Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of Sorbent Trap Materials and Methods for Flue Gas Mercury Measurement  

Science Conference Proceedings (OSTI)

Sorbent traps are used as an alternative to continuous mercury monitors (CMM) for measuring vapor phase mercury concentrations in stacks of coal-fired power plants and for relative accuracy test audits (RATAs) of CMMs. EPRI has an ongoing program of research on sorbent trap methods, evaluating the performance of sorbent materials and the methods used to measure mercury on the sorbent traps. This report presents results of two investigations targeted at evaluating the performance of sorbent trap methods f...

2009-02-16T23:59:59.000Z

2

Multi-element microelectropolishing method  

DOE Patents (OSTI)

A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

Lee, P.J.

1994-10-11T23:59:59.000Z

3

Multi-element microelectropolishing method  

DOE Patents (OSTI)

A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

Lee, Peter J. (Middleton, WI)

1994-01-01T23:59:59.000Z

4

Regenerable solid imine sorbents  

DOE Patents (OSTI)

Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

2013-09-10T23:59:59.000Z

5

Desulfurization sorbent regeneration  

DOE Patents (OSTI)

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

Jalan, V.M.; Frost, D.G.

1982-07-07T23:59:59.000Z

6

Multi-element probabilistic collocation method in high dimensions  

Science Conference Proceedings (OSTI)

We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element ... Keywords: Domain decomposition, Sparse grids, Stochastic partial differential equations

Jasmine Foo; George Em Karniadakis

2010-03-01T23:59:59.000Z

7

Modified clay sorbents  

DOE Patents (OSTI)

A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

Fogler, H. Scott (Ann Arbor, MI); Srinivasan, Keeran R. (Livonia, MI)

1990-01-01T23:59:59.000Z

8

NETL: Mercury Emissions Control Technologies - Brominated Sorbents...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPs, and Fly Ash Use in Concrete Sorbent Technology will test two technologies for mercury removal from flue gas. Their concrete safe brominated sorbent will be tested at...

9

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

10

Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent  

SciTech Connect

Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

1995-08-01T23:59:59.000Z

11

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

12

Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions  

Science Conference Proceedings (OSTI)

We propose a multi-element stochastic collocation method that can be applied in high-dimensional parameter space for functions with discontinuities lying along manifolds of general geometries. The key feature of the method is that the parameter space ... Keywords: Discontinuous functions, Generalized polynomial chaos, Multi-element, Stochastic collocation, Uncertainty quantification

John D. Jakeman, Akil Narayan, Dongbin Xiu

2013-06-01T23:59:59.000Z

13

Program on Technology Innovation: Sorbent Fundamentals and Novel Sorbent Development  

Science Conference Proceedings (OSTI)

Power plants need to reduce the stack emissions of mercury (Hg), filterable particulate matter (FPM) and acid gases (hydrogen chloride, HCl) to comply with the Mercury and Air Toxics Standards (MATS) issued by the U.S. Environmental Protection Agency (EPA) on February 16, 2012. This technical update consists of two studies: one is an effort to understand how mercury is adsorbed on activated carbon, the other is to extend development of a novel Sorbent Activation Process (SAP) for production of a ...

2012-10-15T23:59:59.000Z

14

Femtosecond Laser Synthesis of Multi-Element Nanocrystals  

SciTech Connect

We studied the conditions under which short-pulsed laser deposited (PLD) stoichiometric multi-element nanocrystals of GaAs,InP,CoPt and Inconel (an alloy of Cr, Fe and Ni) are formed. The properties of the PLD nanoclusters and the irradiated targets were investigated as a function of the laser pulse-length (150 fs-500 ps) and the inert background gas pressure in the synthesis chamber (microTorr to hundreds of Torr). Our results reveal that the formation of stoichiometric GaAs nanocrystals required ablating a GaAs target with a shorter than 25 ps laser in a {ge} 50 miliTorr of inert background pressure. For InP, a mixture of stoichiometric InP and In nanocrystals with an InP/In ratio of {approx} 1 resulted upon ablating an InP target in Ar at 1 Torr. This InP/In ratio increased to {approx} 5 when ablating the InP target in an Ar pressure of 750 Torr. In case of CoPt alloy, the stoichiometry in the target was not reflected in the collected nanocluster films, independent of the background gas pressure. Interestingly, the stoichiometry of the target was found in the collected nanocluster films when an Inconel target was ablated by a femtosecond laser even in vacuum. It is noted that the constituents of Inconel (Cr, Fe and Ni) have similar vapor pressures while Co and Pt do not. Our experimental results suggest that the stoichiometries of the PLD multi-element nanoclusters are closer with those of the targets when shorter than 25 ps lasers are used. However, this does not imply that simply irradiating a multi-element target in vacuum with a shorter than 25 ps pulse-length laser would automatically result in the formation of stoichiometric nanocrystals. The preservation of the stoichiometry of the irradiated target and the formation of stoichiometric semiconductor nanocrystals require ablating the targets with a shorter than 25 ps laser in a background gas. The minimum background gas pressure is materials dependent. And for metal alloys, the stoichiometry of the ablated target cannot be found in the collected nanocluster films if the constituent elements have widely different vapor pressures. We have also successfully used density-functional based tight-binding potentials to study the femtosecond laser/GaAs target interaction. This code work can be extended to other multi-element compounds/alloys as well.

Dinh, L N; Trelenberg, T; Torralva, B; Stuart, B C; Balooch, M

2003-01-08T23:59:59.000Z

15

Advanced low-temperature sorbents  

SciTech Connect

A number of promising technologies are currently being optimized for coal-based power generation, including the Integrated-Gasification Combined Cycle (IGCC) system. If IGCC is to be used successfully for power generation, an economic and efficient way must be found to remove the contaminants, particularly sulfur species, found in coal gas. Except for the hot gas desulfurization system, all major components of IGCC are commercially available or have been shown to meet system requirements. Over the last two decades, the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) has sponsored development of various configurations of high-temperature desulfurization systems including fixed-bed, moving-bed, transport-bed, and fluidized-bed systems. Because of their mode of operation and requirements for sorbent manufacturing, the fixed-bed systems can generally use the same materials as moving-bed configurations, i.e., pelletized or extruded sorbents, while fluidized-bed (circulating or bubbling configurations) and transport reactor configurations use materials generally described as agglomerated or granulated.The objective of this program is to remove hydrogen sulfides from coal gas using sorbent materials.

Ayala, R.E.; Venkataramani, V.S.; Abbasian, J.; Hill, A.H.

1995-12-01T23:59:59.000Z

16

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

17

NETL: News Release - NETL Patented CO2-Removal Sorbents Promise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power and Cost Savings DOE Laboratory Signs License Agreement Incorporating Sorbents in HVAC Add-on Technology Washington, DC - Carbon dioxide removal sorbents developed by the...

18

COLD TRAPS  

DOE Patents (OSTI)

A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

Thompson, W.I.

1958-09-30T23:59:59.000Z

19

Method for Regeneration of Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Regeneration of Immobilized Amine Sorbents Regeneration of Immobilized Amine Sorbents for Use in CO 2 Capture Opportunity Research is currently active on the patent-pending technology "Regenerable Sorbent Technique for Capturing CO 2 Using Immobilized Amine Sorbents." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which anthropogenic CO 2 emissions are captured from CO 2 -laden process gas streams and perma- nently stored. Carbon capture is a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high-capacity amine-based sorbents offer many advantages over existing technology

20

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

22

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

23

Replacement of charcoal sorbent in the VOST  

SciTech Connect

EPA Method 0030, the Volatile Organic Sampling Train (VOST), for sampling volatile organics from stationary sources, specifies the use of petroleum-base charcoal in the second sorbent tube. Charcoal has proven to be a marginal performer as a sampling sorbent, partly due to inconsistency in analyte recovery. In addition, commercial availability of petroleum charcoal for VOST tubes has been variable. Lack of data on comparability and variability of charcoals for VOST application has created uncertainty when other charcoals are substituted. Five potential sorbent replacements for charcoal in Method 0030 were evaluated along with a reference charcoal. Two of the sorbents tested, Ambersorb XE-340 and Tenax GR, did not perform well enough to qualify as replacements. Three candidates, Anasorb 747, Carbosieve S-III and Kureha Beaded Activated Charcoal, performed adequately, and produced statistically equivalent results. Anasorb 747 appears to be an acceptable replacement for petroleum charcoal, based on a combination of performance, availability, and cost.

Johnson, L.D.; Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

1993-01-01T23:59:59.000Z

24

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

25

Continuous fluidized-bed contactor with recycle of sorbent  

DOE Patents (OSTI)

A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

1996-01-01T23:59:59.000Z

26

Modular multi-element high energy particle detector  

DOE Patents (OSTI)

Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

Coon, Darryl D. (Pittsburgh, PA); Elliott, John P. (Pittsburgh, PA)

1990-01-02T23:59:59.000Z

27

Analysis with electron microscope of multielement samples using pure element standards  

DOE Patents (OSTI)

A method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons, simultaneously measuring the electron dosage and x-ray intensities for each sample of element to determine a "K.sub.AB " value to be used in the equation ##EQU1## where I is intensity and C is concentration for elements A and B, and exposing the multielement sample to determine the concentrations of the elements in the sample.

King, Wayne E. (Western Springs, IL)

1987-01-01T23:59:59.000Z

28

Dry Coal Feed System and Multi-Element Injector Test Plan  

DOE Green Energy (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the layout, test procedures, instrumentation and data acquisition requirements for an ultradense phase multi-element injector and feed system to be operated at the University of North Dakota Energy and Environmental Research Center (UNDEERC).

Ken Sprouse; Fred Widman; Alan Darby

2006-08-30T23:59:59.000Z

29

NETL: Evaluation of Dry Sorbent Technology for Pre-Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent...

30

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

International 1 is heading a research team to develop an innovative process for CO 2 capture that employs a dry, regenerable sorbent. The process is cyclic in that the sorbent...

31

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

32

Sulfur tolerant highly durable CO.sub.2 sorbents  

DOE Patents (OSTI)

A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.

Smirniotis, Panagiotis G. (Cincinnati, OH); Lu, Hong (Urbana, IL)

2012-02-14T23:59:59.000Z

33

Mode trap  

DOE Patents (OSTI)

This report discusses a mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around it`s aperture and extending radially out toward it`s absorbing material layer.

Chojnacki, E.P.

1992-12-31T23:59:59.000Z

34

Kinetics of hot-gas desulfurization sorbents for transport reactors  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, to understand effects of space time of reaction gas mixtures on initial reaction kinetics of the sorbent-hydrogen sulfide system, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 sorbent and AHI-1 was examined. These sorbents were obtained from the Research Triangle Institute (RTI). The sorbents in the form of 70 {micro}m particles are reacted with 1,000--4,000 ppm hydrogen sulfide at 450--600 C. The range of space time of reaction gas mixtures is 0.03--0.09 s. The range of reaction duration is 4--14,400 s.

K.C. Kwon

2000-01-01T23:59:59.000Z

35

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

36

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

37

Sorbent for use in hot gas desulfurization  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, Lee D. (Washington, PA); Atimtay, Aysel T. (Cankaya, TR)

1993-01-01T23:59:59.000Z

38

Hot gas desulfurization sorbent and method  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200{degrees} to about 1600{degrees}F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, L.D.; Atimtay, A.T.

1991-03-13T23:59:59.000Z

39

Hot gas desulfurization sorbent and method  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200[degrees] to about 1600[degrees]F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, L.D.; Atimtay, A.T.

1991-03-13T23:59:59.000Z

40

Topical Report 5: Sorbent Performance Report  

Science Conference Proceedings (OSTI)

ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

Krutka, Holly; Sjostrom, Sharon

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ISSN 1537-744X; doi:10.1100/2011/756264 Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent  

E-Print Network (OSTI)

The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7 % recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg 0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg 0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.

Juan Wang; Wei Xu; Xiaohao Wang; Wenhua Wang

2011-01-01T23:59:59.000Z

42

Interaction of trapped ions with trapped atoms  

E-Print Network (OSTI)

In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

Grier, Andrew T. (Andrew Todd)

2011-01-01T23:59:59.000Z

43

COLD TRAP  

DOE Patents (OSTI)

An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

Milleron, N.

1963-03-12T23:59:59.000Z

44

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

45

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

46

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2002-01-01T23:59:59.000Z

47

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of EX-SO3 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 110 {micro}m particles are reacted with 18000-ppm hydrogen sulfide at 350-550 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2003-02-01T23:59:59.000Z

48

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

49

Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy  

DOE Green Energy (OSTI)

Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

1980-03-01T23:59:59.000Z

50

Analysis with electron microscope of multielement samples using pure element standards  

DOE Patents (OSTI)

This disclosure describes a method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons. Simultaneously the electron dosage and x-ray intensities are measured for each sample of element to determine a ''K/sub AB/'' value to be used in the equation (I/sub A/I/sub B/) = K/sub AB/ (C/sub A//C/sub B/), where I is intensity and C is concentration for elements A and B. The multielement sample is exposed to determine the concentrations of the elements in the sample.

King, W.E.

1986-01-06T23:59:59.000Z

51

Supported-sorbent injection. Final report  

Science Conference Proceedings (OSTI)

A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

Nelson, S. Jr.

1997-07-01T23:59:59.000Z

52

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

53

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

54

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ...  

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ... required for sequestration, an area of research identified as a high priority

55

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2009 Planned Activities Phase I: * Determine the relevant physical, mechanical, and thermal properties of the sorbent that are relevant for effective CO 2 capture from...

56

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent  

Science Conference Proceedings (OSTI)

AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

Jha, M.C.; Berggren, M.H.

1989-05-02T23:59:59.000Z

57

Reactor Design for CO2 Capture Using Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Design for CO 2 Capture Using Sorbents Background Carbon Sequestration is rapidly becoming accepted as a viable option to reduce the amount of carbon dioxide (CO 2 )...

58

Dry sorbent injection may serve as a key pollution control ...  

U.S. Energy Information Administration (EIA)

Dry sorbent injection (DSI) is a pollution control technology that may play a role in the United States' electric power sector's compliance with the Mercury and Air ...

59

Low Temperature Sorbents for Removal of Sulfur Compounds from...  

NLE Websites -- All DOE Office Websites (Extended Search)

less expensive sorbent to manufacture and maintain Applications * Power generation systems * Natural gas and oil production processes * Coal gasification and oil shale production...

60

Microsoft Word - 2013_Pd sorbent polishing_report_FINAL.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

of Trace Mercury Removal Using Palladium- Based Sorbents February 2013 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States...

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Amine Enriched Solid Sorbents for Carbon Dioxide Capture Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,547,854 entitled "Amine Enriched Solid Sorbents for Carbon Dioxide Capture."...

62

NETL: Bench Scale Development and Testing of Aerogel Sorbent...  

NLE Websites -- All DOE Office Websites (Extended Search)

flue gas contaminants, crush strength, attrition, fluidized bed properties, and heat transfer coefficients for the adsorptiondesorption process. The sorbent will be evaluated in...

63

Effects of Alkaline Sorbents on ESP Performance  

Science Conference Proceedings (OSTI)

Many energy companies need to reduce sulfur trioxide (SO3) emissions and/or sulfur dioxide (SO2) emissions. Injection of an alkaline sorbent into the boiler or into the duct after the air heater is a relatively simple and inexpensive means of meeting this need. These processes can, however, have a negative effect on the performance of the electrostatic precipitator (ESP) most plants are equipped with for particulate control. Hence, there is a need to understand and be able to predict the impact of these ...

2009-03-26T23:59:59.000Z

64

TRUEX process solvent cleanup with solid sorbents  

SciTech Connect

Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

1989-01-01T23:59:59.000Z

65

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

66

Functionalized sorbent for chemical separations and sequential forming process  

DOE Patents (OSTI)

A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA)

2012-03-20T23:59:59.000Z

67

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

2005-01-01T23:59:59.000Z

68

Development of advanced hot-gas desulfurization sorbents. Final report  

Science Conference Proceedings (OSTI)

The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

1997-10-01T23:59:59.000Z

69

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

2011-01-17T23:59:59.000Z

70

Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array  

SciTech Connect

Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.

Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan [MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou 510631 (China) and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

2007-04-23T23:59:59.000Z

71

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

Wang, Shannon Xuanyue

72

Steam Trap Application  

E-Print Network (OSTI)

The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product quality, and reduce energy and maintenance costs.

Murphy, J. J.

1982-01-01T23:59:59.000Z

73

Ion trap simulation tools.  

Science Conference Proceedings (OSTI)

Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

Hamlet, Benjamin Roger

2009-02-01T23:59:59.000Z

74

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent  

Science Conference Proceedings (OSTI)

AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

Berggren, M.H.; Jha, M.C.

1989-10-01T23:59:59.000Z

75

SOx/NOx sorbent and process of use  

DOE Patents (OSTI)

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

76

Octahedral molecular sieve sorbents and catalysts  

DOE Patents (OSTI)

Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2010-04-20T23:59:59.000Z

77

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

78

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

2010-10-28T23:59:59.000Z

79

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

2011-01-01T23:59:59.000Z

80

Micro-and nano-environments of carbon sequestration: Multi-element STXMNEXAFS spectromicroscopy assessment of microbial carbon and  

E-Print Network (OSTI)

Micro- and nano-environments of carbon sequestration: Multi-element STXM­NEXAFS spectromicroscopy- and nano-C sequestration environments, and conduct submicron-level investigation of the compositional chem demonstrated the existence of spatially distinct seemingly terminal micro- and nano-C repository zones, where

Lehmann, Johannes

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Mercury Emissions Control Technologies - Evaluation of Sorbent  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Sorbent Injection for Mercury Control Evaluation of Sorbent Injection for Mercury Control ADA Environmental Solutions will evaluate injection of activated carbon and other sorbents to remove mercury for a variety of coal and air pollution control equipment configurations. The scope of work is for 36 months and intended to gather operating data that will document actual performance levels and accurate cost information to assess the costs of controlling mercury from coal fired utilities. Testing will be conducted at four different host sites that represent a significant percentage of unit configurations. The subsequent cost analyses will include capital costs, by-product utilization issues, sorbent usage, any necessary enhancements, such as SO3 control or flue gas conditioning, balance of plant, manpower requirements and waste issues. The host sites are Sunflower Electric's Holcomb Station, Ontario Power Generation's Nanticoke Station, AmerenUE's Meramec Station and American Electric Power's (AEP) Conesville Station.

82

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilized Aminosilane Sorbents Immobilized Aminosilane Sorbents for Carbon Dioxide Capture Opportunity Research is currently active on the patent-pending technology titled "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which CO 2 is first separated / captured from gas streams followed by permanent storage. Carbon capture represents a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high capacity amine-based sorbents offer many advantages over existing technology including increased CO

83

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-07-01T23:59:59.000Z

84

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov Carbon DioxiDe Capture from flue Gas usinG Dry reGenerable sorbents Background Currently...

85

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

86

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2003-01-01T23:59:59.000Z

87

CX-010177: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of the Multielement Sorbent Trap (ME-ST) Method at an Illinois Coal-Fired Full Scale Test Site CX(s) Applied: B3.1 Date: 04/26/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

88

CX-010178: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of the Multielement Sorbent Trap (ME-ST) Method at an Illinois Coal-Fired Full Scale Test Site CX(s) Applied: B3.1 Date: 04/26/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

89

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

90

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

91

Economics of dry FGD by sorbent injection  

SciTech Connect

Increasingly stringent pollution control requirements for new power plants have nearly doubled the cost of producing electricity. The capital, operating and maintenance costs of wet flue gas desulfurization (FGD) systems are major, and considerable interest is currently being given to less expensive dry systems. One attractive alternative to wet scrubbing for FGD is to inject a dry, powdered reagent into the duct work between a coal-fired boiler and a FF (baghouse). The reagent (and fly ash) are collected on the fabric surface where the SO/sub 2//reagent contact occurs. The technical aspects of SO/sub 2/ removal using nahcolite and trona as sorbents have been investigated at laboratory-scale, demonstrated at full-scale, and are reported on briefly. These results indicate that injection of sodium based reagents is technically an attractive alternative to the many steps and processes involved in wet scrubbing. This paper summarizes a project to examine the economics of nahcolite/trona and furnace limestone injection FGD and compare them to those of the more advanced spray dryer FGD systems. Uncertainties in material handling, pulverization, and waste disposal were investigated and designs were produced as a basis for cost estimating.

Naulty, D.J.; Hooper, R.; Keeth, R.J.; McDowell, D.A.; Muzio, L.J.; Scheck, R.W.

1983-11-01T23:59:59.000Z

92

Field Evaluation of a Novel Sorbent Trap Method for Measuring Metal and Halogen Emissions  

Science Conference Proceedings (OSTI)

Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Method 29 for trace metals and 26 and 26A for halogens. As a possible alternative to the EPA methods, the Energy and Environmental Research ...

2013-12-04T23:59:59.000Z

93

Multielement geochemistry of three geothermal wells, Cove Fort-Sulphurdale geothermal area, Utah  

DOE Green Energy (OSTI)

Multielement geochemical analysis of drill cuttings from three geothermal wells, Utah State 42-7, Utah State 31-33 and Forminco No. 1, in the Cove Fort-Sulphurdale KGRA, Utah, demonstrates that the distributions of different elements are the result of different chemical processes operating throughout the geologic history of the area. Statistical analysis of geochemical-data distributions confirm the presence of several distinct element associations. Of the 36 elements determined on the samples, 12 (V, Mo, Cd, Ag, Au, Sb, Bi, U, Te, Sn, B and Th) were present in concentrations at or below detection levels. Of the remaining 24 elements, only 3 (Ni, Co and Zr) are lognormally distributed. Distributions for the remaining elements are of aggregate populations which represent background, mineralization or other processes.

Christensen, O.D.

1982-09-01T23:59:59.000Z

94

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests, which determined their relative efficiencies, were used in performing economic analyses to determine their equivalent uniform annual cost (EUAC). The comparison was made using a computer program written for the Apple II computer to evaluate overall steam trap economics. This program calculates the EUAC for any steam trap based on 12 input variables including capital, maintenance and steam costs, interest rate and trap life. After determinIng the EUAC, the program will perform sensitivity analyses on any of the twelve variables. (This computer program is available from the author.) This study shows that inverted bucket traps have lower EUAC's under more conditions than other types of traps. Also, this study shows that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost.

Fuller, N. Y.

1986-06-01T23:59:59.000Z

95

Nonlinear integrable ion traps  

Science Conference Proceedings (OSTI)

Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

2011-10-01T23:59:59.000Z

96

Chalcogen-Based Aerogels as Sorbents for Radionuclide Remediation  

SciTech Connect

The efficient capture of radionuclides having long half-lives such as technetium-99 (99Tc), uranium-238 (238U), and iodine-129 (129I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, a new nanostructured chalcogen-based aerogel, called a chalcogel, is shown to be very effective to capture ionic forms of 99Tc and 238U, as well as nonradioactive gaseous iodine (i.e., a surrogate for 129I), irrespective of the sorbent polarity. Some of the chalcogels performed better than others but the PtGeS sorbent performed the best with capture efficiencies of 98% and 99.4% for 99Tc and 238U, respectively. All sorbents showed >99% capture efficiency for iodine over the test duration. This unified sorbent would be an attractive option in environmental remediation for various radionuclides associated with legacy wastes from nuclear weapons production, wastes from nuclear power production, or potential future nuclear fuel reprocessing.

Riley, Brian J.; Chun, Jaehun; Um, Wooyong; Lepry, William C.; Matyas, Josef; Olszta, Matthew J.; Li, Xiaohong; Polychronopoulou, Kyriaki; Kanatzidis, Mercouri G.

2013-06-13T23:59:59.000Z

97

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

2003-08-01T23:59:59.000Z

98

Development of a sorbent-based technology for control of mercury in flue gas  

Science Conference Proceedings (OSTI)

This paper presents results of research being, conducted at Argonne National Laboratory on the capture of elemental mercury in simulated flue gases by using dry sorbents. Experimental results from investigation of various sorbents and chemical additives for mercury control are reported. Of the sorbents investigated thus far, an activited-carbon-based sorbent impregnated with about 15% (by weight) of sulfur compound provided the best results. The key parameters affecting mercury control efficiency in a fixed-bed reactor, such as reactor loading, reactor temperature, sorbent size distribution, etc., were also studied, and the results ire presented. In addition to activated-carbon-based sorbents, a non-carbon-based sorbent that uses an inactive substrate treated with active chemicals is being developed. Preliminary, experimental results for mercury removal by this newly developed sorbent are presented.

Wu, Jiann M.; Huang, Hann S.; Livengood, C.D.

1996-03-01T23:59:59.000Z

99

The Effect of SO3 Sorbents on ESP Performance: A State-of-the-Art Review  

Science Conference Proceedings (OSTI)

Energy companies are discovering a growing need to understand the impact alkaline sorbents have on electrostatic precipitator (ESP) performance. While some of these sorbents have been used intermittently to control sulfur trioxide (SO3) emissions or reduce sulfur dioxide (SO2) emissions, the existing data are insufficient to predict the impact of sorbent addition on balance-of-plant equipment. Sorbent impact on ESP operation and performance is of particular concern because the negative effect has, in the...

2006-12-11T23:59:59.000Z

100

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

2004-09-30T23:59:59.000Z

102

Deep Bed Iodine Sorbent Testing FY 2011 Report  

Science Conference Proceedings (OSTI)

Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging with pure N2 to drive loosely or physisorbed iodine species off of the sorbent. Post-test calculations determine the control efficiencies for each bed, iodine loadings on the sorbent, and mass transfer zone depths. Portions of the iodine-laden sorbent from the first bed of two of the tests have been shipped to SNL for waste form studies. Over the past three years, we have explored a full range of inlet iodine and methyl iodide concentrations ranging from {approx}100 ppb to {approx}100 ppm levels, and shown adequate control efficiencies within a bed depth as shallow as 2 inches for lower concentrations and 4 inches for higher concentrations, for the AgZ-type sorbents. We are now performing a limited number of tests in the NC-77 sorbent from SNL. Then we plan to continue to (a) fill in data gaps needed for isotherms and dynamic sorbent modeling, and (b) test the performance of additional sorbents under development.

Nick Soelberg; Tony Watson

2011-08-01T23:59:59.000Z

103

Workshop on Ion Trap Technology  

Science Conference Proceedings (OSTI)

... optical components, conventional and microfabricated ion traps, and classical control ... will bring together experts on trapped-ion physics, laser optics ...

2011-03-01T23:59:59.000Z

104

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

105

Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas  

DOE Green Energy (OSTI)

A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

2007-08-01T23:59:59.000Z

106

MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS  

SciTech Connect

The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

Thomas K. Gale

2002-06-01T23:59:59.000Z

107

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-04-01T23:59:59.000Z

108

Inorganic ion sorbents and methods for using the same  

DOE Patents (OSTI)

A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

Teter, David M. (Edgewood, NM); Brady, Patrick V. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM)

2006-07-11T23:59:59.000Z

109

SCALE-UP OF ADVANCED HOT-GAS DESULFURIZATION SORBENTS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop advanced regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective was to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high sulfidation activity at temperatures as low as 343 C (650 F). Twenty sorbents were synthesized in this work. Details of the preparation technique and the formulations are proprietary, pending a patent application, thus no details regarding the technique are divulged in this report. Sulfidations were conducted with a simulated gas containing (vol %) 10 H{sub 2}, 15 CO, 5 CO{sub 2}, 0.4-1 H{sub 2}S, 15 H{sub 2}O, and balance N{sub 2} in the temperature range of 343-538 C. Regenerations were conducted at temperatures in the range of 400-600 C with air-N{sub 2} mixtures. To prevent sulfation, catalyst additives were investigated that promote regeneration at lower temperatures. Characterization were performed for fresh, sulfided and regenerated sorbents.

K. JOTHIMURUGESAN; S.K. GANGWAL

1998-03-01T23:59:59.000Z

110

Sorbent preparation/modification/additives. Final report, September 1, 1992--November 30, 1993  

SciTech Connect

Sorbent preparation techniques used today have generally been adapted from techniques traditionally used by the lime industry. Traditional dry hydration and slaking processes have been optimized to produce materials intended for use in the building industry. These preparation techniques should be examined with an eye to optimization of properties important to the SO{sub 2} capture process. The study of calcium-based sorbents for sulfur dioxide capture is complicated by two factors: (1) little is known about the chemical mechanisms by which the standard sorbent preparation and enhancement techniques work, and (2) a sorbent preparation technique that produces a calcium-based sorbent that enjoys enhanced calcium utilization in one regime of operation [flame zone (>2400 F), in-furnace (1600--2400 F), economizer (800--1100 F), after air preheater (<350 F)] may not produce a sorbent that enjoys enhanced calcium utilization in the other reaction zones. Again, an in-depth understanding of the mechanism of sorbent enhancement is necessary if a systematic approach to sorbent development is to be used. As a long-term goal, an experimental program is being carried out for the purpose of (1) defining the effects of slaking conditions on the properties of calcium-based sorbents, (2) determining how the parent limestone properties of calcium-based sorbents, and (3) elucidating the mechanism(s) relating to the activity of various dry sorbent additives. An appendix contains a one-dimensional duct injection model with modifications to handle the sodium additives.

Prudich, M.E.; Venkataramakrishnan, R. [Ohio Univ., Athens, OH (United States)

1994-02-01T23:59:59.000Z

111

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO{sub 2} removal rates declined from 20% to about 8% over the course of three hours. Following calcination, a second carbonation cycle was conducted, at a lower temperature with a lower water vapor content. CO{sub 2} removal and sorbent capacity utilization declined under these conditions. Modifications were made to the reactor to permit addition of extra water for testing in the next quarter. Thermodynamic analysis of the carbonation reaction suggested the importance of other phases, intermediate between sodium carbonate and sodium bicarbonate, and the potential for misapplication of thermodynamic data from the literature. An analysis of initial rate data from TGA experiments suggested that the data may fit a model controlled by the heat transfer from the sorbent particle surface to the bulk gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-01-01T23:59:59.000Z

112

NETL: Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Project No.: DE-FE0000465 Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent process configured to combine the water-gas-shift (WGS) reaction with carbon dioxide (CO2) removal for coal gasification systems. A combination of process simulation modeling and sorbent molecular and thermodynamic analyses will be performed to predict optimal sorbent properties and identify optimal operating temperature and pressure ranges

113

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

114

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Removal of Carbon Dioxide from Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497 entitled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures." Disclosed in this patent is a new low-cost carbon dioxide (CO 2 ) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or

115

Solid sorbents for removal of carbon dioxide from gas streams at low temperatures  

DOE Patents (OSTI)

New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

Sirwardane, Ranjani V. (Morgantown, WV)

2005-06-21T23:59:59.000Z

116

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

DOE Patents (OSTI)

New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

Sirwardane, Ranjani V.

2005-06-21T23:59:59.000Z

117

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

118

Asymmetric ion trap  

DOE Patents (OSTI)

An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

1997-01-01T23:59:59.000Z

119

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

120

Venus Fly Trap Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Venus Fly Trap Experiment Venus Fly Trap Experiment Name: Jeremy Bailey Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: My name is Jeremy Bailey, and I am a student of Dorseyville Middle School. I have been working on a science project about Venus' Fly Traps. A recent addition to the project involved designing an experiment about something I found interesting about them. However, I don't know where to get them or how to grow them in the moderate climate of Pittsburgh. Also, I don't know how a successful experiment could be designed. Replies: Jeremy, I believe Venus Fly traps can be found 'in the wild' in the coastal floodplain of the Carolinas. As far as where to buy them, look in the phonebook yellow pages under plants or houseplants and do some calling. I live in eastern Pennsylvania, and over here they even sell them in hardware stores like Hechinger's and Home Depot (in their garden departments). I don't think you will have luck trying to grow them outside, our winters here are a bit too harsh for them. From what I recall they require substantial moisture and more moderate climes. You might try looking for houseplant books at your local library for more detailed information.

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

WATER-TRAPPED WORLDS  

Science Conference Proceedings (OSTI)

Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

2013-09-01T23:59:59.000Z

122

Nuclear Physics with trapped  

E-Print Network (OSTI)

Nuclear Physics with trapped atoms and ions #12;2/2/2013Dan Melconian #12;2/2/2013Dan Melconian Outline · Scope and applications of nuclear physics precision frontier compliments LHC properties and aquifers in the Sahara #12;2/2/2013Dan Melconian What is Nuclear Physics? · Began with the study

Boas, Harold P.

123

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sorbents Carbon Sorbents for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal re- serves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints. Pulverized coal (PC)-fired power plants are large, stationary sources of CO

124

Adsorption and Desorption of CO2 on Solid Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS 2 Ranjani Siriwardane (rsiiw@netl.doe.gov; 304-285-4513) Ming Shen (mshen@netl.doe.gov; 304-285-4112) Edward Fisher (efishe@netl.doe.gov; 304-285-4011) James Poston (jposto@netl.doe.gov; 304-285-4635) Abolghasem Shamsi (ashams@netl.doe.gov; 304-285-4360) U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O.Box 880, Morgantown, WV 26507-0880 INTRODUCTION Fossil fuels supply more than 98% of the world's energy needs. However, the combustion of fossil fuels is one of the major sources of the green house gas CO . It is necessary to develop 2 technologies that will allow us to utilize the fossil fuels while reducing the emissions of green house gases. Commercial CO capture technology that exists today is very expensive and energy

125

Method for removing metal ions from solution with titanate sorbents  

DOE Patents (OSTI)

A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

Lundquist, Susan H. (White Bear Township, MN); White, Lloyd R. (Minneapolis, MN)

1999-01-01T23:59:59.000Z

126

Screening test of solid amine sorbents for CO2 capture  

Science Conference Proceedings (OSTI)

The atmospheric levels of many greenhouse gases are increasing, especially that of carbon dioxide, which has increased by 30% over the last 200 years. A wide variety of processes have been developed for the removal of acid gases such as carbon dioxide and hydrogen sulfide from gas streams including physical/chemical absorption, adsorption, membrane process, and oxygen recovery from O2/CO2 recycle combustion. The most common option for separating CO2 from flue gases or other gas streams is scrubbing the gas stream using various amine sorbents. The objective of this research is to study the total absorption/desorption capacity, cyclic capacity, absorption/desorption rate, and effect of blending amine on CO2 capture for several chemical solid sorbents.

Lee, Seungmoon (U. of Hartford, West Hartford, CT); Filburn, T.P. (U. of Hartford, West Hartford, CT); Gray, M.L.; Park, J-W. (Yonsei University, Seoul, Korea); Song, H-J. (Yonsei University, Seoul, Korea)

2008-10-01T23:59:59.000Z

127

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

2001-01-01T23:59:59.000Z

128

Dry Sorbent Injection Workshop Summary: Workshop Held November 11, 2011  

Science Conference Proceedings (OSTI)

A day-long dry sorbent injection (DSI) workshop was held in Charlotte, North Carolina, on November 20, 2011. The workshop was attended by representatives of over 20 electric power companies. Introductory remarks were made by Electric Power Research Institute (EPRI) staff, followed by presentations by 10 electric power companies describing their efforts and results from testing DSI technology for control of acid gases from flue gas. These testing efforts considered sulfur trioxide (SO3)/sulfuric acid, hyd...

2012-04-20T23:59:59.000Z

129

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-04-01T23:59:59.000Z

130

Amine enriched solid sorbents for carbon dioxide capture  

DOE Patents (OSTI)

A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Soong, Yee (Monroeville, PA); Champagne, Kenneth J. (Fredericktown, PA)

2003-04-15T23:59:59.000Z

131

Nanostructured sorbents for capture of cadmium species in combustion environments  

SciTech Connect

The pathways of cadmium species to form a sub-micrometer-sized aerosol in a combustion system exhaust were established. Cadmium oxide was the predominant species formed in the experiments and resulted in particles of a mean size of 26-63 nm with number concentrations in the range of 2-8 x 10{sup 6} cm{sup -3}. Two different nanostructured sorbents, a solid montmorillonite (MMT) and an in situ generated agglomerated silica, were used for capture of the cadmium species. The MMT sorbent was not stable at 1000{sup o}C, and structural changes resulted. MMT did not suppress nucleation of cadmium species and partially captured it by weak physisorption as established by the leachability tests. In contrast, the in situ generated silica nanostructured agglomerates had a high surface area, suppressed nucleation of cadmium species vapors, and chemisorbed them effectively resulting in a firm binding, as compared to the MMT sorbent. There is an optimal temperature-time relationship at which the capture process is expected to be most effective. The leaching efficiency under these conditions was less than 3.2%. The nanostructured silica agglomerate size can be tuned for effective capture in existing particle control devices. 46 refs., 8 figs., 2 tabs.

Myong-Hwa Lee; Kuk Cho; Apoorva P. Shah; Pratim Biswas [Washington University in St. Louis, St. Louis, MO (United States). Aerosol and Air Quality Research Laboratory, Environmental Engineering Science Program

2005-11-01T23:59:59.000Z

132

NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patented CO2-Removal Sorbents Promise Power and Cost Savings Patented CO2-Removal Sorbents Promise Power and Cost Savings NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings May 30, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide removal sorbents developed by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) could result in power and cost savings for users of some heating, ventilation and air conditioning (HVAC) systems under a recently signed license agreement. NETL, the research and development laboratory for DOE's Office of Fossil Energy, entered into a patent license agreement with Boston-based Enverid Systems Inc. for NETL-developed solid sorbents that remove CO2 from gas streams. NETL's sorbents will be incorporated into an Enverid product called EnClaire™, which adds on to HVAC systems to reduce power

133

Investigation on Durability and Reactivity of Promising Metal Oxide Sorbents During Sulfidation and Regeneration  

SciTech Connect

Research activities and efforts of this research project were concentrated on formulating various metal oxide sorbents with various additives under various formulation conditions, conducting experiments on initial reactivity of formulated sorbents with hydrogen sulfide, and testing hardness of formulated sorbents. Experiments on reactivity of formulated metal oxide sorbents with wet hydrogen sulfide contained in a simulated coal gas mixture were carried out for 120 seconds at 550 o C (see Table 1) to evaluate reactivity of formulated sorbents with hydrogen sulfide. Hardness of formulated sorbents was evaluated in addition to testing their reactivity with hydrogen sulfide. A typical simulated coal gas mixture consists of 9107-ppm hydrogen sulfide (0.005 g; 1 wt %), 0.085-g water (15.84 wt %), 0.0029-g hydrogen (0.58 wt %), and 0.4046-g nitrogen (81.34 wt%).

K. C. Kwon

1997-05-01T23:59:59.000Z

134

Novel Regenerable Sodium Based Sorbents for CO2 Capture at Warm Gas Temperatures  

Science Conference Proceedings (OSTI)

A novel sorbent consisting of NaOH/CaO was developed for CO2 capture at 315 °C suitable for high-temperature CO2-capture applications, such as coal gasification systems. The sorbent is regenerable at 700 °C, and steam does not affect the sorbent performance. A multicycle test conducted in the atmospheric reactor at 315 °C indicated that the sorbent improved the performance with an increased number of cycles. The sorbent can also capture CO2 at a wide range of temperatures from ambient to 500 °C. However, the mechanism of CO2 capture is different at ambient temperature. The sorbent is unique because it has a high CO2-capture capacity of more than 3 mol/kg at 315 °C and is regenerable at 700 °C

Siriwardane, R.V.; Shen, Ming; Robinson, Clark; Simonyi, Thomas

2007-07-01T23:59:59.000Z

135

Pore structure and reactivity changes in hot coal gas desulfurization sorbents  

Science Conference Proceedings (OSTI)

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

136

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

137

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

1999-01-01T23:59:59.000Z

138

Fixed bed testing of durable, steam resistant zinc oxide containing sorbents  

SciTech Connect

The US Department of Energy is currently developing Integrated Gasification combined Cycle (IGCC) systems for electrical power generation. It has been predicted that IGCC plants with hot gas cleanup will be superior to conventional pulverized coal-fired power plants in overall plant efficiency and environmental performance. Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for IGCC systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. Two promising sorbents and (METC6), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC) during the past year. These sorbents were tested (sulfided) both in low-pressure (260 kPa/37.7 psia) and high-pressure (1034 kPa/150 psia) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated KRW coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. There were no appreciable changes in sulfidation capacity of the sorbents during the 20-cycle testing. The crush strength of the sorbent actually improved after 20 cycles and there were no indications of spalling or any other physical deterioration of the sorbents. In testing to date, these sorbents exhibit better overall sulfur capture performance than the conventional sorbents.

Siriwardane, R.V.; Grimm, U.; Poston, J. [USDOE Morgantown Energy Technology Center, WV (United States); Monaco, S.J. [EG& G dTechnical Services of West Virginia, Inc., Morgantown, WV (United States)

1994-12-31T23:59:59.000Z

139

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

140

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

E-Print Network (OSTI)

indoor VOCs – activated carbon fibers. Proceedings of IAQ’quickly using an activated carbon fiber sorbent that has aninch) thick the activated carbon fiber bed. Liu (1992) then

Fisk, William J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sorbent-Based Gas Phase Air Cleaning for VOCs in Commercial Buildings  

E-Print Network (OSTI)

indoor VOCs – activated carbon fibers. Proceedings of IAQ’quickly using an activated carbon fiber sorbent that has aninch) thick the activated carbon fiber bed. Liu (1992) then

Fisk, William J.

2006-01-01T23:59:59.000Z

142

Regenerable Sorbents for CO2 Capture from Moderate and High Temperatur...  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,314,847 entitled "Regenerable sorbents for CO 2 capture from moderate and...

143

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is...

144

A Novel Sorbent-Based Process for High Temperature Trace Metals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent-Based Process for High Temperature Trace Metals Removal from Coal-Derived Syngas Description Gasification converts coal and other heavy feedstocks into synthesis gas...

145

Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization  

Science Conference Proceedings (OSTI)

The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2008-03-01T23:59:59.000Z

146

Development and Evaluation of Low-Cost Sorbents for Removal of Mercury Emissions from Coal Combustion Flue Gas  

Science Conference Proceedings (OSTI)

Determining how physical and chemical properties of sorbents affect vapor-phase mercury adsorption has led to potential approaches for tailoring the properties of sorbents for more effective mercury removal.

1998-10-12T23:59:59.000Z

147

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

148

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents  

SciTech Connect

This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

Thomas K. Gale

2005-07-01T23:59:59.000Z

149

Chemical kinetic studies on dry sorbents. Final report. [Sodium bicarbonate  

Science Conference Proceedings (OSTI)

The scope of this research investigation has included a review of potential additives suitable for dry flue-gas desulfurization (FGD) and a bench scale laboratory study to determine the chemical kinetics for the reaction of five different sorbents with sulfur dioxide. The sorbents chosen included sodium bicarbonate (NaHCO/sub 3/), soda ash (Na/sub 2/CO/sub 3/), trona, lime (CaO) and hydrated lime (Ca(OH)/sub 2/). This study has shown that: (1) The reaction rate increases with temperature for soda ash and calcium oxide. The reaction temperature has an inverse effect on sodium bicarbonate and trona due, primarily, to the simultaneous thermal activation reaction. The calcium hydroxide-SO/sub 2/ reaction increased up to 550/sup 0/F, and then decreased, due to uneven gas flow distribution. (2) The reaction rates for soda ash, calcium oxide and calcium hydroxide were increased by decreasing their particle size. This effect was not confirmed for sodium bicarbonate and trona where reaction temperature was the most important reaction parameter. (3) Reaction with soda ash was found to be limited by the presence of an impervious ash layer which prevented interparticle gaseous diffusion. Calcium oxide and calcium hydroxide were found to be limited by a slow chemical reaction rate. Results on the rate-limiting steps for sodium bicarbonate and trona were inconclusive because of the simultaneous thermal activation reaction. (4) The effect of thermal activation was to increase the reaction rate for sodium bicarbonate and trona at lower temperatures. This effect was less pronounced at higher temperatures. (5) Results obtained for nitric oxide show limited adsorption for the five sorbents tested as compared to the finding for sulfur dioxide.

Davis, W.T.; Keener, T.C.

1982-02-15T23:59:59.000Z

150

Iodine Sorbent Performance in FY 2012 Deep Bed Tests  

SciTech Connect

Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I-129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Iodine capture is an important aspect of the Separations and Waste Forms Campaign Off-gas Sigma Team (Jubin 2011, Pantano 2011). Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: • Decontamination factors were achieved that exceed reasonably conservative estimates for DFs needed for used fuel reprocessing facilities in the U.S. to meet regulatory requirements for I-129 capture. • Silver utilizations approached or exceeded 100% for high inlet gas iodine concentrations, but test durations were not long enough to approach 100% silver utilization for lower iodine concentrations. • The depth of the mass transfer zone was determined for both low iodine concentrations (under 10 ppmv) and for higher iodine concentrations (between 10-50 ppmv); the depth increases over time as iodine is sorbed. • These sorbents capture iodine by chemisorption, where the sorbed iodine reacts with the silver to form very non-volatile AgI. Any sorbed iodine that is physisorbed but not chemically reacted with silver to form AgI might not be tightly held by the sorbent. The portion of sorbed iodine that tends to desorb because it is not chemisorbed (reacted to form AgI) is small, under 1%, for the AgZ tests, and even smaller, under 0.01%, for the silver-functionalized Aerogel.

Nick Soelberg; Tony Watson

2012-08-01T23:59:59.000Z

151

Durable zinc oxide-containing sorbents for coal gas desulfurization  

DOE Patents (OSTI)

Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel as a matrix material, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

Siriwardane, R.V.

1994-12-31T23:59:59.000Z

152

Program on Technology Innovation: Sorbent Activation Process (SAP) Development  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the University of Illinois at Urbana-Champaign (UIUC) have developed a technology (U.S. Patents 6,451,094 and 6,558,454) that can significantly reduce the cost of activated carbon (AC) for controlling mercury from coal-fired power plants. The technology involves the on-site production of AC at the power plant using the site coal and then direct injection of the freshly produced sorbent into the flue gas to capture mercury. The AC is injected upstream ...

2012-11-14T23:59:59.000Z

153

Acid Gas Removal by Customized Sorbents for Integrated Gasification Fuel Cell Systems  

DOE Green Energy (OSTI)

In order to reduce exergy losses, gas cleaning at high temperatures is favored in IGFC systems. As shown by thermodynamic data, separation efficiencies of common sorbents decrease with increasing temperature. Therefore, acid gas removal systems have to be developed for IGFC applications considering sorbent capacity, operation temperature, gasification feedstock composition and fuel cell threshold values.

Kapfenberger, J.; Sohnemann, J.; Schleitzer, D.; Loewen, A.

2002-09-20T23:59:59.000Z

154

Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjan

1999-09-30T23:59:59.000Z

155

Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjani

2004-06-01T23:59:59.000Z

156

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

157

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

158

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOE Patents (OSTI)

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01T23:59:59.000Z

159

DNA Separation Using Photoelectrophoretic Traps  

SciTech Connect

In our recent publications we presented a design that allows formation of highly localized and optically controlled electrophoretic traps. 1,2 We demonstrated that electrophoretic traps can be utilized for biomolecule photoconcentration, optically directed transport, and separation by size. 1,2 In the current publication we suggest a hybrid design for biomolecule separation which implements electrophoretic traps in tandem with well-established electrophoretic techniques. We perform Monte Carlo simulations that demonstrate that the resolution of well-established electrophoretic techniques can be greatly enhanced by introducing photoelectrophoretic traps.

Braiman, Avital [ORNL; Thundat, Thomas George [ORNL; Rudakov, Fedor M [ORNL

2011-01-01T23:59:59.000Z

160

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Laser Cooling of Trapped Ions.  

Science Conference Proceedings (OSTI)

... period, so it can be assumed to give an in- stantaneous impulse to the ... In sympathetic laser cooling, two different ion species are loaded into a trap. ...

2002-11-15T23:59:59.000Z

162

Scale-Up of Advanced Hot-Gas desulfurization Sorbents.  

SciTech Connect

The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective of the project is to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high activity at temperatures as low as 343 {degrees}C (650{degrees}F). A number of formulations will be prepared and screened in a one-half inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel- gases. Screening criteria will include chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C to 650{degrees}C. After initial screening, at least 3 promising formulations will be tested for 25-30 cycles of absorption and regeneration. One of the superior formulations with the best cyclic performance will be selected for investigating scale up parameters. The scaled-up formulation will be tested for long term durability and chemical reactivity.

Jothimurugesan, K.; Gangwal, S.K.

1997-10-02T23:59:59.000Z

163

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-10-01T23:59:59.000Z

164

Scale-Up of Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective of the project is to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high activity at temperatures as low as 343{degrees}C (650{degrees}F). A number of formulations will be prepared and screened in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C to 650{degrees}C. After initial screening, at least 3 promising formulations will be tested for 25-30 cycles of absorption and regeneration. One of the superior formulations with the best cyclic performance will be selected for investigating scale up parameters. The scaled-up formulation will be tested for long term durability and chemical reactivity.

Jothimurugesan, K.; Gangwal, S.K.

1997-04-21T23:59:59.000Z

165

Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases  

Science Conference Proceedings (OSTI)

Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

Nelson, Sidney (Hudson, OH)

2011-02-15T23:59:59.000Z

166

Theory and application of planar ion traps  

E-Print Network (OSTI)

In this thesis, we investigate a new geometry of Paul trap with electrodes in a plane. These planar ion traps are compatible with modern silicon microfabrication, and can be scaled up to large arrays with multiple trapping ...

Pearson, Christopher Elliott

2006-01-01T23:59:59.000Z

167

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

168

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Significance * Energy mixing is maximized * Mobilizing of the particulates is complete * No "dead zones" exist * Packing of material is minimized * Eroding effects are significantly reduced Applications * Mixing nuclear waste at Hanford * Any similar industrial process involving heavy solids in a carrier fluid Opportunity Research is currently active on the patent-pending technology "Organoclay Sorbent for Removal of Carbon Dioxide from

169

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

170

First Attempts at Antihydrogen Trapping in ALPHA  

SciTech Connect

The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

Andresen, G. B.; Bowe, P. D.; Hangst, J. S. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Cesar, C. L.; Lambo, R.; Silveira, D. M. [Instituto de Fisica Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Fujiwara, M. C. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 (Canada)] (and others)

2008-08-08T23:59:59.000Z

171

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

172

Trapped Quintessential Inflation  

E-Print Network (OSTI)

Quintessential inflation is studied using a string modulus as the inflaton - quintessence field. The modulus begins its evolution at the steep part of its scalar potential, which is due to non-perturbative effects (e.g. gaugino condensation). It is assumed that the modulus crosses an enhanced symmetry point (ESP) in field space. Particle production at the ESP temporarily traps the modulus resulting in a brief period of inflation. More inflation follows, due to the flatness of the potential, since the ESP generates either an extremum (maximum or minimum) or a flat inflection point in the scalar potential. Eventually, the potential becomes steep again and inflation is terminated. After reheating the modulus freezes due to cosmological friction at a large value, such that its scalar potential is dominated by contributions due to fluxes in the extra dimensions or other effects. The modulus remains frozen until the present, when it can become quintessence and account for the dark energy necessary to explain the observed accelerated expansion.

J. C. Bueno Sanchez; K. Dimopoulos

2006-05-26T23:59:59.000Z

173

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

By incorporating amines inside clay containing quaternary ammonium salts (organoclay) minerals, this invention has created a way to prepare sorbents that capture carbon dioxide (CO2) from low temperature and low pressure gas streams. In this process, ...

174

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization March 23, 2011 - 1:00pm Addthis Washington, DC - Two new patented sorbents used for carbon dioxide (CO2) capture from coal-based power plants have moved closer to commercialization as a result of a licensing agreement between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and ADA Environmental Solutions (ADA-ES). The nonexclusive agreement facilitates negotiations on intellectual property rights, protects proprietary information, and grants non-exclusive licensing of the new technology. Under federal regulations, NETL is authorized to obtain, maintain, and own patent protection for its

175

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization March 23, 2011 - 1:00pm Addthis Washington, DC - Two new patented sorbents used for carbon dioxide (CO2) capture from coal-based power plants have moved closer to commercialization as a result of a licensing agreement between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and ADA Environmental Solutions (ADA-ES). The nonexclusive agreement facilitates negotiations on intellectual property rights, protects proprietary information, and grants non-exclusive licensing of the new technology. Under federal regulations, NETL is authorized to obtain, maintain, and own patent protection for its

176

NETL: Optimizing the Costs of Solid Sorbent-Based CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process through Heat Integration Project No.: DE-FE0012914 ADA-ES is conducting bench scale testing and computer modeling of...

177

NETL: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture Project No.: DE-FE0000469 TDA Research (TDA) is testing and validating the technical and economic...

178

Inspect and Repair Steam Traps  

SciTech Connect

This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

179

Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994  

Science Conference Proceedings (OSTI)

Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1995-02-01T23:59:59.000Z

180

Ranking low cost sorbents for mercury capture from simulated flue gases  

Science Conference Proceedings (OSTI)

Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications  

SciTech Connect

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

2012-05-02T23:59:59.000Z

182

Evaluation of Methods for Mercury Analysis of Appendix K Sorbent Tubes  

Science Conference Proceedings (OSTI)

emissions beginning in 2009. Sorbent tube mercury monitoring systems, as described in Appendix K to 40 CFR Part 75 (the Clean Air Mercury Rule), can fill two potential roles in mercury monitoring: as a replacement for a continuous emission mercury monitor (CEMM) in routine compliance monitoring, and as a potential reference method for relative accuracy test audits (RATA) of a CEMM. U.S. regulations do not specify the analytical procedures to be used to measure mercury in sorbent material, and few laborat...

2007-02-15T23:59:59.000Z

183

Stabilization and/or regeneration of spent sorbents from coal gasification  

SciTech Connect

The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient SO{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined. During this quarter sulfidation tests were conducted in a quartz fluidized-bed reactor in which the selected calcium-based sorbents were first calcined and then were reacted with hydrogen sulfide at ambient pressure and 1650{degree}F. These tests were conducted with each sorbent in two particle sizes. Chemical analyses of the partially sulfided sorbents indicate that the extent of sulfidation was in the range of 40--50%. The partially sulfided material will be reacted with oxygen to determine the effects of temperature and SO{sub 2} partial pressure on the stabilization of the calcium sulfide in solid waste materials. 23 refs., 1 fig., 2 tabs.

Abbasian, J.

1991-01-01T23:59:59.000Z

184

Electronic Trap States in Methanofullerenes  

E-Print Network (OSTI)

The trap states in three fullerene derivatives, namely PC61BM ([6,6]-phenyl C61 butyric acid methyl ester), bisPC61BM (bis[6,6]-phenyl C61 butyric acid methyl ester) and PC71BM ([6,6]-phenyl C71 butyric acid methyl ester), are investigated by thermally stimulated current measurements (TSC). Thereby, the lower limit of the trap densities for all studied methanofullerenes exhibits values in the order of 10^22 m^-3 with the highest trap density in bisPC61BM and the lowest in PC61BM. Fractional TSC measurements on PC61BM reveal a broad trap distribution instead of discrete trap levels with activation energies ranging from 15 meV to 270 meV and the maximum at about 75 meV. The activation energies of the most prominent traps in the other two fullerene derivatives are significantly higher, being at 96 meV and 223 meV for PC71BM and 184 meV for bisPC61BM, respectively. The influence of these findings on the performance of organic solar cells is discussed.

Julia Schafferhans; Carsten Deibel; Vladimir Dyakonov

2011-07-18T23:59:59.000Z

185

Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1996-03-01T23:59:59.000Z

186

NETL: Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Project No.: DE-FE0013105 TDA is developing a new sorbent-based pre-combustion carbon capture technology for integrated gasification combined cycle (IGCC) power plants. The process, which was evaluated at bench-scale under a previous effort, uses an advanced physical adsorbent that selectively removes CO2 from coal derived synthesis gas (syngas) above the dew point of the gas. The sorbent consists of a mesoporous carbon grafted with surface functional groups that remove CO2 via an acid-base interaction. The reactor design will be optimized by using computational fluid dynamics and adsorption modeling to improve the pressure swing adsorption cycle sequence. The research will include: two 0.1 MWe tests with a fully-equipped prototype unit using actual synthesis gas to prove the viability of the new technology; long-term sorbent life evaluation in a bench-scale setup of 20,000 cycles; the fabrication of a pilot-scale testing unit that will contain eight sorbent reactors; and the design of a CO2 purification sub-system. The CO2 removal technology will significantly improve (3 to 4 percent) the IGCC process efficiency needed for economically viable production of power from coal.

187

CO{sub 2} absorption using dry potassium-based sorbents with different supports  

SciTech Connect

The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SG showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.

Chuanwen Zhao; Xiaoping Chen; Changsui Zhao [Southeast University, Nanjing (China). China School of Energy and Environment

2009-09-15T23:59:59.000Z

188

Liquid-impregnated clay solid sorbents for CO2 removal from postcombustion gas streams  

Science Conference Proceedings (OSTI)

A novel liquid-impregnated clay sorbent #1;R. V. Siriwardane, U.S. Patent No. 6,908,497 B1 #2;2003#3;#4; was developed for carbon dioxide #1;CO2#2; removal in the temperature range of ambient to 60°C for both fixed-bed and fluidized-bed reactor applications. The sorbent is regenerable at 80–100°C. A 20-cycle test conducted in an atmospheric reactor with simulated flue gas with moisture demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99% during the cyclic tests. The sorbents suitable for fluidized-bed reactor operations showed required delta CO2 capacity requirements for sorption of CO2 at 40°C and regeneration at 100°C. The parameters such as rate of sorption, heat of sorption, minimum fluidization velocities, and attrition resistance data that are necessary for the design of a reactor suitable for capture and regeneration were also determined for the sorbent. A 20-cycle test conducted in the presence of flue-gas pollutant sulfur dioxide—SO2 #2;20 parts per million#3;—indicated that the sorbent performance was not affected by the presence of SO2.

Siriwardane, R.; Robinson, C.

2009-01-01T23:59:59.000Z

189

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

190

Development of a Catalyst/Sorbent for Methane Reforming  

Science Conference Proceedings (OSTI)

This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

2008-12-31T23:59:59.000Z

191

Multielement geochemical exploration data for the Cove Fort-Sulphurdale Known Geothermal Resource Area, Beaver and Millard counties, Utah  

DOE Green Energy (OSTI)

Multielement geochemical exploration data have been acquired for the Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA). This was accomplished by analysis of both whole rock and +3.3 specific gravity concentrate samples from cuttings composites collected from shallow rotary drill holes. Areal distributions are reported for arsenic, mercury, lead and zinc. These are elements indicated by previous studies to be broadly zoned around thermal centers in geothermal systems and thus to be useful for selecting and prioritizing drilling targets. Results from this work suggest that reservoir temperature and/or reservoir to surface permeability, and thus possibly overall potential for a geothermal resource, increase northward beneath the approximately 18 square mile area containing shallow drill holes, possibly to beyond the northern limits of the area. The data provide a basis for development of three principal target models for the geothermal system but do not permit prioritization of these models. It is recommended that geochemical, geological, and temperature gradient surveys be expanded northward from the present survey area to more fully define the area which appears to have the best resource potential and to aid prioritization of the target models.

Bamford, R.W.; Christensen, O.D.

1979-09-01T23:59:59.000Z

192

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

193

Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991  

SciTech Connect

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

194

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis  

Science Conference Proceedings (OSTI)

AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

Jha, M.C.; Berggren, M.H.

1989-05-02T23:59:59.000Z

195

Screening of low cost sorbents for arsenic and mercury capture in gasification systems  

Science Conference Proceedings (OSTI)

A novel laboratory-scale fixed-bed reactor has been developed to investigate trace metal capture on selected sorbents for cleaning the hot raw gas in Integrated Gasification Combined Cycle (IGCC) power plants. The new reactor design is presented, together with initial results for mercury and arsenic capture on five sorbents. It was expected that the capture efficiency of sorbents would decrease with increasing temperature. However, a commercial activated carbon, Norit Darco 'Hg', and a pyrolysis char prepared from scrap tire rubber exhibit similar efficiencies for arsenic at 200 and at 400{sup o}C (70% and 50%, respectively). Meta-kaolinite and fly ash both exhibit an efficiency of around 50% at 200{sup o}C, which then dropped as the test temperature was increased to 400{sup o}C. Activated scrap tire char performed better at 200{sup o}C than the pyrolysis char showing an arsenic capture capacity similar to that of commercial Norit Darco 'Hg'; however, efficiency dropped to below 40% at 400{sup o}C. These results suggest that the capture mechanism of arsenic (As4) is more complex than purely physical adsorption onto the sorbents. Certain elements within the sorbents may have significant importance for chemical adsorption, in addition to the effect of surface area, as determined by the BET method. This was indeed the case for the mercury capture efficiency for all four sorbents tested. Three of the sorbents tested retained 90% of the mercury when operated at 100{sup o}C. As the temperature increased, the efficiency of activated carbon and pyrolysis char reduced significantly. Curiously, despite having the smallest Brunauer-Emmet-Teller (BET) surface area, a pf-combustion ash was the most effective in capturing mercury over the temperature range studied. These observations suggest that the observed mercury capture was not purely physical adsorption but a combination of physical and chemical processes. 27 refs., 4 figs., 4 tabs.

Cedric Charpenteau; Revata Seneviratne; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-09-15T23:59:59.000Z

196

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

197

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

198

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

199

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

200

Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent  

SciTech Connect

A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

2012-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures  

SciTech Connect

A novel sorbent consisting of Mg(OH)2 was developed for carbon dioxide (CO2) capture at 200-315 °C suitable for CO2 capture applications such as coal gasification systems. Thermodynamic analysis conducted with the FactSage software package indicated that the Mg(OH)2 sorbent system is highly favorable for CO2 capture up to 400 °C at 30 atm. MgCO3 formed during sorption decomposes to release CO2 at temperatures as low as 375 °C up to 20 atm. MgO rehydroxylation to form Mg(OH)2 is possible at temperatures up to 300 °C at 20 atm. The experimental data show that the sorbent is regenerable at 375 °C at high pressure and that steam does not affect the sorbent performance. A multicycle test conducted in a high-pressure fixed-bed flow reactor at 200 °C with 28% CO2 showed stable reactivity during the cyclic tests. The capture capacity also increased with increasing pressure. The sorbent is unique because it exhibits a high CO2 capture capacity of more than 3 mol/kg at 200 °C and also is regenerable at a low temperature of 375 °C and high pressure. High-pressure regeneration is advantageous because the CO2 compression costs required for sequestration can be reduced.

Siriwardane, R.; Stevens, R.

2009-01-01T23:59:59.000Z

202

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

203

Trapped-flux superconducting memory  

Science Conference Proceedings (OSTI)

A memory cell based on trapped flux in superconductors has been built and tested. The cell is constructed entirely by vacuum evaporation of thin films and can be selected by coincident current or by other techniques, with drive-current requirements less ...

J. W. Crowe

1957-10-01T23:59:59.000Z

204

MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES  

Science Conference Proceedings (OSTI)

We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([{alpha}/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, Department of Astronomy, Mail Stop 249-17, Pasadena, CA 91106 (United States); Guhathakurta, Puragra; Rockosi, Constance M. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Geha, Marla C. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Sneden, Christopher [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Sohn, Sangmo Tony [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Siegel, Michael [Pennsylvania State University, 525 Davey Lab, State College, PA 16801 (United States)

2010-12-15T23:59:59.000Z

205

Long-Wave Trapping by Oceanic Ridges  

Science Conference Proceedings (OSTI)

Long waves are affected by bottom topography and under certain conditions may be trapped along topographical contours which then act as wave guides transmitting wave energy for great distances with little loss. This study examines waves trapped ...

Richard Paul Shaw; Wayne Neu

1981-10-01T23:59:59.000Z

206

A Neutrally Buoyant, Upper Ocean Sediment Trap  

Science Conference Proceedings (OSTI)

The authors have designed and deployed a neutrally buoyant sediment trap (NBST) intended for use in the upper ocean. The aim was to minimize hydrodynamic flow interference by making a sediment trap that drifted freely with the ambient current. ...

James R. Valdes; James F. Price

2000-01-01T23:59:59.000Z

207

Inertial measurement via dynamics of trapped particles  

E-Print Network (OSTI)

We describe theoretical and practical aspects of the particle trap as an inertial sensor. The insight motivating this approach is that a trapped particle acts like a mass on a spring, but the restoring forces are provided ...

Post, E. Rehmi, 1966-

2003-01-01T23:59:59.000Z

208

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

209

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL  

Science Conference Proceedings (OSTI)

This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

Sharon Sjostrom

2002-02-22T23:59:59.000Z

210

DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES  

DOE Green Energy (OSTI)

Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at SRI and RTI to conduct tests at high-temperature, high-pressure conditions (HTHP). The HTHP tests confirmed the ability of nahcolite pellets and granules to reduce the HCl vapor levels to less than 1 ppm levels with a very high sorbent utilization for chloride capture. The effect of several operating variables such as temperature, pressure, presence of hydrogen sulfide, and sorbent preparation methods was studied on the efficacy of HCl removal by the sorbent. Pilot-scale tests were performed in the fluidized-bed mode at the gasifier facility at the GE-CRD. Sorbent exposure tests were also conducted using a hot coal gas stream from the DOE/FETC's fluidized-bed gasifier at Morgantown, WV. These tests confirmed the results obtained at SRI and RTI. A preliminary economic assessment showed that the cost of HCl removal in a commercial IGCC system will be about $0.001/kWh (1 mills/kWh).

Gopala Krishnan; Raghubir Gupta

1999-09-01T23:59:59.000Z

211

Determination of Hydrogen Peak Temperatures and Trapping ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Hydrogen Peak Temperatures and Trapping Energies of Various Lattice Defects In Iron Using Thermal Desorption ...

212

CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents  

SciTech Connect

The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

2012-08-31T23:59:59.000Z

213

Capturing Energy Savings with Steam Traps  

E-Print Network (OSTI)

This paper will discuss the energy savings potential of steam traps and present the energy, economic, and environmental reason why an active steam trap maintenance program is good for the company's bottom line. Several case studies will be discussed to demonstrate the merits of steam trap technology.

Bockwinkel, R. G.; French, S. A.

1997-04-01T23:59:59.000Z

214

Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams  

DOE Patents (OSTI)

A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

Siriwardane, Ranjani V. (Morgantown, WV)

2008-01-01T23:59:59.000Z

215

The Elimination of Steam Traps  

E-Print Network (OSTI)

How would you like to have a share of $154,000,000,000 a year? According to the Department of Energy that is roughly what was spent for creating steam in 1978. Steam generation accounts for fully one half of the industrial and commercial energy dollar. That figure could be reduced by 10-20% or more by the simple elimination of steam traps. Recent engineering developments show that steam traps can be eliminated. Documented results demonstrate that the retrofitting of existing facilities to alternative methods of condensate removal is simple and economically feasible, with paybacks of less than 12 months. Advantages obtained in the first year remain consistent for several years after conversion with virtual elimination of maintenance.

Dickman, F.

1985-05-01T23:59:59.000Z

216

Transparent ion trap with integrated photodetector  

E-Print Network (OSTI)

Fluorescence collection sets the efficiency of state detection and the rate of entanglement generation between remote trapped ion qubits. Despite efforts to improve light collection using various optical elements, solid angle capture is limited to ~10% for implementations that are scalable to many ions. We present an approach based on fluorescence detection through a transparent trap using an integrated photodetector, combining collection efficiency approaching 50% with scalability. We microfabricate transparent surface traps with indium tin oxide and verify stable trapping of single ions. The fluorescence from a cloud of ions is detected using a photodiode sandwiched with a transparent trap.

Amira M. Eltony; Shannon X. Wang; Gleb M. Akselrod; Peter F. Herskind; Isaac L. Chuang

2012-12-06T23:59:59.000Z

217

Transparent ion trap with integrated photodetector  

E-Print Network (OSTI)

Fluorescence collection sets the efficiency of state detection and the rate of entanglement generation between remote trapped ion qubits. Despite efforts to improve light collection using various optical elements, solid angle capture is limited to ~10% for implementations that are scalable to many ions. We present an approach based on fluorescence detection through a transparent trap using an integrated photodetector, combining collection efficiency approaching 50% with scalability. We microfabricate transparent surface traps with indium tin oxide and verify stable trapping of single ions. The fluorescence from a cloud of ions is detected using a photodiode sandwiched with a transparent trap.

Eltony, Amira M; Akselrod, Gleb M; Herskind, Peter F; Chuang, Isaac L

2012-01-01T23:59:59.000Z

218

Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor  

DOE Green Energy (OSTI)

A fixed-bed regenerable desulfurization sorbent, identified as RVS-land developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory, was awarded the R&D 100 award in 2000 and is currently offered as a commercial product by Sued-Chemie Inc. An extensive testing program for this sorbent was undertaken which included tests at a wide range of temperatures, pressures and gas compositions both simulated and generated in an actual gasifier for sulfidation and regeneration. This testing has demonstrated that during these desulfurization tests, the RVS-1 sorbent maintained an effluent H2S concentration of <5 ppmv at temperatures from 260 to 600 C (500-1100 F) and pressures of 203-2026 kPa(2 to 20 atm) with a feed containing 1.2 vol% H{sub 2}S. The types of syngas tested ranged from an oxygen-blown Texaco gasifier to biomass-generated syngas. The RVS-1 sorbent has high crush strength and attrition resistance, which, unlike past sorbent formulations, does not decrease with extended testing at actual at operating conditions. The sulfur capacity of the sorbent is roughly 17 to 20 wt.% and also remains constant during extended testing (>25 cycles). In addition to H{sub 2}S, the RVS-1 sorbent has also demonstrated the ability to remove dimethyl sulfide and carbonyl sulfide from syngas. During regeneration, the RVS-1 sorbent has been regenerated with dilute oxygen streams (1 to 7 vol% O{sub 2}) at temperatures as low as 370 C (700 F) and pressures of 304-709 kPa(3 to 7 atm). Although regeneration can be initiated at 370 C (700 F), regeneration temperatures in excess of 538 C (1000 F) were found to be optimal. The presence of steam, carbon dioxide or sulfur dioxide (up to 6 vol%) did not have any visible effect on regeneration or sorbent performance during either sulfidation or regeneration. A number of commercial tests involving RVS-1 have been either conducted or are planned in the near future. The RVS-1 sorbent has been tested by Epyx, Aspen Systems and McDermott Technology (MTI), Inc for desulfurization of syngas produced by reforming of hydrocarbon liquid feedstocks for fuel cell applications. The RVS-1 sorbent was selected by MTI over other candidate sorbents for demonstration testing in their 500-kW ship service fuel cell program. It was also possible to obtain sulfur levels in the ppbv range with the modified RVS-1 sorbent.

Siriwardane, Ranjani V.; Cicero, Daniel C. (U.S. Department of Energy, National Energy Technology Laboratory, Morgantown); Stiegel, Gary J.; Gupta, Raghubir P. (U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh); Turk, Brian S. (Research Triangle Institute)

2001-11-06T23:59:59.000Z

219

Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant  

Science Conference Proceedings (OSTI)

A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250{sup o}C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400{sup o}C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC. 38 refs., 6 figs.

Yan Liu; David J.A. Kelly; Hongqun Yang; Christopher C.H. Lin; Steve M. Kuznicki; Zhenghe Xu [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

2008-08-15T23:59:59.000Z

220

NETL: SO2-Resistent Immobilized Amine Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Emissions Control Post-Combustion CO2 Emissions Control SO2-Resistent Immobilized Amine Sorbents for CO2 Capture Project No.: DE-FE0001780 DOE is partnering with the University of Akron (Akron) to conduct research and training to develop an effective solid amine sorbent for large scale post-combustion CO2 capture from power plant flue gas. Sorbent materials developed by Akron consist of immobilized carbon and hydrogen structures (paraffin) distributed inside of the amine pores and aromatic amines located on the external surface and the pore mouth of the sorbent. The immobilized paraffinic amines have been shown to display excellent CO2 capture capacity by adsorbing CO2 at temperatures below 55 °C and releasing it at temperatures between 80-120 °C. This effort will focus on increasing scientific understanding of the chemical and physical principles affecting amines deposited on a series of porous solids that generally have large pore space, high surface area, and/or high thermal conductivity.

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sulfidation and reduction of zinc titanate and zinc oxide sorbents for injection in gasifier exit ducts  

DOE Green Energy (OSTI)

The sulfidation reaction kinetics of fine particles of zinc titanate and zinc oxide with H{sub 2}S were studied in order to test the potential of the sorbent injection hot-gas desulfurization process. Fine sorbent particles with diameter between 0.3 and 60 {mu}m were sulfided with H{sub 2}S and/or reduced with H{sub 2} in a laminar flow reactor over the temperature range of 500-900{degrees}C. Sulfidation/reduction conversion was compared for different particle sizes and sorbents with various porosities and atomic ratios of Zn and Ti. In reduction of ZnO with H{sub 2} and without H{sub 2}S, significant amount of Zn was formed and vaporized, while the presence of H{sub 2}S suppressed elemental Zn formation. This suggests that H{sub 2}S may suppress the surface reduction of ZnO and/or gaseous Zn may react with H{sub 2}S homogeneously and form fine particles of ZnS. Formation and vaporization of elemental Zn from zinc titanate sorbents was slower than from zinc oxide with and without H{sub 2}S.

Ishikawa, K. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering]|[Kawasaki Heavy Industries Ltd., Akashi, Hyogo (Japan). Technical Inst.; Krueger, C.; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering; Jl, W.; Higgins, R.J.; Bishop, B.A.; Goldsmith, R.L. [CeraMem Corp., Waltham, MA (United States)

1995-12-31T23:59:59.000Z

222

Bench-Scale Development of Fluidized-Bed Spray-Dried Sorbents  

SciTech Connect

Successful development of regenerable mixed-metal oxide sorbents for removal of reduced sulfur species (such as H{sub 2}S and COS) from coal-derived fuel gas streams at high=temperature, high-pressure (HTHP) conditions is a key to commercialization of the integrated-gasification-combined-cycle (IGCC) power systems. Among the various available coal-to-electricity pathways, IGCC power plants have the most potential with high thermal efficiency, simple system configuration, low emissions of SO{sub 2}, NO{sub x} and other contaminants, modular design, and low capital cost. Due to these advantages, the power plants of the 21st century are projected to utilize IGCC technology worldwide. Sorbents developed for sulfur removal are primarily zinc oxide-based inorganic materials, because of their ability to reduce fuel gas sulfur level to a few parts-per-million (ppm). This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. Specific objectives are to develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-{mu}m particle size range for transport reactor applications using semicommercial- to full commercial-scale spray dryers, to transfer sorbent production technology to private sector, and to provide technical support for Sierra Pacific`s Clean Coal Technology Demonstration plant and METC`s hot-gas desulfurization process development unit (PDU), both employing a transport reactor system.

Gupta, R.P.; Turk, B.S.; Gangwal, S.K. [Research Triangle Inst., Research Triangle Park, NC (United States)

1996-12-31T23:59:59.000Z

223

Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents  

DOE Green Energy (OSTI)

Effective syngas cleanup is one of the remaining major technical challenges yet to be resolved and one that will provide the most benefit to the suite of bio-thermochemical process technologies. Beyond tars and acid gases, which are themselves a significant detriment to reforming catalysts and associated equipment, semi-volatile metals can also damage cleanup systems, catalysts, and contaminate the fungible products. Metals are a difficult challenge to deal with whether using hot-gas filtration or low-temperature processing. Even though most of the metal tends to condense before the barrier filter of hot-gas cleanup systems, some small percentage of the metal (large enough to damage syngas-reforming catalysts, the candle filters themselves, and gas turbine blades) does pass through these barrier filters along with the clean syngas. Low-temperature processing requires expensive measures to remove metals from the process stream. Significant costs are required to remove these metals and if they are not removed before contacting the catalyst, they will significantly reduce the life of the catalyst. One approach to solving the metals problem is to use high-temperature sorbents to capture all of the semi-volatile metals upstream of the barrier filter, which would prevent even small amounts of metal from passing through the filter with the clean syngas. High Temperature sorbents have already been developed that have been shown to be effective at capturing semi-volatile metals from vitiated combustion effluent, i.e., high-temperature flue gas. The objective on this project was to evaluate these same sorbents for their ability to scavenge metals from inert, reducing, and real syngas environments. Subsequently, it was the objective of this project to develop designer sorbents and an injection technology that would optimize the effectiveness of these sorbents at capturing metals from syngas, protecting the barrier filters from damage, and protecting the catalysts and other downstream equipment from damage. Finally, the high-temperature sorbent technology would be expanded to look at the role that these sorbents play in relation to tars and acid gases, which are the other significant pollutants within syngas. In addition to the technology development work described above, all of the information obtained in this work was to be incorporated into a syngas speciation model, which would allow direct prediction of transformations that occur in syngas as it passes from the gasifier and the sorbent-injection section and through the barrier filters. Unfortunately, Congressional budget cuts prevented most of this work from being accomplished. Hopefully, additional funds will be provided to this work in the future, which will allow its completion. However, at the halting point of this project, the following has been accomplished. A major initial objective of the project was accomplished, which was to determine whether or not high-temperature sorbents found to work within vitiated air might also work in an inert environment. Kaolinite, one of the sorbents previously investigated as a high-temperature sorbent for incinerators, was found to effectively capture potassium. In addition, while previous work on short-time (i.e., 1 to 2 seconds) dispersed-phase reactions found that sorbent utilization was limited to two metal oxide species captured for every one aluminosilicate crystal structure, the present investigation found that many times higher insoluble metal/sorbent capture ratios were obtained. This result not only suggests that small additions of sorbent might be highly effective, but the fact that the products were insoluble (in part due to the temperature of sorbent injection, i.e., < 1500 ?F) may be an indication that the products are unlikely to react with, corrode, or otherwise damage the candle-filter elements. There has been little work on the capture of potassium metal vapor by high-temperature sorbents, prior to this work. The fact that potassium can be effectively captured by kaolinite clay powder is a significant finding of th

Gale, Thomas K.; Walsh, Pete M.

2007-03-21T23:59:59.000Z

224

Lean NOx Trap Modeling in Vehicle Systems Simulations  

DOE Green Energy (OSTI)

A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

2010-09-01T23:59:59.000Z

225

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

226

Novel regenerable magnesium hydroxide sorbents for CO{sub 2} capture at warm gas temperatures  

SciTech Connect

A novel sorbent consisting of Mg(OH){sub 2} was developed for carbon dioxide (CO{sub 2}) capture at 200-315{sup o}C suitable for CO{sub 2} capture applications such as coal gasification systems. Thermodynamic analysis conducted with the FactSage software package indicated that the Mg(OH){sub 2} sorbent system is highly favorable for CO{sub 2} capture up to 400{sup o}C at 30 atm. MgCO{sub 3} formed during sorption decomposes to release CO{sub 2} at temperatures as low as 375{sup o}C up to 20 atm. MgO rehydroxylation to form Mg(OH){sub 2} is possible at temperatures up to 300{sup o}C at 20 atm. The experimental data show that the sorbent is regenerable at 375{sup o}C at high pressure and that steam does not affect the sorbent performance. A multicycle test conducted in a high-pressure fixed-bed flow reactor at 200{sup o}C with 28% CO{sub 2} showed stable reactivity during the cyclic tests. The capture capacity also increased with increasing pressure. The sorbent is unique because it exhibits a high CO{sub 2} capture capacity of more than 3 mol/kg at 200 {sup o}C and also is regenerable at a low temperature of 375 {sup o} C and high pressure. High-pressure regeneration is advantageous because the CO{sub 2} compression costs required for sequestration can be reduced.

Siriwardane, R.V.; Stevens, R.W. [US DOE, Morgantown, WV (USA). National Energy Technology Laboratory

2009-02-15T23:59:59.000Z

227

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

228

Texas A&M Penning Trap Facility - Design of the Measurement Trap  

E-Print Network (OSTI)

A tandem Penning trap facility has been designed and is under construction at the Texas A&M University Cyclotron Institute (TAMU-TRAP). The initial experimental program will be the study of correlation parameters for T=2 superallowed beta-delayed proton emitters. The measurement trap is a unique large-bore optimized 5-electrode cylindrical Penning trap, which features a 90 mm free radius, larger than in any existing Penning trap. This novel geometry allows for full radial containment of decay products of interest. The trap has also been designed to exhibit a "tunable" and "orthogonalized" geometry, which is useful for alternate experiments.

Mehlman, M; Shidling, P D

2012-01-01T23:59:59.000Z

229

Texas A&M Penning Trap Facility - Design of the Measurement Trap  

E-Print Network (OSTI)

A tandem Penning trap facility has been designed and is under construction at the Texas A&M University Cyclotron Institute (TAMU-TRAP). The initial experimental program will be the study of correlation parameters for T=2 superallowed beta-delayed proton emitters. The measurement trap is a unique large-bore optimized 5-electrode cylindrical Penning trap, which features a 90 mm free radius, larger than in any existing Penning trap. This novel geometry allows for full radial containment of decay products of interest. The trap has also been designed to exhibit a "tunable" and "orthogonalized" geometry, which is useful for alternate experiments.

M. Mehlman; D. Melconian; P. D. Shidling

2012-08-20T23:59:59.000Z

230

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Sorbents as a Solid Sorbents as a Retrofit Technology for CO 2 Capture from Coal-fired Power Plants Background Retrofitting the current fleet of pulverized coal (PC)-fired power plants for the separation and sequestration of carbon dioxide (CO 2 ) is one of the most significant challenges for effective, long-term carbon management. Post-combustion CO 2 capture using solid-sorbent based technologies is a potential resolution to this challenge that could be appropriate for both new and existing PC-fired power plant

231

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1992-01-01T23:59:59.000Z

232

Trapping Rydberg Atoms in an Optical Lattice  

Science Conference Proceedings (OSTI)

Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S{yields}51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D{sub 5/2} Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.

Anderson, S. E.; Younge, K. C.; Raithel, G. [FOCUS Center, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2011-12-23T23:59:59.000Z

233

Trapping and Measuring Charged Particles in Liquids  

Genome sequencing especially benefits from the nanoscale approach. The trap is a three-layer, three-dimensional crossing metal/insulator structure.

234

Trapping and Measuring Charged Particles in Liquids  

Using molecular dynamics simulations, the researchers found that particles are trapped in liquid environments when appropriate AC/DC electric fields ...

235

EFFICIENT THEORETICAL SCREENING OF SOLID SORBENTS FOR CO2 CAPTURE APPLICATIONS  

SciTech Connect

Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.

Duan, Yuhua; Sorescu, Dan C; Luebke, David

2011-01-01T23:59:59.000Z

236

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1991-08-01T23:59:59.000Z

237

Cross-flow filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-05-01T23:59:59.000Z

238

Nonradiometric and radiometric testing of radioiodine sorbents using methyl iodide  

SciTech Connect

A nonradiometric test of adsorbents and adsorbers with normal methyl iodide (CH/sub 3//sup 127/I) is desirable. Use of methyl radioiodide (CH/sub 3//sup 131/I) requires special precautions and facilities and results in bed contamination. However, first it must be established to what extent the removal of CH/sub 3//sup 127/I by adsorbents is indicative of the removal of CH/sub 3//sup 131/I. An experimental apparatus was built and used to simultaneously measure the penetrations of CH/sub 3/I molecules and the radioisotope in CH/sub 3//sup 131/I through charcoal absorbent beds. Gas chromatography with electron capture detection was used to measure CH/sub 3/I. Radioiodine was measured using charcoal traps within NaI scintillation well crystals. Real time (5-min interval) radioiodine measurement provided immediate penetration results directly comparable to the real time penetrations of methyl iodide. These penetrations were compared for typical charcoal adsorbents with these impregnants: (a) 5% KI/sub 3/, (b) 5% KI/sub 3/ + 2% TEDA, (c) 5% TEDA, and (d) metal salts (Whetlerite). Differences between CH/sub 3/I and CH/sub 3//sup 131/I penetrations observed for the two iodized charcoals were attributed to isotope exchange reactions. Equivalent penetrations were observed for non-iodized adsorbents and for iodized ones at initial time. First order rates were confirmed for reactions with TEDA and for isotope exchange. This was one more confirmation of the lack of a challenge concentration effect on efficiencies at low test bed loadings. In addition to other removal mechanisms, reversible physical adsorption was observed with all charcoals.

Wood, G.O.; Valdez, F.O.

1980-01-01T23:59:59.000Z

239

Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1994-10-01T23:59:59.000Z

240

Stabilization and/or regeneration of spent sorbents from coal gasification. Technical report, September 1--November 30, 1991  

Science Conference Proceedings (OSTI)

The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient SO{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined. During this quarter sulfidation tests were conducted in a quartz fluidized-bed reactor in which the selected calcium-based sorbents were first calcined and then were reacted with hydrogen sulfide at ambient pressure and 1650{degree}F. These tests were conducted with each sorbent in two particle sizes. Chemical analyses of the partially sulfided sorbents indicate that the extent of sulfidation was in the range of 40--50%. The partially sulfided material will be reacted with oxygen to determine the effects of temperature and SO{sub 2} partial pressure on the stabilization of the calcium sulfide in solid waste materials. 23 refs., 1 fig., 2 tabs.

Abbasian, J.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MODELING POWDERED SORBENT INJECTION IN COMBINATION WITHE FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

POWDERED SORBENT INJECTION IN POWDERED SORBENT INJECTION IN COMBINATION WITH FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS Joseph R. V. Flora Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208 Richard A. Hargis, William J. O'Dowd, Henry W. Pennline National Energy Technology Laboratory, U.S. Department of Energy P.O. Box, 10940, Pittsburgh, PA 15236 Radisav D. Vidic * Department of Civil and Environmental Engineering University of Pittsburgh, Pittsburgh, PA 15261 ABSTRACT A two-stage mathematical model for mercury removal using powdered activated carbon injection upstream of a baghouse filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal due to the

242

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

243

Ion Trap in a Semiconductor Chip  

E-Print Network (OSTI)

The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.

D. Stick; W. K. Hensinger; S. Olmschenk; M. J. Madsen; K. Schwab; C. Monroe

2006-01-09T23:59:59.000Z

244

CO2 Capture from Flue Gas Using SOlid Molecular Basket Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

from Flue Gas Using Solid from Flue Gas Using Solid Molecular Basket Sorbents Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

245

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

246

Mercury Emissions from Curing Concretes that Contain Fly Ash and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the release of mercury from concrete containing fly ash and powdered activated carbon sorbents used to capture mercury. The concretes studied in this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing powdered activated carbon (PAC). Minute quantities of mercury were emitted from five concretes during the standard 28-day curing process and throughout an additional 28 days of curing for two of these concretes. Ge...

2006-09-07T23:59:59.000Z

247

Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications*  

SciTech Connect

By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and the available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, which obtained either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycles. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and are further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our computational screening procedure, in this presentation we will summarize our results for solid systems composed by alkali and alkaline earth metal oxides, hydroxides, and carbon- ates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O with SiO2/ZrO2 with different mixing ratios, our preliminary results showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. Overall these theoretical predictions are found to be in good agreement with available experimental findings

Duan, Yuhua; Luebke, David; Pennline, Henry

2012-03-31T23:59:59.000Z

248

Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993  

SciTech Connect

The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hepworth, M.T.; Slimane, R.B.

1994-01-01T23:59:59.000Z

249

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

250

Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent  

DOE Patents (OSTI)

A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

Siriwardane, Ranjani V; Stevens, Jr., Robert W

2013-06-25T23:59:59.000Z

251

Development of Disposable Sorbents for Chloride Removal from High-Temperature Coal-Derived Gases  

Science Conference Proceedings (OSTI)

The integrated coal-gasification combined-cycle approach is an efficient process for producing electric power from coal by gasification, followed by high-temperature removal of gaseous impurities, then electricity generation by gas turbines. Alternatively, molten carbonate fuel cells (MCFC) may be used instead of gas turbine generators. The coal gas must be treated to remove impurities such as hydrogen chloride (HCl), a reactive, corrosive, and toxic gas, which is produced during gasification from chloride species in the coal. HCl vapor must be removed to meet environmental regulations, to protect power generation equipments such as fuel cells or gas turbines, and to minimize deterioration of hot coal gas desulfurization sorbents. The objectives of this study are to: (1) investigate methods to fabricate reactive sorbent pellets or granules that are capable of reducing HCl vapor in high-temperature coal gas streams to less than 1 ppm in the temperature range 400{degrees}C to 650{degrees}C and the pressure range 1 to 20 atm; (2) testing their suitability in bench-scale fixed- or fluidized-bed reactors; (3) testing a superior sorbent in a circulating fluidized- bed reactor using a gas stream from an operating coal gasifier; and (4) updating the economics of high temperature HCl removal.

Krishnan, G.N.; Canizales, A. [SRI International, Menlo Park, CA (United States); Gupta, R. [Research Triangle Inst., Research Triangle Park, NC (United States); Ayala, R. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

1996-12-31T23:59:59.000Z

252

Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report  

Science Conference Proceedings (OSTI)

The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.

Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.; Maskew, J.T.

1994-12-01T23:59:59.000Z

253

Effects of sorbent injection for sulfur dioxide removal on particulate control systems for coal-fired boilers. Final report, October 1984-October 1987  

Science Conference Proceedings (OSTI)

This report describes studies undertaken to quantify the effects of dry SO2 sorbent injection on electrostatic precipitator (ESP) operation with a coal-burning utility boiler. The specific operation of interest was EPA's limestone injection, multistage burners (LIMB) process. The combination of spent sorbent and fly ash has a higher resistivity, a higher mass concentration, and a finer particle-size distribution than the ash alone; all of these factors diminish the effectiveness of ESP. Also investigated was chemical conditioning to reduce the resistivity problem, the only one of three concerns stemming from sorbent injection that can be readily mitigated. Other topics studied were: the recycle, disposal, and utilization of waste-ash/sorbent mixtures; the selection and modification of sorbents to improve SO2 capture in the furnace; and the reactivation of spent sorbent by humidification to achieve supplemental post-furnace capture of SO2.

Gooch, J.P.; DuBard, J.L.; Faulkner, M.G.; Marchant, G.H.; Dahlin, R.S.

1988-11-01T23:59:59.000Z

254

The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants  

SciTech Connect

The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.

Robin Stewart

2008-03-12T23:59:59.000Z

255

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

None

1998-06-01T23:59:59.000Z

256

Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

None

1998-09-01T23:59:59.000Z

257

Parameter exploration of optically trapped liquid aerosols  

E-Print Network (OSTI)

When studying the motion of optically trapped particles on the $\\mu s$ time scale, in low viscous media such as air, inertia cannot be neglected. Resolution of unusual and interesting behaviour not seen in colloidal trapping experiments is possible. In attempt to explain the phenomena we use power spectral methods to perform a parameter study of the Brownian motion of optically trapped liquid aerosol droplets concentrated around the critically damped regime. We present evidence that the system is suitably described by a simple harmonic oscillator model which must include a description of Fax\\'{e}n's correction, but not necessarily frequency dependent hydrodynamic corrections to Stokes' law. We also provide results describing how the system behaves under several variables and discuss the difficulty in decoupling the parameters responsible for the observed behaviour. We show that due to the relatively low dynamic viscosity and high trap stiffness it is easy to transfer between over- and under-damped motion by experimentally altering either trap stiffness or damping. Our results suggest stable aerosol trapping may be achieved in under-damped conditions, but the onset of deleterious optical forces at high trapping powers prevents the probing of the upper stability limits due to Brownian motion.

D. R. Burnham; P. J. Reece; D. McGloin

2009-07-27T23:59:59.000Z

258

Controlling trapping and ejection of ions from multipole ...  

Controlling trapping and ejection of ions from multipole guides and traps ... The concept can be used to control the kinetic energy of the

259

Stabilization of spent sorbents from coal-based power generation processes. Technical report, September 1, 1995--November 30,1995  

Science Conference Proceedings (OSTI)

The overall objective of this study is to determine the effect of implementation of the new and more stringent EPA Protocol Test Method involving sulfide containing waste, on the suitability of the oxidized spent sorbents from gasification of of high sulfur coals for disposal in landfills, and to determine the optimum operating conditions in a ``final`` hydrolysis stage for conversion of the residual calcium sulfide in these wastes to materials that are suitable for disposal in landfills. An additional objective is to study the effect of ash on the regeneration and ash-sorbent separation steps in the Spent Sorbent Regeneration Process (SSRP). To achieve these objectives, a large set of oxidized samples of sulfided calcium-based sorbents (produced in earlier ICCI-funded programs) as well as oxidized samples of gasifier discharge (containing ash and spent sorbent) are tested according to the new EPA test protocol. Samples of the oxidized spent sorbents that do not pass the EPA procedure are reacted with water and carbon dioxide to convert the residual calcium sulfide to calcium carbonate. During this quarter, samples of oxidized sulfided calcium-based sorbents, including untreated calcium sulfide-containing feed materials, were analyzed using both weak acid and more stringent strong acid tests. Preliminary analysis of the H{sub 2}S leachability test results indicate that all samples (including those that were not oxidized) pass the EPA requirement of 500 mg H{sub 2}S per kg of solid waste. However, under the strong acid test procedure, samples containing more than 2.5% calcium sulfide fail the EPA requirement.

Abbassian, J.; Hill, A.H. [Institute of Gas Technology, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

260

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Laser cooling and trapping of neutral atoms*  

Science Conference Proceedings (OSTI)

... 1 m/s, any gas in equilibrium (other than spin-polarized atomic hydro- ... lattice-trapped atoms, a physical picture with the simplicity and power of the ...

2010-08-23T23:59:59.000Z

262

Trapped Ions and Laser Cooling 11  

Science Conference Proceedings (OSTI)

... 2 GHz I ... monic well, eg, the absorption spectrum for the secular motion in an rf trap ... a sin- gle atom [mass of 100 u (atomic mass units)] starts from rest ...

2002-08-07T23:59:59.000Z

263

Microfabrication techniques for trapped ion quantum ...  

Science Conference Proceedings (OSTI)

... used for micro-traps, starting with stacking multiple wafers to form a ... dc rf dc rf dc ... This section starts with a description of the tried and true gold-on ...

2010-07-21T23:59:59.000Z

264

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

265

Trapping of strangelets in the geomagnetic field  

E-Print Network (OSTI)

Strangelets coming from the interstellar medium (ISM) are an interesting target to experiments searching for evidence of this hypothetic state of hadronic matter. We entertain the possibility of a {\\it trapped} strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the ISM flux (up to two orders of magnitude) due to quasi-stable trapping.

L. Paulucci; J. E. Horvath; G. A. Medina-Tanco

2007-07-22T23:59:59.000Z

266

Trapping of strangelets in the geomagnetic field  

Science Conference Proceedings (OSTI)

Strangelets arriving from the interstellar medium are an interesting target for experiments searching for evidence of this hypothetical state of hadronic matter. We entertain the possibility of a trapped strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely, having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the interstellar medium flux (up to 2 orders of magnitude) due to quasistable trapping.

Paulucci, L.; Horvath, J. E.; Medina-Tanco, G. A. [Instituto de Fisica-Universidade de Sao Paulo, Rua do Matao, Travessa R, 187, 05508-090, Cidade Universitaria, Sao Paulo SP (Brazil); Instituto de Astronomia, Geofisica e Ciencias Atmosfericas-Universidade de Sao Paulo, Rua do Matao, 1226, 05508-900, Cidade Universitaria, Sao Paulo SP (Brazil); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico A.P. 70-543, C.U. Mexico D.F. (Mexico)

2008-02-15T23:59:59.000Z

267

Trapping of strangelets in the geomagnetic field  

E-Print Network (OSTI)

Strangelets coming from the interstellar medium (ISM) are an interesting target to experiments searching for evidence of this hypothetic state of hadronic matter. We entertain the possibility of a {\\it trapped} strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the ISM flux (up to two orders of magnitude) due to quasi-stable trapping.

Paulucci, L; Medina-Tanco, G A

2007-01-01T23:59:59.000Z

268

Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, March 1, 1992--May 31, 1992  

Science Conference Proceedings (OSTI)

The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water using the SSRP to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

1992-10-01T23:59:59.000Z

269

Stabilization and/or regeneration of spent sorbents from coal gasification. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

The objective of this investigation was to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide during the stabilization step. An additional objective of this study was to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent Ca-based sorbent, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents were reacted with oxygen and SO{sub 2} at various operating conditions and the extent of CaS and CaO conversion were determined. Partially sulfided dolomite was used in sulfidation/regeneration over several cycles and the regeneration efficiency and sorbent reactivity were determined after each cycle. The results of the stabilization tests show that partially sulfided Ca-based sorbents (both limestone and dolomite) can be sulfated at temperatures above 1500{degrees}F resulting in high CaS conversion without release of SO{sub 2} producing environmentally acceptable material for disposal in landfills. The results also indicate that spent dolomite can be regenerated in the SSRP process, in successive cycles, with high regeneration efficiency without loss of reactivity toward hydrogen sulfide.

Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

1992-12-31T23:59:59.000Z

270

Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, December 1, 1991--February 29, 1992  

SciTech Connect

The objective of this investigation is to determine the effects of SO, partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

Abbasian, J.; Hill, A.H.; Wangerow, J.R.

1992-08-01T23:59:59.000Z

271

DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION  

SciTech Connect

For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

Panagiotis G. Smirniotis

2005-01-30T23:59:59.000Z

272

Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications  

Science Conference Proceedings (OSTI)

Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.

Duan, Yuhua

2012-11-02T23:59:59.000Z

273

ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS  

SciTech Connect

Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

2010-07-31T23:59:59.000Z

274

LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL  

Science Conference Proceedings (OSTI)

Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

2011-05-27T23:59:59.000Z

275

Sorbent Activation Process for Mercury Control: Field Testing at the Ameren Meredosia Power Plant  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Illinois State Geological Survey have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas upstream of the particulate control device for mercury adsorption. The SAP process is designed to help significantly reduce the cost of AC for power plant mercury control. This report summa...

2009-12-03T23:59:59.000Z

276

Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents  

SciTech Connect

The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur. and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide. but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur. resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium.

Baltrus, J.P.; Granite, E.J.; Rupp, E.C.; Stanko, D.C.; Howard, B.; Pennline, H.W.

2011-01-01T23:59:59.000Z

277

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

278

Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degrees} to 850{degrees}C. In this program, structural and kinetic studies are conducted on various compositions of the two selected copper-based sorbents to determine the optimum sorbent composition. The effect of operating conditions on the performance of the sorbents alone with the stability and regenerability of the selected sorbents in successive sulfidation/regeneration operation are determined. Parametric multicycle desulfurization tests were conducted this quarter in a bench-scale (5-cm-diameter) quartz reactor at one atmosphere using the CuCr{sub 2}O{sub 4} and CuO/CeO{sub 2} sorbents. The parameters studied included temperature, space velocity, and feed gas composition. Both sorbents were able to reduce the H{sub 2}S concentration of the reactor feed gas to <10 ppM under all conditions tested. The apparent reactivity of the CuO/CeO{sub 2} sorbent was lower after the first cycle which may be attributed to incomplete regeneration caused by sulfate formation.

Hill, A.H.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Li [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1993-09-01T23:59:59.000Z

279

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

Science Conference Proceedings (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

280

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.

Not Available

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Trapping and dark current in plasma-based accelerators  

SciTech Connect

The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

2004-06-01T23:59:59.000Z

282

Proceedings: 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, Volume 1: Sorbents, Process Research, an d Dispersion; Volume 2: Economics, Power Plant and Commercial Applications  

Science Conference Proceedings (OSTI)

Fundamental sorbent research, postfurnace injection, system impacts, and commercial applications were among the topics discussed at the second symposium on dry sorbent injection technologies. Injection of these sorbents offers an SO2 emissions control alternative that is potentially simpler and cheaper than conventional flue gas desulfurization systems.

1986-12-22T23:59:59.000Z

283

Development of a Dry Sorbent-Based Post Combustion CO2 Capture Technology for Retrofit in Existing Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent-Based Dry Sorbent-Based Post Combustion CO 2 Capture Technology for Retrofit in Existing Power Plants Background Currently available commercial processes to remove carbon dioxide (CO 2 ) from flue gas streams are costly and energy intensive. RTI International is heading a research team to continue development and scale-up of an innovative process for CO 2 capture that has significant potential to be less expensive and less energy intensive than conventional technologies. The "Dry Carbonate Process" utilizes a dry,

284

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

285

Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation  

E-Print Network (OSTI)

Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.

S. Charles Doret; Jason M. Amini; Kenneth Wright; Curtis Volin; Tyler Killian; Arkadas Ozakin; Douglas Denison; Harley Hayden; C. -S. Pai; Richart E. Slusher; Alexa W. Harter

2012-04-18T23:59:59.000Z

286

Modular cryostat for ion trapping with surface-electrode ion traps  

E-Print Network (OSTI)

We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access, and enables rapid turnaround and flexiblity for future modifications. Long rectangular windows provide nearly 360 degrees of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics, and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

Grahame Vittorini; Kenneth Wright; Kenneth R. Brown; Alexa W. Harter; S. Charles Doret

2013-02-20T23:59:59.000Z

287

Fly ash properties and mercury sorbent affect mercury release from curing concrete  

Science Conference Proceedings (OSTI)

The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe [State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2009-04-15T23:59:59.000Z

288

Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993  

Science Conference Proceedings (OSTI)

The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

Hepworth, M.T.

1993-03-31T23:59:59.000Z

289

Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

2013-07-30T23:59:59.000Z

290

Charge trapping in imidazolium ionic liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

trapping in imidazolium ionic liquids trapping in imidazolium ionic liquids I. A. Shkrob and J. F. Wishart J. Phys. Chem. B 113, 5582-5592 (2009). [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Room-temperature ionic liquids (ILs) are a promising class of solvents for applications ranging from photovoltaics to solvent extractions. Some of these applications involve the exposure of the ILs to ionizing radiation, which stimulates interest in their radiation and photo- chemistry. In the case of ILs consisting of 1,3-dialkylimidazolium cations and hydrophobic anions, ionization, charge transfer and redox reactions yield charge-trapped species thought to be radicals resulting from neutralization of the constituent ions. Using computational chemistry methods and the recent results on electron spin resonance (ESR) and transient absorption

291

Energy Savings Through Steam Trap Management  

E-Print Network (OSTI)

Sustainability and energy management are broad topics which have become a common focus in industry. Recognizing the need for greater cost reduction and competitive advantage through sustainability, industry is putting forth resources to improve energy management controls. When the topic of energy management relates to steam trap management however, the focus becomes less clear and action less notable. The seemingly “low hanging” fruit of steam traps are not often tied to significant and sustainable energy management projects. Typically this holds true because of the failure of industry to put a value on the cost of steam and because of the lack of energy tracking from failed steam traps as part of best practice. The use of technology can help industry transform how steam systems are managed and sustainability in steam systems is achieved.

Gibbs, C.

2008-01-01T23:59:59.000Z

292

Thermal electric vapor trap arrangement and method  

DOE Patents (OSTI)

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

Alger, Terry (Tracy, CA)

1988-01-01T23:59:59.000Z

293

Marginally outer trapped surfaces in higher dimensions  

E-Print Network (OSTI)

We review the basic setup of Kaluza-Klein theory, namely a 5-dimensional vacuum with a cyclic isometry, which corresponds to Einstein-Maxwell-dilaton theory in 4-dimensional spacetime. We first recall the behaviour of Killing horizons and its generators under bundle lift and projection. We then show that the property of compact surfaces of being (stably) marginally trapped is preserved under lift and projection provided the appropriate ("Pauli-") conformal scaling is used for the spacetime metric. We also discuss and compare recently proven area inequalities for stable axially symmetric 2-dimensional and 3-dimensional marginally outer trapped surfaces.

Tim-Torben Paetz; Walter Simon

2013-02-13T23:59:59.000Z

294

Parametric Resonance of Optically Trapped Aerosols  

E-Print Network (OSTI)

The Brownian dynamics of an optically trapped water droplet are investigated across the transition from over to under-damped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape typical of over-damped systems (beads in liquid solvents), to a damped harmonic oscillator spectrum showing a resonance peak. In this later under-damped regime, we excite parametric resonance by periodically modulating the trapping power at twice the resonant frequency. The power spectra of position fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically modulated Langevin equation.

R. Di Leonardo; G. Ruocco; J. Leach; M. J. Padgett; A. J. Wright; J. M. Girkin; D. R. Burnham; D. McGloin

2007-02-23T23:59:59.000Z

295

The Engineered Approach to Energy and Maintenance Effective Steam Trapping  

E-Print Network (OSTI)

The engineered approach to steam trap sizing, selection and application has proven effective in significantly reducing a plant's fuel consumption, maintenance and trap replacement costs while improving thermal efficiency and overall steam system performance. New field test procedures for measuring condensate load and steam loss have proven valuable in sizing traps and to determine which trap is the most energy efficient. The combination of using the engineered approach to steam trapping, field tests to verify trap performance and good maintenance practices has contributed to a major reduction in energy consumption of 10-50% in many industrial plants.

Krueger, R. G.; Wilt, G. W.

1980-01-01T23:59:59.000Z

296

Marginally trapped surfaces in spaces of oriented geodesics  

E-Print Network (OSTI)

We investigate the geometric properties of marginally trapped surfaces (surfaces which have null mean curvature vector) in the spaces of oriented geodesics of Euclidean 3-space and hyperbolic 3-space, endowed with their canonical neutral Kaehler structures. We prove that every rank one surface in these four manifolds is marginally trapped. In the Euclidean case we show that Lagrangian rotationally symmetric sections are marginally trapped and construct an explicit family of marginally trapped Lagrangian tori. In the hyperbolic case we explore the relationship between marginally trapped and Weingarten surfaces, and construct examples of marginally trapped surfaces with various properties.

Brendan Guilfoyle; Nikos Georgiou

2013-05-28T23:59:59.000Z

297

Kinetic studies of dry sorbents for medium temperature application. Final report, September 1, 1993--August 31, 1994  

SciTech Connect

The purpose of this project is to study the fundamental nature of the sorbent reactivity and reaction kinetics in the medium temperature range from 600{degrees}F to 1200{degrees}F available in the convective pass of a boiler upstream of the economizer, where dry sorbents are injected to remove SO{sub 2} from the flue gas. Research focus is on the fundamental mechanisms of sorbent-flue gas interaction under economizer and hot baghouse conditions utilizing the experimental setup and the results of the first three years of research. During the fourth year, the interference of carbonation reaction to sulfation reaction was studied as well as the concentration dependency of the sulfation reaction. The data to date showed that the carbonation did not interfere the sulfation reaction rate for reactions taking place less than 1 second. However, there was significant decrease in carbonation conversion when the sulfation reaction took place simultaneously. The levels of SO{sub 2} concentration had negligible effects on reaction rates when the concentration was maintained above 3000 ppM. An n-th order deactivation kinetic model was also developed during the fourth year to model the kinetics of various reactions. This model is particularly useful for the dry sorbent reactions, since the apparent rate constants rapidly decrease during the first 1 second of exposure to various gaseous reactants.

Khang, Soon-Jai; Keener, T.C.; Wang, Zhenwei [Cincinnati Univ., OH (United States)

1995-02-01T23:59:59.000Z

298

'Molecular Basket' sorbents for separation of CO{sub 2} and H{sub 2}S from various gas streams  

Science Conference Proceedings (OSTI)

A new generation of 'molecular basket' sorbents (MBS) has been developed by the optimum combination of the nanoporous material and CO{sub 2}/H{sub 2}S-philic polymer sorbent to increase the accessible sorption sites for CO{sub 2} capture from flue gas (Postdecarbonization), and for CO{sub 2} and H{sub 2}S separation from the reduced gases, such as synthesis gas, reformate (Predecarbonization), natural gas, coal/biomass gasification gas, and biogas. The sorption capacity of 140 mg of CO{sub 2}/g of sorb was achieved at 15 kPa CO{sub 2} partial pressure, which shows superior performance in comparison with other known sorbents. In addition, an exceptional dependence of MBS sorption performance on temperature for CO{sub 2} and H{sub 2}S was found and discussed at a molecular level via the computational chemistry approach. On the basis of the fundamental understanding of MBS sorption characteristics, an innovative sorption process was proposed and demonstrated at the laboratory scale for removing and recovering CO{sub 2} and H{sub 2}S, respectively, from a model gas. The present study provides a new approach for development of the novel CO{sub 2}/H{sub 2}S sorbents and may have a major impact on the advance of science and technology for CO{sub 2}/H{sub 2}S capture and separation from various gases.

Ma, X.L.; Wang, X.X.; Song, C.S. [Penn State University, University Park, PA (United States)

2009-04-15T23:59:59.000Z

299

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials,

Krutka, Holly; Sjostrom, Sharon

2011-07-31T23:59:59.000Z

300

EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS  

Science Conference Proceedings (OSTI)

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, so

Holly Krutka; Sharon Sjostrom

2011-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

Science Conference Proceedings (OSTI)

This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-03-01T23:59:59.000Z

302

Chapter 34: Catalysts and Sorbents for Thermochemical Conversion of Biomass to Renewable Biofuels-Material Development Needs  

DOE Green Energy (OSTI)

This chapter contains sections titled: (1) Introduction, (2) Catalysts for Catalytic Pyrolysis and Bio-Oil Upgrading, (3) High Temperature Sorbents for Syngas Clean Up, (4) Conditioning Biomass Derived Syngas, (5) Catalysts for Synthesis of Ethanol and Higher Alcohols from Syngas, (6) Summary, and (7) Acknowledgments.

Cheah, S.; Czernik, S.; Baldwin, R. M.; Magrini-Bair, K. A.; Hensley, J. E.

2011-01-01T23:59:59.000Z

303

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

304

Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion  

SciTech Connect

A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

Panagiotis Smirniotis

2002-09-17T23:59:59.000Z

305

The Spindown of Bottom-Trapped Plumes  

Science Conference Proceedings (OSTI)

This note considers the decay of a bottom-trapped freshwater plume after the causative freshwater inflow has ceased. It is shown that shortly after the low-density inflow stops, the barotropic pressure field that it created radiates away and the ...

Ricardo P. Matano; Elbio D. Palma

2010-07-01T23:59:59.000Z

306

Two-dimensional ion trap lattice on a microchip  

E-Print Network (OSTI)

Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more flexible ion trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, would lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, due to the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. In this article we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and we apply this advance to fabricate a 2D ion trap lattice on a microchip. Our scalable microfabricated architecture allows for reliable trapping of 2D ion lattices, long ion lifetimes due to the deep trapping potential, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.

R. C. Sterling; H. Rattanasonti; S. Weidt; K. Lake; P. Srinivasan; S. C. Webster; M. Kraft; W. K. Hensinger

2013-02-15T23:59:59.000Z

307

Towards a cryogenic planar ion trap for Sr-88  

E-Print Network (OSTI)

This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

Bakr, Waseem (Waseem S.)

2006-01-01T23:59:59.000Z

308

Ideal Multipole Ion Traps from Planar Ring Electrodes  

E-Print Network (OSTI)

We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. We illustrate the desirable properties of the traps by considering a few simple cases of confined ions. We predict that mm-scale surface traps may have trap depths as high as tens of electron volts, or micromotion amplitudes in a 2-D ion crystal as low as tens of nanometers, when parameters of a magnitude common in the field are chosen. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. In addition, ions with very high charge-to-mass ratios may be confined in the trap, and species of very different charge-to-mass ratios may be simultaneously confined. Applications of these traps include quantum information science, frequency metrology, and cold ion-atom collisions.

Robert J. Clark

2012-07-25T23:59:59.000Z

309

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

310

Enhancing the Use of Coals by Gas Reburning-Sorbent Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Enhancing the Use of Coals by Gas Reburning-Sorbent Injection A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial

311

Surface characterization of Pd/Al2O3 sorbents for mercury capture from fuel gas  

SciTech Connect

The surface composition of a series of Pd/alumina sorbents has been characterized to better understand the factors influencing their ability to adsorb mercury from fuel gas. Both a temperature effect and a dispersion effect were found. Maximum adsorption of Hg occurred at the -lowest temperature tested, 204°C, and decreased with increasing temperatures. Maximum adsorption of Hg on a per-atom basis of Pd is observed at low loadings of Pd ( < 8.5% Pd) due to better dispersion of Pd at those loadings; a change in its partitioning occurs at higher loadings. The presence of H2S 'in the fuel gas acts to promote the adsorption of Hg through its association with Hg in the Pd lattice.

Baltrus, J.P.; Granite, E.J.; Stanko, D.C.; Pennline, H.W.

2008-01-01T23:59:59.000Z

312

Porous desulfurization sorbent pellets containing a reactive metal oxide and an inert zirconium compound  

DOE Patents (OSTI)

Sorbent pellets for removing hydrogen sulfide from coal gas are prepared by combining a reactive oxide, in particular zinc oxide, with a zirconium compound such as an oxide, silicate, or aluminate of zirconium, and an inorganic binder and pelletizing and calcining the mixture. Alternately, the zinc oxide may be replaced by copper oxide or a combination of copper, molybdenum, and manganese oxides. The pellet components may be mixed in dry form, moistened to produce a paste, and converted to pellets by forming an aqueous slurry of the components and spray drying the slurry, or the reactive oxide may be formed on existing zirconium-containing catalyst-carrier pellets by infusing a solution of a salt of the active metal onto the existing pellets and firing at a high temperature to produce the oxide. Pellets made according to this invention show a high reactivity with hydrogen sulfide and durability such as to be useful over repeated cycles of sorption and regeneration.

Gardner, Todd H.; Gasper-Galvin, Lee D.

1996-12-01T23:59:59.000Z

313

Transport of Trapped-Ion Qubits within a Scalable Quantum ...  

Science Conference Proceedings (OSTI)

... 158 6.13 Glass vacuum envelope. . . . . ... 159 6.14 Picture of the trap inside of the glass envelope. . . . . ...

2010-12-03T23:59:59.000Z

314

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

DOE Green Energy (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

315

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

316

High voltage gas insulated transmission line with continuous particle trapping  

DOE Patents (OSTI)

This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

1983-01-01T23:59:59.000Z

317

Demonstration of a scalable, multiplexed ion trap for quantum information processing  

Science Conference Proceedings (OSTI)

A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control ...

D. R. Leibrandt; J. Labaziewicz; R. J. Clark; I. L. Chuang; R. J. Epstein; C. Ospelkaus; J. H. Wesenberg; J. J. Bollinger; D. Leibfried; D. J. Wineland; D. Stick; J. Sterk; C. Monroe; C.-S. Pai; Y. Low; R. Frahm; R. E. Slusher

2009-11-01T23:59:59.000Z

318

Use of Bullet Traps and Steel Targets  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USE OF BULLET TRAPS AND USE OF BULLET TRAPS AND STEEL TARGETS U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Notices This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities. Local DOE management is responsible for the proper execution of firearms-related programs for

319

Noise-enhanced trapping in chaotic scattering  

E-Print Network (OSTI)

We show that noise enhances the trapping of trajectories in scattering systems. In fully chaotic systems, the decay rate can decrease with increasing noise due to a generic mismatch between the noiseless escape rate and the value predicted by the Liouville measure of the exit set. In Hamiltonian systems with mixed phase space we show that noise leads to a slower algebraic decay due to trajectories performing a random walk inside Kolmogorov-Arnold-Moser islands. We argue that these noise-enhanced trapping mechanisms exist in most scattering systems and are likely to be dominant for small noise intensities, which is confirmed through a detailed investigation in the Henon map. Our results can be tested in fluid experiments, affect the fractal Weyl's law of quantum systems, and modify the estimations of chemical reaction rates based on phase-space transition state theory.

Altmann, Eduardo G; 10.1103/PhysRevLett.105.244102

2010-01-01T23:59:59.000Z

320

A quantum information processor with trapped ions  

E-Print Network (OSTI)

Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of $^{40}$Ca${^+}$ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm.

Philipp Schindler; Daniel Nigg; Thomas Monz; Julio T. Barreiro; Esteban Martinez; Shannon X. Wang; Stephan Quint; Matthias F. Brandl; Volckmar Nebendahl; Christian F. Roos; Michael Chwalla; Markus Hennrich; Rainer Blatt

2013-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Iterated dynamical maps in an ion trap  

E-Print Network (OSTI)

Iterated dynamical maps offer an ideal setting to investigate quantum dynamical bifurcations and are well adapted to few-qubit quantum computer realisations. We show that a single trapped ion, subject to periodic impulsive forces, exhibits a rich structure of dynamical bifurcations derived from the Jahn-Teller Hamiltonian flow model. We show that the entanglement between the oscillator and electronic degrees of freedom reflects the underlying dynamical bifurcation in a Floquet eigenstate.

M. Duncan; J. Links; G. J. Milburn

2007-11-16T23:59:59.000Z

322

Effect of trapping in degenerate quantum plasmas  

SciTech Connect

In the present work we consider the effect of trapping as a microscopic process in a plasma consisting of quantum electrons and nondegenerate ions. The formation of solitary structures is investigated in two cases: first when the electrons are fully degenerate and second when small temperature effects are taken into account. It is seen that not only rarefactive but coupled rarefactive and compressive solitons are obtained under different temperature conditions.

Shah, H. A.; Qureshi, M. N. S. [Department of Physics, GC University, Lahore 54000 (Pakistan); Tsintsadze, N. [Department of Physics, GC University, Lahore 54000 (Pakistan); Salam Chair, GC University, Lahore 54000 (Pakistan)

2010-03-15T23:59:59.000Z

323

What To Do With Cold Traps and Why  

E-Print Network (OSTI)

Increased emphasis on energy management has helped sites reduce system cost through the diagnosis and repair of “Leaking” or “Blowing” steam traps (“Leakage Failures”). Timely maintenance response is a significant action to lower energy use and GHG emissions generated by steam production. But, what action should be taken with Cold Traps? In every steam trap survey to determine the steam trap population’s current state of health, there are usually a significant amount of steam traps determined to be “Cold” or “Low Temp” (“Drainage Failures” or “Cold Traps”). It seems that site personnel commonly assign a lower response priority to these Drainage Failures traps, and sometimes actually implement a practice to intentionally convert Leaking traps into Cold Traps by closing the inlet stop valve to immediately stop energy leakage. Subsequently, they may label those traps as “Valved- Out” or “Out of Service,” but those trap stations were originally designed as needed to drain retained condensate from the system. So, the correct designation for such a trap station is “Cold,” regardless of the current intention. If the trap station does not drain condensate and is not hot, it is “Cold.” It can be astounding that many sites are not convinced of what actions or priority to take to repair Cold Traps, even while intrinsically understanding that there is something wrong with having Cold Traps that cannot drain condensate from a steam system. It often is simply because sites may not be fully aware of the potential dangers of uncorrected Cold Traps or the significant safety, reliability, and energy benefits of addressing them. Although safety is always the main priority, it cannot be overstated that there are huge reliability and energy benefits to prioritized repair of Cold Traps. Unfortunately, proactive response to repair Cold Traps in a steam system is not always achieved, often because the real benefits of such a response are not understood. Therefore, further review of “WHAT TO DO ABOUT COLD TRAPS…AND WHY?” is warranted for safe, reliable, and energy-efficient management of the condensate discharge locations (CDLs). Several tables are provided to help sites valuate the cost impact of Cold Traps in their steam systems by using readily available historical data.

Risko, J. R.; Walter, J. P.

2012-01-01T23:59:59.000Z

324

Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap  

E-Print Network (OSTI)

Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.

C. Amole; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; L. Kurchaninov; S. Jonsell; N. Madsen; S. Menary; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele

2012-01-18T23:59:59.000Z

325

Steam Traps-The Oft Forgotten Energy Conservation Treasure  

E-Print Network (OSTI)

In these days of high technology, the steam trap is often treated as a commodity item, forgotten by many and respected by a relative few. Yet, in many facilities, widespread undetected failure of steam traps has wasted 5-15% of a plant's total steam generation. Stopping this waste represents a major energy conservation treasure characterized by low investment and a fast payback. The proper application of steam trap technology requires the experience and judgment of a dedicated champion at each location. This paper will present an overview of a working steam trap program starting with the initial survey and loss estimates. Trap characteristics and performance by generic type will be discussed with practical examples utilized to illustrate the myths in steam trap sizing and the consequences of over-sizing. Standardization of trap inventory, training and follow-up are the other key program elements addressed.

Pychewicz, F. S.

1985-05-01T23:59:59.000Z

326

Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report  

Science Conference Proceedings (OSTI)

A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order of $400 per ton of SO{sub 2} and $900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.

Nelson, S. Jr. [Sorbent Technologies Corp., Twinsburg, OH (United States)

1994-06-01T23:59:59.000Z

327

Measurement and prediction of the resistivity of ash/sorbent mixtures produced by sulfur oxide control processes. Final report, Sep 86-Jun 88  

Science Conference Proceedings (OSTI)

The report describes the development of (1) a modified procedure for obtaining consistent and reproducible laboratory resistivity values for mixtures of coal fly ash and partially spent sorbent, and (2) an approach for predicting resistivity based on the chemical composition of the sample and the resistivities of the key compounds in the sample that are derived from the sorbent. Furnace and cold-side sorbent injection technologies for reducing the emission of sulfur oxides from electric generating plants firing medium- to high-sulfur coal are under development for retrofit applications. The particulate resulting from injecting this sorbent will be a mixture of coal fly ash and partially spent sorbent. The presence of this sorbent causes the resistivity of the mixture to be significantly higher than that of the fly ash alone. Since higher resistivity dusts are more difficult to collect in an electrostatic precipitator (ESP), accurate knowledge of the resistivity of the mixture is needed to determine if the ESP will operate within an acceptable efficiency range.

Young, R.P.

1991-12-01T23:59:59.000Z

328

Tri (2-chloroisopropyl) phosphate--an unexpected organochlorine contaminant in some charcoal air-sampling sorbent tubes  

SciTech Connect

Air sampling in a government building was necessary in response to reports of a cancer cluster. SKC (Eighty Four, Pa.) charcoal coconut shell-based sorbent tubes (226-01 lot 120) were recommended for this procedure. A recently purchased supply was present at the University of British Columbia and consequently was used for this particular study. Analysis of the front charcoal section showed the presence of a flame retardant, tri (2-chloroisopropyl) phosphate, which was confirmed by gas liquid chromatography (GLC) and mass spectrometry analysis. In an effort to identify the source of this fire retardant in the building, it became apparent from the analysis done on unknown field blanks that tri (2-chloroisopropyl) phosphate was a contaminant of the sorbent tubes used. Analysis of additional blank tubes identified the foam separators as the most likely source of contamination. Levels of tri (2-chloroisopropyl) phosphate in the front charcoal section ranged from 1.3 to 5.9 micrograms. The foam separator contained between 11.4 and 16.5 micrograms, and the backup charcoal section contained between 14.5 and 24.0 micrograms of tri (2-chloroisopropyl) phosphate. In addition, another flame retardant, tri (1,3 dichloro-2-propyl) phosphate was also found. Because these contaminants have long column retention times in GLC, it may not be apparent that these contaminants are present and consequently are likely to have modified the sorbent characteristics of the activated charcoal. Another batch of sorbent tubes bearing the same catalog number and lot number was purchased from the supplier; no flame retardants were found in this batch.

van Netten, C.; Brands, R.; Park, J.; Deverall, R. (Department of Health Care and Epidemiology, University of British Columbia, Vancouver, (Canada))

1991-09-01T23:59:59.000Z

329

Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory  

Science Conference Proceedings (OSTI)

At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

Bickford, J. [MSE Technology Applications, Inc., Butte, MT (United States); Kimmitt, R. [CH2M WG Idaho, LLC, Idaho National Laboratory, CF-601, MF-637, MS4201, Scoville, ID (United States)

2007-07-01T23:59:59.000Z

330

Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 16, 2005 through December 31, 2008 on the project entitled �Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete�. The project covers testing at three host sites: Progress Energy H.F. Lee Station and the Midwest Generation Crawford and Will County Stations. At Progress Energy Lee 1, parametric tests were performed both with and without SO{sub 3} injection in order to determine the impact on the mercury sorbent performance. In addition, tests were performed on the hot-side of the air preheater, before the SO{sub 3} is injected, with H-PAC� sorbents designed for use at elevated temperatures. The BPAC� injection provided the expected mercury removal when the SO{sub 3} injection was off. A mercury removal rate due to sorbent of more than 80% was achieved at an injection rate of 8 lb/MMacf. The operation with SO{sub 3} injection greatly reduced the mercury sorbent performance. An important learning came from the injection of H-PAC� on the hot-side of the air preheater before the SO{sub 3} injection location. The H-PAC� injected in this manner appeared to be independent of the SO{sub 3} injection and provided better mercury removal than with injecting on the cold-side with SO{sub 3} injection. Consequently, one solution for plants like Lee, with SO{sub 3} injection, or plants with SO{sub 3} generated by the SCR catalyst, is to inject H-PAC� on the hot-side before the SO{sub 3} is in the flue gas. Even better performance is possible by injecting on the cold-side without the SO{sub 3}, however. During the parametric testing, it was discovered that the injection of B-PAC� (or H-PAC�) was having a positive impact upon ESP performance. It was decided to perform a 3-day continuous injection run with B-PAC� in order to determine whether Lee 1 could operate without SO{sub 3} injection. If the test proved positive, the continuous injection would continue as part of the long-term test. The injection of B-PAC� did allow for the operation of Lee 1 without SO{sub 3} injection and the long-term test was conducted from March 8 through April 7, 2006. The total mercury removal for the 30-day long-term test, excluding the first day when SO{sub 3} was injected and the last day when a plain PAC was used, averaged 85%. The achievement of 85% Hg removal over the 30 days longterm test is another milestone in the history of achievement of the Albemarle Environmental f/k/a Sorbent Technologies Corporation B-PAC� sorbent. A clear indication of the impact of B-PAC� on opacity came at the end of the long-term test. It was hoped that Lee 1 could be operated for several days after the end of the long-term test. It took less than a day before the opacity began to increase. The discovery that B-PAC� can improve ESP performance while capturing a large amount of mercury is another milestone for the B-PAC� mercury sorbent. The parametric testing at the Midwest Generation Crawford Station was divided into two phases; the first using C-PAC�, the concrete friendly sorbent, and the other using nonconcrete friendly materials. The first phase of the parametric tests was conducted before the long-term test. The second phase of the parametric testing was performed after the long-term test in order to avoid contaminating the fly ash containing the concrete friendly sorbents. The parametric test began with an injection rate of 1 lb/MMacf and, after a period to allow the mercury concentration to stabilize, the rate was increased to 3 lb/MMacf. The Hg removal for this test was about 60% due to sorbent and 69% total at the injection rate of 1 lb/MMacf and 80% due to sorbent and 84% total for the 3 lb/MMacf injection rate. The average total vapor phase mercury removal for the first 21 days of the long-term test was 82% at an injection rate o

Ronald Landreth

2008-06-30T23:59:59.000Z

331

Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams  

SciTech Connect

The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

2013-10-01T23:59:59.000Z

332

A Novel Theoretical Method to Search Good Candidates of Solid Sorbents for CO2 Capture  

SciTech Connect

The increasing atmospheric CO2 concentration is the most important environmental issue of global warming that the world faces today. During past few decades, many technologies have been developing to separate and capture CO2 from coal gasifier. As high temperature CO2 absorbents, solid materials are potential candidates. Lithium silicate(Li4SiO4) and zirconate(Li2ZrO3) have been studying for CO2 capture by researchers at Toshiba and found that they absorb CO2 at 773K and release CO2 around 973K. Based on these well-known experimental exploring results on these lithium salts, we have been developing a novel theoretical methodology to search better solid materials for CO2 capture: (1) Based on the crystal structures of solids, the density functional calculations are performed to obtain their electronic structural properties and their binding energies. The energy change(?E) for the reaction solid_sorbent+CO2 ? sorbent_CO2+ solid are evaluated. (2) For a vast of data-bank of solid materials, as our first filter if |?E|<|?GLi2SiO4|, where ?G is the free energy change for reaction of Li2SiO4+CO2? Li2CO3 +Li2SiO3, we select this solid as a potential good candidate for CO2 capture. (3) For these possible candidates, we further perform phonon calculations and obtain their vibration frequencies. With them, partition functions of solids(Z) can be calculated out. With Z, the thermal dynamical properties (zero point energy, entropy, enthalpy, free energy, etc.) under different conditions (temperature(T), pressure(P)) can be readily calculated. With them, the chemical potentials(??)(functional of T and P) for the sorption/desorption reaction are evaluated. (4) Using ?? as our second filter, we can reduce the number of our selected good candidates to a small number of better candidates. (5) The last step is to make the fine tune (the 3rd filter) the better candidates to a small set of the best candidates by considering the operating conditions(T, P, etc.), absorbing CO2 weight percentage, stabilities, and the associated costs, etc.

Duan, Yuhua

2008-07-01T23:59:59.000Z

333

Void trapping of hydrogen in sintered iron  

DOE Green Energy (OSTI)

The effect of void trapping of hydrogen in iron was studied using the gas-phase permeation technique. Iron membranes of controlled void density, varying from 92% to 98% were prepared by press and sintering of electrolytic iron powder. The presence of internal voids showed no effect on the steady state flux of hydrogen through the membrane. The effective diffusivity, obtained by the time lag method, increased with the increase of input hydrogen partial pressure. This disagreement with the prediction of the theory in literature was explained by the existence of hydrogen in both the diatomic gaseous form and as adsorbed hydrogen. This explanation was further confirmed by examining the dependence of trapped hydrogen concentration with pressure. The linear dependence of trapped hydrogen concentration in voids with external hydrogen partial pressure for samples of 96%, 94% and 92% dense were given respectively by C/sub g/ = (1.5 +- 0.2) x 10/sup 15/ P + (3.2 +- 0.5) x 10/sup 14/ atoms of H/c.c. C/sub g/ = (2.1 +- 0.6) x 10/sup 15/ P + (1.7 +- 0.5) x 10/sup 15/ atoms of H/c.c. C/sub g/ = (4.5 +- 0.3) x 10/sup 15/ P + (6.5 +- 0.2) x 10/sup 15/ atoms of H/c.c. The discrepancy between the reported values and the values predicted by theory was explained by the poisoning of some of the voids by surface oxides.

Wong, K.C.

1976-09-01T23:59:59.000Z

334

Gas turbine engines with particle traps  

DOE Patents (OSTI)

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

335

Trapped Quintessential Inflation from Flux Compactifications  

E-Print Network (OSTI)

Quintessential inflation is studied using a string modulus as the inflaton - quintessence field. It is assumed that the modulus crosses an enhanced symmetry point (ESP) in field space. Particle production at the ESP temporarily traps the modulus resulting in a period of inflation. After reheating, the modulus freezes due to cosmological friction at a large value, such that its scalar potential is dominated by contributions due to fluxes in the extra dimensions. The modulus remains frozen until the present, when it can become quintessence.

Konstantinos Dimopoulos

2007-02-01T23:59:59.000Z

336

Universal digital quantum simulation with trapped ions  

E-Print Network (OSTI)

A digital quantum simulator is an envisioned quantum device that can be pro- grammed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. Using sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced and quantitative bounds are provided for the overall simulation quality. Our results demon- strate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.

B. P. Lanyon; C. Hempel; D. Nigg; M. Müller; R. Gerritsma; F. Zähringer; P. Schindler; J. T. Barreiro; M. Rambach; G. Kirchmair; M. Hennrich; P. Zoller; R. Blatt; C. F. Roos

2011-09-07T23:59:59.000Z

337

Impurity beam-trapping instability in tokamaks  

SciTech Connect

The sensitivity of neutron energy production to the impurity trapping of injected neutral beams is considered. This process is affected by inherent low-Z contamination of the tritium pre-heat plasma, by the species composition of the neutral beam, and by the entrance angle of the beam. The sensitivities of the process to these variables, and to the variation of wall material are compared. One finds that successful use of a low-Z, low-sputtering material can appreciably lengthen the useful pulse length. (auth)

Hogan, J.T.; Howe, H.C.

1976-01-01T23:59:59.000Z

338

Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes  

Science Conference Proceedings (OSTI)

Varying degrees of mercury (Hg) capture have been reported within the electrostatic precipitators (ESPs) of coal-fired electric utility boilers. There has been some speculation that the adsorption takes place on the particulate-covered plate electrodes. This convective mass transfer analysis of laminar and turbulent channel flows provides the maximum potential for Hg adsorption by the plate electrodes within an ESP under those conditions. Mass transfer calculations, neglecting electro hydrodynamic (EHD) effects, reveal 65% removal of elemental Hg for a laminar flow within a 15-m-long channel of 0.2-m spacing and 42% removal for turbulent flow within a similar configuration. Both configurations represent specific collection areas (SCAs) that are significantly larger than conventional ESPs in use. Results reflecting more representative SCA values generally returned removal efficiencies of {lt}20%. EHD effects, although potentially substantial at low Reynolds numbers, diminish rapidly with increasing Reynolds number and become negligible at typical ESP operating conditions. The present results indicate maximum Hg removal efficiencies for ESPs that are much less than those observed in practice for comparable ESP operating conditions. Considering Hg adsorption kinetics and finite sorbent capacity in addition to the present mass transfer analyses would yield even lower adsorption efficiencies than the present results. In a subsequent paper, the author addresses the mass transfer potential presented by the charged, suspended particulates during their collection within an ESP and the role they potentially play in Hg capture within ESPs. 28 refs., 4 figs.

Herek L. Clack [Illinois Institute of Technology, Chicago, IL (United States). Department of Mechanical, Materials, and Aerospace Engineering

2006-06-15T23:59:59.000Z

339

Deactivation of low-activity effluents from atomic electric power plants by selective inorganic sorbents  

SciTech Connect

This article examines some possible technological solutions toward simplifying the processing of waste water from the shower and laundry rooms of nuclear power plants. In particular, the radionuclides /sup 137/Cs, /sup 134/Cs and /sup 60/Co are considered, which provide the basic contribution to the radioactivity of the effluent from atomic electric power plants. The authors present a schematic diagram of the device for sorption decontamination of the water from the shower and special laundry rooms at the Beloyarsk plant, which is the control site of this experiment. The proposed sorption decontamination unit is characterized by a simple design, occupies little space, and, if automated, can operate virtually without attendance personnel. Charges of 100 liters of sorbent per column, placed simultaneously, are calculated for the processing of a total of 20,000 m/sup 3/ of water, ensuring a decontamination factor with respect to /sup 137/Cs and /sup 134/Cs radionuclides. With the columns operating in series, the decontamination factor with respect to /sup 60/Co is equal to 2, which would satisfy the annual requirements for the processing of waste water form the shower and special laundry rooms of a single atomic power plant with a power level of 100 MW.

Sharygin, L.M.; Moiseev, V.E.; Pyshkin, V.P.; Neshkov, P.F.; Kuz' mina, R.V.; Galkin, V.M.; Bragin, V.B.; Tsekh, A.R.

1987-07-01T23:59:59.000Z

340

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 13, October 1993--December 1993  

Science Conference Proceedings (OSTI)

In Dec 1989, the U.S. Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled {open_quotes}LIFAC Sorbent Injection Desulfurization Demonstration Project.{close_quotes} The host site for this $22 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75-85% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten month negotiation period, LIFAC NA and the U.S. DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the thirteenth Technical Progress Report covering the period October 1, 1993 through the end of December 1993. Due to the power plant`s planned outage in March 1991, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in Aug 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen  

DOE Green Energy (OSTI)

This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

Alan C. Cooper

2012-05-03T23:59:59.000Z

342

Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations  

SciTech Connect

It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}?1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O?1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.

Duan, Yuhua; Luebke, David; Pennline, Henry; Li, Liyu; King, David; Zhang; Keling; Zhao; Lifeng; Xiao, Yunhan

2012-01-01T23:59:59.000Z

343

New nano trap protects environment | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

New nano trap protects environment New nano trap protects environment By Tona Kunz * October 31, 2012 Tweet EmailPrint This story was originally published in volume 10, number 5 of Innovation magazine. A new type of nanoscale molecular trap makes it possible for industry to store large amounts of hydrogen in small fuel cells or capture, compact and remove volatile radioactive gas from spent nuclear fuel in an affordable, easily commercialized way. The ability to adjust the size of the trap openings to select for specific molecules or to alter how molecules are released at industrially accessible pressures makes the trap uniquely versatile. The trap is constructed of commercially available material and made possible through collaborative work at Argonne and Sandia national laboratories. "This introduces a new class of materials to nuclear waste remediation,"

344

Gas insulated transmission line having tapered particle trapping ring  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

345

Volatiles trapped in coals: Second quarterly report  

SciTech Connect

We have been able to collect and characterize volatiles that are evolved in the grinding of coal. We have developed a very sensitive method for collecting volatiles evolved in grinding. A sealed, gas tight, grinding apparatus has been built. With this system we can collect volatiles freed from the coal matrix during grinding. To do this a 125 cm/sup 3/ sample of coal is placed in to a 1 liter sealable ball mill jar. The jar is evacuated and the coal ground for 1 hr. The jar is then removed from the ball mill and evacuated into our sample collection system. Gas from the jar is pumped through two stages of dust filtering into a liquid nitrogen cold trap charged with 5 ml of methylene chloride. After warming the trap is shaken so that any gas from the sample mixes with and dissolves in the methylene chloride. One microliter samples of the methylene chloride are injected into a Finnegan GCMS. Preliminary analysis of mass spectra from peaks in the RIC show the presence of hydrocarbons. It was possible to definitively identify cyclohexene. The total amount of hydrocarbons seen is low. The attached figure is the mass spectra of the cyclohexene that was collected from the ground coal. 1 fig.

Sutter, J.R.; Halpern, J.B.

1988-01-01T23:59:59.000Z

346

Energy trapping from Hagedorn densities of states  

E-Print Network (OSTI)

In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

2013-04-26T23:59:59.000Z

347

Trap-depth determination from residual gas collisions  

SciTech Connect

We present a method for determining the depth of an atomic or molecular trap of any type. This method relies on a measurement of the trap loss rate induced by collisions with background gas particles. Given a fixed gas composition, the loss rate uniquely determines the trap depth. Because of the ''soft'' long-range nature of the van der Waals interaction, these collisions transfer kinetic energy to trapped particles across a broad range of energy scales, from room temperature to the microkelvin energy scale. The resulting loss rate therefore exhibits a significant variation over an enormous range of trap depths, making this technique a powerful diagnostic with a large dynamic range. We present trap depth measurements of a Rb magneto-optical trap using this method and a different technique that relies on measurements of loss rates during optical excitation of colliding atoms to a repulsive molecular state. The main advantage of the method presented here is its large dynamic range and applicability to traps of any type requiring only knowledge of the background gas density and the interaction potential between the trapped and background gas particles.

Van Dongen, J.; Zhu, C.; Clement, D.; Dufour, G.; Madison, K. W. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1 (Canada); Booth, J. L. [Physics Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, British Columbia, V5G 3H2 (Canada)

2011-08-15T23:59:59.000Z

348

How Algae Use a "Sulfate Trap" to Selectively Biomineralize Strontium...  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed How Algae Use a "Sulfate Trap" to Selectively Biomineralize Strontium OCTOBER 20, 2011 Bookmark...

349

Bait formulations and longevity of navel orangeworm egg traps tested  

E-Print Network (OSTI)

there were 1% or 3% crude almond oil received more eggshaving no letters crude almond oil or traps baited with inone standard error. crude almond oil received significantly

Kuenen, L.P.S. Bas; Bentley, Walt; Rowe, Heather; Ribeiro, Brian

2008-01-01T23:59:59.000Z

350

`Trapped' Ions Provide First View of Light Property  

Science Conference Proceedings (OSTI)

... PHYSICS `Trapped' Ions Provide First View of Light Property. ... Quantum theory states that light can act either as a wave or as a particle. ...

351

November 18, 2010: Antimatter Trapped and Stored | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Stored November 18, 2010 The Department's Lawrence Berkeley National Laboratory (LBNL) announces that atoms of antimatter have been trapped and stored for the first time in...

352

Onset of Fermi Degeneracy in a Trapped Atomic Gas  

Science Conference Proceedings (OSTI)

... in the total energy of the ultra- cold, trapped ... of charge e onto a cryogenic capacitor C, and ... standards are known as “calculable capacitors” and rely ...

2010-07-12T23:59:59.000Z

353

Bon MOT: Innovative Atom Trap Catches Highly Magnetic ...  

Science Conference Proceedings (OSTI)

... of a cloud of erbium atoms trapped and cooled and a ... all the while extracting energy and cooling them ... only a single laser and can cool erbium atoms ...

2011-07-18T23:59:59.000Z

354

Possible mechanism for enhancing the trapping and cooling of antihydrogen  

SciTech Connect

We propose a usage of microwave radiation in a magnetic trap for improving the cooling and trapping of cold antihydrogen atoms which are initially produced in high magnetic moment states. Inducing transitions toward lower magnetic moments near the turning points of the atom in the trap, followed by spontaneous emission, should enhance the number of trappable atoms. We present results of simulations based on a typical experimental condition of the antihydrogen experiments at CERN. This technique should also be applicable to other trapped high magnetic moment Rydberg atoms.

Cesar, C. L.; Zagury, N. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil); Robicheaux, F. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2009-10-15T23:59:59.000Z

355

Controlled Kinetic Energy Ion Source for Miniature Ion Trap ...  

with electronic signal sources coupled to the electrodes. The ion trap can be machined with conventional materials and methods and has demonstrated

356

Electron traps in organic light-emitting diodes  

Science Conference Proceedings (OSTI)

This work presents the effects of electron traps in organic light-emitting diodes using a model which includes charge injection

Min-Jan Tsai; Hsin-Fei Meng

2005-01-01T23:59:59.000Z

357

NIST Racetrack Ion Trap is a Contender in Quantum ...  

Science Conference Proceedings (OSTI)

... ion trap under development as possible hardware for a future quantum computer. ... loading of 10 magnesium ions at once and transport of an ion ...

2011-10-26T23:59:59.000Z

358

Trapping and Measuring Charged Particles in Liquids - Energy ...  

Genome sequencing especially benefits from the nanoscale approach. Description. The trap is a three-layer, three-dimensional crossing metal/insulator ...

359

Josephson oscillations between exciton condensates in electrostatic traps  

SciTech Connect

Technological advances allow for tunable lateral confinement of cold dipolar excitons in coupled quantum wells. We consider theoretically the Josephson effect between exciton condensates in two traps separated by a weak link. The flow of the exciton supercurrent is driven by the dipole-energy difference between the traps. The Josephson oscillations may be observed after ensemble average of the time correlation of photons separately emitted from the two traps. The fringe visibility is controlled by the trap coupling and is robust against quantum and thermal fluctuations.

Rontani, Massimo [CNR-INFM Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/A, 41125 Modena (Italy); Sham, L. J. [Department of Physics, University of California San Diego, La Jolla, California 92093-0319 (United States)

2009-08-15T23:59:59.000Z

360

Bait formulations and longevity of navel orangeworm egg traps tested  

E-Print Network (OSTI)

traps tested by L.P.S. (Bas) Kuenen, Walt Bentley, Heatherfor at least 10 weeks. L.P.S. (Bas) Kuenen is Research

Kuenen, L.P.S. Bas; Bentley, Walt; Rowe, Heather; Ribeiro, Brian

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tellurium Inclusions and Carrier Trapping Times in Detector Grade ...  

Science Conference Proceedings (OSTI)

Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay.

362

The angular momentum of a magnetically trapped atomic condensate  

E-Print Network (OSTI)

For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B-field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this paper we investigate the relationship between the values of the sum/difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.

P. Zhang; H. H. Jen; C. P. Sun; L. You

2006-11-14T23:59:59.000Z

363

Selection, Sizing, and Testing of Stream Traps in Commercial Buildings  

E-Print Network (OSTI)

For maximum effectiveness in steam systems, steam traps should have operating characteristics which closely match the requirements of the applications for which they are used. A trap which holds back condensate until it is subcooled and some of the sensible heat has been utilized is unsuitable where the need is to get maximum output from an exchanger by discharging condensate as soon as it forms. Equally, a trap discharging condensate at steam temperature can exacerbate flash steam problems in cases where surplus heat exchange area exists and a subcooling trap might be more suitable. In all cases, undersized traps simply cannot drain condensate from the steam equipment at the required rate, while oversized traps which cost more will usually wear faster and begin leaking expensive steam. This emphasizes the need for carefully selecting trap sizes that are properly engineered for maximum system efficiency. And, of course, the ability of a trap to cope with varying loads and to discharge noncondensible gases is often important. The recommended procedure is to first select the trap type which has performance capabilities that satisfy specific application needs, and then to choose a size which handles the condensate load without any unnecessary excess capacity. The Selection Guide, Table 1, is not comprehensive but helps in many applications where no unusual operating conditions or severe corrosion problems exist. Choosing the correct trap size then implies estimating the steam consumption rate, which of course equals the condensate load. Sometimes the load has already been measured, or the rated output of the steam equipment is known or can be obtained from the original manufacturer. In other cases, an estimate must be made and a Table o f Load Formulas will help although it, too, cannot be comprehensive. After making the best possible estimate of the load, a safety factor is applied. This allows for any inaccuracies in the estimating, for increased condensation rates at start-up, and for lower than anticipated pressure differentials across the trap.

Armer, A.; Risko, J. R.

1984-01-01T23:59:59.000Z

364

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 12, July--September 1993  

Science Conference Proceedings (OSTI)

In December 1989, the U.S. Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled {open_quotes}LIFAC Sorbent Injection Desulfurization Demonstration Project.{close_quotes} The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75-85% of the sulfur dioxide (SO{sub 2}) in the flue gas. The host site for this $22 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The three project phases are: (1) Design; (2A) Long Lead Procurement; (2B) Construction; and (3) Operations. The design phase began on August 8, 1990 and was scheduled to last six months. Phase 2A, long lead procurement, overlaps the design phase and was expected to require about four months to complete. The construction phase was then to continue for another seven months, while the operations phase was scheduled to last about twenty-six months. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the U.S. DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the twelfth Technical Progress Report covering the period July 1, 1993 through the end of September 1993. Due to the power plant`s planned outage in March 1991, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1993-12-31T23:59:59.000Z

365

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

366

Can aerosols be trapped in open flows?  

E-Print Network (OSTI)

The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.

Rafael D. Vilela; Adilson E. Motter

2007-06-10T23:59:59.000Z

367

Hydrobiologia vol. 65, I, pag. 65-68, 1979 A SIZE SELECTIVE UNDERWATER LIGHT TRAP  

E-Print Network (OSTI)

Hydrobiologia vol. 65, I, pag. 65-68, 1979 A SIZE SELECTIVE UNDERWATER LIGHT TRAP R. B. AIKEN underwater light trap isdescribed. Trap records indicate that the trap iseffective in taking a wide variety. (1955) described the construction and operation of an underwater light trap. Their records indi- cate

Aiken, Ron

368

Effective Steam Trap Selection/Maintenance - Its Payback  

E-Print Network (OSTI)

In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing, and it was not until the 1973 oil embargo that a need for regular maintenance became recognized. Although relatively small pieces of equipment, traps are responsible for large quantities of steam losses, decreased equipment efficiency and high maintenance costs; e.g., a steam trap leaking 100 psig steam through a 1/8 inch orifice costs at least $2k/yr if steam is valued at $5/k lb. Typically, a steam trap survey identifies 20-60% of traps malfunctioning. Therefore, establishing an effective steam trap selection/maintenance program is not simple but can be extremely profitable. This paper will show how a successful checking/maintenance program can result in high returns by using a case study at an Exxon plant. The example also shows how a central engineering organization can interact with plant technicians/ maintenance personnel to help implement an effective steam trap maintenance program at competitive costs and high returns.

Garcia, E.

1984-01-01T23:59:59.000Z

369

Energy Efficient Steam Trapping of Trace Heating Systems  

E-Print Network (OSTI)

Since as many as 40-60% of a plant's steam traps may be used on steam tracer lines, it is essential to select the correct, properly sized 'traps'; to optimize the efficient removal of condensate while providing maximum heat transfer to maintain desired product temperatures and greatly reduce steam losses. Factors related to achieving uniform product temperatures and maximum heat transfer rates and energy efficiency are: 1.Types and Methods used for Steam Tracing; 2. Systematic heat balance required to achieve economic tracer lengths; 3. Maximum allowable trapping distance for specific applications 4.Data important to determine condensate loads; 5. Trap selection, sizing, good installation practices, and proper maintenance. Using an engineered approach to steam trapping of trace heating systems have resulted in stable tracer line temperatures while reducing steam consumption 10-50% with minimum maintenance.

Krueger, R. G.; Wilt, G. W.

1981-01-01T23:59:59.000Z

370

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

Science Conference Proceedings (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

371

Measurements of electric field noise and light-induced charging in cryogenic surface electrode ion traps  

E-Print Network (OSTI)

Ion traps provide an excellent tool for controlling and observing the state of a single trapped ion. For this reason, ion traps have been proposed as a possible system for large-scale quantum computation. However, many ...

Lachenmyer, Nathan S. (Nathan Scott)

2010-01-01T23:59:59.000Z

372

Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator  

Science Conference Proceedings (OSTI)

Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

Kirby, Neil; /SLAC

2009-10-30T23:59:59.000Z

373

LONG-TERM STABILITY TESTING RESULTS USING SURROGATES AND SORBENTS FOR SAVANNAH RIVER SITE ORGANIC AND AQUEOUS WASTESTREAMS - 10016  

SciTech Connect

The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate wastestreams (both volatile and nonvolatile), a volatile organic surrogate with a residual aqueous phase, an aqueous surrogate, and an aqueous surrogate with a residual organic phase. The Savannah River Site (SRS) Legacy and F-Canyon plutonium/uranium extraction (PUREX) process waste surrogates constituted the volatile organic surrogates, and various oils constituted the nonvolatile organic surrogates. The aqueous surrogates included a rainwater surrogate and an aqueous organic surrogate. MSE also evaluated the PUREX surrogate with a residual aqueous component with and without aqueous type sorbent materials. Solidification of the various surrogate wastestreams listed above was performed from 2004 to 2006 at the MSE Test Facility located in Butte, Montana. This paper summarizes the comparison of the initial liquid release test (LRT) values with LRT results obtained during subsequent sampling events in an attempt to understand and define the long-term stability characteristics for the solidified wastestreams.

Burns, H.

2009-11-10T23:59:59.000Z

374

Progress towards high precision measurements on ultracold metastable hydrogen and trapping deuterium  

E-Print Network (OSTI)

(cont.) not achieve deuterium trapping through helium-surface cooling. It is proposed that buffer gas loading can be used to cryogenically cool and trap deuterium.

Steinberger, Julia K., 1974-

2004-01-01T23:59:59.000Z

375

Using malaise traps to sample ground beetles (Coleoptera: Carabidae).  

SciTech Connect

Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and �¢����trap-shy�¢��� species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

Ulyshen, Michael D., James L. Hanula, and Scott Horn

2005-01-01T23:59:59.000Z

376

Double-well magnetic trap for Bose-Einstein condensates  

E-Print Network (OSTI)

We present a magnetic trapping scheme for neutral atoms based on a hybrid of Ioffe-Pritchard and Time-averaged Orbiting Potential traps. The resulting double-well magnetic potential has readily controllable barrier height and well separation. This offers a new tool for studying the behavior of Bose condensates in double-well potentials, including atom interferometry and Josephson tunneling. We formulate a description for the potential of this magnetic trap and discuss practical issues such as loading with atoms, evaporative cooling and manipulating the potential.

N. R. Thomas; C. J. Foot; A. C. Wilson

2001-08-10T23:59:59.000Z

377

Steam Trap Testing and Evaluation: An Actual Plant Case Study  

E-Print Network (OSTI)

With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process equipment and that a minimum life be achieved. This paper deals with the history of the steam system/condensate systems, the setting up of the testing procedure, which traps were and were not tested and the results of the testing program to date.

Feldman, A. L.

1981-01-01T23:59:59.000Z

378

The Laboratory of Energy Science and Engineering of ETH Zurich is offering a PhD position "Production of hydrogen with simultaneous CO2 capture via the sorbent  

E-Print Network (OSTI)

steam reforming reactions of, e.g. methane or glycerol, are investigated, i.e. the steam reforming "Production of hydrogen with simultaneous CO2 capture via the sorbent enhanced steam reforming reactions will be functionalized via the addition of reforming catalysts, e.g. Ni or Rh. Ultimately, the bi-functional catalyst-CO2

Daraio, Chiara

379

Purple traps yield Reservation's first detection of Emerald Ash Borer  

NLE Websites -- All DOE Office Websites (Extended Search)

traps yield Reservation's first detection of Emerald Ash Borer traps yield Reservation's first detection of Emerald Ash Borer The question of whether or not DOE's forests are infested with Emerald Ash Borer (EAB) has been answered. On May 10, a trap on Highway 95 at the Highway 58 interchange produced the first instance of the destructive non-native insect in Roane County. Five days later, a second trap on Bethel Valley Road near the East Portal turned up the first capture in Anderson County. "Unfortunately, these finds signal the beginning of a decline of ash species throughout the reservation" according to Greg Byrd, forester with the ORNL Natural Resources Program. "Dieback will become more prominent as the insect populations expand. Native ash trees have little defense against this pest, which was

380

Novel trapping techniques for shaping Bose-Einstein condensates  

E-Print Network (OSTI)

A combination of radio frequency radiation and magnetic field gradients was used to trap atoms in dressed states. In a magnetic field with a quadrupole minimum. RF fields resonant with the (I F. m)) 11. -1) -- 1, 0) ...

Boyd, Micah (Micah Scott)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Model for Vortex-Trapped Internal Waves  

Science Conference Proceedings (OSTI)

Regions of negative vorticity are observed to trap and amplify near-inertial internal waves, which are sources of turbulent mixing 10–100 times higher than typically found in the stratified ocean interior. Because these regions are of finite ...

Eric Kunze; Emmanuel Boss

1998-10-01T23:59:59.000Z

382

On the Damping of Free Coastal-Trapped Waves  

Science Conference Proceedings (OSTI)

A perturbative method is presented for estimating the decay time of subinertial coastal-trapped waves under a wide range of conditions where damping is relatively weak. Bottom friction is sometimes much more important than “long-wave” results ...

K. H. Brink

1990-08-01T23:59:59.000Z

383

Electron source for a mini ion trap mass spectrometer  

DOE Patents (OSTI)

An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

Dietrich, D.D.; Keville, R.F.

1995-12-19T23:59:59.000Z

384

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

G Shu; M R Dietrich; N Kurz; B B Blinov

2009-01-29T23:59:59.000Z

385

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

Shu, G; Kurz, N; Blinov, B B

2009-01-01T23:59:59.000Z

386

Energy Trapping near the Equator in a Numerical Ocean Model  

Science Conference Proceedings (OSTI)

The trapped equatorial standing modes described theoretically by Gent (1979) are reproduced in a single vertical-mode numerical ocean model. integrations are carried out in domains whose longitudinal extents are characteristic of the widths of ...

Peter R. Gent; Albert J. Semtner Jr.

1980-06-01T23:59:59.000Z

387

Trapped Lee Wave Interference in the Presence of Surface Friction  

Science Conference Proceedings (OSTI)

Trapped lee wave interference over double bell-shaped obstacles in the presence of surface friction is examined. Idealized high-resolution numerical experiments with the nonhydrostatic Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) ...

Ivana Stiperski; Vanda Grubiši?

2011-04-01T23:59:59.000Z

388

Gravity-induced resonances in a rotating trap  

E-Print Network (OSTI)

It is shown that in an anisotropic harmonic trap that rotates with the properly chosen rotation rate, the force of gravity leads to a resonant behavior. Full analysis of the dynamics in an anisotropic, rotating trap in 3D is presented and several regions of stability are identified. On resonance, the oscillation amplitude of a single particle, or of the center of mass of a many-particle system (for example, BEC), grows linearly with time and all particles are expelled from the trap. The resonances can only occur when the rotation axis is tilted away from the vertical position. The positions of the resonances (there are always two of them) do not depend on the mass but only on the characteristic frequencies of the trap and on the direction of the angular velocity of rotation.

Iwo Bialynicki-Birula; Tomasz Sowinski

2004-12-01T23:59:59.000Z

389

From transistor to trapped-ion computers for quantum chemistry  

E-Print Network (OSTI)

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

M. -H. Yung; J. Casanova; A. Mezzacapo; J. McClean; L. Lamata; A. Aspuru-Guzik; E. Solano

2013-07-16T23:59:59.000Z

390

Life Cycle of a Linear Coastal-Trapped Disturbance  

Science Conference Proceedings (OSTI)

A recent climatology of observed coastal-trapped disturbances in the marine atmospheric boundary layer along the United States west coast motivates the detailed examination, for a specific form of imposed forcing, of a linear shallow-water ...

R. M. Samelson; A. M. Rogerson

1996-08-01T23:59:59.000Z

391

Light trapping limits in plasmonic solar cells: an analytical investigation  

E-Print Network (OSTI)

We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

Sheng, Xing

392

Heating of trapped ions from the quantum ground state  

E-Print Network (OSTI)

We have investigated motional heating of laser-cooled 9Be+ ions held in radio-frequency (Paul) traps. We have measured heating rates in a variety of traps with different geometries, electrode materials, and characteristic sizes. The results show that heating is due to electric-field noise from the trap electrodes which exerts a stochastic fluctuating force on the ion. The scaling of the heating rate with trap size is much stronger than that expected from a spatially uniform noise source on the electrodes (such as Johnson noise from external circuits), indicating that a microscopic uncorrelated noise source on the electrodes (such as fluctuating patch-potential fields) is a more likely candidate for the source of heating.

Q. A. Turchette; D. Kielpinski; B. E. King; D. Leibfried; D. M. Meekhof; C. J. Myatt; M. A. Rowe; C. A. Sackett; C. S. Wood; W. M. Itano; C. Monroe; D. J. Wineland

2000-02-14T23:59:59.000Z

393

Dissipative trapped electron modes in ell = 2 torsatrons  

SciTech Connect

Trapped electron modes in stellarators can be more unstable than those in tokamaks. They could be easier to detect in a stellarator and may be responsible for anomalous losses in the low collisionality regime. 5 refs., 1 fig.

Carreras, B.A.; Dominguez, N.; Lynch, V.E. (Oak Ridge National Lab., TN (USA)); Diamond, P.H. (California Univ., San Diego, CA (USA))

1989-01-01T23:59:59.000Z

394

Quantum gates, sensors, and systems with trapped ions  

E-Print Network (OSTI)

Quantum information science promises a host of new and useful applications in communication, simulation, and computational algorithms. Trapped atomic ions are one of the leading physical systems with potential to implement ...

Wang, Shannon Xuanyue

2012-01-01T23:59:59.000Z

395

Laser-driven Sisyphus cooling in an optical dipole trap  

Science Conference Proceedings (OSTI)

We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with narrow electronic transitions are present. Numerical simulations for the cases of {sup 88}Sr and {sup 174}Yb demonstrate the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time scales.

Ivanov, Vladyslav V.; Gupta, Subhadeep [Physics Department, University of Wisconsin, Madison, Wisconsin 53706 (United States); Physics Department, University of Washington, Seattle, Washington 98195 (United States)

2011-12-15T23:59:59.000Z

396

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

E-Print Network (OSTI)

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

2007-02-06T23:59:59.000Z

397

Energy Conservation in Coastal-Trapped Wave Calculations  

Science Conference Proceedings (OSTI)

A consideration of energy conservation for coastal-trapped waves shows that, for a slowly varying medium, the normalization of the wave modes is not arbitrary. Errors related to incorrect normalization are demonstrated for a simple analytic ...

K. H. Brink

1989-07-01T23:59:59.000Z

398

Fuel traps: mapping stability via water association.  

DOE Green Energy (OSTI)

Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

2007-03-01T23:59:59.000Z

399

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

Energy will continue to be an ever increasingly important factor in the cost of doing business in the decade of the 80' s. In many petrochemical industries, energy is the second most costly item in producing a product. About 36% of our nation's total energy consumption is used by industry in producing the goods which are consumed around the world. Steam is the most commonly used energy source for the petrochemical industry. Most of this steam is used for heating and evaporating the many petrochemical liquids. This steam is then condensed and is removed from the system at the same rate as it is being formed or the loss of heat transfer will result. From a cost standpoint only condensate should be allowed through the trap. But at many plants half of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap program is what is covered by this article.

Vallery, S. J.

1982-01-01T23:59:59.000Z

400

Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents  

SciTech Connect

The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from zero to 20 vol%. The experimental program with NaHCO{sub 3} is listed in Table 1. In addition, model calculations were carried out based on own and published experimental results that estimate residence time and temperature effects on removal efficiencies.

Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

2002-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "multielement sorbent trap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison of silver sorbents for application to radioiodine control at the PUREX process facility modification. [Iodine 129  

SciTech Connect

In continued support of the design of the gaseous radioiodine control system for the PUREX Process Facility Modification (PFM), the Pacific Northwest Laboratory (PNL) conducted laboratory-scale measurements of the performance of four state-of-the-art sorbents for radioiodine in the dissolver offgas (DOG) of a nuclear reprocessing plant. The PFM is a new head-end treatment plant being designed by Westinghouse Hanford Company (WHC) for the PUREX Plant at the Hanford Site. The experiments performed measured the iodine effluent concentration from Norton silver mordenite (NAgZ), Linde silver mordenite (LAgZ), Linde silver faujasite (AgX), and silver nitrate-impregnated silicic acid (AgNO/sub 3/Si) during simulated normal operating conditions in the PFM after three shutdown/startup cycles, and during standby. At normal operating conditions the input gas is expected to have a dew point of 35/degree/C to 40/degree/C and contain 0.1 ..mu..mol I/L, 1 vol% NO, and 1 vol% NO /sub 2/. The sorbent bed would be at 150/degree/C. A shutdown/startup cycle consisted of eliminating iodine and NO/sub x/ from the input gas, cooling the bed to room temperature, stopping gas flow, and restarting the system. During standby conditions the input gas contained no iodine or NO/sub x/, the dew point was at 30/degree/C to 35/degree/C, and the bed temperature remained at 150/degree/C. This experimental study showed that 20 cm beds of NAgZ, LAgZ, and 18 wt% silver AgX could load up to 0.25 mmol I/g sorbent and routinely reduce the iodine concentration in a simulated PFM DOG from 0.1 ..mu..mol I/L to less than the target level of 10/sup /minus/5/ ..mu..mol I/L. In contrast, the AgNO/sub 3/Si unexpectedly failed to achieve this required level of performance, reducing the concentration on a routine basis only to 10/sup /minus/4/ to 10/sup /minus/2/ ..mu..mol I/L. 5 refs., 14 figs., 6 tabs.

Scheele, R.D.; Burger, L.L.; Halko, B.T.

1988-09-01T23:59:59.000Z

402

Sintering and reactivity of CaCO{sub 3}-based sorbents for in situ CO{sub 2} capture in fluidized beds under realistic calcination conditions  

SciTech Connect

Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cycles were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.

Lu, D.Y.; Hughes, R.W.; Anthony, E.J.; Manovic, V. [Natural Resources Canada, Ottawa, ON (Canada)

2009-06-15T23:59:59.000Z

403

Trapping of antiprotons -- a first step on the way to antihydrogen  

DOE Green Energy (OSTI)

A first step towards producing and effectively utilizing antihydrogen atoms consists of trapping antiprotons. The immediate next step must then be to control, i.e. trap the produced antihydrogen. The current state of the art in trapping antiprotons and positrons is reviewed, and the challenges in trapping the resulting neutral particles are discussed.

Holzscheiter, M.H.

1993-07-01T23:59:59.000Z

404

Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes  

SciTech Connect

Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt [Eberhard-Karls-University of Tuebingen, Tuebingen (Germany). Center for Applied Geoscience (ZAG)

2009-01-15T23:59:59.000Z

405

System and method for trapping and measuring a charged particle in a liquid  

DOE Patents (OSTI)

A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

2013-07-23T23:59:59.000Z

406

Cosmological perturbations from inhomogeneous preheating and multi-field trapping  

E-Print Network (OSTI)

We consider inhomogeneous preheating in a multi-field trapping model. The curvature perturbation is generated by inhomogeneous preheating which induces multi-field trapping at the enhanced symmetric point (ESP), and results in fluctuation in the number of e-foldings. Instead of considering simple reheating after preheating, we consider a scenario of shoulder inflation induced by the trapping. The fluctuation in the number of e-foldings is generated during this weak inflationary period, when the additional light scalar field is trapped at the local maximum of its potential. The situation may look similar to locked or thermal inflation or even to hybrid inflation, but we will show that the present mechanism of generating the curvature perturbation is very different from these others. Unlike the conventional trapped inflationary scenario, we do not make the assumption that an ESP appears at some unstable point on the inflaton potential. This assumption is crucial in the original scenario, but it is not important in the multi-field model. We also discuss inhomogeneous preheating at late-time oscillation, in which the magnitude of the curvature fluctuation can be enhanced to accommodate low inflationary scale.

Tomohiro Matsuda

2007-07-04T23:59:59.000Z

407

Trapped electron losses by interactions with coherent VLF waves  

SciTech Connect

VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. {copyright} {ital 1996 American Institute of Physics.}

Walt, M.; Inan, U.S. [Space, Telecommunications and Radioscience Laboratory, Stanford University, Stanford, California (United States); Voss, H.D. [Lockheed Missiles and Space Co. (United States)

1996-07-01T23:59:59.000Z

408

TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: MODIFIED MONOSODIUM TITANATE PHASE III FINAL REPORT  

DOE Green Energy (OSTI)

This document provides a final report of Phase III testing activities for the development of modified monosodium titanate (mMST), which exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included characterization of the crystalline phases present at varying temperatures, solids settling characteristics, quantification of the peroxide content; evaluation of the post-synthesis gas release under different conditions; the extent of desorption of {sup 85}Sr, Np, and Pu under washing conditions; and the effects of age and radiation on the performance of the mMST. Key findings and conclusions include the following. The peroxide content of several mMST samples was determined using iodometric titration. The peroxide content was found to decrease with age or upon extended exposure to elevated temperature. A loss of peroxide was also measured after exposure of the material to an alkaline salt solution similar in composition to the simulated waste solution. To determine if the loss of peroxide with age affects the performance of the material, Sr and actinide removal tests were conducted with samples of varying age. The oldest sample (4 years and 8 months) did show lower Sr and Pu removal performance. When compared to the youngest sample tested (1 month), the oldest sample retained only 15% of the DF for Pu. Previous testing with this sample indicated no decrease in Pu removal performance up to an age of 30 months. No loss in Np removal performance was observed for any of the aged samples, and no uptake of uranium occurred at the typical sorbent loading of 0.2 g/L. Additional testing with a uranium only simulant and higher mMST loading (3.0 g/L) indicated a 10% increase of uranium uptake for a sample aged 3 years and 8 months when compared to the results of the same sample measured at an age of 1 year and 5 months. Performance testing with both baseline-MST and mMST that had been irradiated in a gamma source to a total dose of 3.95 x 10{sup 6} R, indicated little to no affect on the performance of the material to remove Sr and actinides. Previous testing established that mMST releases oxygen gas during the synthesis, and continues to off-gas during storage post synthesis. The post-synthesis gas release rate was measured under several conditions, including varying the pH of the wash water and at elevated temperature (49 C, typical of bounding summertime storage without air conditioning). Results indicated that a high pH (basic) wash reduced the initial gas release rate, but after 2 days the release rates from all different pH washed samples were not statistically different. The gas release rate at 49 C, a temperature at which the material may be exposed to during shipping and storage, was consistently about 2.5 times higher than the rate at room temperature. All gas release results indicated that vented containers would be necessary for shipping and storage of large quantities of material. Suspension of sorbate-loaded solids into diluted solutions representing intermediate and final stages of washing for 24-hours revealed no evidence of desorption of Sr, Pu or Np from the mMST solids. Based on the results of the Phase III testing as well as that from earlier studies (Phases I and II), SRNL researchers recommend adopting the use of the mMST material for the removal of strontium and actinides from the SRS HLW supernatant liquids in the Actinide Removal Process and Salt Waste Processing Facility. Given the decrease in Sr and Pu removal performance for the mMST having an age of 4 years and 8 months, we recommend that mMST be used within 30 months of production. Furthermore we recommend that DOE provide funding to conduct pilot-scale testing of the mixing and settling characteristics of the mMST and impact, if any, on the generation of hydrogen during processing in the Defense Waste Processing Facility (DWPF).

Taylor-Pashow, K.; Hobbs, D.

2010-09-01T23:59:59.000Z

409

Recent progress in tailoring trap-based positron beams  

SciTech Connect

Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

2013-03-19T23:59:59.000Z

410

Storing Electrons Instead of Positrons Without Trapping of Positive Ions  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrons Instead of Positrons Without Electrons Instead of Positrons Without Trapping of Positive Ions LS-75 T. K. Khoe October, 1986 In this note, a procedure to inject and store electrons in the ring without trapping ions will be described. The minimum injection current per bunch below which ion trapping occur will be determined. Since the vertical beam size is smaller than the horizontal beam size, we will consider the vertical motion only. The following assumptions are made: 1. The bunch period is much longer than the bunch length. This assumption allow us to use the thin lens approximation for the focusing effect of the electron bunch. 2. The bunch length is much larger than the transverse dimensions of the beam. A two-dimensional calculation can then be used to obtain the

411

Formation of Antihydrogen Rydberg atoms in strong magnetic field traps  

SciTech Connect

It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided.

Pohl, T.; Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

2008-08-08T23:59:59.000Z

412

Electron Trapping in Shear Alfven Waves that Power the Aurora  

Science Conference Proceedings (OSTI)

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

2009-01-30T23:59:59.000Z

413

Heating of trapped ions from the quantum ground state  

E-Print Network (OSTI)

We have investigated motional heating of laser-cooled 9Be+ ions held inradio-frequency (Paul) traps. We have measured heating rates in a variety oftraps with different geometries, electrode materials, and characteristic sizes.The results show that heating is due to electric-field noise from the trapelectrodes which exerts a stochastic fluctuating force on the ion. The scalingof the heating rate with trap size is much stronger than that expected from aspatially uniform noise source on the electrodes (such as Johnson noise fromexternal circuits), indicating that a microscopic uncorrelated noise source onthe electrodes (such as fluctuating patch-potential fields) is a more likelycandidate for the source of heating.

Turchette, Q A; King, B E; Leibfried, D; Meekhof, D M; Myatt, C J; Rowe, M A; Sackett, C A; Wood, C S; Itano, W M; Monroe, C; Wineland, D J

2000-01-01T23:59:59.000Z

414

Bench-scale Development of an Advanced Solid sorbent-based CO2 Capture Process for Coal-fired Power Plalnts  

NLE Websites -- All DOE Office Websites (Extended Search)

scale Development of an scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current

415

Synthesis of Cold Antihydrogen in a Cusp Trap  

Science Conference Proceedings (OSTI)

We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

Enomoto, Y.; Nagata, Y.; Kanai, Y.; Mohri, A. [RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198 (Japan); Kuroda, N.; Kim, C. H.; Torii, H. A.; Fujii, K.; Ohtsuka, M.; Tanaka, K.; Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Michishio, K.; Nagashima, Y. [Department of Physics, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Higaki, H. [Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Venturelli, L.; Zurlo, N. [Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Universita di Brescia and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia (Italy)

2010-12-10T23:59:59.000Z

416

Detection of Magnetically Trapped Neutrons: Liquid Helium as a Scintillator  

E-Print Network (OSTI)

by Daniel Nicholas McKinsey to The Department of Physics in partial fulfillment of the requirements February 2002 #12;c 2002 - Daniel Nicholas McKinsey All rights reserved. #12;To my parents #12;Thesis advisor Author John Morrissey Doyle Daniel Nicholas McKinsey Detection of Magnetically Trapped Neutrons

McKinsey, Daniel

417

Manipulation and assembly of nanowires with holographic optical traps  

E-Print Network (OSTI)

We demonstrate that semiconductor nanowires measuring just a few nanometers in diameter can be translated, rotated, cut, fused and organized into nontrivial structures using holographic optical traps. The holographic approach to nano-assembly allows for simultaneous independent manipulation of multiple nanowires, including relative translation and relative rotation.

Ritesh Agarwal; Kosta Ladavac; Yael Roichman; Guiha Yu; Charles M. Lieber; David G. Grier

2005-09-12T23:59:59.000Z

418

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 20640 of 28,905 results. 31 - 20640 of 28,905 results. Download CX-010178: Categorical Exclusion Determination Evaluation of the Multielement Sorbent Trap (ME-ST) Method at an Illinois Coal-Fired Full Scale Test Site CX(s) Applied: B3.1 Date: 04/26/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-010178-categorical-exclusion-determination Download EA-1934: Finding of No Significant Impact Expansion of Active Borrow Areas, Hanford Site, Richland, Washington http://energy.gov/nepa/downloads/ea-1934-finding-no-significant-impact Article DOE Takes Next Steps to Expand Strategic Petroleum Reserve to One Billion Barrels Richton, Mississippi is Preferred New Site for Reserve http://energy.gov/articles/doe-takes-next-steps-expand-strategic-petroleum-reserve-one-billion-barrels

419

Z5, Effect of Traps Spatial Localization on GaN HEMT Static ...  

Science Conference Proceedings (OSTI)

Conference Tools for 2010 Electronic Materials Conference ... In this work we discuss how trap state formation during reverse gate-source and ... by means of the commercial DESSIS-ISE (Synopsis Inc.) simulator showed that acceptor traps

420

Observations of Seasonal Variations in Atmospheric Greenhouse Trapping and Its Enhancement at High Sea Surface Temperature  

Science Conference Proceedings (OSTI)

The correlation between observed values of atmospheric greenhouse trapping and sea surface temperature is found to vary seasonally. Atmospheric greenhouse trapping is defined here as the difference between infrared emissions from the earth's ...

Robert Hallberg; Anand K. Inamdar

1993-05-01T23:59:59.000Z