National Library of Energy BETA

Sample records for multifamily dwellings ho

  1. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect (OSTI)

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ?While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  2. HUD rehabilitation energy guidelines for multi-family dwellings

    SciTech Connect (OSTI)

    1996-09-01

    The Guidebook has been prepared to help people, like yourself, involved in the rehabilitation of a multi-family building. It will help you understand the basics of residential energy conservation, and to think positively about the potential economic benefits. The Guidebook, and the HUD Rehabilitation Energy Guidelines, are applicable to all climates from hot and humid Florida to the northern reaches of Alaska.

  3. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect (OSTI)

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARBs) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  4. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  5. National impacts of the Weatherization Assistance Program in single-family and small multifamily dwellings

    SciTech Connect (OSTI)

    Brown, M.A.; Berry, L.G.; Balzer, R.A.; Faby, E.

    1993-05-01

    Since 1976, the US Department of Energy (DOE) has operated one of the largest energy conservation programs in the nation -- the low-income Weatherization Assistance Program. The program strives to increase the energy efficiency of dwellings occupied by low-income persons in order to reduce their energy consumption, lower their fuel bills, increase the comfort of their homes, and safeguard their health. It targets vulnerable groups including the elderly, people with disabilities, and families with children. The most recent national evaluation of the impacts of the Program was completed in 1984 based on energy consumption data for households weatherized in 1981. DOE Program regulations and operations have changed substantially since then: new funding sources, management principles, diagnostic procedures, and weatherization technologies have been incorporated. Many of these new features have been studied in isolation or at a local level; however, no recent evaluation has assessed their combined, nationwide impacts to date or their potential for the future. In 1990, DOE initiated such an evaluation. This evaluation is comprised of three ``impact`` studies (the Single-Family Study, High-Density Multifamily Study, and Fuel-Oil Study) and two ``policy`` studies. Altogether, these five studies will provide a comprehensive national assessment of the Weatherization Assistance Program as it existed in the 1989 Program Year (PY 1989). This report presents the results of the first phase of the Single-Family Study. It evaluates the energy savings and cost effectiveness of the Program as it has been applied to the largest portion of its client base -- low-income households that occupy single-family dwellings, mobile homes, and small (2- to 4-unit) multifamily dwellings. It is based upon a representative national sample that covers the full range of conditions under which the program was implemented in PY 1989.

  6. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect (OSTI)

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  7. HUD rehabilitation energy guidelines for multi-family dwellings (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-09-01

    The guidebook and Microsoft Excel worksheet diskette allows the user to calculate which enery consevation improvements are cost-effective when properties are rehabilitated. The information is applicable for all climates, from Florida to Alaska. The information is presented in a manner so that owners of building can better assess the needs and opportunities of a particular renovation project. They will also be able to ask better question of designers, builders, and contractors. The guidebook explains how properlly rehabilitating dwellings can increase energy efficiency and reduce costs. It discusses the issues and factors that determine how much energy a building will consume, including heat flow, air leakage, insulation, and heating and cooling systems. The guide also includes the specific HUD Rehabilitation Energy Guidelines for Dwellings with general and location-specific recommendations for energy conservation improvements. These guidelines are followed by examples of typical energy conservation measures in different climates. Each of these examples includes a Cost Effectiveness Excel Worksheet to show the overall simple payback. This easy-to-use worksheet walks through the entire evaluation process. The user simply enters in the appropriate information, much of which is menu driven. Appendicies provide a table that shows counties nationwide by climate zone, a list of resources, a glossary, and sample surveys and worksheets to help owners with their rehabilitation projects. Regulatory Background: The guidelines used in this guidebook are the Department of Housing and Urban Development`s `Standards for Cost Effective Energy Conservation` for property rehabilitation undertaken with HUD assistance. The information that used to be included in the regulations, with respect to energy efficiency, published as 24CFR39, is now contained in these guidelines.

  8. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information, see Multifamily Envelope Leakage Model

  9. Multifamily Projects

    Broader source: Energy.gov [DOE]

    Presents Energy Smart Colorado's approach to driving demand for multifamily residential energy efficiency upgrades.

  10. Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

  11. Multifamily Performance Program

    Broader source: Energy.gov [DOE]

    Under NYSERDA’s Multifamily Performance Program (MPP), new construction of multifamily buildings and existing multifamily buildings are eligible for incentives that improve energy savings through...

  12. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information, see the Building America report, Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Buildings,

  13. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements - Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization...

  14. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization ... webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, ...

  15. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This ...

  16. Multifamily Weatherization Frequently Asked Questions

    Energy Savers [EERE]

    Multifamily Weatherization Frequently Asked Questions 1. How do Grantees define a multifamily building? It depends. There is not one all-encompassing definition for multifamily buildings and how they are addressed within WAP. There are nuances related to multifamily eligibility, multifamily auditing, and multifamily reporting that each carry their own definitions.  Eligibility: In order to be eligible for WAP funding, one of the following must be true: o At least 50% of the residential units

  17. Generating Demand for Multifamily Building Upgrades | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Strategies to Address Split Incentives in Multifamily Buildings Outreach to Multifamily Landlords and Tenants Trends in Multifamily Programs: What's Working and What's Challenging...

  18. Multifamily Envelope Leakage Model

    Energy Savers [EERE]

    Multifamily Envelope Leakage Model © Steven Winter Associates, Inc. 2013 Acknowledgements * Sponsored by Department of Energy's Building America Program © Steven Winter Associates, Inc. 2013 NEW YORK, NY | WASHINGTON, DC | NORWALK, CT CALL US 866.676.1972 | SWINTER.COM Outline/Agenda * Introduce multifamily air leakage testing * Statement of the problem * Steps taken for a solution * Model results * Applying the model * Benefits of the model © Steven Winter Associates, Inc. 2013 NEW YORK, NY

  19. Commercial and Multifamily Building Benchmarking and Disclosure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: ...

  20. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  1. Training on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Multifamily Retrofits » Training on Multifamily Retrofits Training on Multifamily Retrofits Training on Multifamily Retrofits Ensure the people making decisions and installing measures in your buildings are properly trained to deal with multifamily properties by taking advantage of our national training network. DOE's Weatherization Assistance Program supports full-service training centers that specialize in multifamily retrofit training. These organizations offer professional training to

  2. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods.

  3. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  4. Information Technology Tools for Multifamily Building Programs

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Information Technology Tools for Multifamily Building Programs, Call Slides and Discussion Summary, March 15, 2012.

  5. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  6. Financing Multifamily Energy Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Financing Multifamily Energy Efficiency Upgrades, Call Slides and Discussion Summary, February 12, 2015.

  7. Multifamily Home Energy Solutions Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers owners of multifamily properties, with two or more units, cash incentives for upgrades to windows, appliances, water heaters, building envelope, heating and cooling,...

  8. Multifamily Energy Efficiency Retrofit Financing and Savings

    Broader source: Energy.gov [DOE]

    Presents the challenges encountered in the multifamily sector and how energy efficiency programs can respond successfully.

  9. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  10. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

  11. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  12. Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  13. APS- Multifamily Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to meet Arizona's 22% energy reduction by 2020 goal, APS offers energy efficiency incentives to multifamily building residents. CFLs, thermostat shut-offs and water controls are offered...

  14. Clifford Ho

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clifford Ho - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  15. Multi-Family Housing Loans and Grants

    Broader source: Energy.gov [DOE]

    Multi-family housing programs offer rural rental housing loans to provide affordable multi-family rental housing for very low-, low-, and moderate-income families, the elderly, and persons with...

  16. Commercial and Multifamily Building Benchmarking and Disclosure

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Commercial and Multifamily Building Benchmarking and Disclosure, Call Slides, July 25, 2013.

  17. Overcoming Multifamily Sector Barriers in Austin, Texas

    Broader source: Energy.gov [DOE]

    Presents techniques on overcoming the barriers of multifamily energy efficiency projects, including how to market to property managers.

  18. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. ...

  19. Connecticut: Bridgeport Multifamily Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut: Bridgeport Multifamily Weatherization Connecticut: Bridgeport Multifamily Weatherization November 8, 2013 - 12:00am Addthis EERE's Weatherization Assistance Program weatherized a multifamily facility in Bridgeport, Connecticut, that provides safe housing for individuals, veterans, and the homeless received weatherization; the services performed have saved the facility nearly $7,000 in annual energy costs. Because the state had not yet received an approved multifamily audit, a local

  20. Installation on Multifamily Retrofits | Department of Energy

    Office of Environmental Management (EM)

    Multifamily Retrofits » Installation on Multifamily Retrofits Installation on Multifamily Retrofits Over the last thirty years, DOE's Weatherization Assistance Program has cultivated the most experienced and connected group of whole-building energy retrofit professionals in the nation. The Weatherization Program has weatherized nearly 300,000 multifamily units since Graphic describing the Weatherization workforce as trained, equipped, and accountable. 2010. Many groups within the Weatherization

  1. Multifamily Envelope Leakage Model

    SciTech Connect (OSTI)

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  2. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods. While the unvented crawlspace retrofit was effective in reducing heat loss, and the majority of the bulk water drainage problems had been resolved, the important finding was that some of the wood joists embedded in masonry pockets behind the brick veneer were showing signs of moisture damage.

  3. Saving Energy in Multifamily Buildings | Department of Energy

    Energy Savers [EERE]

    Saving Energy in Multifamily Buildings Saving Energy in Multifamily Buildings This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011. PDF icon multifamily_bldg_webinar.pdf More Documents & Publications Building America Webinar: Saving Energy in Multifamily Buildings Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings,

  4. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Environmental Management (EM)

    Existing Homes: Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation...

  5. Austin Energy- Multi-Family Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Austin Energy Multi-Family Program provides cash incentives to owners, developers, and property managers of apartments and other multi-family properties for making energy efficiency...

  6. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and ...

  7. Trends in Multifamily Programs: What's Working and What's Challenging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in Multifamily Programs: What's Working and What's Challenging Better Buildings Residential Network Multifamily Low-Income Peer Exchange Call Series: Trends in ...

  8. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  9. Final Rule on Amending Eligibility Provisions to Multifamily...

    Energy Savers [EERE]

    Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program Final Rule on Amending Eligibility Provisions to Multifamily...

  10. Steam System Balancing and Tuning for Multifamily Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily ...

  11. Strategies to Address Split Incentives in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Low-Income Peer Exchange Call: Strategies to Address Split ...

  12. Puget Sound Energy- Multi-Family Efficiency Retrofit Program

    Broader source: Energy.gov [DOE]

    PSE’s Multifamily Program incentives include a range of measures aimed at assisting existing multifamily buildings. There are prescriptive rebates for equipment such as windows, insulation, light...

  13. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    Implementing a Zero Energy Ready Home Multifamily Project Citation Details In-Document Search Title: Implementing a Zero Energy Ready Home Multifamily Project You are accessing ...

  14. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    Implementing a Zero Energy Ready Home Multifamily Project Citation Details In-Document Search Title: Implementing a Zero Energy Ready Home Multifamily Project Building ...

  15. WPN 11-13: Documentation Required for Eligible Multifamily Property...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Property Listings for Use in the Weatherization Assistance Program WPN 11-13: Documentation Required for Eligible Multifamily Property Listings for Use in the...

  16. Information Technology Tools for Multifamily Building Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Moving Multifamily Buildings From Assessments to Upgrades Structuring Rebate and Incentive...

  17. Generating Demand for Multifamily Building Upgrades

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015.

  18. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  19. Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predicting Envelope Leakage in Attached Dwellings PROJECT INFORMATION Project Name: Predicting Envelope Leakage in Attached Dwellings Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Building envelope Application: New and retrofit; multifamily Year Tested: 2013 Applicable Climate Zone(s): All POTENTIAL BENEFITS OF MODEL Requires substantially fewer resources in the field-equipment, personnel, and time, because only solo test values are needed. Does not require

  20. Moving Multifamily Buildings From Assessments to Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Moving Multifamily Buildings From Assessments to Upgrades Moving Multifamily Buildings From Assessments to Upgrades Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Moving Multifamily Buildings from Assessments to Upgrades, call slides and discussion summary, January 24, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for

  1. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq6_closing_gaps_multifamily_dentz.pdf More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  2. Strategies to Address Split Incentives in Multifamily Buildings |

    Energy Savers [EERE]

    Department of Energy Strategies to Address Split Incentives in Multifamily Buildings Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Strategies to Address Split Incentives in Multifamily Buildings, Call Slides and Discussion Summary, April 26, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Outreach to Multifamily Landlords and Tenants Stewards of Affordable

  3. Outreach to Multifamily Landlords and Tenants | Department of Energy

    Energy Savers [EERE]

    Outreach to Multifamily Landlords and Tenants Outreach to Multifamily Landlords and Tenants Better Buildings Residential Multifamily/Low-Income Peer Exchange Call Series: Outreach to Multifamily Landlords and Tenants, Call Slides and Discussion Summary, May 8, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Trends in Multifamily Programs: What's Working and What's Challenging Strategies to Overcome Split Incentive Tenant / Landlord Issues Coordinating Energy

  4. Energy Efficiency Upgrades in Multifamily Housing | Department of Energy

    Office of Environmental Management (EM)

    Energy Efficiency Upgrades in Multifamily Housing Energy Efficiency Upgrades in Multifamily Housing Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in Multifamily Housing. This case study addresses multifamily energy upgrade experiences by two members of the Better Buildings Residential Network-Elevate Energy and the International Center for Appropriate and Sustainable Technology (ICAST). PDF icon Energy Efficiency Upgrades in Multifamily Housing More Documents &

  5. Multifamily Retrofit Tools and Workforce Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Retrofit Tools and Workforce Resources Multifamily Retrofit Tools and Workforce Resources The U.S. Department of Energy (DOE) has specific multifamily tools and resources that help alleviate lender and building owner uncertainty about energy upgrade results. Setting the standard for the industry, DOE has the ability to directly retrofit many of the nation's multifamily properties through its deployment programs. Using DOE affiliated multifamily resources means that contractors,

  6. Five case studies of multifamily weatherization programs

    SciTech Connect (OSTI)

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  7. Building America Webinar: Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques.

  8. The multifamily building evaluation project

    SciTech Connect (OSTI)

    1995-03-01

    In 1991 the New York State Energy Office embarked on a comprehensive multi-year study of multifamily housing in New York City. The principal objective of the evaluation was to determine the degree to which new windows and boiler/burner retrofits installed in 22 multifamily buildings located in the New York City region save energy and whether the savings persist over a minimum of two years. Window and boiler retrofits were selected because they are popular measures and are frequently implemented with assistance from government and utility energy programs. Approaches prospectively, energy consumption monitoring and a series of on-site inspections helped explain why energy savings exceeded or fell short of expectations. In 1993, the scope of the evaluation expanded to include the monitoring of domestic hot water (DHW) consumption in order to better understand the sizing of combined heating/DHW boilers and water consumption patterns. The evaluation was one of ten proposals selected from over 100 candidates in a nationwide competition for a US Department of Energy Building Efficiency Program Grant. The Energy Office managed the project, analyzed the data and prepared the reports, Lawrence Berkeley Laboratory served as technical advisor, and EME Group (New York City) installed meters and dataloggers, collected data, and inspected the retrofits. The New York State Energy Research and Development Authority collaborated with the Energy Office on the DHW monitoring component. Results did not always follow predictable patterns. Some buildings far exceeded energy saving estimates while others experienced an increase in consumption. Persistence patterns were mixed. Some buildings showed a steady decline in energy savings while others demonstrated a continual improvement. A clear advantage of the research design was a frequent ability to explain results.

  9. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Energy Savers [EERE]

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. PDF icon webinar_hybrid_insulation_20111130.pdf More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  10. Addressing Barriers to Upgrade Projects at Affordable Multifamily

    Office of Environmental Management (EM)

    Properties (201) | Department of Energy Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201) Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201) March 10, 2016 1:00PM to 2:30PM EST

  11. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing ...

  12. SWS Online Tool now includes Multifamily Content, plus a How...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains...

  13. Cost-Effective Modeling and Savings Projections for Multifamily Projects

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects, Call Slides and Discussion Summary, June 26, 2014.

  14. Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Incorporating Energy Efficiency into Multifamily, Affordable Housing Rehabilitation Projects (201).

  15. WAP Memorandum 014: Feedback on Draft Multifamily and Rental WPNs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WAP Memorandum 014: Feedback on Draft Multifamily and Rental WPNs WAP Memorandum 014: Feedback on Draft Multifamily and Rental WPNs Effective: Nov. 23, 2015 This memo serves as an opportunity for WAP Grantees to review and provide comment on two draft Weatherization Program Notices (WPNs) developed by the U.S. Department of Energy (DOE). PDF icon WAP Memorandum 014: Feedback on Draft Multifamily and Rental WPNs PDF icon Multifamily FAQs PDF icon Rental Unit FAQs More

  16. Retrofit Incentives for Multifamily Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Retrofits » Retrofit Incentives for Multifamily Buildings Retrofit Incentives for Multifamily Buildings The DOE Weatherization Assistance Program (Weatherization) is administered through state grantees that fund local or regional organizations to deliver services. When at least 66% of the residents of a multifamily building meet the Weatherization income eligibility requirements, the program can contribute resources toward energy retrofits in the building. Note that each DOE

  17. Program Management on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Retrofits » Program Management on Multifamily Retrofits Program Management on Multifamily Retrofits Completing a multifamily retrofit is a complex process that requires subject matter expertise in a number of disciplines. Weatherization agencies and organizations are experienced in completing successful projects under challenging conditions, and have broad expertise working with local stakeholders. Use the "Grantee Contacts" page at the U.S. DOE's Weatherization Assistance

  18. Energy Impact Illinois: Overcoming Barriers in the Multifamily Sector

    Broader source: Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  19. HUD Multifamily Property Listings Eligible for Weatherization Assistance |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy HUD Multifamily Property Listings Eligible for Weatherization Assistance HUD Multifamily Property Listings Eligible for Weatherization Assistance February 23, 2016 - 4:29pm Addthis Housing and Urban Development (HUD) multifamily properties eligible for weatherization assistance. On January 25, 2010, the Department of Energy (DOE) implemented rule 71-CFR-3847 for its Weatherization Assistance Program (WAP). Under the rule, if a public housing, assisted multi-family or Low

  20. Trends in Multifamily Programs: What's Working and What's Challenging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multifamily Programs: What's Working and What's Challenging Trends in Multifamily Programs: What's Working and What's Challenging Better Buildings Residential Network Multifamily / Low-Income Peer Exchange Call Series: Trends in Multifamily Programs: What's Working and What's Challenging, Call Slides and Discussion Summary, January 9, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Coordinating Energy Efficiency With Water Conservation

  1. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Controls for Multifamily Domestic Hot Water | Department of Energy Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily Domestic Hot Water This presentation will be delivered at the U.S. Department of Energy Building America webinar on January 21, 2015, by Jordan Dentz and Eric Ansanelli of the Levy Partnership. Central domestic hot water (CDHW) systems are

  2. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating | Department of Energy Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will be delivered by Elizabeth Weitzel, Davis Energy Group, at the U.S. Department of Energy Building America webinar on January 21, 2015.The presentation will focus on the findings of an evaluation effort of a nominal 10.5 ton central HPWH installed at

  3. Building America Webinar: Saving Energy in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Saving Energy in Multifamily Buildings Building America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its partners, outlined team objectives, and highlighted their current research program, Energy Savers. File webinar_multifamily_bldgs_20110726.wmv More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings

  4. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department of

    Energy Savers [EERE]

    Energy MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of households in Maine rely on fuel oil as their primary energy source for home heating, more than any other state. Coupled with the state's long, cold winters, homeowners' dependence on oil renders them particularly vulnerable to fluctuating fuel costs. Especially for the state's aging multifamily housing

  5. Capitalizing on Multibenefits of Energy Upgrades at Multifamily Housing (301)

    Broader source: Energy.gov [DOE]

    Buildings Residential Network Peer Exchange Call Series: Capitalizing on Multi-benefits of Energy Upgrades at Multifamily Housing (301).

  6. Challenges and Solutions for Multifamily Modeling | Department of Energy

    Office of Environmental Management (EM)

    Solutions for Multifamily Modeling Challenges and Solutions for Multifamily Modeling This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq6_modeling_multifamily_puttagunta.pdf More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: High Performance Space Conditioning Systems, Part II -

  7. Text-Alternative Version of Building America Webinar: Multifamily

    Energy Savers [EERE]

    Ventilation Strategies and Compartmentalization Requirements | Department of Energy Multifamily Ventilation Strategies and Compartmentalization Requirements Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements Multifamily Ventilation Strategies and Compartmentalization Requirements September 24, 2014 Sean Maxwell, Senior Energy Consultant, Steven Winter Associates Joe Lstiburek, Founding Principal of Building Science

  8. Engagement with Utilities on Multifamily Retrofits | Department of Energy

    Office of Environmental Management (EM)

    Weatherization Assistance Program » Multifamily Retrofits » Engagement with Utilities on Multifamily Retrofits Engagement with Utilities on Multifamily Retrofits Weatherization professionals often have existing relationships with the local utilities, which can facilitate access to helpful data. | Photo by Warren Gretz, NREL 04893 Weatherization professionals often have existing relationships with the local utilities, which can facilitate access to helpful data. | Photo by Warren Gretz, NREL

  9. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1F to 15.5F.

  10. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  11. Three-body dwell time

    SciTech Connect (OSTI)

    Kelkar, N. G.

    2010-06-15

    The lifetime of an unstable state or resonance formed as an intermediate state in two-body scattering is known to be related to the dwell time or the time spent within a given region of space by the two interacting particles. This concept is extended to the case of three-body systems and a relation connecting the three-body dwell time with the two-body dwell times of the substructures of the three-body system is derived for the case of separable wave functions. The Kapur-Peierls formalism is revisited to discover one of the first definitions of dwell time in the literature. An extension of the Kapur-Peierls formalism to the three-body case shows that the lifetime of a three-body resonance can indeed be given by the three-body dwell time.

  12. Shared Space vs. In-Unit Upgrades in Multifamily Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Shared Space vs. In-Unit Upgrades in Multifamily Buildings, Call Slides and Summary, May 9, 2013. PDF icon Call Slides and Summary More Documents & Publications Moving Multifamily Buildings From Assessments to Upgrades Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing

  13. Rural Development Multi-Family Housing Energy Efficiency Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Development Multi-Family Housing Energy Efficiency Initiative Rural Development Multi-Family Housing Energy Efficiency Initiative In order to help create a more energy independent rural America for the next century, the USDA Rural Development Multi-Family Housing Energy Efficiency Initiative enables applicants to several USDA housing programs to increase their program funding eligibility by incorporating green building practices into project designs, construction,

  14. Better Buildings Challenge Expands to Multifamily Housing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Better Buildings Challenge Expands to Multifamily Housing Better Buildings Challenge Expands to Multifamily Housing December 4, 2013 - 12:00am Addthis The U.S. Departments of Energy and Housing and Urban Development on December 3 expanded the Better Buildings Challenge to multifamily housing such as apartments and condominiums. The departments also launched the Better Buildings Accelerators to support efforts led by state and local governments to cut energy waste and eliminate market

  15. Text-Alternative Version of Building America Webinar: Central Multifamily

    Energy Savers [EERE]

    Water Heating Systems | Department of Energy Central Multifamily Water Heating Systems Text-Alternative Version of Building America Webinar: Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 Elizabeth Weitzel, Alliance for Residential Building Innovation (ARBI) Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES) Eric Ansanelli, Advanced Residential Integrated Energy Solutions (ARIES) Gail: Hello everyone, I'm Gail Werren

  16. Building America Expert Meeting: Code Challenges with Multifamily Area

    Energy Savers [EERE]

    Separation Walls | Department of Energy Code Challenges with Multifamily Area Separation Walls Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls This Building America Expert Meeting was conducted by the IBACOS team on Sept. 29, 2014, and focused on air sealing of area separation wall assemblies in multifamily buildings. This is an identified barrier that limits the ability of builders to cost effectively achieve higher energy efficiency and quality

  17. Building America Expert Meeting: Multifamily Hydronic and Steam Heating

    Energy Savers [EERE]

    Controls and Distribution Retrofits | Department of Energy Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family

  18. Final Rule on Amending Eligibility Provisions to Multifamily Buildings for

    Office of Environmental Management (EM)

    the Weatherization Assistance Program | Department of Energy Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program (WAP) Program Guidance 10-14 dealing with HUD multifamily buildings eligibility for

  19. Housing and Urban Development Multifamily Properties Eligible for

    Office of Environmental Management (EM)

    Weatherization Assistance | Department of Energy Pilot Projects » Housing and Urban Development Multifamily Properties Eligible for Weatherization Assistance Housing and Urban Development Multifamily Properties Eligible for Weatherization Assistance On January 25, 2010, the Department of Energy (DOE) implemented a new rule 71-CFR-3847 for its Weatherization Assistance Program (WAP). Under the new rule, if a public housing, assisted multi-family or Low Income Housing Tax Credit (LIHTC)

  20. EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization |

    Office of Environmental Management (EM)

    Department of Energy Connecticut: Bridgeport Multifamily Weatherization EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization November 8, 2013 - 12:00am Addthis EERE's Weatherization Assistance Program weatherized a multifamily facility in Bridgeport, Connecticut, that provides safe housing for individuals, veterans, and the homeless received weatherization; the services performed have saved the facility nearly $7,000 in annual energy costs. Because the state had not yet

  1. WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings...

    Energy Savers [EERE]

    9: Updated Guidance on Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings...

  2. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  3. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Exchange Call: Shared Space vs. In-Unit Upgrades in Multifamily Buildings, Call Slides and Summary, May 9, 2013. Call Slides and Summary More Documents & Publications Moving...

  4. Better Buildings Neighborhood Program Multi-family/ Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Multi-family Low Income Peer Exchange Call: Information Technology ... your program using for project information, marketing, assessment, tracking or evaluation? ...

  5. Cost-Effective Modeling and Savings Projections for Multifamily...

    Broader source: Energy.gov (indexed) [DOE]

    Cost-Effective Modeling and Savings Projections for Multifamily Projects, Call Slides and Discussion Summary, June 26, 2014. Call Slides and Discussion Summary More Documents &...

  6. Capitalizing on Multibenefits of Energy Upgrades at Multifamily...

    Office of Environmental Management (EM)

    More Documents & Publications Staged Upgrades as a Strategy for Residential Energy Efficiency Trends in Multifamily Programs: What's Working and What's Challenging Better Buildings ...

  7. Outreach to Multifamily Landlords and Tenants | Department of...

    Energy Savers [EERE]

    May 8, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Trends in Multifamily Programs: What's Working and What's Challenging Strategies to Overcome ...

  8. Building America Webinar: Saving Energy in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its...

  9. Moving Multifamily Buildings From Assessments to Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for Your Program? Shared Space vs. In-Unit ...

  10. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    CONSORTIUM FOR ADVANCED RESIDENTIAL BUILDINGS; MULTIFAMILY; RETROFIT; ZERO ENERGY; SOLAR THERMAL; DRAIN WATER RECOVERY SYSTEM; DEMAND-CONTROLLED RECIRCULATION SYSTEM; BRICK;...

  11. SoCalGas- Multi-Family Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for...

  12. DHCD- Multifamily Energy Efficiency and Housing Affordability Program

    Broader source: Energy.gov [DOE]

    Maryland Department of Housing and Community Development (DHCD) provides several programs to increase energy efficiency of multifamily homes of low and moderate income households. These affordable...

  13. Better Buildings Neighborhood Program Multi-Family and Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Family and Low Income Peer Exchange Call: Using Partnerships to Drive Demand and ... can affect program efficiency * Liability issues may become more complex * Inertia may be ...

  14. Energy-Efficient Controls for Multifamily Domestic Hot Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls for Multifamily Domestic Hot Water Jordan Dentz and Eric Ansanelli The Levy Partnership, Inc. New York, NY 2 Research Sponsors * The ARIES Collaborative is a ...

  15. Better Buildings Neighborhood Program Multi-family and Low Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in this sector? How are they different than other multi-family buildings? What strategies are effective? 242013 2 Participating Programs and Organizations Programs: *...

  16. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

  17. Conway Street Apartments: A Multifamily Deep Energy Retrofit

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-11-01

    While single-family, detached homes account for 63% of households (EIA 2009); multi-family homes account for a very large portion of that remaining housing stock, and this fraction is growing. Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multi-family buildings.

  18. List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) | Department

    Office of Environmental Management (EM)

    of Energy 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) List 2: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(ii) HUD list of multifamily housing units eligible for weatherization that have less than three years remaining on HUD housing contracts. As of December 2014. File List 2 - multifamily contract_expires_less than 3 yrs 2015 final

  19. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J. W.

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 38). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  20. YoungHo Shin | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YoungHo Shin YoungHo Shin Principal Process Development Engineer Telephone (630) 252-4861 E-mail yshin@anl.gov

  1. DOE Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Retrofitting Central Space Conditioning Strategies for Multifamily Buildings. The webinar will focus on improving the...

  2. ConEd (Electric)- Multifamily Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Multifamily electric customers a rebate program for energy efficient cooling and lighting equipment in 5-75 unit buildings in the eligible service area. All equipment...

  3. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect (OSTI)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  4. Be SMART Multi-Family Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Under the Be SMART Multi-Family Program, the Maryland Department of Housing and Community Development (DHCD) offers loans for energy efficiency improvements in existing multi-family rental proper...

  5. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect (OSTI)

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  6. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect (OSTI)

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  7. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION

    Energy Savers [EERE]

    6-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION PURPOSE: To provide Grantees with consolidated guidance on previously issued Weatherization Program Notices (WPNs) on weatherizing multifamily buildings in the Weatherization Assistance Program (WAP). This supersedes WPN 10-7 and WPN 11-9 SCOPE: The provisions of this guidance apply to Grantees applying for financial assistance under the Department of Energy (DOE) WAP. LEGAL AUTHORITY: Title IV, Energy Conservation and Production Act, as

  8. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect (OSTI)

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  9. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and Urban Development (HUD) and the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) developed preliminary feasibility (Level 1) screening software and enlisted the DOE CHP Regional Application Centers (RACs) to help run utility data and estimate paybacks. This paper

  10. Obama Administration Expands Better Buildings Challenge to Multifamily

    Energy Savers [EERE]

    Housing, Launches New Programs to Boost U.S. Energy Efficiency | Department of Energy Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency December 3, 2013 - 9:45am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on $2 billion in financing commitments from the private sector for energy

  11. Obama Administration Expands Better Buildings Challenge to Multifamily

    Energy Savers [EERE]

    Housing, Launches New Programs to Boost U.S. Energy Efficiency | Department of Energy Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency December 3, 2013 - 12:00am Addthis WASHINGTON - Building on $2 billion in financing commitments from the private sector for energy efficiency

  12. Audits and Quality Control on Multifamily Retrofits | Department of Energy

    Energy Savers [EERE]

    Audits and Quality Control on Multifamily Retrofits Audits and Quality Control on Multifamily Retrofits Thermal scanning pre- and post-installation ensures an accurate work scope is developed and assists with quality control after the job is done. | Photo by Dennis Schroeder, NREL 28597-C Thermal scanning pre- and post-installation ensures an accurate work scope is developed and assists with quality control after the job is done. | Photo by Dennis Schroeder, NREL 28597-C All energy retrofit

  13. Building America Webinar: Central Multifamily Water Heating Systems |

    Energy Savers [EERE]

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  14. Client and Tenant Education on Multifamily Retrofits | Department of Energy

    Office of Environmental Management (EM)

    Client and Tenant Education on Multifamily Retrofits Client and Tenant Education on Multifamily Retrofits Client education is a critical step in successful building retrofits. | Photo by Dennis Schroeder, NREL 28546 Client education is a critical step in successful building retrofits. | Photo by Dennis Schroeder, NREL 28546 Even the best energy retrofit plans work only as well as the people occupying the building will allow. The Weatherization Assistance Program understands that a building is

  15. Energy Savers: A one-stop energy efficiency shop for multifamily...

    Office of Environmental Management (EM)

    A one-stop energy efficiency shop for multifamily building owners Energy Savers: A one-stop energy efficiency shop for multifamily building owners This is a document from Energy...

  16. PG&E (Gas)- Multi-Family Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Through the Rebates for Multi-Family Properties Program, PG&E offers prescriptive rebates for owners and managers of multi-family properties of two or more units. Boilers, furnaces, clothes...

  17. Ming-Yang Ho | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ming-Yang Ho Ming-Yang Ho Ming-Yang Ho Graduate Student E-mail: mxh504@psu.edu Website: Pennsylvania State University Graduate Students

  18. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2009 | Department of Energy 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing and Urban Development's (HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for Combined Heat and Power in Multifamily Housing" describes the U.S.

  19. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell

    Broader source: Energy.gov [DOE]

    This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

  20. Guidelines for Home Energy Professionals Project: Multifamily Job Task Analyses Needs Assessment

    SciTech Connect (OSTI)

    Dirr, N.; Hepinstall, D.; Douglas, M.; Buck, S.; Larney, C.

    2013-01-01

    This report describes the efforts carried out to determine whether there is a need to develop separate, multifamily-specific JTAs for the four proposed job categories. The multifamily SWS market committee considered these job designations to be the best candidates for developing JTAs and certification blueprints, as well as having the greatest potential for promoting job growth in the multifamily home performance industry.

  1. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  2. DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reclaimed Modern by Dwell Development DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell Development DOE Tour of Zero Floorplans: Reclaimed Modern by Dwell Development

  3. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  4. National Energy Audit Tool for Multifamily Buildings Development Plan

    SciTech Connect (OSTI)

    Malhotra, Mini; MacDonald, Michael; Accawi, Gina K; New, Joshua Ryan; Im, Piljae

    2012-03-01

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherization of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional development in the future is expected to be needed if more capabilities are to be added. A rough schedule for development of the version 1 tool is presented. The components and capabilities described in this plan will serve as the starting point for development of the proposed new multifamily energy audit tool for WAP.

  5. Simplified multizone blower door techniques for multifamily buildings. Final report

    SciTech Connect (OSTI)

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  6. Building America Expert Meeting Report. Hydronic Heating in Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, Jordan

    2011-10-01

    This expert meeting was presented by the ARIES Collaborative, and discussed cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort.

  7. Retrofit of a Multifamily Mass Masonry Building in New England

    SciTech Connect (OSTI)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  8. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    SciTech Connect (OSTI)

    Lyons, James

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  9. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships.

  10. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships

    Broader source: Energy.gov [DOE]

    This presentation, held on Jan. 30, 2014, provides information on how to leverage state policies and programs to advance multifamily energy efficiency efforts.

  11. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC36-08GO28308 Resource Type: Technical Report Research Org: National ... TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word ...

  12. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Report Number(s): DOEGO--102015-4716 7226 Resource Type: Technical Report Research Org: ... TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word ...

  13. Building America Whole-House Solutions for Existing Homes: Evaluation of a Multifamily Retrofit

    Broader source: Energy.gov [DOE]

    Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

  14. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek

    Broader source: Energy.gov [DOE]

    This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

  15. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  16. combined_supplemental_hud_multifamily_weatherization_list_1b.xls |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1b.xls More Documents & Publications combined_supplemental_hud_multifamily_weatherization_list_2b

  17. combined_supplemental_hud_multifamily_weatherization_list_2b.xls |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2b.xls More Documents & Publications combined_supplemental_hud_multifamily_weatherization_list_1b

  18. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are tucked in to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including nulled or guarded testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or pressure neutralization). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  19. Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings?

    Broader source: Energy.gov [DOE]

    What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the current standard practice? Are there options to avoid air exchange with neighbors? How do stack and wind pressures affect ventilation performance in multifamily homes? What systems actually function as intended and can be implemented by builders and contractors?

  20. Better Buildings Neighborhood Program Multi-Family Peer Exchange Call: Moving Multi-family Buildings from Assessments to Upgrades, January 24, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 24, 2013 Better Buildings Neighborhood Program Multi- Family Peer Exchange Call: Moving Multi-family Buildings from Assessments to Upgrades Agenda * Call Logistics and Attendance * Discussion  Do programs have any lessons learned, success stories, or challenges with regard to moving from assessments to upgrades in multi-family buildings they would like to share?  What hurdles have people faced in moving from assessments to upgrades and what are potential solutions?  What are

  1. Better Buildings Residential Multifamily/Low-Income Peer Exchange Call Series: Outreach to Multifamily Landlords and Tenants Call Slides and Discussion Summary, May 8, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily/Low- Income Peer Exchange Call Series: Outreach to Multifamily Landlords and Tenants Call Slides and Discussion Summary May 8, 2014 Agenda  Call Logistics and Introductions  BBRN and Peer Exchange Call Overview  Featured Speakers  Dan Curry - Clean Energy Durham  Jaime Gomez and Brian Kennedy - Austin Energy  Discussion  What approaches have you tried to reach out to landlords? To reach out to tenants? What approaches were effective?  Did your organization try

  2. Better Buildings Residential Network Multifamily & Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily & Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects June 26, 2014 Call Slides and Discussion Summary Agenda  Welcome  Call Logistics and Introductions  Residential Network and Peer Exchange Call Overview  Featured Speakers:  Brian Kennedy, Austin Energy  Steve O'Malley, Vermont Energy Investment Corporation  Discussion:  What experience has your organization had with modeling, projecting

  3. Low-Load HVAC Systems for Single and Multifamily Applications

    Energy Savers [EERE]

    Low-Load HVAC Systems for Single and Multifamily Applications Anthony Grisolia Managing Director Innovation Programs Andrew Poerschke Specialist Innovation Programs CONFIDENTIAL Agenda Basis for Thermal Comfort Comparative Modeling Newtown Townhouse Case Study Plug and Play System Future Work How IBACOS Thinks About Comfort Risks Home 24 Home 25 Home 26 Same Plan Same Street Same Orientation Different Occupants 0.5 CLO 1.0 MET ASHRAE 55 Comfort Aggregate of 36 Homes 0.5 CLO 1.0 MET 47% of data

  4. Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.

    2011-10-01

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

  5. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    SciTech Connect (OSTI)

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  6. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  7. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  8. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    SciTech Connect (OSTI)

    Farley, Jenne; Ruch, Russell

    2013-09-01

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  9. SWS Online Tool now includes Multifamily Content, plus a How-To Webinar |

    Energy Savers [EERE]

    Department of Energy Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains information on the integration of multifamily content in the SWS Online Tool, and a How-To Webinar on August 27, 2013. PDF icon mf_content_now_available.pdf More Documents & Publications The Standard Work Specifications for Single-Family Home Energy Upgrades are now available€ at your fingertips!

  10. List 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) | Department

    Office of Environmental Management (EM)

    of Energy 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) List 1: Eligible Multifamily Buildings 10-CFR-440.22(b)(4)(i) HUD list of multifamily housing units eligible for weatherization that have three or more years remaining on HUD housing contracts. As of December 2014. List 1 consists of three sub-lists: Public Housing - 100% of buildings in the identified properties meet the necessary qualifications Public Housing - Only specified buildings in the identified properties meet the

  11. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar will focus on improving the performance of central space conditioning systems in multifamily buildings. Presenters will discuss hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  12. ConEd (Gas)- Multi-family Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Con Edison offers a free energy audit and rebates for Multifamily buildings. Incentives are offered for energy efficient heating equipment for 5-75 unit buildings in the eligible service area....

  13. PG&E- Multi-Family Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PG&E offers prescriptive rebates for owners and managers of multi-family properties of two or more units. Appliances, boilers, water heating, HVAC, and lighting improvements are among the...

  14. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  15. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Large Multifamily Buildings

    SciTech Connect (OSTI)

    Blasnik, Michael; Dalhoff, Greg; Carroll, David; Ucar, Ferit

    2015-10-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing large multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  16. Seattle City Light- Multi-Family Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Seattle City Light provides incentives for multi-family housing properties with 5 or more units to increase their energy efficiency. Rebates are offered for common area lighting and weatherization...

  17. Ameren Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    The shell measure segment offers incentives for air sealing the shell of multifamily buildings. Incentives will be paid based on the total CFM reduction. Insulation incentives will be based on sq...

  18. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Small Multifamily Buildings

    SciTech Connect (OSTI)

    Blasnik, Michael; Dalhoff, Greg; Carroll, David; ucar, Ferit

    2014-09-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing small multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  19. combined_supplemental_hud_multifamily_weatherization_list_3-2_lihtc.xls |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy _lihtc.xls More Documents & Publications list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls rd_mfh_low_and_very_low.xls hud_list-1

  20. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  1. Multifamily Building Operator Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Building Operator JTA identifies and catalogs all of the tasks performed by multifamily building operators, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  2. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  3. Multifamily Energy Auditor Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  4. SWS Online Tool now includes Multifamily Content, plus a How-To Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Housing Content Now Available via the Standard Work Specifications Online Tool The National Renewable Energy Laboratory, along with the U.S. Department of Energy (DOE), are pleased to announce that the Standard Work Specifications (SWS) for Multifamily Housing Energy Upgrades are now incorporated within the SWS Online Tool. In addition to this content, the tool also now includes: Explore the Standard Work Specifications Online Tool. An interactive glossary Basic Quality Control

  5. Multifamily Quality Control Inspector Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Quality Control Inspector JTA identifies and catalogs all of the tasks performed by multifamily quality control inspectors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  6. Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 10-15 EFFECTIVE DATE: March 2, 2010 SUBJECT: FINAL RULE ON AMENDING ELIGIBILITY PROVISIONS TO MULTI-FAMILY BUILDINGS FOR THE WEATHERIZATION ASSISTANCE PROGRAM PURPOSE: To issue guidance on implementing recent changes to the Weatherization Assistance Program (WAP) requirements for determining eligibility of certain multi-family buildings as identified by the Department of Housing and Urban Development (HUD) and the Department of Agriculture (USDA). LEGAL AUTHORITY:

  7. Energy Savers: A one-stop energy efficiency shop for multifamily building

    Office of Environmental Management (EM)

    owners | Department of Energy A one-stop energy efficiency shop for multifamily building owners Energy Savers: A one-stop energy efficiency shop for multifamily building owners This is a document from Energy Impact Illinois posted on the website of U.S. Department of Energy's Better Buildings Neighborhood Program. PDF icon Energy Savers program brochure More Documents & Publications Energy Savers: Your One Stop Shop for Energy Efficiency Upgrades Energy Savers: Fireplaces Saving Energy

  8. Better Buildings Residential Network Multifamily/ Low Income Peer Exchange Call Series: Trends in Multifamily Programs: Whats Working and Whats Challenging Call Slides and Discussion Summary, January 9, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily/ Low Income Peer Exchange Call Series: Trends in Multifamily Programs: What's Working and What's Challenging Call Slides and Discussion Summary January 9, 2014 Agenda  Call Logistics and Introductions  Featured Participants  Brian Kennedy (Austin Energy)  Faith Graham (MPower Oregon)  Discussion:  What strategies or approaches has your program used to build interest in multifamily energy efficiency? What has worked well, and why do you think it was effective? 

  9. DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reclaimed Modern, Seattle, WA DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed Modern, Seattle, WA Case study of a DOE 2015 Housing Innovation Award winning ...

  10. Improving Building Envelope and Duct Airtightness of US Dwellings...

    Office of Scientific and Technical Information (OSTI)

    Improving Building Envelope and Duct Airtightness of US Dwellings - the Current State of Energy Retrofits Citation Details In-Document Search Title: Improving Building Envelope and...

  11. WPN 10-15: Final Rule on Amending Eligibility Provisions to Multifamily Buildings for the Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    To issue guidance on implementing recent changes to the WAP requirements for determining eligibility of certain multifamily buildings as identified by HUD and USDA.

  12. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  13. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings Location: New York, NY Consortium for Advanced Residential Buildings (CARB): http://carb-swa.com Application: New construction; multifamily Building Component: Mechanical Ventilation Date completed: 2013 Climate Zone: Mixed-humid In multifamily buildings, particularly in the Northeast,

  14. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, WA, Systems Home DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA, Systems Home Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored ...

  15. Byggmeister Test Home. Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect (OSTI)

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  16. Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect (OSTI)

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  17. Davis-Bacon Labor Rates for Weatherization Work in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program Notice 10-04 deals with labor rates (wages) for weatherization work in large multifamily buildings that comply with the Davis-Bacon Act requirements of the 2009 Recovery Act.

  18. WPN 93-14: 40 Percent Waiver Provisions for Multifamily and Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides guidance on multifamily and mobile home units weatherized by states, which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  19. Retrofit of a MultiFamily Mass Masonry Building in New England

    SciTech Connect (OSTI)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  20. Technology Solutions Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    2015-01-01

    Fire-resistance rated (or area separation) wall assemblies present a great difficulty in air sealing/compartmentalization, particularly in townhouse construction. To address this challenge, Building Science Corporation partnered with builder K. Hovnanian Homes to determine whether taping exterior sheathing details improves air sealing in townhouse and multifamily construction, and to better understand air leakage pathways.

  1. CONTRACT HO, AT(JO-l)-510

    Office of Legacy Management (LM)

    b I,: . 1 :{ - 7 ok-4 1% This document consists ofwpages. Eo.ZSIof2Scopies, Series 4. CONTRACT HO, AT(JO-l)-510 & F-J tlt-~3fjfTd1 / i /- /-&.;c-,' -.C.~ ATOMIC EKEBGY COMXISSIOB CONTRXTQR & ADDRESS: BRUSH BEBYLLIUM CCWANX/----y. 4301 Perkins Avenue Cleveland 3, Ohio SONTRACT EylR: BIESURCH, .DEVXLOPMEWl' AND PRODUCTIOH LOCATION: Cleveland, Ohio . $538250.00 AMOUET OF INITIAL COMJlISSIO19 OBLIGATIOB: Divisfon of Dlsburaement, U. S. Treasury Department, Bew York, E. Y. (Submit

  2. S3TEC Seminar - Dr. Cliff Ho, Sandia National Laboratories | Solid State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Energy Conversion Dr. Cliff Ho, Sandia National Laboratories Seminar Wednesday Mar 2, 2016 12:00pm Location: 1-150 Speaker: Cliff Ho S3TEC welcomes Dr. Cliff Ho

  3. Wisconsin Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Wisconsin Uniform Dwelling Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $149 for the 2009 IECC and $672 for the 2012 IECC.

  4. Better Buildings Neighborhood Program Multi-Family Peer Exchange Call: Shared Space vs. In-unit Upgrades in Multi-family Buildings, Call Slides and Summary, May 9, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neighborhood Program Multi- Family Peer Exchange Call: Shared Space vs. In- unit Upgrades in Multi-family Buildings Call Slides and Summary Agenda * Call Logistics and Attendance * Future Call Topic Suggestions and Polling * Discussion  To what extent are programs focusing on shared space and technology in multi-family buildings vs. in-unit upgrades? Where are the biggest energy efficiency opportunities?  What are effective strategies for each type of work? What are the challenges?  How

  5. Better Buildings Neighborhood Program Multi-family/ Low Income Peer Exchange Call: Information Technology Tools for Multi-family Building Programs Call Slides and Discussion Summary, March 15, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2012 Better Buildings Neighborhood Program Multi-family/ Low Income Peer Exchange Call: Information Technology Tools for Multi-family Building Programs Call Slides and Discussion Summary Agenda * Call Logistics and Attendance  What information technology tools is your program using for project information, marketing, assessment, tracking or evaluation? What do you wish you had? * Program Experience and Lessons:  Heather Larson, StopWaste.org, Energy Upgrade California  Adam Palmer,

  6. WPN 11-13: Documentation Required for Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    To issue guidance for Grantees and Subgrantees of the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) regarding documentation requirements for buildings appearing on a DOE list of eligible multifamily properties.

  7. Better Buildings Multi-Family Peer Exchange Call Featuring: Stewards of Affordable Housing for the FutureCall Slides and Discussion Summary, April 7, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2011 BetterBuildings Multi-Family Peer Exchange Call Featuring: Stewards of Affordable Housing for the Future Call Slides and Discussion Summary Agenda * Call logistics and attendance * Key multi-family topics * Stewards of Affordable Housing for the Future (SAHF) - Overview by Becky Schaaf and Jeanne Engel, SAHF * Q&A and discussion of multi-family topics * Next steps  Future call topics  Call frequency, format, etc. 4/28/2011 2 Participating Grant Programs * Augusta, ME *

  8. Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of

  9. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  10. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    SciTech Connect (OSTI)

    Frozyna, K.; Badger, L.

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

  11. Interim Final Report for the Strengthening Retrofit Markets for Comprehensive Savings in Multifamily Buildings

    SciTech Connect (OSTI)

    Meinking, Rick; Adamson, Joy M

    2013-12-20

    Energy efficiency is vitally important in Maine. Nearly 70% of Maine households rely on fuel oil as their primary energy source for home heating, a higher share than in any other state. Coupled with the state's long, cold winters, Maine's dependence on oil renders homeowners particularly vulnerable to fluctuating fuel costs. With $4.5 million in seed funding from the Energy Department's Better Buildings Neighborhood Program, the Governor's Energy Office (GEO), through Efficiency Maine Trust (the Trust), is spurring Maine landlords to lower their monthly energy bills and improve comfort for their tenants during the state's cold winter months and increasingly warmer summers. Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no insulation, drafty windows, and significant air leaks, making them ideal candidates for energy efficiency upgrades. Maine modeled its Multifamily Efficiency Program (MEP) after the state's highly successful Home Energy Savings Program (HESP) for single?family homes. HESP provided cash incentives and financing opportunities to owners of one? to four?unit structures, which resulted in thousands of energy assessments and whole?house energy upgrades in 225 communities. Maine's new MEP multifamily energy efficiency upgrade and weatherization initiative focuses on small to medium?sized (i.e., five to 20 units) apartment buildings. The program's energy efficiency upgrades will provide at least 20% energy savings for each upgraded multifamily unit. The Trusts MEP relies on a network of approved program partners who help move projects through the pipeline from assessment to upgrade. MEP has two components: benchmarking and development of an Energy Reduction Plan (ERP). Using the ENERGY STAR Portfolio Manager benchmarking tool, MEP provides an assessment of current energy usage in the building, establishes a baseline for future energy efficiency improvements, and enables tracking and monitoring of future energy usage at the building all at no cost to the building owner. The ERP is developed by a program partner using either the Trusts approved modeling or prescriptive tools; it provides detailed information about the current energyrelated conditions in the building and recommends energy efficiency, health, and safety improvements. The Trust's delivery contractor provides quality assurance and controls throughout the process. Through this effort, MEP's goal is to establish a self?sustaining, market?driven program, demonstrating the value of energy efficiency to other building owners. The increasing value of properties across the state will help incentivize these owners to continue upgrades after the grant period has ended. Targeting urban areas in Maine with dense clusters of multifamily unitssuch as Portland, Lewiston? Auburn, Bangor, and AugustaMEP engaged a variety of stakeholder groups early on to design its multifamily program. Through direct emails and its website, program officials invited lending institutions, building professionals, engineering firms, equipment distributors, and local property owners associations to attend open meetings around the state to learn about the goals of the multifamily program and to help define its parameters. These meetings helped program administrators understand the diversity of the customer base: some owners are individuals with a single building, while other owners are groups of people or management companies with an entire portfolio of multifamily buildings. The diversity of the customer base notwithstanding, owners see MEP as an opportunity to make gains in their respective properties. Consistently high turnouts at stakeholder meetings fueled greater customer interest as awareness of the program spread through word of mouth. The program also gained traction by utilizing the program partner networks and building on the legacy of the Trusts successful HESP for single?family residences. MEP offers significant incentives for building owners to p

  12. Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in Multifamily Housing

    Energy Savers [EERE]

    Learn more at betterbuildings.energy.gov/bbrn BETTER BUILDINGS RESIDENTIAL NETWORK Better Buildings Residential Network case studies feature members to fulfill our mission to share best practices and learn from one another to increase the number of homes that are energy efficient. This case study addresses multifamily energy upgrade experiences by two members of the Better Buildings Residential Network-Elevate Energy and the International Center for Appropriate and Sustainable Technology

  13. Existing Whole-House Solutions Case Study: Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. In this project, Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent).

  14. Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydronic Heating in Multifamily Buildings Jordan Dentz The ARIES Collaborative October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  15. Building America January 2015 Webinar: Multifamily Central Heat Pump Water Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Davis Energy Group | DATE Multifamily Central Heat Pump Water Heating Elizabeth Weitzel Davis Energy Group Alliance for Residential Building Innovation (ARBI) January, 2015 The work presented in this presentation does not represent performance of any product relative to regulated minimum efficiency requirements. The field site used for this work was not a certified rating test facilities. The conditions and methods under which products were characterized for this work differ from standard rating

  16. DOE Fact Sheet: Cost-Effectiveness of Deep Green Alterations of Multi-family Buildings in

    Office of Environmental Management (EM)

    Fact Sheet: Cost-Effectiveness of Deep Green Alterations of Multi-family Buildings in Seattle Overview The City of Seattle was a multiple awardee of the Climate Action Champions (CAC) Notice of Technical Assistance (NOTA). The U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy offered technical assistance from its Commercial Building Partnerships (CBP) Program to provide CACs with additional opportunities for technical assistance to support and advance their

  17. Magnetic and magnetothermodynamic properties of Ho5Si4 (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect and magnetothermodynamic properties of Ho5Si4 Citation Details In-Document Search Title: Magnetic and magnetothermodynamic properties of Ho5Si4 The magnetic and magnetocaloric properties of Ho{sub 5}Si{sub 4} have been investigated. The compound undergoes a second order ferromagnetic transition at 76 K (T{sub c}) and a spin reorientation transition at about 15 K. The temperature dependencies of heat capacity data measured in various magnetic fields corroborate the second

  18. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P.; Tuluca, A.

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  19. Reducing energy costs in multifamily housing: guidelines for using energy-management companies

    SciTech Connect (OSTI)

    Shafer, P.

    1986-03-01

    This publication is designed to provide guidelines to help sponsors of multi-family projects assisted or insured by the U.S. Department of Housing and Urban Development (HUD), as well as other building owners, utilize performance agreements as a way to make energy-efficiency improvements. These guidelines are based on experience gained in a demonstration project initiated by HUD to test the feasibility of using Energy Management Companies (EMCs) to make energy improvements in assisted housing for the elderly or handicapped.

  20. Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Meeting Code Challenges with Multi-Family Area Separation Walls Date/Time: Monday, Sept. 29, 2014, 10:30 am to 12:30 pm EST Location: web meeting Host: IBACOS, Inc., www.IBACOS.com Meeting Manager: Armin Rudd, arudd@abtsystems.us Agenda 10:30: Opening by Armin Rudd and Duncan Prahl Explain the reason, purpose, goals and expected outcomes of the meeting Facilitated open discussion *Review typical UL 263 (ASTM E119) area separation wall Designs (U336, U347, U373) *Review the tested

  1. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings and Thermostatic Radiator Valve Evaluation

    Energy Savers [EERE]

    Focusing on affordable housing including new and existing multifamily buildings WHY IS THIS IMPORTANT?  ~14 million units in the U.S. use steam or hot water heating  Space heating the largest energy use in mixed and cold climate buildings  Overheating study found nearly all apartments overheated most of the time: average heating season temp. 76.2°F Long-term temperature data from ~100 apartments in 18 buildings:  Almost all apartments overheated most of the time  Average heating

  2. Theoretical rate coefficients for allyl + HO2 and allyloxy decomposition

    SciTech Connect (OSTI)

    Goldsmith, C. F.; Klippenstein, S. J.; Green, W. H.

    2011-01-01

    The kinetics of the allyl + HO{sub 2} bimolecular reaction, the thermal decomposition of C{sub 3}H{sub 5}OOH, and the unimolecular reactions of C{sub 3}H{sub 5}O are studied theoretically. High-level ab initio calculations of the C{sub 3}H{sub 5}OOH and C{sub 3}H{sub 5}O potential energy surfaces are coupled with RRKM master equation methods to compute the temperature- and pressure-dependence of the rate coefficients. Variable reaction coordinate transition state theory is used to characterize the barrierless transition states for the allyl + HO{sub 2} and C{sub 3}H{sub 5}O + OH reactions. The predicted rate coefficients for allyl + HO{sub 2} ? C{sub 3}H{sub 5}OOH ? products are in good agreement with experimental values. The calculations for allyl + HO{sub 2} ? C{sub 3}H{sub 6} + O{sub 2} underpredict the observed rate. The new rate coefficients suggest that the reaction of allyl + HO{sub 2} will promote chain-branching significantly more than previous models suggest.

  3. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  4. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect (OSTI)

    Lyons, James; Moore, Mike; Thompson, Margo

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit (DER) at the Bay Ridge multifamily development in Annapolis, Maryland. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  5. Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect (OSTI)

    Lyons, J.; Moore, M.; Thompson, M.

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  6. Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

  7. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  8. list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Office spreadsheet icon list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls More Documents & Publications hud_list-1_07-01-11.xls hud_list-1_07-01-11.xls rd_mfh_low_and_very_low.xls

  9. Building America Technology Solutions for New and Existing Homes: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This research effort, conducted by the Consortium for Advanced Residential Buildings, included several weeks of building pressure monitoring to validate system performance of four different strategies for providing make-up air to multifamily apartments.

  10. Efficient Multifamily Homes in a Hot-Humid Climate by Atlantic Housing Partners

    SciTech Connect (OSTI)

    Chasar, D.; Martin, E.

    2013-04-01

    With assistance from the Florida Solar Energy Center (FSEC) and its Building America Partnership for Improved Residential Construction (BA-PIRC), Atlantic Housing Partners (AHP) has implemented a high performance, systems engineered package of measures. This report demonstrates how the initiative achieves Building America (BA) goals of 30%-50% energy savings. Specifically, the goals are documented as being achieved in the new construction multifamily housing sector in the hot humid climate. Results from energy modeling of the high performance package are presented. The role of utility allowance calculations, used as part of the low-income housing tax credit process, to value those energy savings is discussed, as is customer satisfaction with heat pump water heaters.

  11. Efficient Multifamily Homes in a Hot Humid Climate by Atlantic Housing Partners

    SciTech Connect (OSTI)

    Chaser, Dave; Martin, Eric

    2013-04-01

    With assistance from the Florida Solar Energy Center (FSEC) and its Building America Partnership for Improved Residential Construction (BA-PIRC), Atlantic Housing Partners (AHP) has implemented a high performance, systems engineered package of measures. This report demonstrates how the initiative achieves Building America (BA) goals of 30%-50% energy savings. Specifically, the goals are documented as being achieved in the new construction multifamily housing sector in the hot humid climate. Results from energy modeling of the high performance package are presented. The role of utility allowance calculations, used as part of the low-income housing tax credit process, to value those energy savings is discussed, as is customer satisfaction with heat pump water heaters.

  12. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  13. Existing Whole-House Solutions Case Study: Cascade Apartments - Deep Energy Multifamily Retrofit

    SciTech Connect (OSTI)

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units. This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary Building America research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio of the retrofit package after considering utility window incentives and KCHA capital improvement funding.

  14. Radon in HUD assisted multifamily housing: Policy recommendations to the Congress

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report complies with Section 1091 of the Stewart B. McKinney Homeless Assistance Amendments Act of 1988 which requires that the HUD Secretary report to the Congress on a recommended policy for addressing radon contamination in specified housing. The housing specified in the Act is virtually all rental housing predominantly for low-income and moderate-income households. Almost all of it is multifamily housing: row houses, walk-up apartment buildings, or high-rise buildings. There is inadequate information on the extent to which excessive concentrations of radon occur above the first floor of multistory buildings and on the variation in radon concentrations in attached houses in the same row. HUD's recommended policy is in the four topic areas specified in the Act: research, education, testing, and mitigation.

  15. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with

  16. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747

  17. Better Buildings Neighborhood Program Multi-Family and Low Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Family and Low Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities Agenda * Call Logistics and Attendance  What kind of partnerships does your program have for multi-family or low income outreach or service delivery? * Program Experience and Lessons:  Kelvin Keraga, NYSERDA, EmPower New York  Jeanine Otte, CNT Energy, Chicago  Rosemary Olsen, Community Development Corporation of Long Island, Long Island Green Homes * Discussion: 

  18. Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balancing Hydronic Systems in Multifamily Buildings Chicago, Illinois PROJECT INFORMATION Location: Chicago, IL area Partners: Elevate Energy elevateenergy.org/ Partnership for Advanced Residential Retrofit gastechnology.org/PARR Building Component: HVAC Application: Multifamily Year Tested: 2014 Applicable Climate Zones: 1, 2, 3 PERFORMANCE DATA Retrofit: Booster pump to increase flow in an underheated zone Cost of energy efficiency measure (including labor): $6,330 Temperature spread decrease:

  19. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cascade Apartments - Deep Energy Multifamily Retrofit Kent, Washington PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: King County Housing Authority, Kent, Washington http://www.kcha.org/ Size: 108 units in 27 four-plexes Rent: 30% of household income Date completed: 2010 Climate Zone: Marine PERFORMANCE DATA State low-income weatherization investment: $385,850 for all 108 units $15,850 per 4-plex $3,858 per unit Site savings per unit: Billing analysis:

  20. Building America Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California

    SciTech Connect (OSTI)

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  1. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect (OSTI)

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  2. Water exchange dynamics around H?O? and OH? ions

    SciTech Connect (OSTI)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    Proton transfer in water and other solvents is a complicated process and an active research area. Conformational changes of water hydrating a proton can have a significant influence on proton dynamics. A hydrated proton leads to H?O? that forms three hydrogen bonds with neighboring water molecules. In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H?O?. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH? and find that the corresponding time scale (~50 picoseconds [ps]) is much smaller than that for H?O? (~100 ps). Results from all the rate theories are computed and compared. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  3. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  4. DOE Tour of Zero: Reclaimed Modern by Dwell Development | Department of

    Energy Savers [EERE]

    Energy Reclaimed Modern by Dwell Development DOE Tour of Zero: Reclaimed Modern by Dwell Development 1 of 19 Dwell Development built this 3,140-square-foot home in Seattle, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 19 This three-story modern urban in-fill home achieved all of the certifications of the DOE Zero Energy Ready Home program as well as a 5-star rating from the Snohomish and King Co. Master Builders

  5. DOE Tour of Zero: Reclaimed Modern by Dwell Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reclaimed Modern by Dwell Development DOE Tour of Zero: Reclaimed Modern by Dwell Development Addthis 1 of 19 Dwell Development built this 3,140-square-foot home in Seattle, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 19 This three-story modern urban in-fill home achieved all of the certifications of the DOE Zero Energy Ready Home program as well as a 5-star rating from the Snohomish and King Co. Master Builders

  6. Building America Whole-House Solutions for New Homes: Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, ...

  7. Habitability and energy performance of earth sheltered dwellings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.

    1980-12-01

    The High Plains region of the central United States has become host to an emerging dwelling concept which incorporates the use of earth shelter technologies. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. More recently, dramatic potentials for energy savings have served as a strong secondary inducement to the exploration of earth sheltered housing as an energy alternative. Habitability and passive energy design of earth sheltered structures are key focal elements being investigated at Oklahoma State University. Habitability aspects have received little treatment elsewhere, and existing passive energy design strategies have generally not considered the passive cooling benefits of earth sheltered construction. Extended questionnaires were used to obtain earth sheltered occupant responses to both habitability and energy design aspects including measured energy usage. Preliminary analysis has been completed on about 80 (eighty) projects in the State of Oklahoma, and the study is being extended to 8 (eight) additional surrounding states. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustical environment; but have some reservations concerning daylighting, site design, and energy design and performance. Energy usage patterns tend to indicate that, in fact, sizeable savings are being realized by owners of current generation earth shelters. However, it is anticipated that with optimized passive systems design, the presently realized savings could be further increased by perhaps a factor of two. An appropriate design balance must be realized between passive heating and passive cooling needs.

  8. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  9. Existing Whole-House Solutions Case Study: Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland

    SciTech Connect (OSTI)

    2013-10-01

    Under this project, the BA-PIRC research team evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit at the Bay Ridge multifamily development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This case study summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete.

  10. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect (OSTI)

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  11. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.

  12. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  13. General relation between density of states and dwell times in mesoscopic systems

    SciTech Connect (OSTI)

    Iannaccone, G. Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica e Telecomunicazioni, Universita degli Studi di Pisa, Via Diotisalvi 2, I-56126 Pisa )

    1995-02-15

    A relevant relation between the dwell time and the density of states for a three-dimensional system of arbitrary shape with an arbitrary number of incoming channels is derived. This result extends the one obtained by Gasparian and co-workers for the case of a one-dimensional symmetrical potential barrier. We believe that such a strong relation is rich in physical significance because the dwell time is the most widely accepted time measure of a particle's dynamics and the density of states in a given region is one of the most relevant properties of a system in equilibrium.

  14. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA,

    Energy Savers [EERE]

    Systems Home | Department of Energy Seattle, WA, Systems Home DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA, Systems Home Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 34 without PV. This 2,000-square-foot system home has R-45 double-stud walls, an unvented flat roof with 2 inches of spray foam plus 18 inches blown cellulose, R-42 XPS under slab, triple-pane windows, and a ductless mini-split heat pump. PDF icon Dwell Development -

  15. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    SciTech Connect (OSTI)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.

  16. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2015-10-15

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as a potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.

  17. Better Buildings Neighborhood Program Multi-family/Low Income Peer Exchange Call: Strategies to Address Split Incentives in Multi-family Buildings Call Slides and Discussion Summary, April 26, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    26, 2012 Better Buildings Neighborhood Program Multi- family/Low Income Peer Exchange Call: Strategies to Address Split Incentives in Multi-family Buildings Call Slides and Discussion Summary Agenda * Call Logistics and Attendance  How are you working with owners and tenants on multi-family upgrades? * Program Experience and Lessons:  Michael Croston, Repower Bremerton * Discussion:  What are some of the key challenges for working with rental properties?  What are effective

  18. Building America Case Study: Zero Energy Read Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake Woodland, California PROJECT INFORMATION Construction: New home Type: Multifamily, affordable Partners: Developer: Mutual Housing California, mutualhousing.com Builder: Sunseri Construction, sunsericonstruction.com Alliance for Residential Building Innovation, arbi.davisenergy.com Size: 709 ft 2 -1,515 ft 2 Date Completed: 2015 Climate Zone: Hot-dry PERFORMANCE DATA 2013 Title-24 Compliance Margin: 17%-23% Percentage

  19. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho...

    Office of Scientific and Technical Information (OSTI)

    Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices In this study, the magnetic properties and magnetic ...

  20. Better Buildings Residential Network Peer Exchange Call Series: Financing Multifamily Energy Efficiency Upgrades, Call Slides and Discussion Summary, February 12, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Multifamily Energy Efficiency Upgrades February 12, 2015 Call Slides and Discussion Summary Call Participants  California Center for Sustainable Energy  City of Kansas City, MO  CLEAResult  Craft3  Economic Opportunity Studies, Inc.  Energy Efficiency Specialists, LLC.  Greater Cincinnati Energy Alliance  Michigan Saves  NYC Energy Efficiency Corporation (NYCEEC)  NYC Department of Housing Preservation and Development  NYC Mayor's Office of

  1. Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure, Call Slides, July 25, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2013 Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure Call Slides Agenda * Call Logistics and Introductions * Introducing the Better Buildings Residential Network * Discussion:  What energy benchmarking policies/requirements/ordinances are in place across the country?  Are policies on building disclosure of energy use creating momentum/driving demand in the marketplace for energy audits and retrofits?  How are

  2. EA-2001: Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings' Baseline Standards Update (RIN 1904-AD39)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  3. Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Knapp, Steve

    2011-04-26

    Steve Knapp from Monsanto on "Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  4. DOE Zero Energy Ready Home Case Study 2013: Dwell Development, Seattle, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dwell Development Seattle, WA BUILDING TECHNOLOGIES OFFICE The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specifi ed in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior

  5. HIA 2015 DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    Energy Savers [EERE]

    Dwell Development Reclaimed Modern Seattle, WA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  6. Yu Ho (Ric) Wen > Postdoc - Archer Group > Researchers, Postdocs &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell Yu Ho (Ric) Wen Postdoc - Archer Group yw563@cornell.edu Ric completed his PhD from National Chung Cheng University, Taiwan. His current research involves rheology and structure of tethered hybrid materials and their applications to lubricants

  7. Analysis of emission spectra of Ho{sup 3+}:LFBCd glasses

    SciTech Connect (OSTI)

    Naresh, V. Buddhudu, S.

    2014-04-24

    In the present paper, we report on the absorption and emission properties of (0.1-1.5 mol %) Ho{sup 3+} doped LFBCd (Li{sub 2}O{sub ?}LiF{sub ?}B{sub 2}O{sub 3?}CdO) glasses prepared via melt quenching method. On exciting these glasses at (?{sub exci}) = 452 nm, two emissions at 556 nm ({sup 5}S{sub 2}?{sup 5}I{sub 8}; Green), 655 nm ({sup 5}F{sub 5}?{sup 5}I{sub 8}; Red) have been obtained. Upon exciting these glasses with a 980 nm diode laser, NIR emissions at 1195 nm ({sup 5}I{sub 6}?{sup 5}I{sub 8}), 1951 nm ({sup 5}I{sub 7}?{sup 5}I{sub 8}) have been measured for 1 mol % Ho{sup 3+}:LFBCd glass. For higher concentration beyond 1.0 mol %, emission quenching of Ho{sup 3+} glass has been noticed and which has successfully been explained in terms of an energy level diagram. From absorption cross-section data, stimulated emission cross-section has been evaluated by applying McCumber's theory and further cross-sectional gain has also been computed for the emissions at 1195 nm (?1.20 ?m) and 1951 nm (?2.0 ?m) of 1 mol % Ho{sup 3+}:LFBCd glass.

  8. Economic analysis of a passive solar multiple-family dwelling for upstate New York

    SciTech Connect (OSTI)

    Laquatra, J. Jr.

    1982-02-01

    The objective of this study was to examine the economic feasibility of passive solar energy as applied to a multiple-family dwelling in three upstate New York cities: Buffalo, Rochester, and Syracuse. Specifically, two passive solar applications - a Trombe wall and a direct-gain system - for a nine-unit structure designed by Total Environmental Action, Inc. were analyzed through the use of a solar economic performance code. City-specific data, including climatological information, building construction costs, utility rates, and property taxes were used, as were various economic parameters to reflect economic conditions in general and specifically those of the solar systems' owners.

  9. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Challenge Home is one of 42 homes in a micro-community of ultra-modern, energy-efficient homes built by Dwell Development on an urban gray-field site in South Seattle. Every home will achieve a 5-Star Built Green rating from the regional master builders association and meet the criteria of the Northwest ENERGY STAR program, which is more strict than the national ENERGY STAR criteria. Also, the home won a 2013 Housing Innovation Award in the "systems builder" category.

  10. Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    'The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deters program participants, and dissuades them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.' This statement found in a 2012 report by Heschong Mahone Group emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing, the more appropriate test for assessing energy savings opportunities, could easily be six times that and that's only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  11. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  12. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  13. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  14. Thin films of the spin ice compound Ho{sub 2}Ti{sub 2}O{sub 7} (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Thin films of the spin ice compound Ho{sub 2}Ti{sub 2}O{sub 7} Citation Details In-Document Search Title: Thin films of the spin ice compound Ho{sub 2}Ti{sub 2}O{sub 7} The pyrochlore compounds Ho{sub 2}Ti{sub 2}O{sub 7} and Dy{sub 2}Ti{sub 2}O{sub 7} show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic

  15. Building America Whole-House Solutions for New Homes: Challenges of

    Energy Savers [EERE]

    Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York | Department of Energy Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York In this project, the Consortium for Advanced Residential Buildings team sought to create a

  16. The generalized second law of thermodynamics in Ho?ava-Lifshitz cosmology

    SciTech Connect (OSTI)

    Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M.R. E-mail: msaridak@phys.uoa.gr

    2010-11-01

    We investigate the validity of the generalized second law of thermodynamics in a universe governed by Ho?ava-Lifshitz gravity. Under the equilibrium assumption, that is in the late-time cosmological regime, we calculate separately the entropy time-variation for the matter fluid and, using the modified entropy relation, that of the apparent horizon itself. We find that under detailed balance the generalized second law is generally valid for flat and closed geometry and it is conditionally valid for an open universe, while beyond detailed balance it is only conditionally valid for all curvatures. Furthermore, we also follow the effective approach showing that it can lead to misleading results. The non-complete validity of the generalized second law could either provide a suggestion for its different application, or act as an additional problematic feature of Ho?ava-Lifshitz gravity.

  17. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  18. Visualiser of two-micron laser radiation based on Ho:CaF{sub 2} crystals

    SciTech Connect (OSTI)

    Lyapin, A A; Ryabochkina, P A; Ushakov, S N; Fedorov, P P

    2014-06-30

    The anti-Stokes luminescence spectra of Ho:CaF{sub 2} crystals corresponding to the {sup 5}G{sub 4} ? {sup 5}I{sub 8}, {sup 5}G{sub 5} ? {sup 5}I{sub 8}, {sup 5}F{sub 3} ? {sup 5}I{sub 8}, {sup 5}F{sub 4}({sup 5}S{sub 2}) ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 8}, {sup 5}S{sub 2} ? {sup 5}I{sub 7}, {sup 5}I{sub 4} ? {sup 5}I{sub 8}, {sup 5}I{sub 5} ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 7}, {sup 5}F{sub 3} ? {sup 5}I{sub 6}, {sup 5}I{sub 6} ? {sup 5}I{sub 8}, {sup 5}F{sub 5} ? {sup 5}I{sub 6}, and {sup 5}I{sub 5} ? {sup 5}I{sub 7} transitions upon excitation of the {sup 5}I{sub 7} level of Ho{sup 3+} ions are studied. A method for visualisation of IR radiation in the two-micron range using Ho:CaF{sub 2} crystals is proposed. The energy efficiency of conversion of two-micron laser radiation to radiation in the red spectral range 620 690 nm by a 1 mol % HoF{sub 3}:CaF{sub 2} crystal is estimated to be no higher than 0.02%. (nonlinear optical phenomena)

  19. Holographic dark energy with varying gravitational constant in Ho?ava-Lifshitz cosmology

    SciTech Connect (OSTI)

    Setare, M.R.; Jamil, Mubasher E-mail: mjamil@camp.nust.edu.pk

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Ho?ava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig... Eligibility: Residential, Multifamily Residential Savings...

  1. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America ...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig... Eligibility: Residential, Multifamily Residential...

  3. White light emitting Ho{sup 3+}-doped CdS nanocrystal ingrained glass nanocomposites

    SciTech Connect (OSTI)

    Dey, Chirantan; Karmakar, Basudeb; Goswami, Madhumita

    2015-02-23

    We report the generation of white light from Ho{sup 3+} ion doped CdS nanocrystal ingrained borosilicate glass nanocomposites prepared by the conventional melt-quench method. Near visible 405?nm diode laser excited white light emission is produced by tuning the blue emission from the Ho{sup 3+} ions, green band edge, and orange-red surface-state emissions of the nanocrystalline CdS, which are further controlled by the size of the nanocrystals. The absorption and emission spectra evidenced the excitation of Ho{sup 3+} ions by absorption of photons emitted by the CdS nanocrystals. The high color rendering index (CRI?=?8489) and befitting chromaticity coordinates (x?=?0.3080.309, y?=?0.3260.338) of white light emission, near visible harmless excitation wavelength (405?nm), and high absorbance values at excitation wavelength point out that these glass nanocomposites may serve as a prominent candidate for resin free high power white light emitting diodes.

  4. Cosmological QCD phase transition in steady non-equilibrium dissipative Ho?avaLifshitz early universe

    SciTech Connect (OSTI)

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quarkgluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 110?s old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho?avaLifshitz cosmology within an effective model of QCD. We consider a flat FriedmannRobertsonWalker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho?avaLifshitz gravity, ?, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (?)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the IsraelStewart fluid, respectively. -- Highlights: In this paper we have studied quarkhadron phase transition in the early universe in the context of the Ho?avaLifshitz model. We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the IsraelStewart fluid, respectively.

  5. Cost and energy comparison study of above- and below-ground dwellings

    SciTech Connect (OSTI)

    Shapira, H.B.; Cristy, G.A.; Brite, S.E.; Yost, M.B.

    1983-08-01

    Designs of earth-sheltered (ES) homes were examined and compared with identical aboveground (AG) homes. The homes are identical except where changes were necessitated by earth-sheltering and energy conservation. The study involved design, construction costing, energy analysis, and life-cycle costing (LCC). It was concluded from this study that under present market conditions, if aboveground and earth-sheltered dwellings of equal size and quality are built on similar lots, the construction cost of the earth-sheltered structure compares poorly with that of the aboveground structure. Lowered operation and maintenance costs, including the lower fuel bills of the earth-sheltered structure, are outweighed by the current high interest rates, which cause an increase in monthly payments. 24 references.

  6. HUD rehabilation energy guidelines for one-to-four family dwellings (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-09-01

    The guidebook and Microsoft Excel worksheet diskette allows the user to calculate which enery consevation improvements are cost-effective when properties are rehabilitated. The information is applicable for all climates, from Florida to Alaska. The information is presented in a manner so that owners of building can better assess the needs and opportunities of a particular renovation project. They will also be able to ask better question of designers, builders, and contractors. The guidebook explains how properlly rehabilitating dwellings can increase energy efficiency and reduce costs. It discusses the issues and factors that determine how much energy a building will consume, including heat flow, air leakage, insulation, and heating and cooling systems. The guide also includes the specific HUD Rehabilitation Energy Guidelines for Dwellings with general and location-specific recommendations for energy conservation improvements. These guidelines are followed by examples of typical energy conservation measures in different climates. Each of these examples includes a Cost Effectiveness Excel Worksheet to show the overall simple payback. This easy-to-use worksheet walks through the entire evaluation process. The user simply enters in the appropriate information, much of which is menu driven. Appendicies provide a table that shows counties nationwide by climate zone, a list of resources, a glossary, and sample surveys and worksheets to help owners with their rehabilitation projects. Regulatory Background: The guidelines used in this guidebook are the Department of Housing and Urban Development`s `Standards for Cost Effective Energy Conservation` for property rehabilitation undertaken with HUD assistance. The information that used to be included in the regulations, with respect to energy efficiency, published as 24CFR39, is now contained in these guidelines.

  7. Multifamily Envelope Leakage Model

    SciTech Connect (OSTI)

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  8. Ventilation in Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    integration approach * "Do no harm": Ensure safety, health and durability are ... (increase static pressure) * Dynamically self-adjust to changes in the system (automatic ...

  9. Multifamily Ventilation- Best Practice?

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  10. Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques.

  11. Observation of large magnetocaloric effect in HoRu{sub 2}Si{sub 2}

    SciTech Connect (OSTI)

    Paramanik, Tapas Das, Kalipada; Das, I.

    2014-02-28

    Detailed magnetic, magnetotransport, and magnetocaloric measurements on HoRu{sub 2}Si{sub 2} have been performed. In this Letter, we report presence of spin reorientation transition below paramagnetic to antiferromagnetic transition temperature (T{sub N} = 19 K). Large magnetic entropy change 9.1 J/kg K and large negative magnetoresistance ∼21% in a magnetic field of 5 T has been observed around T{sub N}, which is associated with field induced spin-flip metamagnetic transition.

  12. HUD rehabilitation energy guidelines for one-to-four family dwellings

    SciTech Connect (OSTI)

    1996-09-01

    The Guidebook has been prepared to help people who are involved in the rehabilitation of a single-family house (or low-rise building with up to four housing units). It helps to understand the basics of residential energy conservation, and to think positively about the potential economic benefits. The Guidebook, and the HUD Rehabilitation Energy Guidelines are designed for all climates ranging from hot and humid Florida to the northern reaches of Alaska. Chapter 1 outlines how investments in energy conservation can be `cost-effective` and actually put money into your pocket each year. Chapter 2 provides an introduction to the issues and factors that determine how much energy your building will consume. Chapter 3 of the Guidebook contains the specific HUD Rehabilitation Energy Guidelines for One-to-Four Family Dwellings. Chapter 4 provides some examples of typical energy conservation measures in various climates. Appendix A is where you will find the climate zone for the appropriate county in your state. In the back of the book, Appendix G contains a blank copy of the One-to-Four Family Cost-Effectiveness Worksheet to copy or tear out for use on your project.

  13. Sample dependence of giant magnetocaloric effect in a cluster-glass system Ho{sub 5}Pd{sub 2}

    SciTech Connect (OSTI)

    Toyoizumi, Saori Tamaki, Akira; Kitazawa, Hideaki; Mamiya, Hiroaki; Terada, Noriki; Tamura, Ryo; Dönni, Andreas; Kawamura, Yukihiko; Morita, Kengo

    2015-05-07

    In order to investigate the effect of vacancy on the magnetocaloric effect in Ho{sub 5}Pd{sub 2}, we have carried out X-ray diffraction, magnetization, and specific heat measurements in the rare-earth intermetallic compound Ho{sub 5+x}Pd{sub 2}(−0.4 ≤ x ≤ 0.4). The maximum magnetic entropy change −ΔS{sub m}{sup max}, the maximum adiabatic temperature change ΔT{sub ad}{sup max}, and the relative cooling power of Ho{sub 5+x}Pd{sub 2} take large values at x = 0−0.4 for the field change of 5 T. The paramagnetic Curie temperature θ{sub p} increases with an increase of x. This fact suggests that the enhancement of ferromagnetic coupling among the correlated spins leads to the increase of magnetocaloric effect.

  14. Magnetism of Ho1-xTbxAl? alloys: Critical dependence of a first-order transition on Tb concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; Pecharsky, V. K.

    2011-12-27

    HoAl? exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho1-xTbxAl? (x = 0.05) disappears, and then reappears again for x ? 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increases further themoretransition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl? and TbAl?.less

  15. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect (OSTI)

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  16. National Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 08)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 08) Required for homes permitted 11 starting 07/01/2016 Revised 07/01/2015 Page 1 of 4 Eligibility Requirements The following homes are eligible to earn the ENERGY STAR:  Detached dwelling units 1 (e.g. single family homes); OR  Dwelling units 1 in any multifamily building with 4 units or fewer; OR  Dwelling units 1 in multifamily buildings with 3 stories or fewer above-grade 2,3 ; OR  Dwelling units 1 in multifamily

  17. ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certified Homes, Version 3 (Rev. 07) National Program Requirements Effective for homes permitted 14 starting 8/01/2013 Revised 6/01/2013 Page 1 of 6 Certifying Homes The following homes are eligible to earn the ENERGY STAR:  Detached dwelling units 1 (e.g. single family homes); OR  Dwelling units 1 in any multifamily building with 4 units or fewer; OR  Dwelling units 1 in multifamily buildings with 3 stories or fewer above-grade 2,3 ; OR  Dwelling units 1 in multifamily buildings

  18. Spin structure and magnetic frustration in multiferroic RMn{sub 2}O{sub 5} (R=Tb,Ho,Dy)

    SciTech Connect (OSTI)

    Blake, G.R.; Chapon, L.C.; Radaelli, P.G.; Park, S.; Hur, N.; Cheong, S-W.; Rodriguez-Carvajal, J.

    2005-06-01

    We have studied the crystal and magnetic structures of the magnetoelectric materials RMn{sub 2}O{sub 5} (R=Tb,Ho,Dy) using neutron diffraction as a function of temperature. All three materials display incommensurate antiferromagnetic ordering below 40 K, becoming commensurate on further cooling. For R=Tb,Ho, a commensurate-incommensurate transition takes place at low temperatures. The commensurate magnetic structures have been solved and are discussed in terms of competing exchange interactions. The spin configuration within the ab plane is essentially the same for each system, and the radius of R determines the sign of the magnetic exchange between adjacent planes. The inherent magnetic frustration in these materials is lifted by a small lattice distortion, primarily involving shifts of the Mn{sup 3+} cations and giving rise to a canted antiferroelectric phase.

  19. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defectsmore » in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.« less

  20. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use

  1. Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.

  2. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect (OSTI)

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  3. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong

    Office of Scientific and Technical Information (OSTI)

    hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices (Journal Article) | SciTech Connect Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices Citation Details In-Document Search This content will become publicly available on November 9, 2016 Title: Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong

  4. Multifamily Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: This program is only open for participants that have an existing mortgage with CT Housing Finance Authority.

  5. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect (OSTI)

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  6. South River EMC- Energy Star Homes Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers incentives to home buyers and builders who purchase or construct Energy Star certified single-family site built homes, manufactured homes, and multi-family dwellings. Energy...

  7. Energy Conservation Loan

    Broader source: Energy.gov [DOE]

    Loans for large residential properties are available through the Multi-Family Energy Conservation Loan Program. The terms of this loan are similar to loans for single-family dwellings, with a hig...

  8. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and analyzed the data from 941 multifamily buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings. ...

  9. DTE Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In addition to low income weatherization programs, the Multifamily Dwelling Program offers upgrades in units and common areas for buildings with 5 or more units. Common area improvements include ...

  10. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE:

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: WEATHERIZATION OF RENTAL UNITS - Applicable to single family and multifamily dwellings PURPOSE: To provide Grantees with updated guidance on weatherizing rental units in the Weatherization Assistance Program (WAP). DOE has answered specific questions from Grantees related to the weatherization of rental units, whether single family building or multifamily dwellings, over a number of years. However, the responses to these questions have

  11. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    SciTech Connect (OSTI)

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Nel (????) and double-Nel (????) ground states, respectively. Below TN = 0.68(2)K, the Nel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Nel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasiddimensional spin system can preclude order in d + 1 dimensions.

  12. 3d-4f spin interaction and field-induced metamagnetism in RCrO{sub 4} (R?=?Ho, Gd, Lu) compounds

    SciTech Connect (OSTI)

    Midya, A.; Khan, N.; Bhoi, D.; Mandal, P.

    2014-05-07

    We observe that the zircon-type RCrO{sub 4} (R?=?Ho, Gd, Lu) compounds exhibit complicated magnetic properties and large magnetic entropy change due to the strong competition between ferromagnetic and antiferromagnetic interactions. For a field change of 7?T, the maximum values of entropy change and refrigerant capacity reach 28?J?kg{sup ?1}?K{sup ?1} and 740?J?kg{sup ?1}, respectively, for GdCrO{sub 4} whereas the corresponding values for HoCrO{sub 4} are 29?J?kg{sup ?1}?K{sup ?1} and 550?J?kg{sup ?1}. For GdCrO{sub 4} compound, the magnetic entropy change is quite large even at low temperatures well below the ferromagnetic transition.

  13. The fluorite-pyrochlore transformation of Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7}

    SciTech Connect (OSTI)

    Clements, Richard; Hester, James R.; Kennedy, Brendan J.; Ling, Chris D.; Stampfl, Anton P.J.

    2011-08-15

    Twelve members of the Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7} series, prepared using conventional solid state methods, have been characterised by neutron powder diffraction. Ho{sub 2}Zr{sub 2}O{sub 7} has a defect fluorite structure whereas Nd{sub 2}Zr{sub 2}O{sub 7} is found to adopt the ordered pyrochlore structure with the composition induced fluorite-pyrochlore transformation occurring near y=1. Rietveld analysis on the neutron data for all the compositions reveals an increase in lattice parameter as a function of y across the entire series, with a small discontinuity associated with the transformation. The neutron profile results suggest that domains of pyrochlore-type initially begin to form before crystallising into a separate phase, and therefore that anion and cation ordering processes are distinct. There is a strong correlation between the extent of disorder in the anion sublattice and the x-parameter of 48f oxygen. These results point the way to a better understanding of the stability observed in pyrochlore structures. - Graphical abstract: Neutron diffraction profiles for Nd{sub 2-y}Ho{sub y}Zr{sub 2}O{sub 7} type oxides reveal details of the transformation from the ordered pyrochlore structure (y=0) to the disordered fluorite structure (y=2). Highlights: > Structures of twelve members of the Ho{sub 2-y}Nd{sub y}Zr{sub 2}O{sub 7} series studied using neutron powder diffraction. > Domains of pyrochlore-type materials form at low doping levels. > Higher doping stabilises the pyrochlore. > Anion and cation ordering processes are distinct.

  14. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-eliminationmore » yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  15. Lasing characteristics of ZrO{sub 2}Y{sub 2}O{sub 3}Ho{sub 2}O{sub 3} crystal

    SciTech Connect (OSTI)

    Borik, M A; Lomonova, E E; Kulebyakin, A V; Ushakov, S N; Lyapin, A A; Ryabochkina, P A; Chabushkin, A N

    2013-09-30

    The spectral dependences of the gain cross section of the {sup 5}I{sub 8} ? {sup 5}I{sub 7}, {sup 5}I{sub 7} ? {sup 5}I{sub 8} transition of Ho{sup 3+} ions in the ZrO{sub 2} 13.6 mol % Y{sub 2}O{sub 3} 0.4 mol % Ho{sub 2}O{sub 3} crystal are calculated at different relative population inversions using the absorption and luminescence spectra of the {sup 5}I{sub 8} ? {sup 5}I{sub 7} and {sup 5}I{sub 7} ? {sup 5}I{sub 8} transitions of Ho{sup 3+} ions at T=''300'' K. Lasing of these crystals at the {sup 5}I{sub 7} ? {sup 5}I{sub 8} transition is obtained for the first time under pumping by a Tm : YLiF{sub 4} laser (?{sub p} = 1.905 ?m). The lasing wavelength is 2.17 ?m. (lasers)

  16. Measurements and modeling of HO2 formation in the reactions of n-C3H7 and i-C3H7 radicals with O2.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Estupinan, Edgar Garcia; Klippenstein, Stephen J.

    2004-08-01

    The formation of HO{sub 2} in the reactions of C{sub 2}H{sub 5}, n-C{sub 3}H{sub 7}, and i-C{sub 3}H{sub 7} radicals with O{sub 2} is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO{sub 2} from the subsequent reaction of the alkyl radicals with O{sub 2} is followed by infrared frequency-modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin?orbit transition. The measured profiles are compared to a kinetic model taken from time-resolved master-equation results based on previously published ab initio characterizations of the relevant stationary points on the potential-energy surface. The ab initio energies are adjusted to produce agreement with the present experimental data and with available literature studies. The isomer specificity of the present results enables refinement of the model for i-C{sub 3}H{sub 7} + O{sub 2} and improved agreement with experimental measurements of HO{sub 2} production in propane oxidation.

  17. Photoluminescence properties of Ho{sup 3+} ion in lithium-fluoroborate glass containing different modifier oxides

    SciTech Connect (OSTI)

    Balakrishna, A. Rajesh, D. Ratnakaram, Y. C.

    2014-04-24

    Trivalent holmium (0.5 mol%) doped lithium fluoro-borate glasses with the chemical compositions 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?20MO (where M=Mg, Ca, Cd and Pb), 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?10MgO?10CaO and 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?10CdO?10PbO were synthesized and investigated their photoluminescence properties. The variation in chemical composition by varying modifier oxides causes changes in the structural spectroscopic behavior of Ho{sup 3+} ions. These changes are examined by UV-VIS- NIR and luminescence spectroscopic techniques. The visible luminescence spectra were obtained by exciting samples at 409 nm radiation.

  18. Overcoming phase instability of RBaCo2O5+ (R = Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2013-01-01

    Phase instabilities of the RBaCo2O5+ (R = Y and Ho) layered-perovskites and their decompositions into RCoO3 and BaCoO3-z at 800 oC in air were investigated. This will restrict their high temperature applications such as cathodes in solid oxide fuel cell (SOFC). However, appropriate amount of Sr substitution ( 60 % for R = Y and 70 % for R = Ho) for Ba successfully stabilized the R(Ba1-xSrx)Co2O5+ phase at elevated temperatures. This can be explained by decreasing oxygen vacancies at R-O layer, decreasing R-O bonding length, and consequent improvement of structural integrity. In addition, the Sr substitution (x = 0.6 - 1.0) for Ba provided added benefit with respect to the chemical stability against Ce0.8Gd0.2O1.9 (GDC) electrolyte, which is a critical requirement for the cathodes in SOFC. Among the various compositions investigated, the Y(Ba0.3Sr0.7)Co2O5+ + GDC composite cathode delivered the optimum electrochemical performances with a stable phase demonstrating the potential as a cathode in SOFC.

  19. Housing and Urban Development Multifamily Properties Eligible...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All of the properties are included in the one excel file below, with the type of ... To view each sub-list in Microsoft Excel (2007), open List 1, click on the "View" tab in ...

  20. Monitoring of HPWH for Multifamily Applications

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  1. Retrofit Ventilation Strategies in Multifamily Buildings Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4

  2. Identifying Needed Capabilities in Multifamily Models

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  3. HUD Multifamily Property Listings Eligible for Weatherization...

    Energy Savers [EERE]

    ... of the residents of the building (50% for 2-4 unit buildings) must meet DOE's income eligibility requirement, which is currently set at 200% of the federal poverty level. ...

  4. Quantifying the Financial Benefits of Multifamily Retrofits

    SciTech Connect (OSTI)

    D. Philbrick; Scheu, R.; Brand, L.

    2016-01-01

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  5. Syntheses, structure and rare earth metal photoluminescence of new and known isostructural A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds

    SciTech Connect (OSTI)

    Mohitkar, Shrikant A.; Kalpana, G.; Vidyasagar, K.

    2011-04-15

    Nine new A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu) compounds have been synthesized by solid-state reactions. They are isostructural with six reported analogues of yttrium and other lanthanides and the monoclinic unit cell parameters of all fifteen of them vary linearly with the size of A{sup 3+} ion. Single crystal X-ray structures of eight A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds have been determined. Neat A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds exhibit characteristic rare earth metal photoluminescence. -- Graphical abstract: Among the fifteen isostructural A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=rare earth metal) molybdoantimonites, eight (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds exhibit neat characteristic lanthanide photoluminescence in the 200-800 nm range at room temperature. Display Omitted Research highlights: {yields} Syntheses of nine new A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu) compounds. {yields} X-ray structures of eight A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds. {yields} Photoluminescence of neat A{sub 2}Mo{sub 4}Sb{sub 2}O{sub 18} (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds.

  6. DOE Challenge Home, Washington Program Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Challenge Home Washington Program Requirements 9-1-2013 To qualify as a DOE Challenge Home, a home shall meet the minimum requirements specified below, be verified and field-tested in accordance with HERS Standards by an approved verifier, and meet all applicable codes. Builders may meet the requirements of either the Performance Path or the Prescriptive path to qualify a home. 1 Single family detached and attached dwelling units, and dwelling units in multifamily buildings with 3 stories

  7. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Load Space-Conditioning Needs Assessment Northeast and Mid-Atlantic PROJECT INFORMATION Construction: New Type: Multifamily apartments, attached single-family dwellings Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Space conditioning Size: 209 ft 2 -2,895 ft 2 Climate Zones: Cold, mixed-humid DATABASE ATTRIBUTES * Dwelling unit characteristics: Location, floor level, position, square footage, volume, total and exposed enclosure area, window-to-wall ratio,

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Requirements A multi-family residential dwelling or townhouse owner may install EVSE on or near a parking stall at the dwelling as long as the EVSE is in compliance with applicable rules and specifications, the EVSE is registered with the private entity within 30 days of installation, and the homeowner receives consent from the private entity if the EVSE is placed in a common area. Private entities may adopt rules that restrict the placement and use of

  9. Magnetic structures of R5Ni2In4 and R 11Ni4In9 ( R = Tb and Ho): strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, K. A.; Dhar, S. K.

    2015-11-09

    The magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  10. Optical amplification in disordered electrooptic Tm{sup 3+} and Ho{sup 3+} codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations

    SciTech Connect (OSTI)

    Zhao, Hua; Zhang, Kun; Xu, Long; Sun, Fankui; Zhang, Jingwen; Chen, Xuesheng; Li, Kewen K.

    2014-02-21

    Rare earth doped electro-optic (EO) ceramics of lanthanum-modified lead zirconate titanate (PLZT) are promising in building multifunctional optical devices, by taking advantage of both EO effect and optical activity. In this work, the combination of the measured spectra of absorption and photoluminescence, the fluorescent decay, the calculated Judd-Ofelt parameters, and measured single pass gain in Tm{sup 3+}, Ho{sup 3+} codoped PLZT ceramics have marked them out as promising gain media in building electrically controllable lasers/optical amplifiers and other multifunctional devices. Optical energy storage was also observed in the optical amplification dynamics.

  11. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ―Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings‖ and 10 CFR 435, ―Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings‖ Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  12. Building America Technology Solutions for New and Existing Homes: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic

    Broader source: Energy.gov [DOE]

    In this project, the research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed the data from 941 multifamily buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings.

  13. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  14. Magnetic properties and magnetocaloric effect in the RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds

    SciTech Connect (OSTI)

    Mo, Zhao-Jun; Shen, Jun E-mail: tangcc@hebut.edu.cn; Wu, Jian-Feng; Yan, Li-Qin; Wang, Li-Chen; Sun, Ji-rong; Shen, Bao-Gen; Gao, Xin-Qiang; Tang, Cheng-Chun E-mail: tangcc@hebut.edu.cn

    2014-02-21

    The magnetic properties and magnetocaloric effect (MCE) in RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds have been investigated. All these compounds possess an antiferromagnetic (AFM)-paramagnetic (PM) transition around their respective Neel temperatures. The RCu{sub 2}Si{sub 2} compounds undergo spin-glassy behavior above Neel temperature. Furthermore, a field-induced metamagnetic transition from AFM to ferromagnetic (FM) states is observed in these compounds. The calculated magnetic entropy changes show that all RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds, especially, ErCu{sub 2}Si{sub 2} exhibits large MCEs with no thermal hysteresis and magnetic hysteresis loss. The value of −ΔS{sub M}{sup max} reaches 22.8 J/Kg K for magnetic field changes from 0 to 5 T. In particular, for field changes of 1 and 2 T, the giant reversible magnetic entropy changes −ΔS{sub M}{sup max} are 8.3 and 15.8 J/kg K at 2.5 K, which is lower than the boiling point of helium. The low-field giant magnetic entropy change, together with ignorable thermal hysteresis and field hysteresis loss of ErCu{sub 2}Si{sub 2} compound is expected to have effective applications in low temperature magnetic refrigeration.

  15. Correlation between upconversion photoluminescence and dielectric response in Ba-substituted (Sr{sub 1?x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30}

    SciTech Connect (OSTI)

    Wei, T.; Wang, X. D.; Zhao, C. Z.; Liu, M. F.; Liu, J. M.

    2014-06-30

    The filled tetragonal tungsten bronze (Sr{sub 1?x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (SBLTNx: Ho-Yb) ceramics with different Ba substitution levels (x) are prepared. The upconversion photoluminescence (UC-PL) and dielectric permittivity are investigated. The substitution of Sr{sup 2+} ions at the A{sub 2}-sites by larger Ba{sup 2+} ions results in substantial variation of the UC-PL intensity as a function of substitution level x. Furthermore, the dielectric response to the substitution of Sr{sup 2+} by Ba{sup 2+} suggests a close correlation between the UC-PL intensity and dielectric permittivity. The origin for this correlation is discussed based on the random stress field (RSF) model.

  16. SmartDwell | Open Energy Information

    Open Energy Info (EERE)

    ID Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  17. Predicting Envelope Leakage in Attached Dwellings

    SciTech Connect (OSTI)

    Faakye, O.; Arena, L.; Griffiths, D.

    2013-07-01

    The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

  18. Predicting Envelope Leakage in Attached Dwellings

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  19. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-07-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset. Of the 941 dwellings, CARB found that only 1% had right-sized heating equipment and 6% of the dwellings had right-sized cooling equipment (within 25% or less of design load).

  20. Synthesis of nanocrystalline REBO{sub 3} (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO{sub 3}:Eu using a borohydride-based solution precursor route

    SciTech Connect (OSTI)

    Henkes, Amanda E.; Schaak, Raymond E.

    2008-12-15

    A solution precursor route has been used to synthesize a series of nanocrystalline rare-earth borates. Amorphous precursor powders are precipitated during an aqueous reaction between RE{sup 3+} and NaBH{sub 4}, and the isolated powders can be annealed in air at 700 deg. C to form YBO{sub 3}, NdBO{sub 3}, SmBO{sub 3}, EuBO{sub 3}, GdBO{sub 3}, and HoBO{sub 3}. YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties that are similar to high-quality nanocrystals prepared by other methods. The materials have been characterized by FTIR spectroscopy, powder XRD, SEM, DSC, UV-Vis fluorimetry, and TEM with EDS and element mapping. - Graphical abstract: Amorphous nanoscopic precursor powders are formed through the aqueous reaction of RE{sup 3+} with NaBH{sub 4}. Once isolated, the powders can be annealed at 700 deg. C in air to form a series of nanocrystalline REBO{sub 3} orthoborates. Nanocrystalline YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties when excited with UV light.

  1. Applying ICT and IoT to Multifamily Buildings

    Broader source: Energy.gov (indexed) [DOE]

    peak demand costs Utility Approved Revenue Grade Web Accessible Data Install Wireless HVAC Load Control Empower management with 247 control Mobile alerts...

  2. Building America Expert Meeting: Code Challenges with Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners Advanced Envelope Research for Factory Built Housing, Phase 3-Design Development and Prototyping...

  3. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  4. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... marketing efforts by building relationships with statewide landlord associations, holding additional community events, providing webinars for building owners, and expanding online ...

  5. Better Buildings Residential Network Multi-Family & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Windows Exterior Doors Appliances DSM free * * * * * * * incentive from local utility w be 1,600 incentive from program w be 1,500 Initial Program * Program - Tiered ...

  6. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, Jordan; Henderson, Hugh

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profits housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15% to 25%.

  7. Results from Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect (OSTI)

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  8. Results From Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect (OSTI)

    Brozyna, Kevin

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  9. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    for Advanced Residential Buildings (CARB), Norwalk, Connecticut Research Org: National Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: USDOE Office of Energy...

  10. Obama Administration Expands Better Buildings Challenge to Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Atlanta, Minneapolis, Denver, Boston, Cambridge, San Diego and Chula Vista - will develop streamlined approaches to help building owners access whole-building energy use data. ...

  11. Obama Administration Expands Better Buildings Challenge to Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cities of Atlanta, Minneapolis, Boston, Cambridge, San Diego and Chula Vista - will develop streamlined approaches to help building owners access whole-building energy use data. ...

  12. Rural Development Multi-Family Housing Energy Efficiency Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and operations. Housing programs included in this initiative include: Section 515 Rural Rental Housing Program for New Construction Section 514 Farm Labor Housing Loans...

  13. combined_supplemental_hud_multifamily_weatherization_list_3-2...

    Broader source: Energy.gov (indexed) [DOE]

    lihtc.xls More Documents & Publications list2eligiblemultifamilybuildings10-cfr-440-22b4ii.xls rdmfhlowandverylow.xls hudlist-1...

  14. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options...

  15. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation will summarize the results of a field study in which two types of CDHW controls-demand control and temperature modulation-were retrofit into four existing ...

  16. Text-Alternative Version of Building America Webinar: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... is simply downsizing the standard practices in a well-designed commercial kitchen. Next. ... Get used to condensing dryers. 200 CFM of exhaust for a standard dryer isn't in the cards ...

  17. Multifamily Energy Savings Program (Existing Buildings and New Construction)

    Broader source: Energy.gov [DOE]

    To begin participating in the program, eligible building owners/managers work with a Focus Energy Advisor to perform a free energy assessment and identify suitable building improvements. For...

  18. SCE - Multi-Family Residential Energy Efficiency Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Clothes Washers: 50 - 100unit Energy Star Refrigerators: 50unit Dual Pane Windows: 0.75sq. ft. Central Air and Heat Pumps: 150unit Water Heaters: 30...

  19. Seattle City Light - Multi-Family Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    for common area lighting and weatherization measures including the installation of dual-pane windows and increased insulation, although insulation-only jobs are not eligible...

  20. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  1. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    This report discusses challenges encountered, lessons learned, and how obstacles were overcome. Authors: Springer, David 1 ; German, Alea 1 + Show Author Affiliations Alliance ...

  2. Better Buildings Residential Network Multifamily & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Overcome Split Incentive TenantLandlord Issues 11 1. Challenge 2. Model 3. ... ESCO model and too complex for the single-family programs * Give property owners the ...

  3. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... the goal of the U.S. Department of Energy's (DOE's) Zero Energy Ready Home (ZERH) program. ...

  4. Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar

    Broader source: Energy.gov [DOE]

    This webinar, presented by research team Building Science Corporation, discussed insulating foundations and controlling water leakage as a critical measure for reducing heating load in homes in cold climates.

  5. SDG&E (Electric) - Multi-Family Residential Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    State California Program Type Rebate Program Rebate Amount Clothes Washers: 75-150 Room Air Conditioner: 50 Central Heat Pumps: 100 Insulation: 0.15sq. ft. CFLs: 4-10...

  6. Conway Street Apartments: A Multifamily Deep Energy Retrofit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this effort. viii Definitions AFUE Annual Fuel Utilization Efficiency BEopt(tm) Building Energy Optimization Software CARB Consortium for Advanced Residential Buildings CFM Cubic...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigeration Equipment Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Building, Other EE Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other EE, LED Lighting Multifamily Performance Program Under NYSERDA's Multifamily Performance Program (MPP), new construction of multifamily buildings and existing...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards The California Building Standards Commission (Commission) published mandatory building standards for EVSE installation in parking spaces at multi-family dwellings and non-residential developments in the 2013 edition of the California Building Standards Code within the California Green Building Standards Code. For more information, see the California Building Codes Standards Commission Approved Standards website. (Reference

  11. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    SciTech Connect (OSTI)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  12. Low-Load Space Conditioning Needs Assessment

    SciTech Connect (OSTI)

    Puttagunta, Srikanth

    2015-05-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset.

  13. Anne Arundel County- High Performance Dwelling Property Tax Credit

    Broader source: Energy.gov [DOE]

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. In October 2010 Anne Arundel...

  14. Improving Building Envelope and Duct Airtightness of US Dwellings...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Blower door, duct blaster, fan...

  15. Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number is used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.

  16. DOE ZERH Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Puget Sound Energy- Multi-Family Efficiency Retrofit Program PSE's Multifamily Program incentives include a range of measures aimed at assisting existing multifamily buildings....

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Infrastructure Rebate and Charging Rate - Lansing BWL The Lansing Board of Water & Light (BWL) offers a reimbursement of up to $1,000 for the purchase and installation of electric vehicle supply equipment (EVSE). The program is limited to the first 10 qualified residential customers, and the deadline to apply is June 30, 2016. BWL also offers a pilot PEV time-of-use charging rate to single- or multi-family dwellings of four units or less with separately metered

  19. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  20. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI), enacted by SB 1 of 2006, provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and Electric Company (PG&...

  1. Capitalizing on Multi-benefits of Energy Upgrades at Multifamily Housing

    Broader source: Energy.gov (indexed) [DOE]

    (201) | Department of Energy 10, 2015 1:00PM to 2:3

  2. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  3. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    SciTech Connect (OSTI)

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68F) than day (73 F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  4. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  5. The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  6. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  7. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing.

  8. Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  9. Technology Solutions Case Study: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois

    SciTech Connect (OSTI)

    2013-10-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  10. Leveraging Limited Scope for Maximum Benefit in Occupied Renovation of Uninsulated Cold Climate Multifamily Housing

    SciTech Connect (OSTI)

    Neuhauser, K.; Bergey, D.; Osser, R.

    2012-03-01

    This project examines a large-scale renovation project within a 500 unit, 1960's era subsidized urban housing community. This research focuses on the airflow control and window replacement measures implemented as part of the renovations to the low-rise apartment buildings. The window replacement reduced the nominal conductive loss of the apartment enclosure by approximately 15%; air sealing measures reduced measured air leakage by approximately 40% on average.

  11. High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications

    Broader source: Energy.gov [DOE]

    The Building America Program hosted this no-cost webinar that will discuss the current research on comfort in residential buildings. Results will be presented from 37 new homes that were monitored...

  12. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  13. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    SciTech Connect (OSTI)

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  14. Using Solar Hot Water to Address Piping Heat Losses in Multifamily

    Office of Scientific and Technical Information (OSTI)

    Buildings (Technical Report) | SciTech Connect Alliance for Residential Building Innovation, Davis, CA (United States) Publication Date: 2015-10-01 OSTI Identifier: 1224737 Report Number(s): DOE/GO--102015-4716 7226 Resource Type: Technical Report Research Org: Alliance for Residential Building Innovation, Davis, CA (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Country of Publication: United States

  15. Using Solar Hot Water to Address Piping Heat Losses in Multifamily

    Office of Scientific and Technical Information (OSTI)

    Buildings (Technical Report) | SciTech Connect National Renewable Energy Lab. (NREL), Golden, CO (United States) Publication Date: 2015-10-01 OSTI Identifier: 1225932 Report Number(s): NREL/SR--5500-64662; DOE/GO--102015-4716 DOE Contract Number: AC36-08GO28308 Resource Type: Technical Report Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily

    Office of Scientific and Technical Information (OSTI)

    Buildings (Technical Report) | SciTech Connect Alliance for Residential Building Innovation, Davis, CA (United States) Publication Date: 2015-10-01 OSTI Identifier: 1224737 Report Number(s): DOE/GO--102015-4716 7226 Resource Type: Technical Report Research Org: Alliance for Residential Building Innovation, Davis, CA (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Country of Publication: United States

  17. Using Solar Hot Water to Address Piping Heat Losses in Multifamily

    Office of Scientific and Technical Information (OSTI)

    Buildings (Technical Report) | SciTech Connect National Renewable Energy Lab. (NREL), Golden, CO (United States) Publication Date: 2015-10-01 OSTI Identifier: 1225932 Report Number(s): NREL/SR--5500-64662; DOE/GO--102015-4716 DOE Contract Number: AC36-08GO28308 Resource Type: Technical Report Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)

  18. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Broader source: Energy.gov [DOE]

    '''''Track 2 was closed in 2011. Track 1 incentives have been fully subscribed for all three program administrators and waitlists have been established. Contact the appropriate program...

  19. Burlington Electric Department- Multi-Family Rental Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Burlington Electric Department offers an innovative rebate program geared towards rental apartment owners. The program is designed to offer rebates on some of the most energy intensive household...

  20. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  1. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  2. combined_supplemental_hud_multifamily_weatherization_list_3-2A.xls |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy A.xls More Documents & Publications supplemental_lists_1d-2d-3c_06-24-2011.xls hud_list-2_07-01-11.xls hud_list-2

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Buildings Property tax abatement for new non-residential and multifamily residential green buildings Eligibility: Commercial, Industrial, Multifamily Residential Savings...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    buildings and existing multifamily buildings are eligible for incentives that improve energy savings through... Eligibility: Multifamily Residential Savings Category: Clothes...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other multi-family properties for making energy efficiency... Eligibility: Commercial, Construction, Multifamily Residential Savings Category: Solar Water Heat, Solar...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    measures through the Home Energy Loan Program. Participating single or multi-family... Eligibility: Residential, Multifamily Residential Savings Category: Solar...

  7. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property tax abatement for new non-residential and multifamily residential green buildings Eligibility: Commercial, Industrial, Multifamily Residential Savings Category:...

  9. Technology Solutions Case Study: Low-Load Space-Conditioning Needs Assessment

    SciTech Connect (OSTI)

    2015-07-01

    Low-load options in the heating, ventilating, and air-conditioning (HVAC) market are limited, so many new-construction housing units are being fitted with oversized equipment that results in penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family home markets. Over the past decade, Steven Winter Associates, Inc. has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. In this project, the research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed the data from 941 low-load buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings. Within this data set, CARB found that only 1% of the dwellings had right-sized (within 25% of design load) heating equipment and 6% had right-sized cooling equipment.

  10. Existing Whole-House Solutions Case Study: Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado

    SciTech Connect (OSTI)

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  11. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  12. Iowa Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.

  13. Massachusetts Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Massachusetts homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Massachusetts homeowners will save $10,848 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $621 for the 2012 IECC.

  14. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  15. Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

  16. Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

  17. Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

  18. Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

  19. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  20. WPN 11-9: Updated Guidance on Eligible Multifamily Property Listings for Use in the Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    To notify interested parties of supplemental listings of properties that have been determined to meet certain criteria under the Weatherization Assistance Program (WAP).

  1. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  2. Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions Technical Support Document

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Lucas, Robert G.; Goel, Supriya

    2012-12-04

    This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energys (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of efficient residential and commercial building energy codes. These codes set the minimum requirements for energy efficient building design and construction and ensure energy savings on a national level. This analysis focuses on one and two family dwellings, townhomes, and low-rise multifamily residential buildings. For these buildings, the basis of the energy codes is the International Energy Conservation Code (IECC). This report does not address commercial and high-rise residential buildings, which reference ANSI/ASHRAE/IES Standard 90.1.

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Multi-Family Program provides cash incentives to owners, developers, and property managers of apartments and other multi-family properties for making energy...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and property managers of apartments and other multi-family properties for making energy efficiency... Eligibility: Commercial, Construction, Multifamily Residential Savings...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Austin Energy- Multi-Family Energy Efficiency Rebate Program The Austin Energy Multi-Family Program provides cash incentives to owners, developers, and property managers of...

  6. Building America Whole-House Solutions for Existing HomesBay...

    Broader source: Energy.gov (indexed) [DOE]

    43% energy savings are achieved in a 1970s multifamily building through standard, non-invasive retrofit measures. Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    SCE- Multi-Family Residential Energy Efficiency Programs Southern California Edison (SCE) offers prescriptive rebates to multi-family properties for lighting, HVAC technologies,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Family Residential Energy Efficiency Programs Southern California Edison (SCE) offers prescriptive rebates to multi-family properties for lighting, HVAC technologies, water...

  9. Critical Question #6: What are the Challenges and Solutions for...

    Energy Savers [EERE]

    Modeling Multifamily Buildings? There are a lot of differences between modeling single-family and multifamily buildings in regard to central systems, shared walls, shared spaces,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ameren Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives The shell measure segment offers incentives for air sealing the shell of multifamily...

  11. Residential Rental Property Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for the installation of energy efficient equipment in existing multifamily buildings in Vermont for rental property owners. Managers of multifamily buildings may...

  12. Building America Whole-House Solutions for Existing Homes: Cascade...

    Energy Savers [EERE]

    Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment, LED Lighting, Commercial Refrigeration Equipment Puget Sound Energy- Multi-Family Efficiency Retrofit Program PSE's Multifamily Program incentives include a range of...

  14. Building America Whole-House Solutions for New Homes: Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake Building America Whole-House Solutions for New Homes: Zero Energy Ready Home Multifamily Project: Mutual...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mgmt. SystemsBuilding Controls, Other EE, LED Lighting Puget Sound Energy- Multi-Family Efficiency Retrofit Program PSE's Multifamily Program incentives include a range of...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives The shell measure segment offers incentives for air sealing the shell of multifamily buildings....

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners. C-PACE is a ... Eligibility: Commercial, Industrial, Multifamily...

  18. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact ... Homes: Evaluation of Ventilation Strategies in New Construction Multifamily ...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, LED Lighting, Commercial Refrigeration Equipment Austin Energy- Multi-Family Energy Efficiency Rebate Program The Austin Energy Multi-Family Program provides cash...

  20. Low-Load Space Conditioning Needs Assessment

    SciTech Connect (OSTI)

    Puttagunta, Srikanth

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energys Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  1. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing cognitive signatures of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  2. Durable Airtightness in Single-Family Dwellings: Field Measurements and Analysis

    SciTech Connect (OSTI)

    Chan, Wanyu; Walker, Iain; Sherman, Max

    2015-06-01

    Durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL).

  3. Protective shell of a sea-dwelling chiton paves the way towards new

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials | Argonne National Laboratory Aragonite crystals in the chiton's eyes are arranged into lenses that can collect light and focus it so that complete images of close objects such as predatory fish are formed and processed. Credit: Wyss Institute at Harvard University. Aragonite crystals in the chiton's eyes are arranged into lenses that can collect light and focus it so that complete images of close objects such as predatory fish are formed and processed. Credit: Wyss Institute at

  4. Consumer attitudes concerning construction features of an earth-sheltered dwelling

    SciTech Connect (OSTI)

    McKown, C. (Texas Tech Univ., Lubbock); Stewart, K.K.

    1980-01-01

    Consumer responses to construction features of earth-sheltered houses were collected from a volunteer sampling of visitors to an ''open house'' in South Carolina. Consumers reported they had not expected the exposed-front elevation, that skylights are needed in some of the darker areas, and that they were favorably impressed with the solar heating for space and water, the energy efficiency, and the low cost of construction and utilities. Savings of $3000 in initial costs and $300 in annual utility costs were specified as requirements for purchase by the majority. Responses were generally favorable, although only five percent had visted an earth-insulated or underground home before.

  5. DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    Broader source: Energy.gov [DOE]

    “WE EXPECT TO HAVE ALMOST NO NET ELECTRICITY USAGE FOR THE YEAR DUE TO THE SOLAR PANELS ON THE ROOF.”

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Commercial, Industrial, Local Government, Nonprofit, Residential, State Government, Agricultural, Multifamily Residential, Low Income Residential, Institutional...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit, Municipal Utilities, Residential, Cooperative Utilities, Schools, State Government, Federal Government, Multifamily Residential, Institutional Savings Category:...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Eligibility: Commercial, Construction, Industrial, Local Government, Nonprofit, Schools, State Government, Federal Government, Tribal Government, Agricultural, Multifamily...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Commercial, Construction, Local Government, Nonprofit, Residential, Federal Government, Agricultural, Multifamily Residential, Institutional Savings Category: Solar...

  10. EA-0296: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Proposed Interim Energy Conservation Standards for New Commercial and Multifamily Highrise Residential Buildings

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Equipment Insulation, Water Heaters, Furnaces, Boilers, Programmable Thermostats, Caulking...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nonprofit, Municipal Utilities, Residential, Cooperative Utilities, Schools, State Government, Federal Government, Agricultural, Multifamily Residential, Institutional...

  13. Building America Technology Solutions for New and Existing Homes: Balancing

    Energy Savers [EERE]

    Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet) | Department of Energy Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet) In multifamily building hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water

  14. Building America Webinar: Retrofitting Central Space Conditioning

    Energy Savers [EERE]

    Strategies for Multifamily Buildings | Department of Energy Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings The webinar on July 16, 2014, focused on improving the performance of central space conditioning systems in multifamily buildings. Presenters discussed hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  15. Materials Data on Ho3InN (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on BaHo2CuO5 (SG:62) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ba2HoReO6 (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-03-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on HoAu4 (SG:87) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on HoCu2 (SG:74) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on CdP2(HO)4 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on KP(HO2)2 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on CuP2(HO)4 (SG:61) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on KP(HO2)2 (SG:43) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on NaP(HO2)2 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on NaZnP2HO7 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Al2P3(HO3)3 (SG:176) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on KScBP2HO9 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on ZrP2(HO3)2 (SG:164) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on NaZn2P2HO8 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on KVBP2HO9 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on MgAl2P2(HO)18 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on RbScBP2HO9 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on CsMnP3HO10 (SG:5) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on RbGaBP2HO9 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on CaP2(HO2)4 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on RbZn2P2HO8 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Sc2P3(HO3)3 (SG:176) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on SrP2(HO)4 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on BiP4HO12 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ga2P3(HO3)3 (SG:176) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on CaP2(HO)4 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Fe2P3(HO3)3 (SG:176) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on RbP(HO)2 (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on BaCoBP2HO9 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on CsGaP3HO10 (SG:5) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on MgFe2P2(HO)18 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on RbP(HO2)2 (SG:43) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on GaP3(HO5)2 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on RbMnP3HO10 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on MgP(HO)7 (SG:61) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Mg3P2(HO)16 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on LiP(HO2)2 (SG:33) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on HoGaPd (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on HoTlPd (SG:189) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ho2Pd2Pb (SG:127) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on HoSnPd2 (SG:225) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ho3(GePd)4 (SG:71) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Ho2S3 (SG:122) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. (JS)_BL13 schedule S02-S03FY15HO3FINAL.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 Day Shift 6:00 3996 B Sandberg 3996 B Sandberg 3996 B Sandberg 3996 A Sandberg 3996 A Sandberg 3996 A Sandberg 3996 A Sandberg 3 0 4 Night Shift 18:00 8055 B Ogasawara 80055 B Ogasawara 8055 B Ogasawara 3996 B Sandberg 3996 B Sandberg 3996 A Sandberg 3996 A Sandberg 2 3 2 Feb 23 24 25 26 27 28 1 Day Shift 6:00 AP AP 4247 B Graves 4247 B Graves 4247 B Graves 4247 B Graves 4247 B Graves 5 0 0 Night Shift 18:00 AP AP 4180 C Li 4180 C Li 4180 C Li 4238 A Savikhin 4238 A Savikhin

  20. Materials Data on Ho10Ti6O27 (SG:8) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations