials for EGS Well Stimulation (solids, liquids, gases) Energetic Materials for EGS Well Stimulation (solids, liquids, gases) Energetic Materials for EGS Well ...

  12. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large ...

  13. Neural Interface for Deep Brain Stimulation (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Neural Interface for Deep Brain Stimulation Authors: Tooker, A C ; Madsen, T E ; Crowell, A ; ...

  14. Stimulating Low-Carbon Vehicle Technologies | Open Energy Information

    Open Energy Info (EERE)

    Stimulating Low-Carbon Vehicle Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stimulating Low-Carbon Vehicle Technologies AgencyCompany Organization: ITF...

  15. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and ... and Productivity in Enhanced Geothermal Systems GBCGE Resarch, Education and Outreach ...

  16. Material brittle fracture owing to thermoelastic effect of high energy nuclear particle

    SciTech Connect (OSTI)

    Kalinichenko, A.I.

    1996-12-31

    Rapid arising of the overheated domain near very heavy ion path (near fast neutron collision point) in solid results in generation of cylinder (spherical) thermoelastic stress wave. The latter can exceed the material strength and cause brittle fracture at going out on the free body interface. Size and shape of an erosion zone as well as erosion rate for both sorts of primary nuclear particles are found. The role of wave attenuation is discussed. The products of erosion are of macroscopic scaly particles having the typical thickness (1 {divided_by} 5) {center_dot} 10{sup -7} cm and mass 10{sup -18} {divided_by} 10{sup -17} g. Such ion (neutron)-stimulated thermoacoustic grinding can take place in radioactive materials with fissionable addenda. The consideration of the brittle destruction under cosmic ray bombardment may be essential for equipment of deep space missions.

  17. Flaw Tolerance for Multiple Fatique Cracks

    SciTech Connect (OSTI)

    Gosselin, Stephen R.; Simonen, Fredric A.; Carter, R. G.

    2005-07-01

    This paper documents important details of the technical bases for changes to Appendix L. Calculations identified aspect ratios for equivalent single cracks (ESC) between the extremes of a 6:1 ratio and a full circumferential crack that can be used in Appendix L flaw tolerance assessments to account for the initiation, growth, and linking of multiple fatigue cracks. Probabilistic fracture mechanics (PFM) calculations determined ESC aspect ratios that result in the same through-wall crack probability as multiple small cracks (0.02 inch depth) that initiate and coalesce. The computations considered two materials (stainless and low alloy steels), three pipe diameters, five cyclic membrane-to-gradient stress ratios and a wide range of primary loads. Subsequent deterministic calculations identified the ESC aspect ratio for the hypothetical reference flaw depth assumptions in Appendix L. This paper also describes computations that compare the Appendix L flaw tolerance allowable operating period for the ESC models with results obtained when the a single default 6:1 aspect ratio reference flaw.

  18. Laboratory studies of radionuclide transport in fractured Climax granite

    SciTech Connect (OSTI)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, {sup 85}Sr and /sup 95m/Tc showed little or no retardation, whereas {sup 137}Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less {sup 137}Cs than most natural fractures. Estimated fracture apertures from 18 to 60 {mu}m and hydraulic conductivities from 1.7 to 26 x 10{sup -3} m/s were calculated from the core measurements.

  19. Radiant energy required for infrared neural stimulation

    SciTech Connect (OSTI)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  20. Radiant energy required for infrared neural stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less

  1. Comparison with Carrier Multiplication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Theory of Down-Conversion, and a Comparison with Carrier Multiplication 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 22 24 26 28 30 32 34 Measured Quantum Efficiency (QE) Efficiency [%] with Down-Conversion Single- Junction Threshold Solar Cell 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 Peak Efficiency [%] Splitting Multiplicity (M) C=max C=1000 C=100 C=1 C=10 Down Conversion Carrier Multiplication Ze'ev R. Abrams, Avi Niv, Majid Gharghi, Chris Gladden & Xiang Zhang Materials Science

  2. Laser notching ceramics for reliable fracture toughness testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less

  3. Laser notching ceramics for reliable fracture toughness testing

    SciTech Connect (OSTI)

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specifically surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.

  4. Evaluation and significance of fracture toughness in ceramic materials

    SciTech Connect (OSTI)

    Mutoh, Y.

    1995-12-31

    Fracture toughness tests of several ceramic materials were carried out according to the various test methods, that is the Bridge indentation (BI, SEPB), Fatigue precrack (FP), Controlled surface flaw (CSF), Chevron notch (CN) and Indentation fracture (IF) methods. Mutual comparison of the test results was made to discuss the validity and applicability of each test method. Significance of the apparent fracture toughness with stable crack growth was discussed. The intrinsic fracture toughness can be obtained by the CSF method, in which a small surface crack is used. At high temperatures, since nonlinear deformation due to softening of glass phase and stable crack growth occur, nonlinear fracture mechanics approach should be applied. J{sub IC}-value is successfully evaluated according to the R-curve method.

  5. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  6. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  7. Subsurface fracture mapping from geothermal wellbores. Final report

    SciTech Connect (OSTI)

    Hartenbaum, B.A.; Rawson, G.

    1983-08-01

    To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.

  8. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  9. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOE Patents [OSTI]

    Heller, John P.; Dandge, Dileep K.

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  10. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    hydro-thermal fracturing simulator that is particularly suited for EGS ... results to test and validate the 3D simulator. 3) Perform discrete elementparticulate ...

  11. Fracture toughness for copper oxide superconductors

    DOE Patents [OSTI]

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  12. Fracture toughness for copper oxide superconductors

    DOE Patents [OSTI]

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  13. Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997

    SciTech Connect (OSTI)

    Schroeder, J.E.

    1997-12-31

    The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

  14. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  15. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  16. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  17. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect (OSTI)

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  18. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  19. Multiple-beam laserplasma interactions in inertial confinement fusion

    SciTech Connect (OSTI)

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  20. Portable multiplicity counter

    DOE Patents [OSTI]

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  1. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-10-29

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.

  2. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

  3. V-094: IBM Multiple Products Multiple Vulnerabilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 94: IBM Multiple Products Multiple Vulnerabilities V-094: IBM Multiple Products Multiple Vulnerabilities February 19, 2013 - 1:41am Addthis PROBLEM: IBM Multiple Products Multiple Vulnerabilities PLATFORM: IBM Maximo Asset Management versions 7.5, 7.1, and 6.2 IBM Maximo Asset Management Essentials versions 7.5, 7.1, and 6.2 IBM SmartCloud Control Desk version 7.5 IBM Tivoli Asset Management for IT versions 7.2, 7.1, and 6.2 IBM Tivoli Change and Configuration Management Database

  4. The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

  5. IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAP...

    Open Energy Info (EERE)

    affects the wall rock at distances of 5 to 10 feet beyond the fracture. Authors Dilley, L.M.; Newman, D.L. ; McCulloch and J.; Published PROCEEDINGS, Thirtieth Workshop on...

  6. Fracture and thermal aging of resin-filled silicone elastomers...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Fracture and thermal aging of resin-filled ... Publication Date: 2016-03-24 OSTI Identifier: 1236865 Resource Type: Journal Article ...

  7. A Comprehensive Study Of Fracture Patterns And Densities In The...

    Open Energy Info (EERE)

    specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the...

  8. Simple Model Representations of Transport in a Complex Fracture...

    Office of Scientific and Technical Information (OSTI)

    It is common, however, to represent the complex fracture by much simpler models consisting ... Simple-model properties are often inferred from the analysis of short-term (one to a few ...

  9. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect (OSTI)

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  10. Simple Model Representations of Transport in a Complex Fracture...

    Office of Scientific and Technical Information (OSTI)

    Effects on Long-Term Predictions Citation Details In-Document Search Title: Simple Model Representations of Transport in a Complex Fracture and Their Effects on Long-Term ...

  11. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Off...

  12. Imaging, Characterizing, and Modeling of Fracture Networks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the ...

  13. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.« less

  14. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.

  15. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using supercritical carbon dioxide as a fracturing fluid Using supercritical carbon dioxide as a fracturing fluid The Laboratory team used a combination of experiments and modeling for the investigation. June 25, 2015 Simulation of a selection of the particle trajectories toward the well. Simulation of a selection of the particle trajectories toward the well. Communications Office (505) 667-7000 The Laboratory research is part of an ongoing project to make the necessary measurements and develop

  16. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_033_rose.pdf More Documents & Publications Tracer Methods

  17. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Anand; Wavrik, Kathryn

    2001-09-07

    The objectives of this project are: (1) to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas, (2) to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems, and (3) to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. Work was directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  18. A Research Park for Studying Processes in Unsaturated Fractured Media

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect A Research Park for Studying Processes in Unsaturated Fractured Media Citation Details In-Document Search Title: A Research Park for Studying Processes in Unsaturated Fractured Media A field research site has been developed to explore the combined use of physical experiments and mathematical modeling to analyze large-scale infiltration and chemical transport through the unsaturated media overlying the Snake River Plain Aquifer in southeastern Idaho. This

  19. Thermal-hydrologic-mechanical behavior of single fractures in EGS

    Office of Scientific and Technical Information (OSTI)

    reservoirs (Conference) | SciTech Connect Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs No abstract prepared. Authors: Zyvoloski, George [1] ; Kelkar, Sharad [1] ; Rapaka, Saikiran [1] ; Yoshinka, Keita [2] + Show Author Affiliations Los Alamos National Laboratory CHEVRON Publication Date: 2010-12-08 OSTI Identifier: 1043472 Report Number(s):

  20. Uncertainty quantification for evaluating the impacts of fracture zone on

    Office of Scientific and Technical Information (OSTI)

    pressure build-up and ground surface uplift during geological CO₂ sequestration (Journal Article) | SciTech Connect Uncertainty quantification for evaluating the impacts of fracture zone on pressure build-up and ground surface uplift during geological CO₂ sequestration Citation Details In-Document Search Title: Uncertainty quantification for evaluating the impacts of fracture zone on pressure build-up and ground surface uplift during geological CO₂ sequestration A series of numerical

  1. Fracture Network and Fluid Flow Imaging for EGS Applications from

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Dimensional Electrical Resistivity Structure | Department of Energy Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon wannamaker_imaging_egs_peer2013.pdf More Documents & Publications Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure FRAC-STIM: A Physics-Based Fracture

  2. Peri-prosthetic fracture vibration testing

    SciTech Connect (OSTI)

    Cruce, Jesse R; Erwin, Jenny R; Remick, Kevin R; Cornwell, Phillip J; Menegini, R. Michael; Racanelli, Joe

    2010-11-08

    The purpose of this study was to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer and force response data from an instrumented stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing was conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem was instrumented with an accelerometer. Two impactor designs were compared: a monolithic impactor and a two-piece impactor, each with an integrated load cell and accelerometer. Acceleration and force measurements were taken in the direction of impaction. Comparisons between different methods of applying an impacting force were made, including a drop tower and a surgical hammer. The effect of varying compliance on the data was also investigated. The ultimate goal of this study was to assist in the design of an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental setup and the subsequent results of the comparisons made between impactors, prosthetic geometries, compliances, and impact methods. The results of this study can be used for both future replicate testing as well as in a cadaveric environment.

  3. Ultrabroad stimulated emission from quantum well laser

    SciTech Connect (OSTI)

    Wang, Huolei; Zhou, Xuliang; Yu, Hongyan; Mi, Junping; Wang, Jiaqi; Bian, Jing; Wang, Wei; Pan, Jiaoqing; Ding, Ying; Chen, Weixi

    2014-06-23

    Observation of ultrabroad stimulated emission from a simplex quantum well based laser at the center wavelength of 1.06??m is reported. With increased injection current, spectrum as broad as 38?nm and a pulsed output power of ?50?mW have been measured. The experiments show evidence of an unexplored broad emission regime in the InGaAs/GaAs quantum well material system, which still needs theoretical modeling and further analysis.

  4. Method for enhancing heavy oil production using hydraulic fracturing

    SciTech Connect (OSTI)

    Jennings, A.R. Jr.; Smith, R.C.

    1991-04-09

    This patent describes a method for producing viscous substantially fines-free hydrocarbonaceous fluids from an unconsolidated or loosely consolidated formation. It comprises drilling into the formation at least one well into a first productive interval of the formation; fracturing hydraulically the well with a viscous fracturing fluid containing a proppant therein which is of a size sufficient to prop a created fracture and restrict fines movement into the fracture which proppant comprises silicon carbide, silicon nitride, or garnet; injecting a pre-determined volume of steam into the well in an amount sufficient to soften the viscous fluid and lower the viscosity of the fluid adjacent a fracture face producing the well at a rate sufficient to allow formation fines to build up on a fracture face communicating with the well thereby resulting in a filter screen sufficient to substantially remove formation fines from the hydrocarbonaceous fluids; injecting a second volume of steam into the well and producing substantially fines free hydrocarbonaceous fluids to the surface; repeating steps until a desired amount of hydrocarbonaceous fluids have been produced from the first interval; and isolating mechanically the first interval and repeating steps in a second productive interval of the formation.

  5. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  6. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  7. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  8. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2010-01-01

    Laminar, single-phase, finite-volume solutions to the NavierStokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcys Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.

  9. Microsoft Word - NRAP-TRS-III-003-2014_Characterization of Experimental Fracture Alteration and Fluid Flow in Fractured Natural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Experimental Fracture Alteration and Fluid Flow in Fractured Natural Seals 25 August 2014 Office of Fossil Energy NRAP-TRS-III-003-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  10. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    SciTech Connect (OSTI)

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  11. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  12. Multiple-port valve

    DOE Patents [OSTI]

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  13. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  14. MULTIPLE SPARK GAP SWITCH

    DOE Patents [OSTI]

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  15. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect (OSTI)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  16. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Liu, Ken C

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  17. Three-dimensional Modeling of Fracture Clusters in Geeothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

  18. Method for selectively orienting induced fractures in subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1977-02-01

    The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.

  19. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  20. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  1. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect (OSTI)

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  2. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    The specific objectives of the proposal are to; Develop a true three-dimensional hydro-the... and transport; Test and validate the 3D hydro-thermal fracturing simulator against case ...

  3. Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

  4. Multiple stage railgun

    DOE Patents [OSTI]

    Hawke, Ronald S.; Scudder, Jonathan K.; Aaland, Kristian

    1982-01-01

    A multiple stage magnetic railgun accelerator (10) for accelerating a projectile (15) by movement of a plasma arc (13) along the rails (11,12). The railgun (10) is divided into a plurality of successive rail stages (10a-n) which are sequentially energized by separate energy sources (14a-n) as the projectile (15) moves through the bore (17) of the railgun (10). Propagation of energy from an energized rail stage back towards the breech end (29) of the railgun (10) can be prevented by connection of the energy sources (14a-n) to the rails (11,12) through isolation diodes (34a-n). Propagation of energy from an energized rail stage back towards the breech end of the railgun can also be prevented by dividing the rails (11,12) into electrically isolated rail sections (11a-n, 12a-n). In such case means (55a-n) are used to extinguish the arc at the end of each energized stage and a fuse (31) or laser device (61) is used to initiate a new plasma arc in the next energized rail stage.

  5. MULTIPLE SHAFT TOOL HEAD

    DOE Patents [OSTI]

    Colbert, H.P.

    1962-10-23

    An improved tool head arrangement is designed for the automatic expanding of a plurality of ferruled tubes simultaneously. A plurality of output shafts of a multiple spindle drill head are driven in unison by a hydraulic motor. A plurality of tube expanders are respectively coupled to the shafts through individual power train arrangements. The axial or thrust force required for the rolling operation is provided by a double acting hydraulic cylinder having a hollow through shaft with the shaft cooperating with an internally rotatable splined shaft slidably coupled to a coupling rigidly attached to the respectlve output shaft of the drill head, thereby transmitting rotary motion and axial thrust simultaneously to the tube expander. A hydraulic power unit supplies power to each of the double acting cylinders through respective two-position, four-way valves, under control of respective solenoids for each of the cylinders. The solenoids are in turn selectively controlled by a tool selection control unit which in turn is controlled by signals received from a programmed, coded tape from a tape reader. The number of expanders that are extended in a rolling operation, which may be up to 42 expanders, is determined by a predetermined program of operations depending upon the arrangement of the ferruled tubes to be expanded in the tube bundle. The tape reader also supplies dimensional information to a machine tool servo control unit for imparting selected, horizontal and/or vertical movement to the tool head assembly. (AEC)

  6. Case study of a multiple sand waterflood, Hewitt Unit, OK

    SciTech Connect (OSTI)

    Ruble, D.B.

    1982-03-01

    Twenty-two sands in the Hewitt field have been flooded simultaneously by Exxon Co. U.S.A.'s Hewitt Unit, and a case history of the operations is detailed. A multiple sand waterflood project requires special optimization methods to improve oil recovery. Injection and production surveillance programs and optimization methods used are highlighted. These include injection wellbore design, injection distribution, production stimulation, polymer augmented injection, and infill drilling. Successful application of these techniques has increased ultimate recovery from this waterflood operation. 3 refs.

  7. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  8. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect (OSTI)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  9. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  10. Factors affecting ductile fracture in offshore gas pipelines

    SciTech Connect (OSTI)

    Maxey, W.A.

    1982-01-01

    The results are presented of experimental research conducted during the past 3 year with the objective of understanding ductile fracture propagation in the offshore environment. Experiments have been conducted to examine decompression phenomenon inside the carrier pipe when the exhausting gas is in a simulated deep-water environment. Ductile fracture experiments of 12-inch pipe in a simulated deep offshore environment also have been examined. The most current research is designed to examine the pressure waves in the water surrounding the pipeline that are caused by the sudden release of gas from a rupture and the resulting lower differential pressure across the pipe wall thickness. The research to date suggests that long running ductile fracture propagation in an offshore pipline is less probable than in an onshore pipeline. Future research is planned with a full-scale experiment in a water-filled quarry and in the real offshore environment.

  11. Minimizing damage to a propped fracture by controlled flowback procedures

    SciTech Connect (OSTI)

    Robinson, B.M.; Holditch, S.A.; Whitehead, W.S.

    1988-06-01

    Severe fracture-conductivity damage can result from proppant crushing and/or proppant flowback into the wellbore. Such damage is often concentrated near the wellbore and can directly affect postfracture performance. Most of the time severe fracture-conductivity damage can be minimized by choosing the correct type of proppant for a particular well. In many cases, however, this is not enough. To minimize excessive crushing or to prevent proppant flowback, it is also necessary to control carefully the flowback of the well after the treatment. Specific procedures can be followed to minimize severe fracture-conductivity damage. These procedures involve controlling the rates at which load fluids are recovered and maximizing backpressure against the formation. These procedures require much more time and effort than is normally spent on postfracture cleanup; however, the efforts could result in better performance.

  12. A new friction factor correlation for laminar, single-phase flows through rock fractures

    SciTech Connect (OSTI)

    Nazridoust, K. (Clarkson Univ., Potsdam, NY); Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2006-09-30

    Single-phase flow through fractured media occurs in various situations, such as transport of dissolved contaminants through geological strata, sequestration of carbon dioxide in depleted gas reservoirs, and in primary oil recovery. In the present study, fluid flows through a rock fracture were simulated. The fracture geometry was obtained from the CT scans of a rock fracture produced by the Brazilian method in a sandstone sample. A post-processing code using a CAD package was developed and used to generate the three-dimensional fracture from the CT scan data. Several sections along the fracture were considered and the GambitTM code was used to generate unstructured grids for flow simulations. FLUENTTM was used to analyze the flow conditions through the fracture section for different flow rates. Because of the small aperture of the fractures, the gravitational effects could be neglected. It was confirmed that the pressure drop was dominated by the smallest aperture passages of the fracture. The accuracy of parallel plate models for estimating the pressure drops through fractures was studied. It was shown that the parallel plate flow model with the use of an appropriate effective fracture aperture and inclusion of the tortuosity factor could provide reasonable estimates for pressure drops in the fracture. On the basis of the CFD simulation data, a new expression for the friction factor for flows through fractures was developed. The new model predictions were compared with the simulation results and favorable agreement was found. It was shown that when the length of the fracture and the mean and standard deviation of the fracture are known, the pressure loss as a function of the flow rate could be estimated. These findings may prove useful for design of lab experiments, computational studied of flows through real rock fractures, or inclusions in simulators for large-scale flows in highly fractured rocks.

  13. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  14. Spatial statistics for predicting flow through a rock fracture

    SciTech Connect (OSTI)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  15. Sigmund and WInterbon Multiple Scattering

    Energy Science and Technology Software Center (OSTI)

    1985-03-01

    SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media.

  16. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall S.

    2000-09-20

    This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. This work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  17. Pressure Testing of a High Temperature Naturally Fractured Reservoir

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Pressure Testing of a High Temperature Naturally Fractured Reservoir Citation Details In-Document Search Title: Pressure Testing of a High Temperature Naturally Fractured Reservoir Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 {ell}/s) and surface pressures up to

  18. THMC Modeling of a Single Fracture: Model Formulation. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect THMC Modeling of a Single Fracture: Model Formulation. Citation Details In-Document Search Title: THMC Modeling of a Single Fracture: Model Formulation. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-10-01 OSTI Identifier: 1242115 Report Number(s): SAND2014-19347C 540914 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DECOVALEX D-2015 held November 10-14, 2014 in London, UK

  19. High strain rate method of producing optimized fracture networks in reservoirs

    DOE Patents [OSTI]

    Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.

    2015-06-23

    A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.

  20. Field fracturing multi-sites project. Annual report, August 1, 1995--July 31, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments are to be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment conducive to acquiring high-quality data. The primary Project goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic fracturing test site to diagnose, characterize, and test hydraulic fracturing technology and performance. It is anticipated that the research work being conducted by the multi-disciplinary team of GRI and DOE contractors will lead to the development of a commercial fracture mapping tool/service.

  1. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  2. The influence of hydrogen and the interface phase on fracture in Ti code 12

    SciTech Connect (OSTI)

    Moody, N.R.; Greulich, F.A.; Robinson, S.L.

    1984-10-01

    These results show that hydrogen-induced stepped cleavage and intergranular fracture modes are related to the IFP. Increased hydrogen concentration results in a wider IFP and, therefore, increased deformation on (111) planes. Fracture can subsequently occur along these planes giving the stepped cleavage appearance. When (111) planes are not in a favorable orientation for fracture, fracture along the ..cap alpha../IFP boundary can occur.

  3. Application of electron stimulated desorption techniques to measure the

    Office of Scientific and Technical Information (OSTI)

    isotherm and the mean residence time of hydrogen physisorbed on a metal surface (Journal Article) | SciTech Connect Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface Citation Details In-Document Search Title: Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface Electron stimulated desorption

  4. Controlled Rapid Pressurization Using Liquid Propellants for EGS Well Stimulation

    Broader source: Energy.gov [DOE]

    Project objective: Investigate the use of non-toxicŽ or negligible environmental impact liquid propellants for the stimulation of geothermal fields.

  5. Electrode-Immune System Interface Monitor through Neural Stimulation...

    Office of Scientific and Technical Information (OSTI)

    Title: Electrode-Immune System Interface Monitor through Neural Stimulation in American Cockroach (Periplaneta Americana) Authors: Chiu, C.-W. ; Gonzalez, J.M. ; Harlow, M. ; ...

  6. Stimulating Energy Efficiency Action in States | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulating Energy Efficiency Action in States During Fiscal Years 2010-2013, the U.S. ... to be more competitive. From 2010 - 2013, Arkansas successfully met its goals ...

  7. Plant stimulation of soil microbial community succession: how...

    Office of Scientific and Technical Information (OSTI)

    Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover Citation Details In-Document Search Title: Plant...

  8. Femtosecond Population Inversion and Stimulated Emission of Dense...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene Citation Details In-Document Search Title: Femtosecond Population Inversion and...

  9. Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    David T. Vaniman; Steven L. Reneau

    1998-12-01

    The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.

  10. Introduction to the GRI/DOE Field Fracturing Multi-Site Project

    SciTech Connect (OSTI)

    Peterson, R.E.; Middlebrook, M.L.; Warpinski, N.R.; Cleary, M.P.; Branagan, P.T.

    1993-12-31

    The objective of the Field Fracturing Multi-Sites Project is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. It is anticipated that the primary benefit of the project experiments will be the development and widespread commercialization of new fracture diagnostics technologies to determine fracture length, height, width and azimuth. Data resulting from these new technologies can then be used to prove and refine the 3D fracture model mechanisms. It is also anticipated that data collected and analyzed in the project will define the correct techniques for determining fracture closure pressure. The overall impact of the research will be to provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response.

  11. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Daniel R. Burns; Nafi Toksoz

    2006-03-16

    Using a 3-D finite difference method with a rotated-staggered-grid (RSG) scheme we generated synthetic seismograms for a reservoir model consisting of three horizontal layers with the middle layer containing parallel, equally spaced fractures. By separating and analyzing the backscattered signals in the FK domain, we can obtain an estimate of the fracture spacing. The fracture spacing is estimated by taking one-half of the reciprocal of the dominant wavenumber of the backscattered energy in data acquired normal to the fractures. FK analysis for fracture spacing estimation was successfully applied to these model results, with particular focus on PS converted waves. The method was then tested on data from the Emilio Field. The estimated fracture spacing from the dominant wavenumber values in time windows at and below the reservoir level is 25-40m. A second approach for fracture spacing estimation is based on the observation that interference of forward and backscattered energy from fractures introduces notches in the frequency spectra of the scattered wavefield for data acquired normal to the fracture strike. The frequency of these notches is related to the spacing of the fractures. This Spectral Notch Method was also applied to the Emilio data, with the resulting range of fracture spacing estimates being 25-50m throughout the field. The dominant spacing fracture spacing estimate is about 30-40 m, which is very similar to the estimates obtained from the FK method.

  12. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect (OSTI)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  13. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  14. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    SciTech Connect (OSTI)

    Roln-Garrido, Vctor H. Wagner, Manfred H.

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter ? was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  15. HER4 selectively coregulates estrogen stimulated genes associated with breast tumor cell proliferation

    SciTech Connect (OSTI)

    Han, Wen; Jones, Frank E.

    2014-01-10

    Highlights: HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex is unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of ?-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, ?-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the ?-estradiol stimulated genes. Ingenuity Pathway Analysis of ?-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.

  16. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Daniel R. Burns; M. Nafi Toksoz

    2004-07-19

    Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over regular, discrete, vertical fracture systems. The model contains a series of point scatterers delineating the top tip and bottom tip of each vertical fracture. When the shot record is located in the middle of the fractured zone and oriented normal to the direction of fracturing, a complicated series of beating is observed in the back scattered energy. When the shot record is oriented parallel to the fracturing, ringing wavetrains are observed with moveouts similar to reflections from many horizontal layers. These results are consistent with the full 3D elastic modeling results. An AVOA analysis method was refined and applied to a field data set. An iterative, nonlinear least squares inversion that uses the Gauss-Newton method and analyzes the full range of azimuths simultaneously was employed. Resulting fracture location and strike orientation estimates are consistent with other fracture information from the area. Two modeling approaches for estimating permeability values from seismically derived fracture parameters have been investigated. The first is a statistical method that calculates the permeability tensor for a given distribution of fractures. A possible workflow using this method was tested on fracture distributions obtained from the Transfer Function-Scattering Index analysis method. Fracture aperture and length estimates are needed for this method. The second method is a direct flow model of discrete fractures and fracture networks using a computational fluid dynamics code. This tool provides a means of visualizing flow in fracture networks and comparing expressions for equivalent fracture aperture flow to the actual flow. A series of two dimensional models of fractures and fracture networks, as well as a 3-D model of a single rough fracture, were tested.

  17. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect (OSTI)

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  18. On the movement of a liquid front in an unsaturated, fractured porous medium, Part 1

    SciTech Connect (OSTI)

    Nitao, J.J.; Buscheck, T.A.

    1989-06-01

    The primary aim of this paper is to present approximate analytical solutions of the fracture flow which gives the position of the liquid fracture front as a function of time. These solutions demonstrate that the liquid movement in the fracture can be classified into distinctive time periods, or flow regimes. It is also shown that when plotted versus time using a log-log scale, the liquid fracture front position asymptotically approaches a series of line segments. Two-dimensional numerical simulations were run utilizing input data applicable to the densely welded, fractured tuff found at Yucca Mountain in order to confirm these observations. 19 refs., 15 figs., 8 tabs.

  19. Results of fracture mechanics analyses of the ederer cranes in the device assembly facility using reduced static fracture-toughness values

    SciTech Connect (OSTI)

    Dalder, E. N. C.

    1996-11-01

    The effects of a decreased static fracture-toughness value from that used in the previous fracture-mechanics analyses of the Ederer cranes in the Device Assembly Facility were examined to see what effects, if any, would be exerted on the fatigue crack growth and fracture behavior of the cranes. In particular, the behavior of the same 3 critical locations on the lower flanges of the load beams of the Ederer 5 ton and 4 ton cranes, were examined, with the reduced static fracture-toughness value.

  20. Mechanically stimulated bone cells secrete paracrine factors that regulate

    Office of Scientific and Technical Information (OSTI)

    osteoprogenitor recruitment, proliferation, and differentiation (Journal Article) | SciTech Connect Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation Citation Details In-Document Search Title: Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation Bone formation requires the recruitment, proliferation and osteogenic

  1. Multiple Motivations Institutional Change Principle

    Broader source: Energy.gov [DOE]

    The multiple motivations principle suggests that a portfolio approach—rather than a single strategy—may be required to achieve change. Research demonstrates that people and institutions adopt new...

  2. V-092: Pidgin Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Pidgin, which can be exploited by malicious people to manipulate certain data, cause a DoS (Denial of Service), and compromise a user's system.

  3. Sandia fracture challenge 2: Sandia California's modeling approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; Veilleux, Michael G.

    2016-03-09

    The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less

  4. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect (OSTI)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  5. State-of-the-art report on piping fracture mechanics

    SciTech Connect (OSTI)

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M.

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  6. [Localized fracture damage effects in toughened ceramics]. Final report

    SciTech Connect (OSTI)

    1997-12-31

    The primary research goal was to investigate localized fracture damage due to single point cutting of ceramic materials and then to compare this to multipoint cutting during precision grinding of the same materials. Two test systems were designed and constructed for the single-point cutting tests. The first system used a PZT actuator for closed-loop load control. An acoustic emission data acquisition system was used for crack initiation detection. The second test system employed a high-precision diamond-turning machine for closed-loop position (cutting depth) control. A high stiffness load cell and data acquisition system were used for crack initiation detection. Microcutting tests were carried out on silicon, borosilicate glass and CVD silicon carbide. The crack initiation thresholds and the fracture damage distribution were determined as a function of the loading conditions using a Vickers diamond as the cutting tool. The grinding tests were done using a plunge-grinding technique with metal-bonded diamond wheels. Optical microscopy, surface roughness and specific cutting energy were measured in order to characterize the fracture damage as a function of the grinding infeed rate. Simulation models were developed in order to estimate the average grain-depth of cut in grinding so that the response could be compared to the single-point microcutting tests.

  7. Inverse problems in heterogeneous and fractured media using peridynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less

  8. Characterization of In-Situ Stress and Permeability in Fractured Reservoirs

    SciTech Connect (OSTI)

    Daniel R. Burns; M. Nafi Toksoz

    2006-06-30

    Fracture orientation and spacing are important parameters in reservoir development. This project resulted in the development and testing of a new method for estimating fracture orientation and two new methods for estimating fracture spacing from seismic data. The methods developed were successfully applied to field data from fractured carbonate reservoirs. Specific results include: the development a new method for estimating fracture orientation from scattered energy in seismic data; the development of two new methods for estimating fracture spacing from scattered energy in seismic data; the successful testing of these methods on numerical model data and field data from two fractured carbonate reservoirs; and the validation of fracture orientation results with borehole data from the two fields. Researchers developed a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fractures impart a ringing coda type signature to seismic energy that is transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: (1) the difference in angle between the orientation of the fractures and the acquisition direction, (2) the fracture spacing, (3) the wavelength of the illuminating seismic energy, and (4) the compliance, or stiffness, of the fractures. This coda energy is the most coherent when the acquisition direction is parallel to the strike of the fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function that quantifies the change in the apparent source wavelet before and after propagating through a fractured interval. When a 3D seismic survey is acquired with a full range of azimuths, the variation in the derived transfer functions allows identification of subsurface areas with high fracturing and determines the strike of those fractures. The method was calibrated with model data and then applied it to data from two fractured carbonate reservoirs giving results that agree with well data and fracture orientations derived from other measurements. In addition, two approaches for estimating fracture spacing from scattered seismic energy were developed. The first method relates notches in the amplitude spectra of the scattered wavefield to the dominant fracture spacing that caused the scattering. The second uses conventional frequency-wavenumber (FK) filtering to isolate the backscattered signals and then recovers an estimate of the fracture spacing from the dominant wavelength of those signals. The methods were applied to Emilio Field data, resulting in the fracture spacing estimates of about 30-40 meters in both cases.

  9. EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT

    SciTech Connect (OSTI)

    Riha, B

    2005-10-31

    The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

  10. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    SciTech Connect (OSTI)

    Khani, Joshua; Prescod, Lindsay; Enright, Heather; Felix, Sarah; Osburn, Joanne; Wheeler, Elizabeth; Kulp, Kris

    2015-08-18

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglion cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.

  11. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  12. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  13. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  14. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  15. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average Z of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energys National Nuclear Security Administrations Office of Dismantlement and Transparency (DOE/NNSA/NA-241).

  16. Multiple resonant railgun power supply

    DOE Patents [OSTI]

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  17. Multiple resonant railgun power supply

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  18. Coexistence of multiple metastable polytypes in rhombohedral...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of multiple metastable polytypes in rhombohedral bismuth Citation Details In-Document Search Title: Coexistence of multiple metastable polytypes in rhombohedral bismuth ...

  19. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but ...

  20. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  1. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect (OSTI)

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.

  2. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas You ...

  3. Multiple pass laser amplifier system

    DOE Patents [OSTI]

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  4. Electrode-Immune System Interface Monitor through Neural Stimulation in

    Office of Scientific and Technical Information (OSTI)

    American Cockroach (Periplaneta Americana) (Journal Article) | SciTech Connect Electrode-Immune System Interface Monitor through Neural Stimulation in American Cockroach (Periplaneta Americana) Citation Details In-Document Search Title: Electrode-Immune System Interface Monitor through Neural Stimulation in American Cockroach (Periplaneta Americana) Authors: Chiu, C.-W. ; Gonzalez, J.M. ; Harlow, M. ; Vinson, S.B. ; Liang, H. ; , Publication Date: 2013-09-16 OSTI Identifier: 1093657 Report

  5. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect (OSTI)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  6. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report DOE 2010

  7. Recovery Act. Development and Validation of an Advanced Stimulation

    Office of Scientific and Technical Information (OSTI)

    Prediction Model for Enhanced Geothermal Systems (Technical Report) | SciTech Connect Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems Citation Details In-Document Search Title: Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems This research project aims to develop and validate an advanced computer model that can be used in the planning and design of

  8. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based

    Broader source: Energy.gov (indexed) [DOE]

    Stochastic Analysis of Injection-Induced Seismicity | Department of Energy Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ghassemi_stochastic_analysis_peer2013.pdf More Documents & Publications Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Demonstration

  9. Stimulation Emission Depletion (STED) microscopy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stimulation Emission Depletion (STED) microscopy What is STED? Stimulation Emission Depletion (STED) microscopy is a super resolution microscopy tool that captures super resolution images on a nanometer scale. A donut-shaped red light switches off surrounding molecules, allowing only those in the center to fluoresce. At the nanoscale, light microscopes cannot tell features apart. Because light moves as waves and the particles of light are so close together, the lens used cannot focus all of the

  10. Experimental and Analytical Study of Multidimensional Imbibition in Fractured Porous Media, SUPRI TR-129

    SciTech Connect (OSTI)

    Rangel-German, E.R.; Kovscek, A.R.

    2002-04-24

    Using an X-ray computerized tomography (CT) scanner, and a novel, CT-compatible core holder, performed a series of experiments to study air and oil expulsion from rock samples by capillary imbibition of water in a three-dimensional geometry. The air-water system was useful in that a relatively large number of experiments can be conducted to delineate physical processes. Different injection rates and fracture apertures were utilized. Two different fracture flow regimes were identified. The ''filling-fracture'' regime shows a plane source that grows in length due to relatively slow water flow through fractures. In the second, ''instantly-filled fracture'' regime, the time to fill the fracture is much less than the imbibition time. Here, imbibition performance scales as the square root of time. In the former regime, the mass of water imbibed scales linearly with time.

  11. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.

  12. Uncertainty quantification for evaluating the impacts of fracture...

    Office of Scientific and Technical Information (OSTI)

    Numerical test cases were conducted using a coupled hydro-geomechanical simulator, eSTOMP (extreme-scale Subsurface Transport over Multiple Phases). For efficient sensitivity ...

  13. Experimental Evidence for Self-Limiting Reactive Flow through a Fractured

    Office of Scientific and Technical Information (OSTI)

    Cement Core: Implications for Time-Dependent Wellbore Leakage (Journal Article) | SciTech Connect Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: Implications for Time-Dependent Wellbore Leakage Citation Details In-Document Search Title: Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: Implications for Time-Dependent Wellbore Leakage We present a set of reactive transport experiments in cement fractures. The

  14. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  15. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  16. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic

    Broader source: Energy.gov (indexed) [DOE]

    Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy | Department of Energy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon characterizing_fractures_peer2013.pdf More Documents & Publications Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals,

  17. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Broader source: Energy.gov [DOE]

    The purpose of this research is to develop a method to identify fracture systems in wells using fluid inclusion gas analysis of drill chips.

  18. Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments

    Broader source: Energy.gov [DOE]

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    SciTech Connect (OSTI)

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  20. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Broader source: Energy.gov [DOE]

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  2. Hydrologic characterization of fractured rocks: An interdisciplinary methodology

    SciTech Connect (OSTI)

    Long, J.C.S.; Majer, E.L.; Martel, S.J.; Karasaki, K.; Peterson, J.E. Jr.; Davey, A.; Hestir, K. )

    1990-11-01

    The characterization of fractured rock is a critical problem in the development of nuclear waste repositories in geologic media. A good methodology for characterizing these systems should be focused on the large important features first and concentrate on building numerical models which can reproduce the observed hydrologic behavior of the fracture system. In many rocks, fracture zones dominate the behavior. These can be described using the tools of geology and geomechanics in order to understand what kind of features might be important hydrologically and to qualitatively describe the way flow might occur in the rock. Geophysics can then be employed to locate these features between boreholes. Then well testing can be used to see if the identified features are in fact important. Given this information, a conceptual model of the system can be developed which honors the geologic description, the tomographic data and the evidence of high permeability. Such a model can then be modified through an inverse process, such as simulated annealing, until it reproduces the cross-hole well test behavior which has been observed insitu. Other possible inversion techniques might take advantage of self similar structure. Once a model is constructed, we need to see how well the model makes predictions. We can use a cross-validation technique which sequentially puts aside parts of the data and uses the model to predict that part in order to calculate the prediction error. This approach combines many types of information in a methodology which can be modified to fit a particular field site. 114 refs., 81 figs., 7 tabs.

  3. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND

    Office of Scientific and Technical Information (OSTI)

    HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR Semi-Annual Report Reporting Period Start Date: May 1, 2003 Reporting Period End Date: November 1, 2003 Principal Authors: Robert Loucks (Co-PI), Steve Ruppel (Co-PI), Julia Gale, Jon Holder, Jon Olsen, Deanna Combs, Dhiraj Dembla, and Leonel Gomez Date Report Issued: December 10, 2003 DOE Award Number: DE-FC26-02NT15442 Bureau of Economic Geology The John A. and Katherine G. Jackson School of Geosciences The

  4. Multiple Exciton Generation Solar Cells

    SciTech Connect (OSTI)

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  5. Posters Radiation Singularities, Multiple Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Radiation Singularities, Multiple Scattering and Diffusion in Multifractal Clouds P. Silas, G. Brösamlen, and S. Lovejoy Department of Physics McGill University Montreal, Quebec, Canada C. Naud and D. Schertzer Université Pierre and Marie Curie Paris, France B. Watson Department of Physics St. Lawrence University Canton, New York Diffusion on One-Dimensional Multifractals (P. Silas, S. Lovejoy, D. Schertzer) Many geophysical and atmospheric fields exhibit multifractal characteristics

  6. Multiple target laser ablation system

    DOE Patents [OSTI]

    Mashburn, Douglas N. (Knoxville, TN)

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  7. Multiple target laser ablation system

    DOE Patents [OSTI]

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  8. V-161: IBM Maximo Asset Management Products Java Multiple Vulnerabilit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles U-179: IBM Java 7 Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-094: IBM Multiple Products Multiple...

  9. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including comb-tooth structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  10. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bones toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by plastic deformation at higher structural levels, which occurs by the process of microcracking.

  11. Laser stimulation can activate autophagy in HeLa cells

    SciTech Connect (OSTI)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  12. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect (OSTI)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  13. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect (OSTI)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these interpretations. By presenting a methodology for integrating various types of information, the workflow will

  14. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

  15. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect (OSTI)

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  16. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    SciTech Connect (OSTI)

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-08-01

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are present once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.

  17. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    Energy Science and Technology Software Center (OSTI)

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  18. Surface plasmon amplification by stimulated emission of radiation (SPASER)

    DOE Patents [OSTI]

    Stockman, Mark I.; Bergman, David J.

    2009-08-04

    A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.

  19. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  20. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  1. Multiple channel coincidence detector and controller for microseismic data analysis

    DOE Patents [OSTI]

    Fasching, George E.

    1976-11-16

    A multiple channel coincidence detector circuit is provided for analyzing data either in real time or recorded data on a magnetic tape during an experiment for determining location and progression of fractures in an oil field or the like while water is being injected at high pressure in wells located in the field. The circuit is based upon the utilization of a set of parity generator trees combined with monostable multivibrators to detect the occurrence of two events at any pair of channel input terminals that are within a preselected time frame and have an amplitude above a preselected magnitude. The parity generators perform an exclusive OR function in a timing circuit composed of monostable multivibrators that serve to yield an output when two events are present in the preselected time frame. Any coincidences falling outside this time frame are considered either noise or not otherwise useful in the analysis of the recorded data. Input pulses of absolute magnitude below the low-level threshold setting of a bipolar low-level threshold detector are unwanted and therefore rejected. A control output is provided for a utilization device from a coincidence hold circuit that may be used to halt a tape search unit at the time of coincidence or perform other useful control functions.

  2. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect (OSTI)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)

  3. Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration

    SciTech Connect (OSTI)

    R. L. Billingsley; V. Kuuskraa

    2006-03-31

    In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins where natural fractures play an important role in reservoir permeability. Potential uses for these learnings and tools range from rank exploration to field-development portfolio management. Early incorporation of the permeability development concepts presented here can improve basin assessment and direct focus to the high potential areas within basins. Insight into production variability inherent in tight naturally fractured reservoirs leads to improved wellbore evaluation and reduces the incidence of premature exits from high potential plays. A significant conclusion of this project is that natural fractures, while often an important, overlooked aspect of reservoir geology, represent only one aspect of the overall reservoir fabric. A balanced perspective encompassing all aspects of reservoir geology will have the greatest impact on exploration and development in the low permeability gas setting.

  4. Multiple piece turbine rotor blade

    DOE Patents [OSTI]

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  5. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  6. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  7. Multiple channel programmable coincidence counter

    DOE Patents [OSTI]

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  8. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect (OSTI)

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  9. Numerical simulation of fracture rocks and wave propagation by means of fractal theory

    SciTech Connect (OSTI)

    Valle G., R. del

    1994-12-31

    A numerical approach was developed for the dynamic simulation of fracture rocks and wave propagation. Based on some ideas of percolation theory and fractal growth, a network of particles and strings represent the rock model. To simulate an inhomogeneous medium, the particles and springs have random distributed elastic parameters and are implemented in the dynamic Navier equation. Some of the springs snap with criteria based on the confined stress applied, therefore creating a fractured rock consistent with the physical environment. The basic purpose of this research was to provide a method to construct a fractured rock with confined stress conditions as well as the wave propagation imposed in the model. Such models provide a better understanding of the behavior of wave propagation in fractured media. The synthetic seismic data obtained henceforth, can be used as a tool to develop methods for characterizing fractured rocks by means of geophysical inference.

  10. Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media

    SciTech Connect (OSTI)

    Mario Cesar Suarez Arriaga; Fernando Samaniego V.; Fernando Rodriguez

    1996-01-24

    The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results show that the homogeneous simplified evaluation of the energy resource in a fractured system, could result in unrealistic estimates of the reservoir capacity to generate electricity.

  11. Experimental Program to Stimulate Competitive Research (EPSCoR) Homepage |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) EPSCoR Home Experimental Program to Stimulate Competitive Research (EPSCoR) EPSCoR Home About Current Awards How to Apply Manage Your Grant Recent News SBIR/STTR Home BES Home Contact Information Experimental Program to Stimulate Competitive Research U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9830 F: (301) 903-9513 E: Email Us More Information » Print Text Size: A A A FeedbackShare Page The

  12. Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Authors: Tooker, A C ; Madsen, T E ; Crowell, A ; Shah, K G ; Felix, S H ; Mayberg, H S ; Pannu, S S ; Rainnie, D G ; Tolosa, V M Publication Date: 2013-09-30 OSTI Identifier: 1108838 Report Number(s): LLNL-CONF-644462 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference

  13. Reduction of stimulated Brillouin backscattering with plasma beam smoothing

    SciTech Connect (OSTI)

    Yahia, V.; Loisel, G.; Baccou, C.; Labaune, C.; Masson-Laborde, P.-E.; Depierreux, S.; Goyon, C.; Teychenné, D.; Borisenko, N. G.; Orekhov, A.; Rienecker, T.; Rosmej, O.

    2015-04-15

    Plasma induced incoherence (PII) can strongly modify the growth rates of stimulated scattering instabilities. A special double-target design was used to quantify the effect of PII on stimulated Brillouin scattering (SBS). Successive shots using all or part of these targets led to the characterization of temporal and spatial incoherence of a laser pulse after propagation through a foam plasma and to the quantification of the reduction of SBS from the second target. Numerical simulations were used to identify the main physical mechanisms in play.

  14. Energetics of Multiple-Ion Species Hohlraum Plasmas

    SciTech Connect (OSTI)

    Neumayer, P; Berger, R; Callahan, D; Divol, L; Froula, D; London, R; MacGowan, B J; Meezan, N; Michel, P; Ross, J S; Sorce, C; Widmann, K; Suter, L; Glenzer, S H

    2007-11-05

    A study of the laser-plasma interaction processes in multiple-ion species plasmas has been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with densities of xe22/cc are heated to Te=3keV and backscattered laser light is measured by a suite of absolutely calibrated backscatter diagnostics. Ion Landau damping is increased by adding hydrogen to the CO2/CF4 gas fill. We find that the backscatter from stimulated Brillouin scattering is reduced is monotonically reduced with increasing damping, demonstrating that Landau damping is the controlling damping mechanism in ICF relevant high-electron temperature plasmas. The reduction in backscatter is accompanied by a comparable increase in both transmission of a probe beam and an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics/performance. Comparison of the experimental data to linear gain calculations as well as detailed full-scale 3D laser-plasma interaction simulations show quantitative agreement. Our findings confirm the importance of Landau damping in controlling backscatter from high-electron temperature hohlraum plasmas and have lead to the inclusion of multi-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility.

  15. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... design. * This is a very rich project dealing with tracer technology at multiple ... Design of the down-hole tool is also progressing despite a major change in design. Project ...

  16. Fractures of the Sacrum After Chemoradiation for Rectal Carcinoma: Incidence, Risk Factors, and Radiographic Evaluation

    SciTech Connect (OSTI)

    Kim, Han Jo; Boland, Patrick J.; Meredith, Dennis S.; Lis, Eric; Zhang Zhigang; Shi Weiji; Yamada, Yoshiya J.; Goodman, Karyn A.

    2012-11-01

    Purpose: Sacral insufficiency fractures after adjuvant radiation for rectal carcinoma can present similarly to recurrent disease. As a complication associated with pelvic radiation, it is important to be aware of the incidence and risk factors associated with sacral fractures in the clinical assessment of these patients. Methods and Materials: Between 1998 and 2007, a total of 582 patients with locally advanced rectal carcinoma received adjuvant chemoradiation and surgical excision. Of these, 492 patients had imaging studies available for review. Hospital records and imaging studies from all 492 patients were retrospectively evaluated to identify risk factors associated with developing a sacral insufficiency fracture. Results: With a median follow-up time of 3.5 years, the incidence of sacral fractures was 7.1% (35/492). The 4-year sacral fracture free rate was 0.91. Univariate analysis showed that increasing age ({>=}60 vs. <60 years), female sex, and history of osteoporosis were significantly associated with shorter time to sacral fracture (P=.01, P=.004, P=.001, respectively). There was no significant difference in the time to sacral fracture for patients based on stage, radiotherapy dose, or chemotherapy regimen. Multivariate analysis showed increasing age ({>=}60 vs. <60 years, hazard ratio [HR] = 2.50, 95% confidence interval [CI] = 1.22-5.13, P=.01), female sex (HR = 2.64, CI = 1.29-5.38, P=.008), and history of osteoporosis (HR = 3.23, CI = 1.23-8.50, P=.02) were independent risk factors associated with sacral fracture. Conclusions: Sacral insufficiency fractures after pelvic radiation for rectal carcinoma occur more commonly than previously described. Independent risk factors associated with fracture were osteoporosis, female sex, and age greater than 60 years.

  17. CX-007019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Diagnosis of Multiple Fracture Stimulation in Horizontal Wells by Downhole Temperature Measurement - Phase 1CX(s) Applied: A9Date: 09/21/2011Location(s): College Station, TexasOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  19. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  20. U-169: Sympa Multiple Security Bypass Vulnerabilities

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities have been reported in Sympa, which can be exploited by malicious people to bypass certain security restrictions.

  1. Multiple soil nutrient competition between plants, microbes,...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several...

  2. Detection of electromagnetic radiation using micromechanical multiple

    Office of Scientific and Technical Information (OSTI)

    quantum wells structures (Patent) | SciTech Connect Patent: Detection of electromagnetic radiation using micromechanical multiple quantum wells structures Citation Details In-Document Search Title: Detection of electromagnetic radiation using micromechanical multiple quantum wells structures An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well

  3. Prop transport in vertical fractures: settling velocity correlations

    SciTech Connect (OSTI)

    Clark, P.E.; Guler, N.

    1983-03-01

    The settling velocity of propping agents is a critical variable in the calculation of proppant distribution in a fracture. Most computer programs available in the industry today base estimates of settling velocity on a Stokes' Law type calculation. We have found that significant deviations from Stokes' Law settling velocities occur in cross-linked fluids and uncrosslinked fluids (concentrations in excess of 0.48%). This paper discusses experimental results obtained with a dynamic system and the implications which these data have on prop transport calculations. In addition, correlations have been derived which can be used to predict the settling velocities of particles in cross-linked gels. A discussion of these correlations will be included.

  4. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  5. Testing Novel CR-39 Detector Deployment System For Identification of Subsurface Fractures, Soda Springs, ID

    SciTech Connect (OSTI)

    McLing, Travis; Carpenter, Michael; Brandon, William; Zavala, Bernie

    2015-06-01

    The Environmental Protection Agency (EPA) has teamed with Battelle Energy Alliance, LLC (BEA) at Idaho National Laboratory (INL) to facilitate further testing of geologic-fracture-identification methodology at a field site near the Monsanto Superfund Site located in Soda Springs, Idaho. INL has the necessary testing and technological expertise to perform this work. Battelle Memorial Institute (BMI) has engaged INL to perform this work through a Work for Others (WFO) Agreement. This study continues a multi-year collaborative effort between INL and EPA to test the efficacy of using field deployed Cr-39 radon in soil portals. This research enables identification of active fractures capable of transporting contaminants at sites where fractures are suspected pathways into the subsurface. Current state of the art methods for mapping fracture networks are exceedingly expensive and notoriously inaccurate. The proposed WFO will evaluate the applicability of using cheap, readily available, passive radon detectors to identify conductive geologic structures (i.e. fractures, and fracture networks) in the subsurface that control the transport of contaminants at fracture-dominated sites. The proposed WFO utilizes proven off-the-shelf technology in the form of CR-39 radon detectors, which have been widely deployed to detect radon levels in homes and businesses. In an existing collaborative EPA/INL study outside of this workscope,. CR-39 detectors are being utilized to determine the location of active transport fractures in a fractured granitic upland adjacent to a landfill site at the Fort Devens, MA that EPA-designated as National Priorities List (NPL) site. The innovative concept of using an easily deployed port that allows the CR-39 to measure the Rn-222 in the soil or alluvium above the fractured rock, while restricting atmospheric Rn-222 and soil sourced Ra from contaminating the detector is unique to INL and EPA approach previously developed. By deploying a series of these inexpensive detector-casing combinations statistical samples of the Rn-222 flux can be measured, elucidating the most communicative fractures (i.e. fractures that are actively transporting water and gasses). The Rn-222 measurements can then be used as an input to create a more accurate conceptual model to be used for transport modeling and related cleanup activities. If the team’s approach is demonstrated to be applicable to a wide variety of rock types and soil conditions it might potentially offer significant cost saving without a reduction in data quality at Monsanto Superfund and other sites underlain by fracture-dominated bedrock.

  6. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect (OSTI)

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  7. Do nuclear reactions take place under chemical stimulation?

    SciTech Connect (OSTI)

    Bockris, J.O.; Lin, G.H.; Bush, R.T.

    1996-09-01

    Several examples of nuclear reactions occurring under the stimulation of chemical type energies are given. The production of tritium from deuterium in Pd has more than 100 published confirmations. Three models suggest circumstances such that barriers between nucleii may become transparent. 24 refs.

  8. ATF3 inhibits PPAR?-stimulated transactivation in adipocyte cells

    SciTech Connect (OSTI)

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: ATF3 inhibits PPAR?-stimulated transcriptional activation. ATF3 interacts with PPAR?. ATF3 suppresses p300-mediated transcriptional coactivation. ATF3 decreases the binding of PPAR? and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPAR?) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPAR? activity. ATF3 inhibited PPAR?-stimulated transactivation of PPAR? responsive element (PPRE)-containing reporter or GAL4/PPAR? chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPAR? target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPAR?. Accordingly, ATF3 prevented PPAR? from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPAR? and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPAR? and represses PPAR?-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  9. 10122-43 Technical Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title Page Diagnosis of Multiple Fracture Stimulation in Horizontal Wells by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Technical Report Project Start: January 2011 Project End: March 2015 10122-43-TEES-ZHU Project PIs: Ding Zhu, Dan Hill and Eduardo Gildin Researchers: Jingyuan Cui, Xinyang Li, Nozomu Yoshida, Jose A. Moreno March 2015 Texas A&M University 2 Disclaimer 3 Executive Summary Diagnosis of multiple-stage fracture stimulation in horizontal well is

  10. Multiple-stage integrating accelerometer

    DOE Patents [OSTI]

    Devaney, Howard F. (Cedar Crest, NM)

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  11. Multiple-stage integrating accelerometer

    DOE Patents [OSTI]

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  12. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Daniel R. Burns; M. Nafi Toksoz

    2005-02-04

    Numerical modeling and field data tests are presented on the Transfer Function/Scattering Index Method for estimating fracture orientation and density in subsurface reservoirs from the ''coda'' or scattered energy in the seismic trace. Azimuthal stacks indicate that scattered energy is enhanced along the fracture strike direction. A transfer function method is used to more effectively indicate fracture orientation. The transfer function method, which involves a comparison of the seismic signature above and below a reservoir interval, effectively eliminates overburden effects and acquisition imprints in the analysis. The transfer function signature is simplified into a scattering index attribute value that gives fracture orientation and spatial variations of the fracture density within a field. The method is applied to two field data sets, a 3-D Ocean Bottom Cable (OBC) seismic data set from an offshore fractured carbonate reservoir in the Adriatic Sea and a 3-D seismic data set from an onshore fractured carbonate field in the Middle East. Scattering index values are computed in both fields at the reservoir level, and the results are compared to borehole breakout data and Formation MicroImager (FMI) logs in nearby wells. In both cases the scattering index results are in very good agreement with the well data. Field data tests and well validation will continue. In the area of technology transfer, we have made presentations of our results to industry groups at MIT technical review meetings, international technical conferences, industry workshops, and numerous exploration and production company visits.

  13. Vertebral Compression Fracture (VCF) After Spine Stereotactic Body Radiation Therapy (SBRT): Analysis of Predictive Factors

    SciTech Connect (OSTI)

    Cunha, Marcelo V.R.; Al-Omair, Ameen; Atenafu, Eshetu G.; Masucci, Giuseppina Laura; Letourneau, Daniel; Korol, Renee; Yu, Eugene; Howard, Peter; Lochray, Fiona; Costa, Leodante B. da; Fehlings, Michael G.; Sahgal, Arjun; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario

    2012-11-01

    Purpose: Vertebral compression fractures (VCFs) are increasingly observed after spine stereotactic body radiation therapy (SBRT). The aim of this study was to determine the risk of VCF after spine SBRT and identify clinical and dosimetric factors predictive for VCF. The analysis incorporated the recently described Spinal Instability Neoplastic Score (SINS) criteria. Methods and Materials: The primary endpoint of this study was the development of a de novo VCF (ie, new endplate fracture or collapse deformity) or fracture progression based on an existing fracture at the site of treatment after SBRT. We retrospectively scored 167 spinal segments in 90 patients treated with spine SBRT according to each of the 6 SINS criteria. We also evaluated the presence of paraspinal extension, prior radiation, various dosimetric parameters including dose per fraction ({>=}20 Gy vs <20 Gy), age, and histology. Results: The median follow-up was 7.4 months. We identified 19 fractures (11%): 12 de novo fractures (63%) and 7 cases of fracture progression (37%). The mean time to fracture after SBRT was 3.3 months (range, 0.5-21.6 months). The 1-year fracture-free probability was 87.3%. Multivariate analysis confirmed that alignment (P=.0003), lytic lesions (P=.007), lung (P=.03) and hepatocellular (P<.0001) primary histologies, and dose per fraction of 20 Gy or greater (P=.004) were significant predictors of VCF. Conclusions: The presence of kyphotic/scoliotic deformity and the presence of lytic tumor were the only predictive factors of VCF based on the original 6 SINS criteria. We also report that patients with lung and hepatocellular tumors and treatment with SBRT of 20 Gy or greater in a single fraction are at a higher risk of VCF.

  14. Laboratory data in support of hydraulically fracturing EGSP OH Well No. 3. Final report

    SciTech Connect (OSTI)

    Ahmed, U.; Swartz, G.C.; Scnatz, J.F.

    1980-12-01

    Geologic and geophysical interpretations of data from the EGSP OH Well No. 3 show that an organically lean shale has a gradual transition with depth to an organically rich shale and that two layers (bound each shale formation. The laboratory test program was designed to understand the containment and productivity of a hydraulic fracture induced in this well to enhance gas production from the shale. The porosity in the formations of interest, including the upper barrier, the lower barrier, and the organic shales, varied from 6 to 10 percent. The porosity of each formation averaged about 8%. Densities and ultrasonic velocities were used to evaluate dynamic moduli. Over the tested intervals moduli consistently increased with depth. This indicates the possibility of upward migration of an induced fracture. Perforations, therefore, should be limited to the lower portion of the pay sand and it is also advisable to use low injection rates. Of the four fracturing fluids tested, the two code-named Dow II and Hal I caused, respectively, the least amount of matrix permeability damage to the organically lean and organically rich shales. However, the damage caused by the other fracturing fluids were not severe enough to cause any significant permanent reduction in well productivity. The fracture conductivity tests under the influence of fracturing fluids indicated that Hal I and Dow I caused, respectively, the least amount of multilayered fracture conductivity damage to the organically lean and organically rich samples. For monolayer fracture conductivities Dow I caused least damage to the organically lean shale. With the exception of Dow III all other fluids showed good results in the monolayer tests for organically rich shales. In the situation where both the lean and the rich shales are to be fractured together, the use of either Hal I or Dow I is indicated.

  15. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a true 3D hydro-thermal fracturing and proppant flow/transport simulator that is particularly suited for EGS reservoir creation. Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator.

  16. TEM Study of Fracturing in Spherical and Plate-like LiFePO4Particles

    SciTech Connect (OSTI)

    Gabrisch, H.; Wilcox, J.; Doeff, M.M.

    2007-12-20

    An investigation of fracturing in LiFePO{sub 4} particles as a function of the particle morphology and history is presented. Two types of samples, one subjected to electrochemical cycling and another to chemical delithiation are compared. We observe the formation of micro fractures parallel to low indexed lattice planes in both samples. The fracture surfaces are predominantly parallel to (100) planes in the chemically delithiated powder and (100) and (010) planes in the electrochemically cycled powder. A consideration of the threshold stresses for dislocation glide shows that particle geometry plays an important role in the observed behavior.

  17. Theoretical/experimental considerations about oil displacement by water in a fractured porous medium

    SciTech Connect (OSTI)

    Perez-Rosales, C.; Cruz-Hernandez, J.; Samaniego-V., F.

    1994-12-31

    Based upon observations made with a two-dimension porous cell, which allows direct visualization of fluid displacement processes, theoretical formulations were established for explaining oil displacement by water in a fractured porous medium. The theory rests on the idea that fluids are transported essentially through the fractures by a convective process, whereas water inflow to the matrix blocks is carried out by a dispersive process which depends on the difference between fracture and matrix water saturation. With these considerations, a derivation is presented of an expression for water saturation as a function of distance and time. Agreement between theory and experiment is reasonably good.

  18. Two-phase flow in fractured rock (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Two-phase flow in fractured rock Citation Details In-Document Search Title: Two-phase flow in fractured rock This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify

  19. Lightweight proppants for deep gas well stimulation. Final report

    SciTech Connect (OSTI)

    Cutler, R.A.; Ratsep, O.; Johnson, D.L.

    1984-01-01

    The need exists for lower density, less expensive proppants for use in hydraulic fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants due to their chemical/thermal stability and high strength. This report summarizes work performed during the fourth and final year of a Department of Energy research program to develop improved proppants for hydraulic fracturing applications. Hollow proppants with strengths intermediate between sand and bauxite were fabricated by spray drying. A counter current spray drying technique using a single fluid nozzle was able to make spherical ceramic proppants. The effect of spray-drying parameters on proppant strength is discussed. Further optimization of spray drying parameters is needed to achieve proppants with single, concentric voids and thick walls. Novel techniques for densifying proppants were investigated including plasma, microwave and radio frequency induction heating. Densification times were two orders of magnitude faster than conventional sintering cycles. The problems associated with ultrarapid densification are discussed as well as areas where this type of processing should be applied. A method of strengthening sand and other low strength proppants is discussed. Residual compressive surface stresses can be induced which strengthen the proppants which fail in tension. Accomplishments during the present research program are reviewed and areas of additional research which will lead to improved proppants are identified. 20 references, 23 figures, 19 tables.

  20. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less

  1. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    SciTech Connect (OSTI)

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on local in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.

  2. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

  3. V-224: Google Chrome Multiple Vulnerabilities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Google Chrome Multiple Vulnerabilities V-224: Google Chrome Multiple Vulnerabilities August 22, 2013 - 1:05am Addthis PROBLEM: Multiple vulnerabilities have been reported in...

  4. V-121: Google Chrome Multiple Vulnerabilities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Google Chrome Multiple Vulnerabilities V-121: Google Chrome Multiple Vulnerabilities March 28, 2013 - 12:29am Addthis PROBLEM: Google Chrome Multiple Vulnerabilities PLATFORM:...

  5. V-207: Wireshark Multiple Denial of Service Vulnerabilities ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Wireshark Multiple Denial of Service Vulnerabilities V-207: Wireshark Multiple Denial of Service Vulnerabilities July 31, 2013 - 1:59am Addthis PROBLEM: Multiple vulnerabilities...

  6. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

  7. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350⁰C) for development of geothermal systems.

  8. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: ...

  9. On the multiscale origins of fracture resistance in human bone and its biological degradation

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  10. Bar impact tester for dynamic-fracture testing of ceramics and ceramic composites. Technical report

    SciTech Connect (OSTI)

    Deobald, L.R.; Kobayashi, A.S.

    1991-07-01

    A bar impact test was developed to study the dynamic fracture responses of precracked ceramic bars, Al2O3 and 15/29% volume SiCw/Al2O3. Laser interferometric displacement gage data was used together with dynamic finite element analysis to determine the instantaneous crack length and the dynamic stress intensity factor, K sub ID(t), in the fracturing ceramic bars impacted with impactor velocities of 5.8, 8.0, and 10 m/s. The crack velocities increased from 1400 to 2600 m/s with increasing impact velocity. K sub ID(t) initiated at the expected dynamic fracture toughness and increased with time and with increasing impact velocity. The dynamic initiation fracture toughness and an increasing K sub ID(t) with time and increasing impact velocity were obtained.

  11. IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...

    Open Energy Info (EERE)

    FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Systems and methods for locating and imaging proppant in an induced fracture

    DOE Patents [OSTI]

    Aldridge, David F.; Bartel, Lewis C.

    2016-02-02

    Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.

  13. 01-05-1998 - Fall From Ladder Results in Fractured Vertebra | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Fall From Ladder Results in Fractured Vertebra Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-05-1998_yellow_alert(2)

  14. METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA

    SciTech Connect (OSTI)

    Dixon, K.

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richards equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (im?nek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

  15. Significance of locally intensified strain aging to the fracture toughness of welded steel structures

    SciTech Connect (OSTI)

    Dawes, M.G.

    1995-12-31

    A review of past studies shows that tests on specimens notched after welding can give overestimates of the fracture toughness that occurs at the tips of flaws present during welding. This situation results from locally intensified straining and aging embrittlement (LISAE), which has been shown to trigger low stress brittle fractures in both notched and welded wide plate tension tests, and welded structures in service. Although the relative susceptibilities of steels to strain aging embrittlement are sometimes assessed by testing bulk strained and aged samples, the results of such tests may be optimistic. A summary is given of work to develop a fracture toughness test method for LISAE. The new test will give increased confidence and accuracy in fracture assessments, be of use in selecting tough materials, and aid the development of materials that are resistant to LISAE.

  16. Susceptibility study of audio recording devices to electromagnetic stimulations

    SciTech Connect (OSTI)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals. Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.

  17. EXTRACTION OF FRACTURE-MECHANICS AND TRANSMISSION-ELECTRON-MICROSCOPY SAMPLES FROM TRITIUM-EXPOSED RESERVOIRS USING ELECTRIC-DISCHARGE MACHINING

    SciTech Connect (OSTI)

    Morgan, M; Ken Imrich, K; Michael Tosten, M

    2006-08-31

    The Enhanced Surveillance Campaign is funding a program to investigate tritium aging effects on the structural properties of tritium reservoir steels. The program is designed to investigate how the structural properties of reservoir steels change during tritium service and to examine the role of microstructure and reservoir manufacturing on tritium compatibility. New surveillance tests are also being developed that can better gauge the long-term effects of tritium and its radioactive decay product, helium-3, on the properties of reservoir steels. In order to conduct these investigations, three types of samples are needed from returned reservoirs: tensile, fracture mechanics, and transmission-electron microscopy (TEM). An earlier report demonstrated how the electric-discharge machining (EDM) technique can be used for cutting tensile samples from serial sections of a 3T reservoir and how yield strength, ultimate strength and elongation could be measured from those samples. In this report, EDM was used successfully to section sub-sized fracture-mechanics samples from the inner and outer walls of a 3T reservoir and TEM samples from serial sections of a 1M reservoir. This report fulfills the requirements for the FY06 Level 3 milestone, TSR 15.1 ''Cut Fracture-Mechanics Samples from Tritium-Exposed Reservoir'' and TSR 15.2 ''Cut Transmission-electron-microscopy foils from Tritium-Exposed Reservoir'' for the Enhance Surveillance Campaign (ESC). This was in support of ESC L2-1870 Milestone-''Provide aging and lifetime assessments of selected components and materials for multiple enduring stockpile systems''.

  18. Multiple acousto-optic q-switch

    DOE Patents [OSTI]

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  19. Multiple acousto-optic q-switch

    DOE Patents [OSTI]

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  20. Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report

    SciTech Connect (OSTI)

    Detwiler, Russell

    2014-04-30

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-?2013) and partially supported a post-?doctoral scholar (Dr. Jean Elkhoury; 2010-?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-?water or water-?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-? resolution mechanistic model that couples elastic deformation of contacts and aperture-?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.