Sample records for multielement sorbent trap

  1. Subtask 4.27 - Evaluation of the Multielement Sorbent Trap (MEST) Method at

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested,C. TemperatureProbedan Illinois

  2. Sorbent selection and design considerations for uranium trapping. [H-151 alumina, XF-100 alumina, F-1 alumina, sodium fluoride

    SciTech Connect (OSTI)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01T23:59:59.000Z

    The efficient removal of UF/sub 6/ from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications.

  3. Measurement of vapor phase mercury emissions at coal-fired power plants using regular and speciating sorbent traps with in-stack and out-of-stack sampling methods

    SciTech Connect (OSTI)

    Chin-Min Cheng; Chien-Wei Chen; Jiashun Zhu; Chin-Wei Chen; Yao-Wen Kuo; Tung-Han Lin; Shu-Hsien Wen; Yong-Siang Zeng; Juei-Chun Liu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2009-09-15T23:59:59.000Z

    A systematic investigation of sorbent-trap sampling, which is a method that uses paired sorbent traps to measure total vapor phase mercury (Hg), was carried out at two coal-fired power plants. The objective of the study was to evaluate the effects (if any) on data quality when the following aspects of the sorbent trap method are varied: (a) sorbent trap configuration; (b) sampling time; and (c) analytical technique. Also, the performance of a speciating sorbent trap (i.e., a trap capable of separating elemental Hg from oxidized Hg), was evaluated by direct comparison against the Ontario Hydro (OH) reference method. Flue gas samples were taken using both 'regular' and modified sorbent trap measurement systems. Both short-term (1.5 h) and long-term (18 h to 10 days) samples were collected. The in-stack and out-of-stack sampling methods produced satisfactory relative accuracy results for both the short-term and long-term testing. For the short-term tests, the in-stack sampling results compared more favorably to the OH method than did the out-of-stack results. The relative deviation between the paired traps was considerably higher for the short-term out-of-stack tests than for the long-term tests. A one-way analysis of variance (ANOVA), showed a statistically significant difference (p < 0.1) between the direct combustion and wet-chemistry analytical methods used in the study; the results from the direct combustion method were consistently higher than the wet-chemistry results. The evaluation of the speciating mercury sorbent trap demonstrated that the trap is capable of providing reasonably accurate total mercury concentrations and speciation data that are somewhat comparable to data obtained with the OH method. 5 refs., 4 figs., 8 tabs.

  4. Sol-gel derived sorbents

    DOE Patents [OSTI]

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11T23:59:59.000Z

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  5. Fluidized-bed sorbents

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  6. Regenerable solid imine sorbents

    DOE Patents [OSTI]

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10T23:59:59.000Z

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  7. Desulfurization sorbent regeneration

    DOE Patents [OSTI]

    Jalan, V.M.; Frost, D.G.

    1982-07-07T23:59:59.000Z

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  8. Zinc titanate sorbents

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03T23:59:59.000Z

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  9. Inorganic ion sorbent method

    DOE Patents [OSTI]

    Teter, David M. (Edgewood, NM); Brady, Patrick V. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM)

    2007-07-17T23:59:59.000Z

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  10. Inorganic ion sorbents

    DOE Patents [OSTI]

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17T23:59:59.000Z

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  11. ADVANCED SORBENT DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Unknown

    1998-06-16T23:59:59.000Z

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

  12. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01T23:59:59.000Z

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  13. Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent

    SciTech Connect (OSTI)

    Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

    1995-08-01T23:59:59.000Z

    Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

  14. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

    2007-10-30T23:59:59.000Z

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  15. Decontamination formulation with sorbent additive

    DOE Patents [OSTI]

    Tucker; Mark D. (Albuquerque, NM), Comstock; Robert H. (Gardendale, AL)

    2007-10-16T23:59:59.000Z

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  16. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  17. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2008-10-14T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  18. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2012-05-01T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  19. Stabilization of spent calcium-based sorbent

    SciTech Connect (OSTI)

    Shires, P.J.; Katta, S.; Henningsen, G.B.

    1994-10-01T23:59:59.000Z

    The overall objective of this project is to obtain experimental data on the reactions of calcium-based sorbents applicable to both air-blown coal gasification systems and second generation fluid bed coal combustion systems (partial gasification). The project is a 40-month effort. A key technical issue for the utilization of calcium sorbents in advanced coal technologies is the subsequent stabilization of the solid wastes (calcium sulfide/ash) produced by such systems.

  20. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09T23:59:59.000Z

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  1. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  2. Multi-element stochastic spectral projection for high quantile estimation

    SciTech Connect (OSTI)

    Ko, Jordan, E-mail: jordan.ko@mac.com; Garnier, Josselin

    2013-06-15T23:59:59.000Z

    We investigate quantile estimation by multi-element generalized Polynomial Chaos (gPC) metamodel where the exact numerical model is approximated by complementary metamodels in overlapping domains that mimic the model’s exact response. The gPC metamodel is constructed by the non-intrusive stochastic spectral projection approach and function evaluation on the gPC metamodel can be considered as essentially free. Thus, large number of Monte Carlo samples from the metamodel can be used to estimate ?-quantile, for moderate values of ?. As the gPC metamodel is an expansion about the means of the inputs, its accuracy may worsen away from these mean values where the extreme events may occur. By increasing the approximation accuracy of the metamodel, we may eventually improve accuracy of quantile estimation but it is very expensive. A multi-element approach is therefore proposed by combining a global metamodel in the standard normal space with supplementary local metamodels constructed in bounded domains about the design points corresponding to the extreme events. To improve the accuracy and to minimize the sampling cost, sparse-tensor and anisotropic-tensor quadratures are tested in addition to the full-tensor Gauss quadrature in the construction of local metamodels; different bounds of the gPC expansion are also examined. The global and local metamodels are combined in the multi-element gPC (MEgPC) approach and it is shown that MEgPC can be more accurate than Monte Carlo or importance sampling methods for high quantile estimations for input dimensions roughly below N=8, a limit that is very much case- and ?-dependent.

  3. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOE Patents [OSTI]

    Jalan, Vinod M. (Concord, MA); Frost, David G. (Maynard, MA)

    1984-01-01T23:59:59.000Z

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  4. Multi-element probabilistic collocation method in high dimensions

    SciTech Connect (OSTI)

    Foo, Jasmine [Division of Applied Mathematics, Brown University, 182 George St., Box F, Providence, RI 02912 (United States); Karniadakis, George Em [Division of Applied Mathematics, Brown University, 182 George St., Box F, Providence, RI 02912 (United States)], E-mail: gk@dam.brown.edu

    2010-03-01T23:59:59.000Z

    We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order {mu} and the effective dimension {nu}, with {nu}<=}{mu} for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.

  5. Sulfur tolerant highly durable CO.sub.2 sorbents

    DOE Patents [OSTI]

    Smirniotis, Panagiotis G. (Cincinnati, OH); Lu, Hong (Urbana, IL)

    2012-02-14T23:59:59.000Z

    A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.

  6. Topical Report 5: Sorbent Performance Report

    SciTech Connect (OSTI)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31T23:59:59.000Z

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  7. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  8. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Semiclassical theory of noise in multielement semiconductor lasers

    SciTech Connect (OSTI)

    Lang, R.J.; Yariv, A.

    1986-03-01T23:59:59.000Z

    The authors present a derivation of the noise spectra of multielement semiconductor lasers. They model the noise by a set of Langevin sources which drive a system of small-signal field equations. The Langevin sources are normalized to transition rates within the laser and general formulas for relative intensity, frequency fluctuation, and field spectra are produced. They evaluate the formulas for several specific cases of interest, including those of a passive-active resonator and active-active coupled cavity resonator. In each case, the linewidth is governed by effective ..cap alpha..-parameter(s) which generally differ from the material parameter. In the active-active cavity, the linewidth consists of two parts, one which is similar to the Schawlow-Townes linewidth, and a second which is proportional to the FM modulation index.

  10. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14T23:59:59.000Z

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  11. Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani (Morgantown, WV)

    2010-08-03T23:59:59.000Z

    Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

  12. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1990-10-20T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Progress is discussed.

  13. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1990-07-19T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, is on hold'' because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80{endash}85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  14. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1989-09-27T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  15. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect (OSTI)

    Not Available

    1988-12-22T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  16. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    SciTech Connect (OSTI)

    K.C. Kwon

    2002-01-01T23:59:59.000Z

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  17. Layered solid sorbents for carbon dioxide capture

    SciTech Connect (OSTI)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18T23:59:59.000Z

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  18. Supported-sorbent injection. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr.

    1997-07-01T23:59:59.000Z

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  19. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  20. Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents

    DOE Patents [OSTI]

    Pennline, Henry W; Hoffman, James S; Gray, McMahan L; Fauth, Daniel J; Resnik, Kevin P

    2013-08-06T23:59:59.000Z

    The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub.2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub.2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.

  1. Sorbents and Carbon-Based Materials for Hydrogen Storage R &...

    Broader source: Energy.gov (indexed) [DOE]

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  2. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report PDF (Nov 2012) Evaluation of Carbon Dioxide Capture from Existing Coal Fired Power Plants by Hybrid Sorption Using Solid Sorbents PDF (Sept 2012) Project Review...

  3. Sorbents and Carbon-Based Materials for Hydrogen Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  4. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, Darryl D. (Pittsburgh, PA); Elliott, John P. (Pittsburgh, PA)

    1990-01-02T23:59:59.000Z

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  5. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, D.D.; Elliott, J.P.

    1990-01-02T23:59:59.000Z

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  6. Dry Coal Feed System and Multi-Element Injector Test Plan

    SciTech Connect (OSTI)

    Ken Sprouse; Fred Widman; Alan Darby

    2006-08-30T23:59:59.000Z

    Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the layout, test procedures, instrumentation and data acquisition requirements for an ultradense phase multi-element injector and feed system to be operated at the University of North Dakota Energy and Environmental Research Center (UNDEERC).

  7. Functionalized sorbent for chemical separations and sequential forming process

    DOE Patents [OSTI]

    Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA)

    2012-03-20T23:59:59.000Z

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  8. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  9. Interaction Between Trace Metals, Sodium and Sorbents in Combustion.

    SciTech Connect (OSTI)

    Wendt, O.L.; Davis, S.

    1997-10-17T23:59:59.000Z

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  10. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19T23:59:59.000Z

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  11. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09T23:59:59.000Z

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  12. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 11, April 1--June 30, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-07-19T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, is ``on hold`` because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80{endash}85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  13. Octahedral molecular sieve sorbents and catalysts

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20T23:59:59.000Z

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  14. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  15. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  17. Process for preparing zinc oxide-based sorbents

    DOE Patents [OSTI]

    Gangwal, Santosh Kumar (Cary, NC); Turk, Brian Scott (Durham, NC); Gupta, Raghubir Prasad (Durham, NC)

    2011-06-07T23:59:59.000Z

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  18. Investigation of regenerable sorbents for CO{sub 2} capture

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.

    1999-07-01T23:59:59.000Z

    An experimental investigation was undertaken in pursuit of identifying novel dry, regenerable scrubbing processes for the capture of CO{sub 2} from a gaseous stream. Recent investigations by Japanese researchers have identified supported alkali carbonate materials that can remove CO{sub 2} in the presence of water vapor to form an alkali bicarbonate. The sorbent is thermally regenerated by heating, yielding CO{sub 2} and H{sub 2}O as products. Conceptually, the water could be condensed and separated from the gaseous product stream of regeneration, yielding a concentrated stream of CO{sub 2} to be further processed into either a usable byproduct or disposed of as a waste. A bench-scale microbalance study of prepared sorbents was performed by exposing the sorbents initially to CO{sub 2}, followed by thermal regeneration. The experimental approach involved utilizing a thermogravimetric analyzer (TGA) to track sorbent weight change as the material was exposed to gases under conditions representative of absorption or regeneration. Change in sorbent weight was linked to the extent of chemical reaction, from which kinetic rate information was extracted. By conducting parametric evaluations of prepared sorbents, the impact of temperature and flue gas components on the absorption chemistry was studied. Temperature, and possible reducing agents, were investigated for the regeneration chemistry. Sorbents were prepared by impregnating various alkali- and alkaline-earth materials onto a substrate composed of high-surface area activated alumina. The first sorbent studied consisted of potassium carbonate deposited on alumina. Alkaline earth sorbents would likely include the investigation of magnesium and calcium materials. A preliminary thermodynamic analysis was conducted for some proposed sorbents of interest. Enthalpy and free energy changes were calculated for both absorption and regeneration reactions. Equilibrium constants were formulated over a temperature range of 77--212 F. Results for alkali-based sorbents are generally favorable in that the forward (CO{sub 2} absorption) reaction rate is typically much larger than the reverse reaction. Per the Japanese study using potassium, the absorption reaction of KOH with CO{sub 2} to form KHCO{sub 3} was calculated to be extremely favorable over the reverse reaction.

  19. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  20. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1996-06-01T23:59:59.000Z

    Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

  1. Engineered sorbent barriers for low-level waste disposal.

    SciTech Connect (OSTI)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01T23:59:59.000Z

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  2. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2006-04-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

  3. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01T23:59:59.000Z

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  4. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research...

  5. P R O D U C T N O T E Size Exclusion Chromatography Sorbents

    E-Print Network [OSTI]

    Lebendiker, Mario

    . These characteristics allow Trisacryl® GF05 sorbents to perform chromato- graphic separations quickly and with great: Chemical structure of Trisacryl GF05 sorbents. * Calculated on the basis of a standard experimental curve

  6. Chalcogen-Based Aerogels as Sorbents for Radionuclide Remediation

    SciTech Connect (OSTI)

    Riley, Brian J.; Chun, Jaehun; Um, Wooyong; Lepry, William C.; Matyas, Josef; Olszta, Matthew J.; Li, Xiaohong; Polychronopoulou, Kyriaki; Kanatzidis, Mercouri G.

    2013-06-13T23:59:59.000Z

    The efficient capture of radionuclides having long half-lives such as technetium-99 (99Tc), uranium-238 (238U), and iodine-129 (129I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, a new nanostructured chalcogen-based aerogel, called a chalcogel, is shown to be very effective to capture ionic forms of 99Tc and 238U, as well as nonradioactive gaseous iodine (i.e., a surrogate for 129I), irrespective of the sorbent polarity. Some of the chalcogels performed better than others but the PtGeS sorbent performed the best with capture efficiencies of 98% and 99.4% for 99Tc and 238U, respectively. All sorbents showed >99% capture efficiency for iodine over the test duration. This unified sorbent would be an attractive option in environmental remediation for various radionuclides associated with legacy wastes from nuclear weapons production, wastes from nuclear power production, or potential future nuclear fuel reprocessing.

  7. Regeneration of FGD dry-sorbent materials. Phase I. Final report

    SciTech Connect (OSTI)

    Kapsalopoulou, A.J.; Sargent, D.H.; Rissman, E.F.

    1982-05-01T23:59:59.000Z

    Sodium-based sorbent injection directly into the flue gas duct of a coal-burning power plant has been investigated since 1975 by GFETC (using laboratory and pilot plant apparatus) as an SO/sub 2/ control technology. Regeneration of sorbent from spent sorbent material is highly desirable to reduce the sorbent cost, and to alleviate the leaching and potential pollution problems of soluble sodium compounds when disposing of spent sorbent materials in landfills. The work reported herein was initiated to develop a continuous, aqueous-based process for regeneration of sodium carbonate-type sorbents from spent sodium-base sorbent/flyash materials. Specific project objectives are to: (1) retain process simplicity and to avoid difficult process conditions; (2) maximize recovery of sodium from spent sorbents; (3) minimize process costs and energy requirements; (4) maximize reactivity of the regenerated sodium bicarbonate sorbent; and (5) produce process waste materials that may be disposed of in an environmental acceptable manner. The sorbent regeneration process which has been developed during the laboratory investigation (Phase I) of this project may be divided into three parts: (1) leaching of the spent sodium-based sorbent; (2) conversion of the leachate to a NaCl brine; and (3) production of NaHCO/sub 3/ (regenerated sorbent) using commercially-proven Solvay (ammonia-soda) process technology. Significant results from the laboratory study are as given.

  8. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect (OSTI)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20T23:59:59.000Z

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  9. Deep Bed Iodine Sorbent Testing FY 2011 Report

    SciTech Connect (OSTI)

    Nick Soelberg; Tony Watson

    2011-08-01T23:59:59.000Z

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging with pure N2 to drive loosely or physisorbed iodine species off of the sorbent. Post-test calculations determine the control efficiencies for each bed, iodine loadings on the sorbent, and mass transfer zone depths. Portions of the iodine-laden sorbent from the first bed of two of the tests have been shipped to SNL for waste form studies. Over the past three years, we have explored a full range of inlet iodine and methyl iodide concentrations ranging from {approx}100 ppb to {approx}100 ppm levels, and shown adequate control efficiencies within a bed depth as shallow as 2 inches for lower concentrations and 4 inches for higher concentrations, for the AgZ-type sorbents. We are now performing a limited number of tests in the NC-77 sorbent from SNL. Then we plan to continue to (a) fill in data gaps needed for isotherms and dynamic sorbent modeling, and (b) test the performance of additional sorbents under development.

  10. Characteristics of mercury desorption from sorbents at elevated temperatures

    SciTech Connect (OSTI)

    Ho, T.C.; Yang, P.; Kuo, T.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering

    1998-12-31T23:59:59.000Z

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. Elemental mercury and mercuric chloride were tested with activated carbon and bauxite. The experimental results indicated that mercury desorption from sorbents was strongly affected by the desorption temperature and the mercury-sorbent pair. Elemental mercury was observed to desorb faster than mercuric chloride and activated carbon appeared to have higher desorption limits than bauxite at low temperatures. A kinetic model considering the mechanisms of surface equilibrium, pore diffusion and external mass transfer was proposed to simulate the observed desorption profiles. The model was found to describe reasonably well the experimental results.

  11. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  12. Direct sulfur recovery during sorbent regeneration. Final report

    SciTech Connect (OSTI)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01T23:59:59.000Z

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  14. Stochastic model of the electrodeposition process in systems with moving multielement electrodes

    SciTech Connect (OSTI)

    Kaidrikov, R.A.; Gudin, N.V.; Nuriev, N.K.; Zhuravlev, B.L.; Zil'berg, A.I.

    1988-07-01T23:59:59.000Z

    A stochastic model was constructed in this work to reflect the random nature of the electrodeposition process in systems with moving multielement electrodes. The effect of such parameters as the electrolysis time, the current distribution inside the electrode, the current density, and the loading volume of the drum on the variance of the coating thickness was analyzed. The proposed model reflects the process of electrodeposition on the qualitative level and can be examined as a basis for developing stochastic models of evaluating the parameters of these processes. Data for nickel and zinc plating are given.

  15. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect (OSTI)

    Fisk, William J.

    2006-05-01T23:59:59.000Z

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  16. Sorbent preparation/modification/additives. Final report, September 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Prudich, M.E.; Venkataramakrishnan, R. [Ohio Univ., Athens, OH (United States)

    1994-02-01T23:59:59.000Z

    Sorbent preparation techniques used today have generally been adapted from techniques traditionally used by the lime industry. Traditional dry hydration and slaking processes have been optimized to produce materials intended for use in the building industry. These preparation techniques should be examined with an eye to optimization of properties important to the SO{sub 2} capture process. The study of calcium-based sorbents for sulfur dioxide capture is complicated by two factors: (1) little is known about the chemical mechanisms by which the standard sorbent preparation and enhancement techniques work, and (2) a sorbent preparation technique that produces a calcium-based sorbent that enjoys enhanced calcium utilization in one regime of operation [flame zone (>2400 F), in-furnace (1600--2400 F), economizer (800--1100 F), after air preheater (<350 F)] may not produce a sorbent that enjoys enhanced calcium utilization in the other reaction zones. Again, an in-depth understanding of the mechanism of sorbent enhancement is necessary if a systematic approach to sorbent development is to be used. As a long-term goal, an experimental program is being carried out for the purpose of (1) defining the effects of slaking conditions on the properties of calcium-based sorbents, (2) determining how the parent limestone properties of calcium-based sorbents, and (3) elucidating the mechanism(s) relating to the activity of various dry sorbent additives. An appendix contains a one-dimensional duct injection model with modifications to handle the sodium additives.

  17. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOE Patents [OSTI]

    Sirwardane, Ranjani V. (Morgantown, WV)

    2005-06-21T23:59:59.000Z

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  18. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect (OSTI)

    Sirwardane, Ranjani V.

    2005-06-21T23:59:59.000Z

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  19. Surfactant-Templated Mesoporous Silicate Materials as Sorbents for

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Surfactant-Templated Mesoporous Silicate Materials as Sorbents for Organic Pollutants in Water H O hexadecyltrimethylammonium bromide(HDTMA)andtetramethyl-orthosilicate(TMOS)orNa- silicate. Products with (as of quartz and amorphous silica. Si dissolution rates for as-synthesized (using Na-silicate) products at pH 7

  20. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    1999-07-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  1. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    2000-04-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, the capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons as well as novel sorbents were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  2. Inorganic ion sorbents and methods for using the same

    DOE Patents [OSTI]

    Teter, David M. (Edgewood, NM); Brady, Patrick V. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM)

    2006-07-11T23:59:59.000Z

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  3. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect (OSTI)

    Lee, S.K.; Keener, T.C.

    1994-10-10T23:59:59.000Z

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  4. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 8-A, June 1--August 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-27T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  5. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 6, September 1, 1988--November 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-12-22T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  6. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  7. Micro-and nano-environments of carbon sequestration: Multi-element STXMNEXAFS spectromicroscopy assessment of microbial carbon and

    E-Print Network [OSTI]

    Lehmann, Johannes

    Micro- and nano-environments of carbon sequestration: Multi-element STXM­NEXAFS spectromicroscopy- and nano-C sequestration environments, and conduct submicron-level investigation of the compositional chem demonstrated the existence of spatially distinct seemingly terminal micro- and nano-C repository zones, where

  8. Spatial Constraints on Visual Statistical Learning of Multi-Element Scenes Christopher M. Conway (cmconway@indiana.edu)

    E-Print Network [OSTI]

    Goldstone, Robert

    the types of statistical computations afforded but has not addressed to what extent learning resultsSpatial Constraints on Visual Statistical Learning of Multi-Element Scenes Christopher M. Conway of Psychology, Cornell University, Ithaca, NY 14853 USA Abstract Visual statistical learning allows observers

  9. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategicthe Department of Energy |Oil and

  10. Steam Trap Management

    E-Print Network [OSTI]

    Murphy, J. J.; Hirtner, H. H.

    problemA of water hammer and high back pressure. ? Exorbitantly hi~h percentage of cold trapA. ? External steam leaks within the steam trap stations, bypasA valves and/or strainer blowdown valvefl open, blowin~ steam. ! I ? Dirt nssociated... Trapping 2 Trap Installed Backwards 1 Misapplication of Technology 1 Strainer Blowdown Connections Capped 285 (*b) Test Tee Connections Capped 11 Trap Inlet Connected to Steam Line Strainer Blowdown Connection 3 Water Logged Coils (Vacuum Present) 7...

  11. Evaluating Steam Trap Performance

    E-Print Network [OSTI]

    Fuller, N. Y.

    EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data... that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost. INTRODUCTION Steam traps used on distribution line drip...

  12. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01T23:59:59.000Z

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  14. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1997-07-01T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

  15. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  16. Amine enriched solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Soong, Yee (Monroeville, PA); Champagne, Kenneth J. (Fredericktown, PA)

    2003-04-15T23:59:59.000Z

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  17. New ZnO-Based Regenerable Sulfur Sorbents for Fluid-Bed/Transport Reactor Applications

    SciTech Connect (OSTI)

    Slimane, R.B.; Lau, F.S.; Abbasian, J.; Ho, K.H.

    2002-09-19T23:59:59.000Z

    The overall objective of the ongoing sorbent development work at GTI is the advancement to the demonstration stage of a promising ZnO-TiO2 sulfur sorbent that has been developed under DCCA/ICCI and DOE/NETL sponsorship. This regenerable sorbent has been shown to possess an exceptional combination of excellent chemical reactivity, high effective capacity for sulfur absorption, high resistance to attrition, and regenerability at temperatures lower than required by typical zinc titanates.

  18. Fixed bed testing of durable, steam resistant zinc oxide containing sorbents

    SciTech Connect (OSTI)

    Siriwardane, R.V.; Grimm, U.; Poston, J. [USDOE Morgantown Energy Technology Center, WV (United States); Monaco, S.J. [EG& G dTechnical Services of West Virginia, Inc., Morgantown, WV (United States)

    1994-12-31T23:59:59.000Z

    The US Department of Energy is currently developing Integrated Gasification combined Cycle (IGCC) systems for electrical power generation. It has been predicted that IGCC plants with hot gas cleanup will be superior to conventional pulverized coal-fired power plants in overall plant efficiency and environmental performance. Development of a suitable regenerable sorbent is a major barrier issue in the hot gas cleanup program for IGCC systems. This has been a challenging problem during the last 20 years, since many of the sorbents developed in the program could not retain their reactivity and physical integrity during repeated cycles of sulfidation and regeneration reactions. Two promising sorbents and (METC6), which were capable of sustaining their reactivity and physical integrity during repeated sulfidation/regeneration cycles, have been developed at the Morgantown Energy Technology Center (METC) during the past year. These sorbents were tested (sulfided) both in low-pressure (260 kPa/37.7 psia) and high-pressure (1034 kPa/150 psia) fixed-bed reactors at 538{degrees}C (1000{degrees}F) with simulated KRW coal gas. High-pressure testing was continued for 20 cycles with steam regeneration. There were no appreciable changes in sulfidation capacity of the sorbents during the 20-cycle testing. The crush strength of the sorbent actually improved after 20 cycles and there were no indications of spalling or any other physical deterioration of the sorbents. In testing to date, these sorbents exhibit better overall sulfur capture performance than the conventional sorbents.

  19. Sorbents for mercury capture from fuel gas with application to gasification systems

    SciTech Connect (OSTI)

    Granite, E.J.; Myers, C.R.; King, W.P.; Stanko, D.C.; Pennline, H.W. [US DOE, Pittsburgh, PA (United States)

    2006-06-21T23:59:59.000Z

    In regard to gasification for power generation, the removal of mercury by sorbents at elevated temperatures preserves the higher thermal efficiency of the integrated gasification combined cycle system. Unfortunately, most sorbents display poor capacity for elemental mercury at elevated temperatures. Previous experience with sorbents in flue gas has allowed for judicious selection of potential high-temperature candidate sorbents. The capacities of many sorbents for elemental mercury from nitrogen, as well as from four different simulated fuel gases at temperatures of 204-371{sup o}C, have been determined. The simulated fuel gas compositions contain varying concentrations of carbon monoxide, hydrogen, carbon dioxide, moisture, and hydrogen sulfide. Promising high-temperature sorbent candidates have been identified. Palladium sorbents seem to be the most promising for high-temperature capture of mercury and other trace elements from fuel gases. A collaborative research and development agreement has been initiated between the Department of Energy's National Energy Technology Laboratory (NETL) and Johnson Matthey for optimization of the sorbents for trace element capture from high-temperature fuel gas. Future directions for mercury sorbent development for fuel gas application will be discussed.

  20. SO{sub 2} reactivity studies with BENMOL sorbents - CRADA 90-002. Final report

    SciTech Connect (OSTI)

    Markussen, J.M.; Pennline, H.W.; Brodd, C.F. [Dept. of Energy Pittsburgh Energy Technology Center, PA (United States)]|[BENMOL Corp., Alexandria, VA (United States)

    1990-12-01T23:59:59.000Z

    BENMOL sorbents have been purported to be reactive with sulfur dioxide (SO{sub 2}) in flue gas at post-air-preheater temperatures (350{degrees}F and below), thus making them possible candidates for dry sorbent injection desulfurization processes. As an initial step to determine the reactivity of these sorbents, microbalance studies were conducted at the Pittsburgh Energy Technology Center (PETC) under the Cooperative Research and Development Agreement (CRADA) program. Initial reactivity rates and total absorption capacities were determined and compared to those obtained with hydrated lime, which is the chosen sorbent for most duct injection flue gas desulfurization processes.

  1. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

  2. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27T23:59:59.000Z

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  3. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power- Fact Sheet, 2011

    Broader source: Energy.gov [DOE]

    Factsheet describing project objective to develop a new, high-capacity, expendable sorbent to remove sulfur species from anaerobic digester gas

  4. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations

    SciTech Connect (OSTI)

    Wan Xiaoliang [Division of Applied Mathematics, Center for Fluid Mechanics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States)]. E-mail: xlwan@dam.brown.edu; Karniadakis, George Em [Division of Applied Mathematics, Center for Fluid Mechanics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States)]. E-mail: gk@dam.brown.edu

    2005-11-01T23:59:59.000Z

    We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as well as advection-diffusion problems. The new method is similar to spectral element method for deterministic problems but with h-p discretization of the random space.

  5. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  6. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  7. Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents

    SciTech Connect (OSTI)

    Siriwardane, R.V.; Stevens, R.W.; Robinson, Clark

    2007-11-01T23:59:59.000Z

    Combustion of fossil fuels is one of the major sources of the greenhouse gas CO2. Pressure swing adsorption/sorption (PSA/PSS) and temperature swing adsorption/sorption (TSA/TSS) are some of the potential techniques that could be utilized for removal of CO2 from fuel gas streams. It is very important to develop sorbents to remove CO2 from fuel gas streams that are applicable for a wide range of temperatures. NETL researchers have developed novel CO2 capture sorbents for low, moderate, and high temperature applications. A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C. The sorbent is regenerable at 60 – 80 °C. The sorbent formulations were prepared to be suitable for various reactor configurations (i.e., fixed and fluidized bed). Minimum fluidization gas velocities were also determined. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas indicated that the sorbent retains its CO2 sorption capacity with a CO2 removal efficiency of approximately 99% and was unaffected by presence of water vapor. The sorbent was subsequently commercially prepared by Süd Chemie to determine the viability of the sorbent for mass production. Subsequent testing showed that the commercially-synthesized sorbent possesses the same properties as the lab-synthesized equivalent. An innovative solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200 – 315°C from high pressure gas streams suitable for IGCC systems. The sorbent showed very high capacity for CO2 removal from a gas streams containing 28% CO2 at 200 °C and at 20 atm during a lab scale reactor test. This sorbent can be regenerated at 20 atm and at 375 °C utilizing a gas stream containing steam. High pressure enhanced the CO2 sorption process. Bench scale testing showed consistent capacities and regenerability. A unique high temperature solid sorbent was developed for CO2 capture at temperatures of 500 – 700°C. Bench scale testing of the sorbent yielded very high CO2 capture capacity from a gas stream containing 10% CO2, 30% H2, 15% H2O, and 25% He. Regeneration of the sorbent is possible at 800 – 900 °C.

  8. Factors in reactor design for carbon dioxide capture with solid, regenerable sorbents

    SciTech Connect (OSTI)

    Hoffman, J.S.; Richards, G.A.; Pennline, H.W.; Fischer, Daniel (Mid-Atlantic Technology Research & Innovation Center, South Charleston, WV); Keller, George (Mid-Atlantic Technology Research & Innovation Center, South Charleston, WV)

    2008-06-01T23:59:59.000Z

    Fossil-fuel burning power plants, which produce a substantial amount of electric power within the United States, are point sources that can emit significant quantities of carbon dioxide (CO2). In a carbon sequestration scenario, the CO2 must first be captured from the point source, or flue gas, and then be permanently stored. Since the capture/separation step dominates the cost of sequestration, various capture/separation technologies are being investigated, and regenerable, solid sorbents are the basis for one promising technique for capturing CO2 from flue gas. The solid sorbent must be able to absorb the CO2 in the first step and then be regenerated by releasing the CO2 in the second step. Due to the low operating pressure of a conventional pulverized coal-fired combustor and its subsequent low partial pressure of CO2, it is envisioned that temperature swing absorption is applicable to the sorbent capture technology. Various CO2 capture sorbents are being examined in this research area, for example physical adsorbents as well as chemical absorbents. However, with respect to process development, various reactor configurations are presently being considered. The reactor designs range from stationary beds of sorbent to those systems where the sorbent is transported between the absorber and regenerator. Emphasis is placed on design implications of employing a regenerable solid sorbent system. Key sorbent parameters required for the sorbents have been identified, including the heat of adsorption, heat capacity of the solid, delta CO2 loading between the absorption and regeneration steps, and any role co-sorption of competitive gases, such as moisture, may play. Other sorbent properties, such as the effect of acid gases within the flue gas or the attrition of the sorbent, must be considered in the reactor design. These factors all impact the reactor design for a particular type of sorbent. For a generic sorbent, reactor designs have been formulated, including a stationary, isothermal reactor, a fluidized bed, and a moving bed. Through calculations, benefits and disadvantages of the designs have been outlined. The implication of the sorbent properties (and thus desired experimental information) on sorbent reactor design are described, and recommendations for operation of these types of capture systems are discussed.

  9. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14T23:59:59.000Z

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  11. Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams

    SciTech Connect (OSTI)

    Siriwardane, Ranjan

    1999-09-30T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  12. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  13. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-07-01T23:59:59.000Z

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

  14. Iodine Sorbent Performance in FY 2012 Deep Bed Tests

    SciTech Connect (OSTI)

    Nick Soelberg; Tony Watson

    2012-08-01T23:59:59.000Z

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I-129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Iodine capture is an important aspect of the Separations and Waste Forms Campaign Off-gas Sigma Team (Jubin 2011, Pantano 2011). Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: • Decontamination factors were achieved that exceed reasonably conservative estimates for DFs needed for used fuel reprocessing facilities in the U.S. to meet regulatory requirements for I-129 capture. • Silver utilizations approached or exceeded 100% for high inlet gas iodine concentrations, but test durations were not long enough to approach 100% silver utilization for lower iodine concentrations. • The depth of the mass transfer zone was determined for both low iodine concentrations (under 10 ppmv) and for higher iodine concentrations (between 10-50 ppmv); the depth increases over time as iodine is sorbed. • These sorbents capture iodine by chemisorption, where the sorbed iodine reacts with the silver to form very non-volatile AgI. Any sorbed iodine that is physisorbed but not chemically reacted with silver to form AgI might not be tightly held by the sorbent. The portion of sorbed iodine that tends to desorb because it is not chemisorbed (reacted to form AgI) is small, under 1%, for the AgZ tests, and even smaller, under 0.01%, for the silver-functionalized Aerogel.

  15. Metal sorbents for high temperature mercury capture from fuel gas

    SciTech Connect (OSTI)

    Poulston, S. (Johnson Matthey Technology Centre, Reading, UK); Granite, E.J.; Pennline, H.W.; Myers, C.R.; Stanko, D.P.; Hamilton, H. (Johnson Matthey Technology Centre, Reading, UK); Rowsell, L. (Johnson Matthey Technology Centre, Reading, UK); Smith, A.W.J. (Johnson Matthey Technology Centre, Reading, UK); Ilkenhans, T. (Johnson Matthey Technology Centre, Reading, UK); Chu, W. (Johnson Matthey, Malvern, PA)

    2007-09-01T23:59:59.000Z

    We have determined the Hg removal capacities of Pt and Pd supported on alumina at a range of different metal loadings from 2 to 9 wt% using Hg vapour in a simulated fuel gas feed. In the temperature range studied (204–388 °C) Pd proved far superior to Pt for Hg removal. The Hg removal capacity for both Pt and Pd increased with metal loading, though decreased with sorbent temperature. A shift in the 2{theta} position of the Pd XRD diffraction peak from 82.1 to 79.5 after Hg adsorption at 204 °C was consistent with the formation of a solid solution of Hg in Pd.

  16. novel-carbon-sorbents | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of Novel Carbon Sorbents for CO2 Capture

  17. Approved Sorbents, Stabilizers, and Void Fillers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal Facility AgreementSorbents, Stabilizers, and

  18. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-01-01T23:59:59.000Z

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  19. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

    1994-01-01T23:59:59.000Z

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  20. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26T23:59:59.000Z

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  1. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  2. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOE Patents [OSTI]

    Nelson, Sidney (Hudson, OH)

    2011-02-15T23:59:59.000Z

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  3. Performance of copper chloride-impregnated sorbents on mercury vapor control in an entrained-flow reactor system

    SciTech Connect (OSTI)

    Sang-Sup Lee; Joo-Youp Lee; Tim C. Keener [University of Cincinnati, Cincinnati, OH (United States). Department of Civil and Environmental Engineering

    2008-11-15T23:59:59.000Z

    An entrained-flow system has been designed and constructed to simulate in-flight mercury (Hg) capture by sorbent injection in ducts of coal-fired utility plants. The test conditions of 1.2-sec residence time, 140{degree}C gas temperature, 6.7 m/sec (22 ft/sec) gas velocity, and 0-0.24 g/m{sup 3} (0-15 lbs of sorbent per 1 million actual cubic feet of flue gas sorbent injection rates were chosen to simulate conditions in the ducts. Four kinds of sorbents were used in this study. Darco Hg-LH (lignite-based) served as a benchmark sorbent with which Hg control capability of other sorbents could be compared. Also, Darco-FGD (lignite-based) was used as a representative raw activated carbon sorbent. Two different copper chloride-impregnated sorbents were developed in the laboratory and tested in the entrained-flow system to examine the possibility of using these sorbents at coal-fired power plants. The test results showed that one of the copper chloride sorbents has remarkable elemental mercury (Hg{sup 0}) oxidation capability, and the other sorbent demonstrated a better performance in Hg removal than Darco Hg-LH. 13 refs., 4 figs., 3 tabs.

  4. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    SciTech Connect (OSTI)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01T23:59:59.000Z

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.

  5. Multielement ultratrace analysis of molybdenum with high performance secondary ion mass spectrometry

    SciTech Connect (OSTI)

    Virag, A.; Friedbacher, G.; Grasserbauer, M.; Ortner, H.M.; Wilhartitz, P.

    1988-07-01T23:59:59.000Z

    Electron beam melting has been used to obtain ultrapure refractory metals that are gaining importance in metal oxide semiconductor--very large scale integration (MOS--VLSI) processing technology, fusion reactor technology, or as superconducting materials. Although the technology of electron beam melting is well established in the field of production of very clean refractory metals, little is known about the limitations of the method because the impurity level of the final products is frequently below the detection power of common methods for trace analysis. Characterization of these materials can be accomplished primarily by in situ methods like neutron activation analysis and mass spectrometric methods (glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS)). A suitable method for quantitative multielement ultratrace bulk analysis of molybdenum with SIMS has been developed. Detection limits of the analyzed elements from 10/sup -7/ g/g down to 10/sup -12/ g/g have been found. Additional information about the distribution of the trace elements has been accumulated.

  6. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  7. Parametric study of solid amine sorbents for the capture of carbon dioxide

    SciTech Connect (OSTI)

    M.L. Gray; J.S. Hoffman; D.C. Hreha; D.J. Fauth; S.W. Hedges; K.J. Champagne; H.W. Pennline [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    Solid amine sorbents were prepared using mixtures of linear and branched primary, secondary, and tertiary amines. These amines were immobilized within polystyrene (PS)-, silicon dioxide (SiO{sub 2})-, or polymethylmethacrylate (PMMA)-based substrates at various weight ratios. Testing was conducted in various reactor systems, where the reactive water required for the capture of carbon dioxide (CO{sub 2}) was tracked during the adsorption/desorption cycles by mass spectrometer gas analysis. The water management for these sorbents was quantified and used to assess the technical feasibility of the operating conditions for the capture of CO{sub 2} from simulated flue gas streams. In addition, the heats of reaction and performance capture loading capacities of these sorbents were also determined by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGAs), respectively, in both dry and humidified CO{sub 2} gas streams. The regenerable solid amine sorbents investigated in this study exhibit acceptable CO{sub 2}-capture loading capacities of 2.5-3.5 mol of CO{sub 2}/kg of sorbent by TGA and a laboratory-scale fixed-bed reactor. These sorbents were stable over the adsorption/desorption temperature range of 25-105{sup o}C for 10 cyclic tests. According to the DSC analysis, the heat of reaction generated by these sorbents was in the range of 400-600 Btu/lb. CO{sub 2}, which will require a reactor with heat management capabilities. 6 refs., 4 figs., 3 tabs.

  8. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide

    SciTech Connect (OSTI)

    Gray, M.L.; Champagne, K.J.; Fauth, D.J.; Baltrus, J.P.; Pennline, H.W.

    2008-01-01T23:59:59.000Z

    The capture of carbon dioxide (CO2) from a simulated flue gas stream was achieved by utilizing immobilized tertiary amine solid sorbents. The tertiary amine immobilized in these solid substrates was 1, 8 Diazabicyclo-[5.4.0]-undec-7-ene (DBU) and it has the stoichiometric capability of capturing carbon dioxide at a 1:1 R-NH2:CO2 molar ratio. This is a unique feature compared to other primary and secondary amines which capture CO2 at a 2:1 molar ratio, thus making the immobilized DBU solid sorbents competitive with existing commercially available sorbents and liquid amine-based capture systems. The immobilized DBU solid sorbents prepared in this study exhibit acceptable CO2 capture capacities of 3.0 mol CO2/kg sorbent at 298 K; however, at the critical operational temperature of 338 K, the capacity was reduced to 2.3 mol/kg sorbent. The DBU sorbents did exhibit acceptable stability over the adsorption/desorption temperature range of 298–360 K based on XPS and TGA analyses.

  9. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

    1984-01-01T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  10. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  11. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  15. Surface trap for ytterbium ions

    E-Print Network [OSTI]

    Campbell, Jonathan A. (Jonathan Alan)

    2006-01-01T23:59:59.000Z

    We conducted an experiment to load a shallow planar ion trap from a cold atom source of Ytterbium using photoionization. The surface trap consisted of a three-rod radio frequency Paul trap fabricated using standard printed ...

  16. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

    SciTech Connect (OSTI)

    Raja A. Jadhav

    2006-05-31T23:59:59.000Z

    Several different types of nanocrystalline metal oxide sorbents were synthesized and evaluated for capture of mercury (Hg) from coal-gasifier warm fuel gas. Detailed experimental studies were carried out to understand the fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. The metal oxide sorbents evaluated in this work included those prepared by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) as well as those prepared in-house. These sorbents were evaluated for mercury capture in GTI's Mercury Sorbent Testing System. Initial experiments were focused on sorbent evaluation for mercury capture in N{sub 2} stream over the temperature range 423-533 K. These exploratory studies demonstrated that NanoActive Cr{sub 2}O{sub 3} along with its supported form was the most active of the sorbent evaluated. The capture of Hg decreased with temperature, which suggested that physical adsorption was the dominant mechanism of Hg capture. Desorption studies on spent sorbents indicated that a major portion of Hg was attached to the sorbent by strong bonds, which suggested that Hg was oxidized by the O atoms of the metal oxides, thus forming a strong Hg-O bond with the oxide. Initial screening studies also indicated that sulfided form of CuO/alumina was the most active for Hg capture, therefore was selected for detailed evaluation in simulated fuel gas (SFG). It was found that such supported CuO sorbents had high Hg-sorption capacity in the presence of H{sub 2}, provided the gas also contained H{sub 2}S. Exposure of supported CuO sorbent to H{sub 2}S results in the formation of CuS, which is an active sorbent for Hg capture. Sulfur atom in CuS forms a bond with Hg that results into its capture. Although thermodynamically CuS is predicted to form unreactive Cu{sub 2}S form when exposed to H{sub 2}, it is hypothesized that Cu atoms in such supported sorbents are in ''dispersed'' form, with two Cu atoms separated by a distance longer than required to form a Cu{sub 2}S molecule. Thus CuS remains in the stable reactive form as long as H{sub 2}S is present in the gas phase. It was also found that the captured Hg on such supported sorbents could be easily released when the spent sorbent is exposed to a H2-containing stream that is free of Hg and H{sub 2}S. Based on this mechanism, a novel regenerative process has been proposed to remove Hg from fuel gas at high temperature. Limited multicyclic studies carried out on the supported Cu sorbents showed their potential to capture Hg from SFG in a regenerative manner. This study has demonstrated that supported nanocrystalline Cu-based sorbents have potential to capture mercury from coal syngas over multiple absorption/regeneration cycles. Further studies are recommended to evaluate their potential to remove arsenic and selenium from coal fuel gas.

  17. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report number 3, Subtask 2.3: Sorbent optimization

    SciTech Connect (OSTI)

    Rosenhoover, W.A.; Maskew, J.T.; Withum, J.A.; Stouffer, M.R.

    1994-11-01T23:59:59.000Z

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific process performance goals are to achieve 90% SO{sub 2} removal and 60% sorbent utilization efficiency. Research is focused on the Advanced Coolside process, which has shown the potential of achieving these targets. The objective of Subtask 2.3, Sorbent Optimization, was to explore means of improving performance and economics of the Advanced Coolside process through optimizing the sorbent system. Pilot plant tests of commercial and specially prepared hydrated limes showed that the process is relatively insensitive to sorbent source. This can be an important economic advantage, allowing the use of the lowest cost sorbent available at a site. A pilot plant hydration study conducted in cooperation with Dravo Lime Company further indicated the relative insensitivity of process performance to lime source and to lime physical properties. Pilot plant tests indicated that the use of very small amounts of additives in the Advanced Coolside process can improve performance under some circumstances; however, additives are not necessary to exceed process performance targets.

  18. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOE Patents [OSTI]

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16T23:59:59.000Z

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to...

  20. The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications

    SciTech Connect (OSTI)

    Foo, Jasmine; Wan Xiaoliang [Division of Applied Mathematics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States); Karniadakis, George Em [Division of Applied Mathematics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States)], E-mail: gk@dam.brown.edu

    2008-11-20T23:59:59.000Z

    Stochastic spectral methods are numerical techniques for approximating solutions to partial differential equations with random parameters. In this work, we present and examine the multi-element probabilistic collocation method (ME-PCM), which is a generalized form of the probabilistic collocation method. In the ME-PCM, the parametric space is discretized and a collocation/cubature grid is prescribed on each element. Both full and sparse tensor product grids based on Gauss and Clenshaw-Curtis quadrature rules are considered. We prove analytically and observe in numerical tests that as the parameter space mesh is refined, the convergence rate of the solution depends on the quadrature rule of each element only through its degree of exactness. In addition, the L{sup 2} error of the tensor product interpolant is examined and an adaptivity algorithm is provided. Numerical examples demonstrating adaptive ME-PCM are shown, including low-regularity problems and long-time integration. We test the ME-PCM on two-dimensional Navier-Stokes examples and a stochastic diffusion problem with various random input distributions and up to 50 dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions, the error in the mean and variance is two orders of magnitude lower than the error obtained with the Monte Carlo method using only a small number of samples (e.g., 100). The computational cost of ME-PCM is found to be favorable when compared to the cost of other methods including stochastic Galerkin, Monte Carlo and quasi-random sequence methods.

  1. THE SAP3 COMPUTER PROGRAM FOR QUANTITATIVE MULTIELEMENT ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    SciTech Connect (OSTI)

    Nielson,, K. K.; Sanders,, R. W.

    1982-04-01T23:59:59.000Z

    SAP3 is a dual-function FORTRAN computer program which performs peak analysis of energy-dispersive x-ray fluorescence spectra and then quantitatively interprets the results of the multielement analysis. It was written for mono- or bi-chromatic excitation as from an isotopic or secondary excitation source, and uses the separate incoherent and coherent backscatter intensities to define the bulk sample matrix composition. This composition is used in performing fundamental-parameter matrix corrections for self-absorption, enhancement, and particle-size effects, obviating the need for specific calibrations for a given sample matrix. The generalized calibration is based on a set of thin-film sensitivities, which are stored in a library disk file and used for all sample matrices and thicknesses. Peak overlap factors are also determined from the thin-film standards, and are stored in the library for calculating peak overlap corrections. A detailed description is given of the algorithms and program logic, and the program listing and flow charts are also provided. An auxiliary program, SPCAL, is also given for use in calibrating the backscatter intensities. SAP3 provides numerous analysis options via seventeen control switches which give flexibility in performing the calculations best suited to the sample and the user needs. User input may be limited to the name of the library, the analysis livetime, and the spectrum filename and location. Output includes all peak analysis information, matrix correction factors, and element concentrations, uncertainties and detection limits. Twenty-four elements are typically determined from a 1024-channel spectrum in one-to-two minutes using a PDP-11/34 computer operating under RSX-11M.

  2. Bench-scale testing of fluidized-bed sorbents -- ZT-4

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

  3. Sorbent Testing for Solidification of Organic Plutonium/Uranium Extraction Waste - Phase IV

    SciTech Connect (OSTI)

    Bickford, J.L.; Joyce, H.O. [MSE Technology Applications, Inc., P.O. Box 4078, Butte, MT 59701 (United States); Holmes-Burns, H. [Westinghouse Savannah River Company, Building 705-3C, P.O. Box A, Aiken SC 29802 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is evaluating various sorbents to solidify and immobilize hazardous constituents of the organic fraction of plutonium/uranium extraction (PUREX) process waste at the Savannah River Site (SRS).[5] The purpose of the solidification is to provide a cost-effective alternative to incineration of the waste. Incineration at the Consolidated Incinerator Facility (CIF) at SRS is currently identified as the treatment technology for PUREX waste. However, the CIF is not in operation at this time, so SRS is interested in pursuing alternatives to incineration for treatment of this waste. The DOE Western Environmental Technology Office in Butte, MT was designated as the facility for conducting the sorbent testing and evaluation for the organic PUREX waste surrogate. MSE Technology Applications, Inc. tested and evaluated two clay and two polymer sorbents with the capability of solidifying organic PUREX waste. A surrogate organic PUREX waste recipe was utilized, and sorbents were tested and evaluated at bench-scale, 22-liter (5-gallon) scale, and 242-liter (55-gallon) scale. This paper presents experimental results evaluating four sorbent materials including: Imbiber Beads{sup TM} IMB230301-R, Nochar A610 Petrobond{sup TM}, Petroset II{sup TM}, and Petroset II Granular{sup TM}. Previous work at SRS indicated that these products could solidify organic PUREX waste on a bench scale [1]. The sorbents were evaluated using operational criteria and final wasteform properties. Operational criteria included: sorbent capacity; sorption rate; sorbent handling; and mixing requirements. Final wasteform evaluation properties included: ignitability; thermal stability; offgas generation, leachability tests and volumetric expansion. Bench-scale tests, 22-liter (5-gallon) tests, and initial 242-liter (55-gallon) tests are complete. This paper summarizes the results of the bench-scale, 22-liter (5-gallon) scale, and 242-liter (55-gallon) scale tests performed during FY05 with an aqueous/PUREX surrogate. (authors)

  4. Innovative Nano-Layered Solid Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Li, Bengyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A

    2011-01-01T23:59:59.000Z

    Nano-layered sorbents for CO{sub 2} capture, for the first time, were developed using layer-by-layer nanoassembly. A CO{sub 2}-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO{sub 2} adsorption and desorption properties and their CO{sub 2} capture capacity increased with increasing nano-layers of the CO{sub 2}-adsorbing polymer.

  5. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    SciTech Connect (OSTI)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02T23:59:59.000Z

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  6. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    SciTech Connect (OSTI)

    Maginn, Edward J.

    2005-07-01T23:59:59.000Z

    The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

  7. Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Duan, Y [NETL; Sorescu, D C [NETL; Luebke, D [NETL; Li, B Y; Zhang, K; King, D

    2013-05-16T23:59:59.000Z

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  8. Strategic Design and Optimization of Inorganic Sorbents For Cesium, Strontium and Actinides

    SciTech Connect (OSTI)

    Hobbs, D.; Nyman, M.; Clearfield, A.; Maginn, E.

    2006-06-01T23:59:59.000Z

    The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations.

  9. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  10. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  11. Steam Trap Application

    E-Print Network [OSTI]

    Murphy, J. J.

    1982-01-01T23:59:59.000Z

    Equipment Collecting leg, same size as equip ment connection but not less than Install a Yarway Process Trap below be drained. Install a Provide vacuum strainer with a blow down valve. Use and Yarway Aldrain valves full ported stop valves, (gate... and Corrosion Problems Like any critical control device the steam trap should be protected from dirt and scale if optimum operation and adequate service life are to be attained. Strainers should be equipped with blowdown valves to provide an effective...

  12. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2008-09-30T23:59:59.000Z

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the intermittent operation of the PSDF gasifier (due to the difficulties in the handling of the low quality lignite), only a small fraction of the sorbent capacity was utilized (we measured a mercury capacity of 3.27 mg/kg, which is only a fraction of the 680 mg/kg Hg capacity measured for the same sorbent used at our bench-scale evaluations at TDA). Post reaction examination of the sorbent by chemical analysis also indicated some removal As and Se (we did not detect any significant amounts of Cd in the synthesis gas or over the sorbent). The tests at UNDEERC was more successful and showed clearly that the TDA sorbent can effectively remove Hg and other trace metals (As and Se) at high temperature. The on-line gas measurements carried out by TDA and UNDEERC separately showed that TDA sorbent can achieve greater than 95% Hg removal efficiency at 260 C ({approx}200g sorbent treated more than 15,000 SCF synthesis gas). Chemical analysis conducted following the tests also showed modest amounts of As and Se accumulation in the sorbent bed (the test durations were still short to show higher capacities to these contaminants). We also evaluated the stability of the sorbent and the fate of mercury (the most volatile and unstable of the trace metal compounds). The Synthetic Ground Water Leaching Procedure Test carried out by an independent environmental laboratory showed that the mercury will remain on the sorbent once the sorbent is disposed. Based on a preliminary engineering and cost analysis, TDA estimated the cost of mercury removal from coal-derived synthesis gas as $2,995/lb (this analysis assumes that this cost also includes the cost of removal of all other trace metal contaminants). The projected cost will result in a small increase (less than 1%) in the cost of energy.

  13. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22T23:59:59.000Z

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  14. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31T23:59:59.000Z

    A novel hybrid solid sorbent technology for CO2 capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO2 by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO2 capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO2 and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO2/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO2/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO2 and particulate. During parametric testing of the adsorber, CO2 capture achieved using the 2-bed configuration with recirculation in both beds was 65-70% with a high flue gas CO2 loading (~7%) and up to 85% with a low flue gas CO2 loading (~4%). A sorbent regenerator system consisting of a pre-heater, desorber, and cooler is used to heat the CO2-rich sorbent with direct and indirect steam producing a nearly 100% pure stream of CO2. Parametric testing of the regenerator system demonstrated the impact of process conditions on both desorption rate and the heat of regeneration. Clear evidence of the use of specific process conditions that lower the overall energy of desorption was identified. This observation validates measurements made at the laboratory-scale. Several longer-term continuous tests were conducted to evaluate the performance of the sorbent/process as a function of time. Using a 2-bed configuration, sustained capture efficiency of 40-60% with a high flue gas CO2 loading (~8%) and 70-80% with a low flue gas CO2 loading (~4%) were achieved. However, sorbent working capacity was found to be considerably lower than laboratory-scale measurements. The low working capacity is attributed to insufficient sorbent/gas contact time in the adsorber. Sorbent properties that had a significant impact on CO2 capture performance were identified. The results show that controlling these sorbent properties substantially improves CO2 capture performance, with preliminary estimates indicating that relative improvement of ~30% is possible. Testing culminated with an operationally trouble-free test of 15 hours with sustainable performance. Overall, several practical strategies to increase performance of the sorbent and process were identified. The initial technical and economic assessment of the CACHYS™ process estimated the cost of CO2 capture was $36.19/ton with a 48.6% increase in levelized cost of electricity (LCOE) for the 550 MWe net plant. Using additional data gathered over the course of the project, and with revised technical and economic assumptions, the estimated cost of CO2 capture with the CACHYS™ process is $39/ton (only includes the cost of the CO2 capture system

  15. Development of a Catalyst/Sorbent for Methane Reforming

    SciTech Connect (OSTI)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31T23:59:59.000Z

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  18. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08T23:59:59.000Z

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  19. DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING

    SciTech Connect (OSTI)

    B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

    2004-09-27T23:59:59.000Z

    This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

  20. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30T23:59:59.000Z

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H{sub 2}S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO{sub 2} capacity, conversion of CO to CO{sub 2}, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO{sub 2}}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO{sub 2}/H{sub 2}. A longer term experiment with a simple syngas matrix and N{sub 2}/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program culminated in a technoeconomic assessment in which two different approaches were taken; one

  1. Natural-sorbent attrition and elutriation characteristics in fluidized-bed coal combustors

    SciTech Connect (OSTI)

    Wilson, W.I.; Fee, D.C.; Myles, K.M.; Johnson, I.; Fan, L.S.

    1981-01-01T23:59:59.000Z

    Laboratory test methods have been developed to measure the attrition and elutriation characteristics of limestones in an atmospheric-pressure fluidized-bed coal combustor (AFBC) at 850/sup 0/C. The attrition constant and elutriation rate were determined for a group of limestones when the system is assumed to be at steady state; that is, after sorbent breakup due to thermal shock and decrepitation during calcination of the sorbent feed are completed. An attrition model has been developed to analyze the laboratory data to predict sorbent performance in AFBCs. The attrition model assumes that the particle disintegration occurs from the abrasive removal of material from the surface of the particle rather than by particle fracture. The attrition constants of the limestones tested ranged from 1.5 x 10/sup -6/ sec/sup -1/ to 9.2 x 10/sup -8/ sec/sup -1/, and the elutriation rate had a fractional mass loss which ranged from 8.1 x 10/sup -8/ min/sup -1/ to 1.0 x 10/sup -3/ min/sup -1/. The test methods and techniques utilized by the model are undergoing refinement to improve the accuracy of the prediction. The attrition and elutriation of a sorbent in a fluidized-bed combustor affects the sorbent performance in a complex manner. The obvious case is the extreme situation where so much sorbent material is lost from the bed via attrition and elutriation that a constant bed height cannot be maintained. Because this aspect is an important consideration in sorbent selection, standard laboratory test methods have been developed to measure the attrition and elutriation characteristics of limestones in AFBCs.

  2. Development of Improved Sorbents for Radiochemical Separations at the SRS

    SciTech Connect (OSTI)

    HOBBS, DAVID

    2005-01-20T23:59:59.000Z

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and ion exchange/sorption of Sr-90 and alpha-emitting radionuclides with monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes results from a project funded by the U.S. Department of Energy Office of Cleanup Technology to produce sorbents that exhibit increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides versus that of the baseline MST material. Testing indicated that MST samples prepared in the presence of organic-based templating reagents showed limited improvements in performance compared to the baseline MST. We observed significantly improved plutonium and neptunium removal performance with MST samples prepared upon the addition of a proprietary reagent. The modified MST offers the possibility of increased throughput and reduced solids handling in waste processing facilities at the SRS.

  3. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect (OSTI)

    Ally, M. R.

    2006-11-30T23:59:59.000Z

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  4. Process development for production of coal/sorbent agglomerates

    SciTech Connect (OSTI)

    Rapp, D.M.; Lytle, J.M.; Hackley, K.C.; Moran, D.L.; Becvar, S. (Illinois State Geological Survey, Champaign, IL (USA)); Berger, R.L. (Illinois Univ., Urbana, IL (USA)); Griggs, K. (Army Construction Engineering Research Lab., Champaign, IL (USA))

    1991-01-01T23:59:59.000Z

    Current coal mining and processing procedures produce significant quantities of fine coal with limited marketability. The objective of this work is to pelletize these fines with a sulfur capturing sorbent such as calcium hydroxide to produce a fuel which will meet future sulfur dioxide emission levels. To decrease binder costs, carbonation, which is the reaction of calcium hydroxide with carbon dioxide in the presence of moisture to produce calcium carbonate, is being investigated as a method for improving pellet quality. The calcium carbonate formed acts as a cementitious matrix which improves pellet strength. In previous work utilizing IBC-106 from the Illinois Basin Coal Sample Program, carbonation was determined to be effective at significantly improving pellet compressive strength, impact and attrition resistance and weatherability. In combustion tests conducted at 850{degree}C, sulfur capture of 80% was achieved for pellets having 17.5% calcium hydroxide (a Ca/S ration of 2/1). In this years work, a flotation concentrate collected from an operating Illinois preparation plant is being used for testing. Results indicate carbonation significantly increases the compressive strength of pellets formed with 10% calcium hydroxide. 6 refs., 1 fig., 5 tabs.

  5. Process development for production of coal/sorbent agglomerates

    SciTech Connect (OSTI)

    Rapp, D.M.

    1991-01-01T23:59:59.000Z

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spaces are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.

  6. Process development for production of coal/sorbent agglomerates

    SciTech Connect (OSTI)

    Rapp, D.M.; Lytle, J.M.; Hackley, K.C.; Moran, D.L.; Becvar, S. (Illinois State Geological Survey, Champaign, IL (United States)); Berger, R.L. (Illinois Univ., Urbana, IL (United States)); Griggs, K. (Army Construction Engineering Research Lab., Champaign, IL (United States))

    1991-01-01T23:59:59.000Z

    The objective of this work is to pelletize these fines with a sulfur capturing sorbent such as calcium hydroxide to produce a fuel which will meet future sulfur dioxide emission levels. To decrease binder costs, carbonation, which is the reaction of calcium hydroxide with carbon dioxide in the presence of moisture to produce calcium carbonate, is being investigated as a method for improving pellet quality. The calcium carbonate formed acts as a cementitious matrix which improves pellet strength. Two potential combustion options are being considered -- fluidized bed combustors and industrial stoker boilers. During this quarter a pellet characterization test program was conducted using a fine coal (-28 mesh) concentrate collected from a southern Illinois preparation plant. Results indicate that carbonation produces significant improvements in compressive strength, impact and attrition resistance and weatherability. Also, 20 combustion tests were conducted on pellets formed with 0, 5 and 10% levels of calcium hydroxide (10% calcium hydroxide is a 2.3:1 Ca/S ratio for this sample). Tests were conducted at 850 and 1350 {degrees}C. Chemical analyses of the combustion residues are not yet complete so results will be reported next quarter. 8 refs., 7 tabs.

  7. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  8. Optothermal Molecule Trap

    E-Print Network [OSTI]

    Duhr, S; Duhr, Stefan; Braun, Dieter

    2006-01-01T23:59:59.000Z

    Thermophoresis moves molecules along temperature gradients, typically from hot to cold. We superpose fluid flow with thermophoretic molecule flow under well defined microfluidic conditions, imaged by fluorescence microscopy. DNA is trapped and accumulated 16-fold in regions where both flows move in opposite directions. Strong 800-fold accumulation is expected, however with slow trapping kinetics. The experiment is equally described by a three-dimensional and one-dimensional analytical model. As an application, we show how a radially converging temperature field confines short DNA into a 10 um small spot.

  9. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

    1997-01-01T23:59:59.000Z

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  10. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02T23:59:59.000Z

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  11. Theoretical Screening of Solid Sorbents for CO{sub 2} Capture Applications

    SciTech Connect (OSTI)

    Duan, Y [NETL

    2013-08-07T23:59:59.000Z

    The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO{sub 2} solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO{sub 2} capture reactions. Single solid may not satisfy the industrial operating conditions as CO{sub 2} sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li{sub 2}O/SiO{sub 2} ratio, we found that with decreasing Li{sub 2}O/SiO{sub 2} ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3} and CaCO{sub 3} promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.

  12. Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors

    SciTech Connect (OSTI)

    Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

    1980-09-01T23:59:59.000Z

    The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

  13. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect (OSTI)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01T23:59:59.000Z

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  14. Performance of Amine-Multilayered Solid Sorbents for CO{sub 2} Removal: Effect of Fabrication Variables

    SciTech Connect (OSTI)

    Jiang, Bingbing; Kish, Vincent; Li, Bingyun; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A.

    2011-09-01T23:59:59.000Z

    The emission of fossil fuel carbon dioxide (CO{sub 2) to the atmosphere is implicated as the predominant cause of global climate change; therefore, advanced CO{sub 2} capture technologies are of the utmost importance. In this study, innovative amine-multilayered sorbents were fabricated using layer-by-layer (LbL) nanoassembly technology via alternate deposition of a CO{sub 2}-adsorbing amine polymer (e.g. polyethylenimine or PEI) and an oppositely-charged polymer (e.g. polystyrene sulfonate or PSS). We found that the developed sorbents could be used for CO{sub 2} capture and that LbL nanoassembly allows us to engineer their CO{sub 2} capture performance through the fabrication variables (e.g. deposition polymers, deposition media, and number of bilayers). PEI/PSS was found to be the best polymer combination for developing sorbents with relatively high CO{sub 2} capture capacity. The amine-multilayered solid sorbents possessed fine microstructures and may have similar polymer deposition within and on the surface of solid sorbents. These amine-multilayered sorbents had much faster CO{sub 2} desorption rates compared to sorbents prepared using the current PEI-impregnation approach. Such fast CO{sub 2} desorption could make sorbents a good option for CO{sub 2} removal from power plants and even the atmosphere.

  15. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect (OSTI)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19T23:59:59.000Z

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  16. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  17. TRACE: A Monte Carlo code for the efficiency and differential efficiency of multi-element neutron scintillator detectors

    SciTech Connect (OSTI)

    Sailor, W.C.; Byrd, R.C.; Yariv, Y.

    1988-10-01T23:59:59.000Z

    The response of organic scintillators to monoenergetic neutrons has been calculated using a Monte Carlo approach. The code TRACE is largely based on the well-tested code of Stanton, except that multi-element capabilities, energy-dependent reaction kinematics, and photon loss through attenuation and reflection are introduced. The modeling assumptions and historical development of the Stanton code are first discussed. Pulse height distributions calculated with this code are given and used to explain the roles of various reaction channels and multiple scattering in determining the detector efficiency. Changes introduced into the code in developing TRACE are summarized. Pulse height spectra and total efficiencies for single-element detectors are calculated with both the Stanton code and with TRACE in the energy range 28 < E/sub n/ < 200MeV, and the results are compared to experimental data obtained with the /sup 7/Li(p,n)/sup 7/Be reaction. 68 refs., 25 figs., 3 tabs.

  18. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    SciTech Connect (OSTI)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01T23:59:59.000Z

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at SRI and RTI to conduct tests at high-temperature, high-pressure conditions (HTHP). The HTHP tests confirmed the ability of nahcolite pellets and granules to reduce the HCl vapor levels to less than 1 ppm levels with a very high sorbent utilization for chloride capture. The effect of several operating variables such as temperature, pressure, presence of hydrogen sulfide, and sorbent preparation methods was studied on the efficacy of HCl removal by the sorbent. Pilot-scale tests were performed in the fluidized-bed mode at the gasifier facility at the GE-CRD. Sorbent exposure tests were also conducted using a hot coal gas stream from the DOE/FETC's fluidized-bed gasifier at Morgantown, WV. These tests confirmed the results obtained at SRI and RTI. A preliminary economic assessment showed that the cost of HCl removal in a commercial IGCC system will be about $0.001/kWh (1 mills/kWh).

  19. Agglomeration of sorbent and ash carry-over for use in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Rohargi, N.D.T.

    1983-04-01T23:59:59.000Z

    Agglomeration of elutriated sorbent, ash and char from a fluidized-bed boiler, with spent bed overflow material and water, has been identified as a potentially attractive technique for reducing sorbent consumption in atmospheric fluidized-bed combustors. The agglomerated products are returned to the combustor to improve the calcium utilization of the sorbent and to complete the combustion of elutriated carbon material. In this experimental programme, agglomerates were collected during test runs on the 1.8 m x 1.8 m fluidized-bed combustor. Agglomerate characteristics, such as handling strength, sulfur capture activity carbon utilization and resistance to attrition, were determined as functions of agglomeration processing variables. These variables include feed composition, feed particle size, amount of water addition, curing time, and curing atmosphere or drying conditions. Ca/S feed ratio requirements for a commercial AFBC that uses the agglomeration process were projected on the basis of the Westinghouse model for fluidized-bed desulphurization.

  20. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report, July 1992

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-09-01T23:59:59.000Z

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  1. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect (OSTI)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31T23:59:59.000Z

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  2. Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    2008-01-01T23:59:59.000Z

    A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

  3. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOE Patents [OSTI]

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16T23:59:59.000Z

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  4. Ab initio screening of metal sorbents for elemental mercury capture in syngas streams

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Ab initio screening of metal sorbents for elemental mercury capture in syngas streams Anubhav Jain to produce a combustible syngas, a mixture of carbon monoxide and hydrogen gas. Power plants incorporating prior to combustion, i.e. in the pre-combustion syngas mixture rather than the flue gas; as such

  5. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-10-01T23:59:59.000Z

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. During this quarter cyclic sulfidation/regeneration tests of the sorbents Cu{sub 2}Cr-O and Cu-Ce-0 were conducted using different compositions of the feed gases to investigate the effects of H{sub 2}0, H{sub 2} and CO. These tests were conducted in a packed-bed microreactor at 850{degrees}C. The results of these tests showed that H{sub 2} and CO (along with C02) had a significant effect on the H{sub 2}S pre-breakthrough levels, whereas H{sub 2}0 did not have an effect. The physical properties of the fresh and reacted samples of the Cu-2Cr-O and Cu-Ce-0 sorbents prepared in this program and used in the cyclic sulfidation/regeneration tests were also measured. In addition, sulfidation/regeneration tests were conducted using two commercial copper chromite sorbents (G-13 and G-89, United Catalyst, Inc.) and a zinc titanate sorbent (L-3014) in a one-inch fluidized-bed reactor at 650{degrees}C. The G-13 sorbent appears to have a much higher sulfur capacity than the G-89 sorbent.

  6. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H. [Inst. of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Z. [Tufts Univ., Medford, MA (United States)

    1994-09-01T23:59:59.000Z

    The objective of this investigation is to evaluate two novel copper-based sorbents, namely copper-chromium and copper-cerium, for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650 to 850 C. Such high temperatures will be required for the new generation of gas turbines (inlet > 750 C) in Integrated Gasification Combined Cycle (IGCC) systems. Results of fixed-bed reactor tests conducted in this quarter, indicate that, at 750 C, pre-reduction with H{sub 2} in the presence of H{sub 2}O does not effect the performance of either sorbent for H{sub 2}S removal. For the pre-reduced CuCr{sub 2}O{sub 4} sorbent, copper utilization before the first H{sub 2}S breakthrough is substantially higher in synthesis feed gas mixture than in feed gas containing 30 Vol% H{sub 2}, and slightly lower than in 10 vol% H{sub 2}. In sulfidation-regeneration testing of copper- and additive-rich sorbents, chromium-rich CuO-3Cr{sub 2}O{sub 4} sorbent demonstrated very high H{sub 2}S removal efficiency and high copper conversion levels (comparable to that of the 1:1 molar composition sorbent). Similar results were obtained with the cerium-rich CuO-3CeO{sub 2} sorbent, but only for the first cycle. The H{sub 2}S removal performance of both copper-rich sorbents was inferior to that of the respective 1:1 molar compositions. CuO-CeO{sub 2} sorbent testing in a TGA indicates no appreciable decrease in the sulfidation rate over 5 1/2 cycles. However, weight changes during regeneration of the CuO-CeO{sub 2} suggest that some copper or cerium sulfates formed.

  7. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2012-09-30T23:59:59.000Z

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  8. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 4, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Davis, S.

    1995-10-15T23:59:59.000Z

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  9. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 3, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Wendt, J.O.L.

    1995-09-06T23:59:59.000Z

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  10. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01T23:59:59.000Z

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  11. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2007-06-30T23:59:59.000Z

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume decreased when experimental cycles went on. Silica was doped on the CaAc{sub 2}-CaO in various weight percentages, but the resultant sorbent did not exhibit better performance under cyclic operation than those without dopant. In chapter 3, the Calcium-based carbon dioxide sorbents were made in the gas phase by flame spray pyrolysis (FSP) and compared to the ones made by standard high temperature calcination (HTC) of selected calcium precursors. The FSP-made sorbents were solid nanostructured particles having twice as large specific surface area (40-60 m{sup 2}/g) as the HTC-made sorbents (i.e. from calcium acetate monohydrate). All FSP-made sorbents showed high capacity for CO{sub 2} uptake at high temperatures (773-1073 K) while the HTC-made ones from calcium acetate monohydrate (CaAc{sub 2} {center_dot} H{sub 2}O) demonstrated the best performance for CO{sub 2} uptake among all HTC-made sorbents. At carbonation temperatures less than 773 K, FSP-made sorbents demonstrated better performance for CO{sub 2} uptake than all HTC-made sorbents. Above that, both FSP-made, and HTC-made sorbents from CaAc{sub 2} {center_dot} H{sub 2}O exhibited comparable carbonation rates and maximum conversion. In multiple carbonation/decarbonation cycles, FSP-made sorbents demonstrated stable, reversible and high CO{sub 2} uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles indicating their potential for CO{sub 2} uptake. In chapter 4 we investigated the performance of CaO sorbents with dopant by flame spray pyrolysis at higher temperature. The results show that the sorbent with zirconia gave best performance among sorbents having different dopants. The one having Zr to Ca of 3:10 by molar gave stable performance. The calcium conversion around 64% conversion during 102-cycle operations at 973 K. When carbonation was performance at 823 K, the Zr/Ca sorbent (3:10) exhibited stable performance of 56% by calcium molar conversion, or 27% by sorbent weight, both of which are less than those at 973 K as expected. In chapter 5 we investigated the perfor

  12. Cryogenic Ion Trapping Systems with Surface-Electrode Traps

    E-Print Network [OSTI]

    P. B. Antohi; D. Schuster; G. M. Akselrod; J. Labaziewicz; Y. Ge; Z. Lin; W. S. Bakr; I. L. Chuang

    2008-07-29T23:59:59.000Z

    We present two simple cryogenic RF ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 hours. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with $^{88}$Sr$^+$ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 minutes.

  13. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect (OSTI)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01T23:59:59.000Z

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  14. EFFICIENT THEORETICAL SCREENING OF SOLID SORBENTS FOR CO2 CAPTURE APPLICATIONS

    SciTech Connect (OSTI)

    Duan, Yuhua; Sorescu, Dan C; Luebke, David

    2011-01-01T23:59:59.000Z

    Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.

  15. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); Husson, Scott M. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  16. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  17. Cryogenic silicon surface ion trap

    E-Print Network [OSTI]

    Michael Niedermayr; Kirill Lakhmanskiy; Muir Kumph; Stefan Partel; Johannes Edlinger; Michael Brownnutt; Rainer Blatt

    2015-05-01T23:59:59.000Z

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  18. Radiation trapping in coherent media

    E-Print Network [OSTI]

    A. B. Matsko; I. Novikova; M. O. Scully; G. R. Welch

    2001-01-31T23:59:59.000Z

    We show that the effective decay rate of Zeeman coherence, generated in a Rb87 vapor by linearly polarized laser light, increases significantly with the atomic density. We explain this phenomenon as the result of radiation trapping. Our study shows that radiation trapping must be taken into account to fully understand many electromagnetically induced transparency experiments with optically thick media.

  19. Theory and application of planar ion traps

    E-Print Network [OSTI]

    Pearson, Christopher Elliott

    2006-01-01T23:59:59.000Z

    In this thesis, we investigate a new geometry of Paul trap with electrodes in a plane. These planar ion traps are compatible with modern silicon microfabrication, and can be scaled up to large arrays with multiple trapping ...

  20. Optimal traps in graphene

    E-Print Network [OSTI]

    C. A. Downing; A. R. Pearce; R. J. Churchill; M. E. Portnoi

    2015-03-27T23:59:59.000Z

    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a non-linear first-order differential equation for scattering phase shift, using the so-called variable phase method. This allows us to utilize the Levinson Theorem to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads to us posit the use of `optimal traps' to combat the chiral tunneling found in graphene, which could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find the zero angular momentum states create a dominant peak in scattering cross-section as energy tends towards the Dirac point energy, suggesting a dominant contribution to resistivity.

  1. ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications

    DOE Patents [OSTI]

    Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.

    2004-09-21T23:59:59.000Z

    A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.

  2. Investigation of combined S02/N0x Removal by Ceria Sorbents

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtlu

    1996-11-01T23:59:59.000Z

    This final report describes the work done under the sponsorship of the U.S. DOE for the support of advanced fossil resource utilization research at historically black colleges and universities, Grant No. DE-Ps22-92MT920 on "Investigation of Combined S02/NOx Removal by Ceria Sorbents". The work was conducted at the Department of Chemical Engineering of Hampton University. The industrial partner was Malcolm Pirnie,Inc. Environmental Engineers, Scientists and Planners, who handled the metal analysis and XRD measurements on the solid sorbents; they have also supplied the flyash used in the experimental program. The development of a commercial process concept, economic analysis, and evaluation of process alternatives were undertaken by TECOGEN of Waltham, MA.

  3. Immobilizing tyrosinase within chitosan gels: A combination catalyst and sorbent for phenol removal

    SciTech Connect (OSTI)

    Sun, Wei-Qiang; Payne, G.F. [Univ. of Maryland, Baltimore, MD (United States)

    1995-12-01T23:59:59.000Z

    Phenols are common contaminants in chemical process effluents. To remove we developed a two step bioremediation approach in which an these contaminants, we developed a two step bioremediation approach in which an enzymatic reaction was coupled with absorption. In the first step, weakly adsorbable phenols are converted to reactive o-quinones by the enzyme tyrosinase. The quinones are then strongly adsorbed onto the surface of a chitosan sorbent in the second steel. Our results show that this two step approach can selectively and efficiently remove phenols from solution. To reduce this approach into practice, we immobilized the tyrosinase within a chitosan gel yielding a combined catalyst-sorbent film. Using this tyrosinase-containing chitosan gel, phenols (i.e. phenol, cresol and catechol) can be completely removed from solution.

  4. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    SciTech Connect (OSTI)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others] [and others

    1998-03-01T23:59:59.000Z

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  5. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    SciTech Connect (OSTI)

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01T23:59:59.000Z

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  6. Agglomeration of sorbent and ash carry-over for use in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Rohatgi, N.D.T.; Kealrns, D.L.; Newby, R.A.; Ulerich, N.H.

    1983-04-01T23:59:59.000Z

    Agglomeration of elutriated sorbent, ash, and char from a fluidized-bed boiler, with spent bed overflow material and water, has been identified as a potentially attractive technique for reducing sorbent consumption in atmospheric fluidized-bed combustors (AFBC). The agglomerated products are returned to the combustor to improv the calcium utilization of the sorbent and to complete the combustion of elutriated carbon material. In this experimental program, agglomerates were formed from Babcock and Wilcox (BandW) raw materials (Carbon limestone, spent bed overflow, cyclone and baghouse catch) collected during test runs on the 1.8 m X 1.8 m fluidized-bed combustor. Agglomerate characteristics, such as handling strength, sulfur capture activity, carbon utilization, and resistance to attrition, were determined as functions of agglomeration processing variables. These variables include feed composition, feed particle size, amount of water addition, curing time, and curing atmosphere or drying conditions. Calcium-to-sulfur (Ca/S) feed ratio requirements for a commercial AFBC that uses the agglomeration process were projected on the basis of the Westinghouse model for fluidized-bed desulfurization.

  7. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    SciTech Connect (OSTI)

    Clearfield, Abraham

    2005-07-01T23:59:59.000Z

    It has been determined that poorly crystalline CST and SNT prepared at low temperature (100-150 C) exhibit much faster kinetics in uptake of Sr2+. In-situ X-ray studies has shown that SNT is a precursor phase to the formation of CST. It is possible to form mixtures of CST and SNT in a single reactant mix by control of temperature and time of reaction. It has been found that addition of a small amount of Cs+ to the reactant mix for the preparation of Nb-CST allows formation of the crystals in one day rather than ten days at 200 C. These discoveries suggest that a proper mix of sorbents (SNT, CST, Nb-CST) can be made easily at low cost that would remove all the HLW at the Savannah River site with a single in-tank procedure. The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

  8. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    SciTech Connect (OSTI)

    Clearfield, Abraham

    2005-07-01T23:59:59.000Z

    It has been determined that poorly crystalline CST and SNT prepared at low temperature (100-150 deg. C) exhibit much faster kinetics in uptake of Sr2+. 2. In-situ X-ray studies has shown that SNT is a precursor phase to the formation of CST. 3. It is possible to form mixtures of CST and SNT in a single reactant mix by control of temperature and time of reaction. 4. It has been found that addition of a small amount of Cs+ to the reactant mix for the preparation of Nb-CST allows formation of the crystals in one day rather than ten days at 200 deg. C. 5. These discoveries suggest that a proper mix of sorbents (SNT, CST, Nb-CST) can be made easily at low cost that would remove all the HLW at the Savannah River site with a single in-tank procedure. Research Objective The basic science goal in this project is to identify structure/affinity relationships for selected radionuclides and existing sorbents. The research will then apply this knowledge to the design and synthesis of sorbents that will exhibit increased cesium, strontium and actinide removal. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to non-radioactive separations.

  9. Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Stevens, Jr., Robert W

    2013-06-25T23:59:59.000Z

    A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

  10. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    SciTech Connect (OSTI)

    Robin Stewart

    2008-03-12T23:59:59.000Z

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.

  11. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

  12. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-06-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

  13. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01T23:59:59.000Z

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  14. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19T23:59:59.000Z

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  15. Inspect and Repair Steam Traps

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Managing the Steam Trap Population

    E-Print Network [OSTI]

    Atlas, R. D.

    1983-01-01T23:59:59.000Z

    item? .However, some converts to the gospel of enlighten ed steam trap management expect to achieve the following benefits: A 95% trap performance level which is a better than 30% improvement over the industry norm. Plus, we have found a well... trained. This may six surveys per year with a guaf'8nteed performance level involve two days of training per man including of better than 9596. This program usually has the best cash classroom and field instruction plus periodic flow, and faster...

  17. Solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration at ambient conditions

    SciTech Connect (OSTI)

    Wang, Xiaoxing [Pennsylvania State University; Ma, Xiaoliang [Pennsylvania State University; Schwartz, Viviane [ORNL; Clark, Jason C [ORNL; Overbury, Steven {Steve} H [ORNL; Zhao, Shuqi [Pennsylvania State University, University Park, PA; Xu, Xiaochun [Pennsylvania State University; Song, Chunshan [Pennsylvania State University

    2012-01-01T23:59:59.000Z

    In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15 was studied for CO2 capture from gas streams with low CO2 concentration at ambient conditions. The sorbent was able to effectively and selectively capture CO2 from a gas stream containing 1% CO2 at 75 C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg/g, respectively, and a selectivity of 14 for CO2/CO and 185 for CO2/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO2-TPD study showed that the sorbent could be regenerated at mild conditions (50-110 C) and was stable in the cyclical operations for at least 20 cycles. Furthermore, the possibility for CO2 capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg/g was attained at 75 C via TPD method using a simulated air with 400 ppmv CO2 in N2.

  18. DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2005-01-30T23:59:59.000Z

    For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

  19. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30T23:59:59.000Z

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO{sub 2}. A capture efficiency of 85 to 95% CO{sub 2} was achieved under steady-state conditi ons. The CO{sub 2} adsorption capacity did not change significantly during the field test, as determined from the CO{sub 2} adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO{sub 2} capture using the carbon sorbent and compared with the no-CO{sub 2} capture and CO{sub 2} capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO{sub 2} capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO{sub 2}, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO{sub 2} capture. The results indicate that further long-term testing with a flue gas from a pulverized coal­ fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing , and the use of low-cost construction materials.

  20. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOE Patents [OSTI]

    Ayala, Raul E. (Clifton Park, NY)

    1993-01-01T23:59:59.000Z

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  1. Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode

    SciTech Connect (OSTI)

    Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

    2012-07-01T23:59:59.000Z

    Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

  2. Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 5, October 1, 1995--December 30, 1995

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Davis, S.

    1996-06-01T23:59:59.000Z

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures,which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined. The research is divided into the following five tasks: (1) combustor modifications; (2) screening experiments; (3) mechanisms; (4) applications and (5) mathematical modelling. Accomplishments for this past quarter are briefly described for tasks 1 and 2.

  3. Studies of in-situ calcium based sorbents in advanced pressurized coal conversion systems. Final report, June 1991--October 1994

    SciTech Connect (OSTI)

    Katta, S.; Shires, P.J.; Campbell, W.M.; Henningsen, G.

    1994-10-01T23:59:59.000Z

    The overall objective of this project was to obtain experimental data on the reactions of calcium-based sorbents in both air-blown coal gasification systems and second generation fluid bed coal combustion systems (partial gasification) as well as stabilization of the spent sorbent produced. The project consisted of six tasks: Tasks 1 and 2 dealt mostly with project-related activities and preparation of test equipment, Task 3 -- study on sulfidation of calcium-based sorbents, Task 4 -- kinetic studies on calcium-catalyzed carbon gasification reactions, and Task 5 -- oxidation of CaS present in LASHs and DASHs (mixtures of coal ash and limestone or dolomite respectively) to CaSO{sub 4} and absorption of SO{sub 2} on various solids, and Task 6 -- economic evaluation of the most promising CaS oxidation method developed under this program. Experimental studies were conducted primarily to address Task 5 issues, and are discussed in this report.

  4. Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Rupp, E.C.; Stanko, D.C.; Howard, B.; Pennline, H.W.

    2011-01-01T23:59:59.000Z

    The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur. and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide. but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur. resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium.

  5. Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

    SciTech Connect (OSTI)

    Duan, Yuhua

    2014-01-01T23:59:59.000Z

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO{sub 2} capture Technologies.

  6. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    SciTech Connect (OSTI)

    Duan, Yuhua

    2012-11-02T23:59:59.000Z

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.

  7. Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

    SciTech Connect (OSTI)

    Duan, Yuhua

    2014-03-30T23:59:59.000Z

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO{sub 2} capture Technologies.

  8. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    SciTech Connect (OSTI)

    Duan, Yuhua

    2015-01-01T23:59:59.000Z

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  9. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jim Butz; Terry Hunt

    2005-11-01T23:59:59.000Z

    Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

  10. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31T23:59:59.000Z

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  11. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27T23:59:59.000Z

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  12. Theoretical Screening of Solid Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Duan, Y [NETL; Sorescu, D C [NETL; Luebke, D [NETL; Morreale, B [NETL; Li, B Y; Zhang, B; Johnson, J K; Zhang, K; Li, X S; King, D

    2013-04-11T23:59:59.000Z

    By combining thermodynamic database searches with density functional theory and lattice phonon dynamics, a screening methodology was developed to identify promising solid sorbent candidates for CO{sub 2} capture. This methodology has been used to screen hundreds of solid compounds and some of the promising candidates to date have been reported in literature. This screening methodology is particularly relevant for the case of materials for which experimental thermodynamic data is not available. Such areas of interest are represented by the case of solid mixtures and doped materials, where thermodynamic data are generally not available but for which the crystallographic structure is known or can be easily determined.

  13. Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

    2010-01-01T23:59:59.000Z

    Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

  14. Trapped-ion Lissajous trajectories

    E-Print Network [OSTI]

    R. F. Rossetti; G. D. de Moraes Neto; J. Carlos Egues; M. H. Y. Moussa

    2015-02-25T23:59:59.000Z

    Here we present a protocol for generating Lissajous curves with a trapped ion by engineering Rashba- and the Dresselhaus-type spin-orbit interactions in a Paul trap. The unique anisotropic Rashba $\\alpha_{x}$, $\\alpha_{y}$ and Dresselhaus $\\beta_{x}$, $\\beta_{y}$ couplings afforded by our setup also enables us to obtain an "unusual" Zitterbewegung, i.e., the semiconductor analog of the relativistic trembling motion of electrons, with cycloidal trajectories in the absence of magnetic fields. We have also introduced bounded SO interactions, confined to an upper-bound vibrational subspace of the Fock states, as an additional mechanism to manipulate the Lissajous motion of the trapped ion. Finally, we accounted for dissipative effects on the vibrational degrees of freedom of the ion and find that the Lissajous trajectories are still robust and well defined for realistic parameters.

  15. Microfabricated linear Paul-Straubel ion trap

    DOE Patents [OSTI]

    Mangan, Michael A. (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Tigges, Chris P. (Albuquerque, NM); Linker, Kevin L. (Albuquerque, NM)

    2011-04-19T23:59:59.000Z

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  16. Surface-electrode point Paul trap

    SciTech Connect (OSTI)

    Kim, Tony Hyun; Herskind, Peter F.; Chuang, Isaac L. [Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kim, Taehyun; Kim, Jungsang [Department of Electrical and Computer Engineering, Duke University Durham, North Carolina 27708 (United States)

    2010-10-15T23:59:59.000Z

    We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single {sup 88}Sr{sup +} ions over an ion height range of 200-1000 {mu}m for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model.

  17. Optical Trapping by Radiometric Flow

    E-Print Network [OSTI]

    William L. Clarke

    1998-12-13T23:59:59.000Z

    Micron sized, neutral, non-dielectric particles immersed in a viscous fluid can be trapped in the focal plane of a Gaussian beam. A particle can absorb energy from such a beam with a large radial intensity gradient, resulting in substantial temperature gradients and a radiometric torque which causes it to spin rapidly about an axis perpendicular to the flux of radiant energy. The particles are also observed to orbit around the optical axis. Here we investigate the fundamental physics of this system, the Radiometric Particle Trap, and discuss its force laws using gas-kinetic theory.

  18. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  19. Fiber optic integration in planar ion traps

    E-Print Network [OSTI]

    George, Elizabeth Marie

    2008-01-01T23:59:59.000Z

    Atomic ion traps are are excellent tools in atomic physics for studying single ions. Accurate measurement of the ion's electronic state in these ion traps is required by both atomic clocks and quantum computation. Quantum ...

  20. instructions HisTrap FF crude,

    E-Print Network [OSTI]

    Lebendiker, Mario

    · p1 instructions HisTrap FF crude, 1 ml and 5 ml i 11-0012-38 Edition AA HisTrapTM FF crude, such as degradation and oxidation of sensitive target proteins, and is therefore of great importance. HisTrap FF crude properties HisTrap FF crude 1-ml and 5-ml columns are prepacked with the affinity medium Ni Sepharose 6 Fast

  1. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Holly Krutka; Sharon Sjostrom

    2011-07-31T23:59:59.000Z

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, so

  2. Preparation and study of the adsorption properties of microporous sorbents based on montmorillonite and basic aluminum salts

    SciTech Connect (OSTI)

    Tarasevich, Yu.I.; Doroshenko, V.E.; Rudenko, V.M.; Ivanova, Z.G.

    1986-11-01T23:59:59.000Z

    Sorbents based on montmorillonite and basic aluminum chlorides with platelike micropores 0.77 nm thick were synthesized. The parameters of the primary and secondary pore structure of these materials were estimated from adsorption and x-ray data. A method was proposed for estimating the amount of initial montmorillonite stacks and stacks modified by the basic aluminum cations.

  3. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31T23:59:59.000Z

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials,

  4. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect (OSTI)

    Elliott, Jeannine

    2013-08-31T23:59:59.000Z

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  5. Experiments Performed in Substantiation of the Conditioning of BN-350 Spent Cesium Traps Using Lead or Lead-Bismuth Alloy Filling Technology

    SciTech Connect (OSTI)

    O. Romanenko; I. Tazhibaeva; I. Yakovlev; A. Ivanov; D. Wells; A. Herrick; J. Michelbacher; S. Shiganakov

    2009-05-01T23:59:59.000Z

    The technology of cleaning cesium radionuclides from sodium coolant at the BN-350 fast reactor was realized in the form of cesium traps of two types: stationary devices connected to the circuit that was to be cleaned and in-core devices installed into the core of reactor when it was not under operation. Carbon-graphite materials were used as sorbents to collect and concentrate radioactive cesium, accumulated in the BN-350 reactor circuits over the decades of their operation, in relatively small volume traps which provided effective radiation-safe conditions for personnel working in proximity to the coolant and equipment of the primary circuit during BN-350 decommissioning. Spent cesium traps, as products unfit for further use, represent solid radioactive wastes. The presence of chemically active sodium, potassium and cesium that are able to react violently with water results in series of problems related to their disposal in the Republic of Kazakhstan. Considering the technology of filling spent cesium traps with lead/lead-bismuth alloy as a priority one for their conditioning, evaluations for safety substantiation were implemented. A set of experiments was implemented aimed at verification of calculations performed in substantiation of the proposed technology: filling a full scale cesium trap mock-up with sodium followed by its draining to determine the optimal regimes of draining; filling bench scale cesium trap mock-ups with sodium and cesium followed by sodium draining and filling with lead or lead-bismuth alloy at different temperatures and filling rates to chose the optimal regimes for filling spent cesium traps; implementation of leachability tests to determine the rate of cesium release from the filling materials into water. This paper provides a description of the experimental program carried out and the main results obtained.

  6. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Witten, William B. (Lancing, TN); Kornienko, Oleg (Lansdale, PA)

    2002-01-01T23:59:59.000Z

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  7. Tachyon Physics with Trapped Ions

    E-Print Network [OSTI]

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01T23:59:59.000Z

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  8. Cooling Techniques for Trapped Ions

    E-Print Network [OSTI]

    Daniel M. Segal; Christof Wunderlich

    2014-09-24T23:59:59.000Z

    This book chapter gives an introduction to, and an overview of, methods for cooling trapped ions. The main addressees are researchers entering the field. It is not intended as a comprehensive survey and historical account of the extensive literature on this topic. We present the physical ideas behind several cooling schemes, outline their mathematical description, and point to relevant literature useful for a more in-depth study of this topic.

  9. Surface characterization of Pd/Al2O3 sorbents for mercury capture from fuel gas

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Stanko, D.C.; Pennline, H.W.

    2008-01-01T23:59:59.000Z

    The surface composition of a series of Pd/alumina sorbents has been characterized to better understand the factors influencing their ability to adsorb mercury from fuel gas. Both a temperature effect and a dispersion effect were found. Maximum adsorption of Hg occurred at the -lowest temperature tested, 204°C, and decreased with increasing temperatures. Maximum adsorption of Hg on a per-atom basis of Pd is observed at low loadings of Pd ( < 8.5% Pd) due to better dispersion of Pd at those loadings; a change in its partitioning occurs at higher loadings. The presence of H2S 'in the fuel gas acts to promote the adsorption of Hg through its association with Hg in the Pd lattice.

  10. Surface characterization of Pd/Al2O3 sorbents for mercury capture from fuel gas

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Stanko, D.C.; Pennline, H.W.

    2008-09-01T23:59:59.000Z

    The surface composition of a series of Pd/alumina sorbents has been characterized to better understand the factors influencing their ability to adsorb mercury from fuel gas. Both a temperature effect and a dispersion effect were found. Maximum adsorption of Hg occurred at the lowest temperature tested, 2048C, and decreased with increasing temperatures. Maximum adsorption of Hg on a per-atom basis of Pd is observed at low loadings of Pd (58.5% Pd) due to better dispersion of Pd at those loadings; a change in its partitioning occurs at higher loadings. The presence of H2S in the fuel gas acts to promote the adsorption of Hg through its association with Hg in the Pd lattice.

  11. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01T23:59:59.000Z

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  12. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect (OSTI)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31T23:59:59.000Z

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

  13. Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1994-06-01T23:59:59.000Z

    A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order of $400 per ton of SO{sub 2} and $900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.

  14. PRELIMINARY CARBON DIOXIDE CAPTURE TECHNICAL AND ECONOMIC FEASIBILITY STUDY EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01T23:59:59.000Z

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  15. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy3 PierreElectron Trapping by

  16. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy3 PierreElectron Trapping

  17. State-insensitive bichromatic optical trapping

    E-Print Network [OSTI]

    Bindiya Arora; M. S. Safronova; Charles W. Clark

    2010-05-07T23:59:59.000Z

    We propose a scheme for state-insensitive trapping of neutral atoms by using light with two independent wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have the same ac Stark shifts in the presence of two laser fields.

  18. Synthesis of Functionalized Superparamagnetic Iron Oxide Nanoparticles from a Common Precursor and their Application as Heavy Metal and Actinide Sorbents

    SciTech Connect (OSTI)

    Warner, Marvin G.; Warner, Cynthia L.; Addleman, Raymond S.; Droubay, Timothy C.; Engelhard, Mark H.; Davidson, Joseph D.; Cinson, Anthony D.; Nash, Michael A.; Yantasee, Wassana

    2009-10-12T23:59:59.000Z

    We describe the use of a simple and versatile technique to generate a series of ligand stabilized iron oxide nanoparticles containing different ? functionalities with specificities toward heavy metals and actinides at the periphery of the stabilizing ligand shell from a common, easy to synthesize precursor nanoparticle. The resulting nanoparticles are designed to contain affinity ligands that make them excellent sorbent materials for a variety of heavy metals from contaminated aqueous systems such as river water and ground water as well as actinides from clinical samples such as blood and urine. Functionalized superparamagnetic nanoparticles make ideal reagents for extraction of heavy metal and actinide contaminants from environmental and clinical samples since they are easily removed from the media once bound to the contaminant by simply applying a magnetic field. In addition, these engineered nanomaterials have an inherently high active surface area (often > 100 m2/g) making them ideal sorbent materials for these types of applications

  19. Cavity sideband cooling of trapped molecules

    SciTech Connect (OSTI)

    Kowalewski, Markus; Vivie-Riedle, Regina de [Department of Chemistry, Ludwig-Maximilian-Universitaet, D-81377 Munich (Germany); Morigi, Giovanna [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Theoretische Physik, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); Pinkse, Pepijn W. H. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2011-09-15T23:59:59.000Z

    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case in which the infrared transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radiofrequency or optical trapping potential, depending on whether they are charged or neutral, and confined inside a high-finesse optical resonator that enhances radiative emission into the cavity mode. Using realistic experimental parameters and COS as a representative molecular example, we show that in this setup, cooling to the trap ground state is feasible.

  20. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

    SciTech Connect (OSTI)

    Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

    2009-12-31T23:59:59.000Z

    The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

  1. Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete

    SciTech Connect (OSTI)

    Ronald Landreth

    2008-06-30T23:59:59.000Z

    This report summarizes the work conducted from September 16, 2005 through December 31, 2008 on the project entitled �Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete�. The project covers testing at three host sites: Progress Energy H.F. Lee Station and the Midwest Generation Crawford and Will County Stations. At Progress Energy Lee 1, parametric tests were performed both with and without SO{sub 3} injection in order to determine the impact on the mercury sorbent performance. In addition, tests were performed on the hot-side of the air preheater, before the SO{sub 3} is injected, with H-PAC� sorbents designed for use at elevated temperatures. The BPAC� injection provided the expected mercury removal when the SO{sub 3} injection was off. A mercury removal rate due to sorbent of more than 80% was achieved at an injection rate of 8 lb/MMacf. The operation with SO{sub 3} injection greatly reduced the mercury sorbent performance. An important learning came from the injection of H-PAC� on the hot-side of the air preheater before the SO{sub 3} injection location. The H-PAC� injected in this manner appeared to be independent of the SO{sub 3} injection and provided better mercury removal than with injecting on the cold-side with SO{sub 3} injection. Consequently, one solution for plants like Lee, with SO{sub 3} injection, or plants with SO{sub 3} generated by the SCR catalyst, is to inject H-PAC� on the hot-side before the SO{sub 3} is in the flue gas. Even better performance is possible by injecting on the cold-side without the SO{sub 3}, however. During the parametric testing, it was discovered that the injection of B-PAC� (or H-PAC�) was having a positive impact upon ESP performance. It was decided to perform a 3-day continuous injection run with B-PAC� in order to determine whether Lee 1 could operate without SO{sub 3} injection. If the test proved positive, the continuous injection would continue as part of the long-term test. The injection of B-PAC� did allow for the operation of Lee 1 without SO{sub 3} injection and the long-term test was conducted from March 8 through April 7, 2006. The total mercury removal for the 30-day long-term test, excluding the first day when SO{sub 3} was injected and the last day when a plain PAC was used, averaged 85%. The achievement of 85% Hg removal over the 30 days longterm test is another milestone in the history of achievement of the Albemarle Environmental f/k/a Sorbent Technologies Corporation B-PAC� sorbent. A clear indication of the impact of B-PAC� on opacity came at the end of the long-term test. It was hoped that Lee 1 could be operated for several days after the end of the long-term test. It took less than a day before the opacity began to increase. The discovery that B-PAC� can improve ESP performance while capturing a large amount of mercury is another milestone for the B-PAC� mercury sorbent. The parametric testing at the Midwest Generation Crawford Station was divided into two phases; the first using C-PAC�, the concrete friendly sorbent, and the other using nonconcrete friendly materials. The first phase of the parametric tests was conducted before the long-term test. The second phase of the parametric testing was performed after the long-term test in order to avoid contaminating the fly ash containing the concrete friendly sorbents. The parametric test began with an injection rate of 1 lb/MMacf and, after a period to allow the mercury concentration to stabilize, the rate was increased to 3 lb/MMacf. The Hg removal for this test was about 60% due to sorbent and 69% total at the injection rate of 1 lb/MMacf and 80% due to sorbent and 84% total for the 3 lb/MMacf injection rate. The average total vapor phase mercury removal for the first 21 days of the long-term test was 82% at an injection rate o

  2. Characterization of mercury-enriched coal combustion residues from electric utilities using enhanced sorbents for mercury control

    SciTech Connect (OSTI)

    Sanchez, F.; Keeney, R.; Kosson, D.; Delapp, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2006-02-15T23:59:59.000Z

    This report evaluates changes that may occur to coal-fired power plant air pollution control residues from the use of activated carbon and other enhanced sorbents for reducing air emissions of mercury and evaluates the potential for captured pollutants leaching during the disposal or use of these residues. Leaching of mercury, arsenic, and selenium during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. Coal combustion residues refer collectively to fly ash and other air pollution control solid residues generated during the combustion of coal collected through the associated air pollution control system. This research is part of an on-going effort by US Environmental protection Agency (EPA) to use a holistic approach to account for the fate of mercury and other metals in coal throughout the life-cycle stages of CCR management. This report focuses on facilities that use injected sorbents for mercury control. It includes four facilities with activated carbon injection (ACI) and two facilities using brominated ACI. Fly ash has been obtained from each facility with and without operation of the sorbent injection technology for mercury control. Each fly ash sampled was evaluated in the laboratory for leaching as a function of pH and liquid-to-solid ratio. Mercury, arsenic and selenium were the primary constituent of interest; results for these elements are presented here. 30 refs., 30 figs., 14 tabs., 10 apps.

  3. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01T23:59:59.000Z

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  4. A Novel Theoretical Method to Search Good Candidates of Solid Sorbents for CO2 Capture

    SciTech Connect (OSTI)

    Duan, Yuhua

    2008-07-01T23:59:59.000Z

    The increasing atmospheric CO2 concentration is the most important environmental issue of global warming that the world faces today. During past few decades, many technologies have been developing to separate and capture CO2 from coal gasifier. As high temperature CO2 absorbents, solid materials are potential candidates. Lithium silicate(Li4SiO4) and zirconate(Li2ZrO3) have been studying for CO2 capture by researchers at Toshiba and found that they absorb CO2 at 773K and release CO2 around 973K. Based on these well-known experimental exploring results on these lithium salts, we have been developing a novel theoretical methodology to search better solid materials for CO2 capture: (1) Based on the crystal structures of solids, the density functional calculations are performed to obtain their electronic structural properties and their binding energies. The energy change(?E) for the reaction solid_sorbent+CO2 ? sorbent_CO2+ solid are evaluated. (2) For a vast of data-bank of solid materials, as our first filter if |?E|<|?GLi2SiO4|, where ?G is the free energy change for reaction of Li2SiO4+CO2? Li2CO3 +Li2SiO3, we select this solid as a potential good candidate for CO2 capture. (3) For these possible candidates, we further perform phonon calculations and obtain their vibration frequencies. With them, partition functions of solids(Z) can be calculated out. With Z, the thermal dynamical properties (zero point energy, entropy, enthalpy, free energy, etc.) under different conditions (temperature(T), pressure(P)) can be readily calculated. With them, the chemical potentials(??)(functional of T and P) for the sorption/desorption reaction are evaluated. (4) Using ?? as our second filter, we can reduce the number of our selected good candidates to a small number of better candidates. (5) The last step is to make the fine tune (the 3rd filter) the better candidates to a small set of the best candidates by considering the operating conditions(T, P, etc.), absorbing CO2 weight percentage, stabilities, and the associated costs, etc.

  5. Laser cooling of trapped ions Jurgen Eschner

    E-Print Network [OSTI]

    Blatt, Rainer

    of the art is reported, and several new cooling techniques are outlined. The principles of ion trapping by elucidating several milestone experiments. In addition, a number of special cooling techniques pertainingLaser cooling of trapped ions Ju¨rgen Eschner Institut fu¨ r Experimentalphysik, Universita

  6. Holographic optical trapping David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Holographic optical trapping David G. Grier Yael Roichman Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, NY 10003 Holographic optical tweezers­beam optical traps use­ ful for capturing, moving and transforming mesoscopic objects. Through a combination

  7. Holographic optical trapping David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Holographic optical trapping David G. Grier Yael Roichman Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, NY 10003 Holographic optical tweezers-beam optical traps use- ful for capturing, moving and transforming mesoscopic objects. Through a combination

  8. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30T23:59:59.000Z

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  9. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect (OSTI)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05T23:59:59.000Z

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m{sup 3}). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

  10. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect (OSTI)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31T23:59:59.000Z

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

  11. Laboratory scale studies of Pd/y-Al2O3 sorbents for the removal of trace contaminents from coal-derived fuel gas at elevated temperatures

    SciTech Connect (OSTI)

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-12-31T23:59:59.000Z

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150-540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/{gamma}-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  12. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Company of Colorado, Denver, CO (United States)

    1994-12-01T23:59:59.000Z

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  13. Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations

    SciTech Connect (OSTI)

    Duan, Yuhua; Luebke, David; Pennline, Henry; Li, Liyu; King, David; Zhang; Keling; Zhao; Lifeng; Xiao, Yunhan

    2012-01-01T23:59:59.000Z

    It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}?1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O?1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.

  14. Trapping atoms using nanoscale quantum vacuum forces

    E-Print Network [OSTI]

    D. E. Chang; K. Sinha; J. M. Taylor; H. J. Kimble

    2013-10-22T23:59:59.000Z

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here, we show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. The trapping scheme takes advantage of the attractive ground state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyze realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  15. Ion Trap in a Semiconductor Chip

    E-Print Network [OSTI]

    D. Stick; W. K. Hensinger; S. Olmschenk; M. J. Madsen; K. Schwab; C. Monroe

    2006-01-09T23:59:59.000Z

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.

  16. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.N.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1996-12-31T23:59:59.000Z

    Toxic trace metallic elements such as arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium are usually contained in coal in various forms and trace amounts. These metals will either stay in the ash or be vaporized during high temperature combustion. Portions of the vaporized metals may eventually be emitted from a combustion system in the form of metal fumes or particulates with diameters less than 1 micron, which are potentially hazardous to the environment. Current practice of controlling trace metal emissions during coal combustion employs conventional air pollution control devices (APCDs), such as electrostatic precipitators and baghouses, to collect fly ash and metal fumes. The control may not always be effective on metal fumes due to their extremely fine sizes. This study is to explore the opportunities for improved control of toxic trace metal emissions from coal-fired combustion systems. Specifically, the technology proposed is to employ suitable sorbents to reduce the amount of metal volatilization and capture volatilized metal vapors during fluidized bed coal combustion. The objective of the study was to investigate experimentally and theoretically the metal capture process.

  17. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-03T23:59:59.000Z

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  18. Demonstration of a hydration process for reactivating partially sulfated limestone sorbents

    SciTech Connect (OSTI)

    Smith, G.W.; Hajicek, D.R.; Myles, K.M.; Goblirsch, G.M.; Mowry, R.W.; Teats, F.G.

    1981-10-01T23:59:59.000Z

    The utilization of limestione sorbent for the removal of SO/sub 2/ in coal combustion in an atmospheric fluidized-bed combustor (AFBC) can be markedly increased by reactivating the partially sulfated limestone for reuse in the combustor. Such reuse would reduce costs and the environmental impact of quarrying and disposing of large quantities of limestone. The reactivation process consists of hydrating the partially sulfated limestone by treatment with water. A demonstration of the hydration process and the reuse of the reactivated limestone were carried out at Grand Forks Energy Technology Center (GFETC) in cooperation with Argonne National Laboratory (ANL). The data obtained in the GFETC 0.2-m/sup 2/ AFBC are compared with those obtained earlier in the ANL 0.02-m/sup 2/ AFBC. Marked enhancement of calcium utilization was achieved in both studies, but differences were noted in the degree of enhancement and in the Ca/S mole ratios required to maintain SO/sub 2/ in the off-gas at an acceptable level.

  19. Field evaluation of natural gas and dry sorbent injection for MWC emissions control

    SciTech Connect (OSTI)

    Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

    1993-10-01T23:59:59.000Z

    The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

  20. Tyrosinase-containing chitosan gels: A combined catalyst and sorbent for selective phenol removal

    SciTech Connect (OSTI)

    Sun, W.Q.; Payne, G.F. [Univ. of Maryland, Baltimore, MD (United States)] [Univ. of Maryland, Baltimore, MD (United States)

    1996-07-05T23:59:59.000Z

    There are a series of examples in which phenols appear as contaminants in process streams and their selective removal is required for waste minimization. For the selective removal of a phenol from a mixture, the authors are exploiting the substrate specificity of the enzyme tyrosinase to convert phenols into reactive o-quinones which are then adsorbed onto the amine-containing polymer chitosan. To effectively package the enzyme and sorbent, tyrosinase was immobilized between two chitosan gel films. The entrapment of tyrosinase between the films led to little loss of activity during immobilization, while tyrosinase leakage during incubation was limited. The chitosan gels rapidly adsorb the tyrosinase-generated product(s) of phenol oxidation while the capacity of the gels is substantially greater than the capacity of chitosan flakes. The performance of tyrosinase-containing chitosan gels significantly depends on the ratio of tyrosinase-to-chitosan. High tyrosinase-to-chitosan ratios result in less efficient use of tyrosinase, presumably due to suicide inactivation. However, the efficiency of chitosan use increases with increased tyrosinase-to-chitosan ratios.

  1. The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles

    SciTech Connect (OSTI)

    Rodriguez, A.; Hall, M.J

    2003-07-01T23:59:59.000Z

    A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed.

  2. When a trap is not a trap: converging entry and exit rates and their effect on trap saturation of black sea bass (Centropristis striata)

    E-Print Network [OSTI]

    When a trap is not a trap: converging entry and exit rates and their effect on trap saturation entries and exits of black sea bass (Centropristis striata) from chevron traps (n Ľ 26) to quantify catch at50 min, when the entry ratedeclined and the exit rate increased to a point where their confidence

  3. Microfabricated Renewable Beads-Trapping/Releasing Flow Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microfabricated Renewable Beads-TrappingReleasing Flow Cell for Rapid Antigen-Antibody Reaction in Chemiluminescent Immunoassay Microfabricated Renewable Beads-TrappingReleasing...

  4. NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) Presentation from the U.S....

  5. H2-Assisted NOx Traps: Test Cell Results Vehicle Installations

    Broader source: Energy.gov (indexed) [DOE]

    Sam Crane August 28, 2003 H 2 -Assisted NOx Traps: Test Cell Results Vehicle Installations 2 Project Objectives * Determine Advantages of H 2 Assisted NO x Trap Regeneration *...

  6. Charge Trapping in High Efficiency Alternating Copolymers: Implication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

  7. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved...

  8. atom trap trace: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors Physics Websites Summary: An atom trap trace analysis system for measuring...

  9. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  10. Parameter exploration of optically trapped liquid aerosols

    E-Print Network [OSTI]

    D. R. Burnham; P. J. Reece; D. McGloin

    2010-06-24T23:59:59.000Z

    When studying the motion of optically trapped particles on the $\\mu s$ time scale, in low viscous media such as air, inertia cannot be neglected. Resolution of unusual and interesting behaviour not seen in colloidal trapping experiments is possible. In attempt to explain the phenomena we use power spectral methods to perform a parameter study of the Brownian motion of optically trapped liquid aerosol droplets concentrated around the critically damped regime. We present evidence that the system is suitably described by a simple harmonic oscillator model which must include a description of Fax\\'{e}n's correction, but not necessarily frequency dependent hydrodynamic corrections to Stokes' law. We also provide results describing how the system behaves under several variables and discuss the difficulty in decoupling the parameters responsible for the observed behaviour. We show that due to the relatively low dynamic viscosity and high trap stiffness it is easy to transfer between over- and under-damped motion by experimentally altering either trap stiffness or damping. Our results suggest stable aerosol trapping may be achieved in under-damped conditions, but the onset of deleterious optical forces at high trapping powers prevents the probing of the upper stability limits due to Brownian motion.

  11. Laser trapping of {sup 21}Na atoms

    SciTech Connect (OSTI)

    Lu, Zheng-Tian

    1994-09-01T23:59:59.000Z

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  12. Trapping efficiency depending on particulate size

    SciTech Connect (OSTI)

    Mayer, A.; Czerwinski, J.; Scheidegger, P.

    1996-09-01T23:59:59.000Z

    There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R and D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.

  13. An Atom Trap Relying on Optical Pumping

    E-Print Network [OSTI]

    P. Bouyer; P. Lemonde; M. Ben Dahan; A. Michaud; C. Salomon; J. Dalibard

    2005-09-21T23:59:59.000Z

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a $J_{g} \\longrightarrow J_{e} = J_{g} + 1$ atomic transition with $J_{g} \\geq 1/2$. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm $J_{g} = 4 \\longrightarrow J_{e} = 5$ resonance transition. The trap contained up to $3 \\cdot 10^{7}$ atoms in a cloud of $1/\\sqrt{e}$ radius of 330 $\\mu$m.

  14. Nonlinear Spectroscopy of Trapped Ions

    E-Print Network [OSTI]

    Frank Schlawin; Manuel Gessner; Shaul Mukamel; Andreas Buchleitner

    2014-10-07T23:59:59.000Z

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity which require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in [M. Gessner et al. New J. Phys. 16 092001 (2014)], we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems and discuss experimental implementations with trapped ion technology in detail. These methods in combination with distinct features of ultra-cold matter systems allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and can therefore reliably probe systems where, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  15. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 23, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-15T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x} and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. Specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. In phase AIII at Hennepin - Testing, Data Collection, Reporting and Disposition - Gas Reburning runs were made that indicate as high as 77% reduction in NO{sub x} emission using about 18% gas. Gas Reburning - Sorbent Injection test results indicated as high as 62% reduction in S0{sub 2}. A year of long term testing was completed in October, 1992.

  16. A quantum information processor with trapped ions

    E-Print Network [OSTI]

    Schindler, Philipp

    Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. ...

  17. Molten Hydroxide Trapping Process for Radioiodine

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    2003-01-28T23:59:59.000Z

    A molten hydroxide trapping process has been considered for removing radioiodine species from off-gas streams whereby iodine is reacted directly with molten hydroxides such as NaOH or KOH. The resulting product is the corresponding iodide, which can be separated by simple cooling of the molten mixture to grow the iodide primary phase once the mixture reaches 70-80 mol% in the iodide component. Thermodynamic analysis indicates that such a chemical process is highly favorable. Experimental testing of the trapping process using molecular iodine showed trapping of up to 96% of the volatile iodine. The trapping efficiency was dependent on operational parameters such as temperature and gas-melt contact efficiency, and higher efficiencies are expected as the process is further developed. While an iodide phase could be effectively isolated by slow cooling of a molten iodide-hydroxide mixture, the persistent appearance of hydroxide indicated that an appreciable solubility of hydroxide occurred in the iodide phase.

  18. Use of Bullet Traps and Steel Targets

    Broader source: Energy.gov (indexed) [DOE]

    design criteria and deployment specifications of bullet traps on U.S. Department of Energy (DOE) live-fire ranges. Deviation from these design and deployment criteria must be...

  19. Capturing Energy Savings with Steam Traps

    E-Print Network [OSTI]

    Bockwinkel, R. G.; French, S. A.

    , it's important to select and install the correct type and size steam trap for each application. This means a corruninnent must be made to training those who select, install, test and maintain steam traps on a. daily Scott A. French Application... generated. This paper will review each of these topics and then explore some of the new services, products, practices and technology available to help you maintain or improve the efficiency of your steam system. COSTLY STEAM LEAKS ENERGY RESOURCES...

  20. RICE UNIVERSITY A New Optical Trap System for

    E-Print Network [OSTI]

    Killian, Thomas C.

    profiles . . . . . . . . . . . . . . . . . . . . 14 2.1.3 Alignment of the loading trap beams . . . . . . . . . . . . . . 14 2.1.4 Power locking system for loading trap . . . . . . . . . . . . . . 15 2.2 Loading trap depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Description of trap optical design and beam profiles . . . . . . 22 3.1.2 Power locking

  1. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  2. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011) Organizer: Ferdinand Hahn PH/DT Detector Seminar webpage  

  3. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect (OSTI)

    Michael L. Swanson; Grant E. Dunham; Mark A. Musich

    2007-02-01T23:59:59.000Z

    Three potential additives for controlling mercury emissions from syngas at temperatures ranging from 350 to 500 F (177 to 260 C) were developed. Current efforts are being directed at increasing the effective working temperature for these sorbents and also being able to either eliminate any potential mercury desorption or trying to engineer a trace metal removal system that can utilize the observed desorption process to repeatedly regenerate the same sorbent monolith for extended use. Project results also indicate that one of these same sorbents can also successfully be utilized for arsenic removal. Capture of the hydrogen selenide in the passivated tubing at elevated temperatures has resulted in limited results on the effective control of hydrogen selenide with these current sorbents, although lower-temperature results are promising. Preliminary economic analysis suggests that these Corning monoliths potentially could be more cost-effective than the conventional cold-gas (presulfided activated carbon beds) technology currently being utilized. Recent Hg-loading results might suggest that the annualized costs might be as high as 2.5 times the cost of the conventional technology. However, this annualized cost does not take into account the significantly improved thermal efficiency of any plant utilizing the warm-gas monolith technology currently being developed.

  4. LONG-TERM STABILITY TESTING RESULTS USING SURROGATES AND SORBENTS FOR SAVANNAH RIVER SITE ORGANIC AND AQUEOUS WASTESTREAMS - 10016

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate wastestreams (both volatile and nonvolatile), a volatile organic surrogate with a residual aqueous phase, an aqueous surrogate, and an aqueous surrogate with a residual organic phase. The Savannah River Site (SRS) Legacy and F-Canyon plutonium/uranium extraction (PUREX) process waste surrogates constituted the volatile organic surrogates, and various oils constituted the nonvolatile organic surrogates. The aqueous surrogates included a rainwater surrogate and an aqueous organic surrogate. MSE also evaluated the PUREX surrogate with a residual aqueous component with and without aqueous type sorbent materials. Solidification of the various surrogate wastestreams listed above was performed from 2004 to 2006 at the MSE Test Facility located in Butte, Montana. This paper summarizes the comparison of the initial liquid release test (LRT) values with LRT results obtained during subsequent sampling events in an attempt to understand and define the long-term stability characteristics for the solidified wastestreams.

  5. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell Greenhalgh; Veronica J. Rutledge; Jack D. Law

    2014-08-01T23:59:59.000Z

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  6. A new class of non-zeolitic sorbents for air separations: Lithium ion exchanged pillared clays

    SciTech Connect (OSTI)

    Cheng, L.S.; Yang, R.T. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-06-01T23:59:59.000Z

    Zeolites are the only known sorbents that adsorb N{sub 2} selectively over O{sub 2}, and are used for industrial air separation. Pillared clays (PILCs) have a high Broensted acidity (k.e., high proton density). It is found in this study that when the protons are exchanged by alkali metal ions, in particular Li{sup +}, the ion exchanged pillared clays can exhibit a high N{sub 2}/O{sub 2} adsorption selectivity that rivals that of the zeolites. The first result shows a pure-component adsorption ratio of N{sub 2}/O{sub 2} = 3.2 (at 25 C and 1 atm) for Li{sup +}-exchanged PILC. The N{sub 2} capacity, however, is only 20% that of the zeolite, and remains to be improved. A systematic investigation is conducted on the effects of three factors on the N{sub 2}/O{sub 2} selectivity: (1) starting clays (tetrahedral vs octahedral isomorphous substitution and clays with different charge densities), (2) different metal oxides as pillars, and (3) different ion exchange alkali metal cations (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}). The highest N{sub 2}/O{sub 2} selectivities are achieved by using clays with the highest charge densities, metal oxides forming pillars with the narrowest gallery spaces, and ion exchange cations with the smallest ionic radii. Effects by all three factors are qualitatively understood. The high N{sub 2}/O{sub 2} selectivity on the Li{sup +} exchanged PILC is the result of the small ionic radius (and hence high polarizing power) of Li{sup +} and the strong quadrupole moment of the N{sub 2} molecule. Moreover, a technique is developed with which the amount of the exchanged cations can exceed that allowed by the original cation exchange capacity of the clay by using a high pH value in the ion exchange solution.

  7. Chapter 44. Cooling and Trapping Neutral Atoms Cooling and Trapping Neutral Atoms

    E-Print Network [OSTI]

    transition. This year, we made progress in developing novel detection and cooling techniques. 1. SpinChapter 44. Cooling and Trapping Neutral Atoms 44-1 Cooling and Trapping Neutral Atoms RLE Groups in optical lattices. Additional cooling methods will be needed to reach this very interesting temperature

  8. Ball-grid array architecture for microfabricated ion traps

    E-Print Network [OSTI]

    Nicholas D. Guise; Spencer D. Fallek; Kelly E. Stevens; K. R. Brown; Curtis Volin; Alexa W. Harter; Jason M. Amini; Robert E. Higashi; Son Thai Lu; Helen M. Chanhvongsak; Thi A. Nguyen; Matthew S. Marcus; Thomas R. Ohnstein; Daniel W. Youngner

    2015-05-05T23:59:59.000Z

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with $^{40}$Ca$^+$ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with $^{171}$Yb$^+$ ions in a second BGA trap.

  9. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15T23:59:59.000Z

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  10. Signal enhancement using a switchable magnetic trap

    DOE Patents [OSTI]

    Beer, Neil Reginald (Pleasanton, CA)

    2012-05-29T23:59:59.000Z

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  11. Controlling fast transport of cold trapped ions

    E-Print Network [OSTI]

    Andreas Walther; Frank Ziesel; Thomas Ruster; Sam T. Dawkins; Konstantin Ott; Max Hettrich; Kilian Singer; Ferdinand Schmidt-Kaler; Ulrich Poschinger

    2012-06-02T23:59:59.000Z

    We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

  12. Screening the Hanford tanks for trapped gas

    SciTech Connect (OSTI)

    Whitney, P.

    1995-10-01T23:59:59.000Z

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.

  13. Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1995-04-01T23:59:59.000Z

    Simultaneous removal of SO{sub 2} and NO{sub x}using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. The sulfation experiments indicated that 100 % conversion of ceria can be attained. Activation energy for the sulfation reaction was found to be 19 kJ/mol. The rate of sulfation reaction is first order with respect to SO{sub 2} and solid reactant concentrations. For regeneration with hydrogen, the activation energy and the reaction order with respect to hydrogen was found to be 114 kJ/mol and 0.56, respectively. The ceria sorbent preserved its activity and structural stability after 6 cycles. In the last quarter regeneration with methane was studied. Since regeneration with methane is more complicated than regeneration with hydrogen, the evaluation of data needs the development of new methods. The information obtained from these studies will be used to develop models for reactor-regenerator configurations. Subsequently, the SO{sub 2}/NO{sub x} removal facility will be integrated into the power production process using a commercial process simulation software.

  14. Parametric Resonance of Optically Trapped Aerosols

    E-Print Network [OSTI]

    R. Di Leonardo; G. Ruocco; J. Leach; M. J. Padgett; A. J. Wright; J. M. Girkin; D. R. Burnham; D. McGloin

    2007-02-23T23:59:59.000Z

    The Brownian dynamics of an optically trapped water droplet are investigated across the transition from over to under-damped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape typical of over-damped systems (beads in liquid solvents), to a damped harmonic oscillator spectrum showing a resonance peak. In this later under-damped regime, we excite parametric resonance by periodically modulating the trapping power at twice the resonant frequency. The power spectra of position fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically modulated Langevin equation.

  15. Reduce Steam Trap Failures at Chambers Works

    E-Print Network [OSTI]

    Kouba, C.

    Maintenance Mechanic), Rick Ragsdale (Fluor), Joyce Finkle (PC), Denis P Humphreys (Fluoroproducts), Jack Hemmert, Charlie Brown 10/20/2010 2 Steam trap failures are nothing new Steam trap programs are nothing new WHAT makes this program have such a huge... impact and How is it sustainable HOW we went about finding a solution What do you have learn from this 10/20/2010 3 Six Sigma Methodology was KEY to success Savings: $1MM annualized in only 6 months! 10/20/2010 4Define: Project CTQ?s Customer...

  16. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  17. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  18. Development of a Kingdon ion trap system for trapping externally injected highly charged ions

    SciTech Connect (OSTI)

    Numadate, Naoki; Okada, Kunihiro, E-mail: okada-k@sophia.ac.jp [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Nakamura, Nobuyuki [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-0021 (Japan); Tanuma, Hajime [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan)

    2014-10-15T23:59:59.000Z

    We have developed a Kingdon ion trap system for the purpose of the laboratory observation of the x-ray forbidden transitions of highly charged ions (HCIs). Externally injected Ar{sup q+} (q = 5?7) with kinetic energies of 6q keV were successfully trapped in the ion trap. The energy distribution of trapped ions is discussed in detail on the basis of numerical simulations. The combination of the Kingdon ion trap and the time-of-flight mass spectrometer enabled us to measure precise trapping lifetimes of HCIs. As a performance test of the instrument, we measured trapping lifetimes of Ar{sup q+} (q = 5?7) under a constant number density of H{sub 2} and determined the charge-transfer cross sections of Ar{sup q+}(q = 5, 6)-H{sub 2} collision systems at binary collision energies of a few eV. It was confirmed that the present cross section data are consistent with previous data and the values estimated by some scaling formula.

  19. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect (OSTI)

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20T23:59:59.000Z

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from zero to 20 vol%. The experimental program with NaHCO{sub 3} is listed in Table 1. In addition, model calculations were carried out based on own and published experimental results that estimate residence time and temperature effects on removal efficiencies.

  20. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    SciTech Connect (OSTI)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-06-29T23:59:59.000Z

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

  1. Dynamic modeling and transient studies of a solid-sorbent adsorber for CO{sub 2} capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao [WVU; Bhattacharyya, Debangsu [WVU; Zitney, Stephen E. [U.S. DOE

    2012-01-01T23:59:59.000Z

    The U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI) is dedicated to accelerating the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. In this multi-lab initiative in partnership with academic and industrial institutions, the National Energy Technology Laboratory (NETL) leads the development of a multi-scale modeling and simulation toolset for rapid evaluation and deployment of carbon capture systems. One element of the CCSI is focused on optimizing the operation and control of carbon capture systems since this can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. Capture processes must be capable of operating over a wide range of transient events, malfunctions, and disturbances, as well as under uncertainties. As part of this work, dynamic simulation and control models, methods, and tools are being developed for CO{sub 2} capture and compression processes and their integration with a baseline commercial-scale supercritical pulverized coal (SCPC) power plant. Solid-sorbent-based post-combustion capture technology was chosen as the first industry challenge problem for CCSI because significant work remains to define and optimize the reactors and processes needed for successful sorbent capture systems. Sorbents offer an advantage because they can reduce the regeneration energy associated with CO{sub 2} capture, thus reducing the parasitic load. In view of this, the current paper focuses on development of a dynamic model of a solid-sorbent CO{sub 2} adsorber-reactor and an analysis of its transient performance with respect to several typical process disturbances. A one-dimensional, non-isothermal, pressure-driven dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor is developed in Aspen Custom Modeler (ACM). The BFB stages are of overflow-type configuration where the solids leave the stage by flowing over the overflow-weir. Each bed is divided into three regions, namely emulsion, bubble, and cloud-wake regions. In all three regions, the model considers mass and energy balances. Along with the models of the BFB stages, models of other associated hardware are developed and integrated in a single flowsheet. A valid pressure-flow network is developed and a lower-level control system is designed so that the overall CO{sub 2} capture can be maintained at a desired level in face of the typical disturbances. The dynamic model is used for studying the transient responses of a number of important process variables as a result of the disturbances that are typical of post-combustion CO{sub 2} capture processes.

  2. Carbon dioxide dissolution in structural and stratigraphic traps

    E-Print Network [OSTI]

    Hesse, M. A.

    The geologic sequestration of carbon dioxide (CO[subscript 2]) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO[subscript 2] stored in these traps ...

  3. Ideal Multipole Ion Traps from Planar Ring Electrodes

    E-Print Network [OSTI]

    Robert J. Clark

    2012-08-21T23:59:59.000Z

    We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. We illustrate the desirable properties of the traps by considering a few simple cases of confined ions. We predict that mm-scale surface traps may have trap depths as high as tens of electron volts, or micromotion amplitudes in a 2-D ion crystal as low as tens of nanometers, when parameters of a magnitude common in the field are chosen. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. In addition, ions with very high charge-to-mass ratios may be confined in the trap, and species of very different charge-to-mass ratios may be simultaneously confined. Applications of these traps include quantum information science, frequency metrology, and cold ion-atom collisions.

  4. In-Vacuum Active Electronics for Microfabricated Ion Traps

    E-Print Network [OSTI]

    Nicholas D. Guise; Spencer D. Fallek; Harley Hayden; C-S Pai; Curtis Volin; K. R. Brown; J. True Merrill; Alexa W. Harter; Jason M. Amini; Lisa M. Lust; Kelly Muldoon; Doug Carlson; Jerry Budach

    2014-06-02T23:59:59.000Z

    The advent of microfabricated ion traps for the quantum information community has allowed research groups to build traps that incorporate an unprecedented number of trapping zones. However, as device complexity has grown, the number of digital-to-analog converter (DAC) channels needed to control these devices has grown as well, with some of the largest trap assemblies now requiring nearly one hundred DAC channels. Providing electrical connections for these channels into a vacuum chamber can be bulky and difficult to scale beyond the current numbers of trap electrodes. This paper reports on the development and testing of an in-vacuum DAC system that uses only 9 vacuum feedthrough connections to control a 78-electrode microfabricated ion trap. The system is characterized by trapping single and multiple $^{40}$Ca$^+$ ions. The measured axial mode stability, ion heating rates, and transport fidelities for a trapped ion are comparable to systems with external(air-side) commercial DACs.

  5. Towards a cryogenic planar ion trap for Sr-88

    E-Print Network [OSTI]

    Bakr, Waseem (Waseem S.)

    2006-01-01T23:59:59.000Z

    This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

  6. Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs

    E-Print Network [OSTI]

    Boynton, T.; Dewhirst, B.

    1980-01-01T23:59:59.000Z

    This paper will deal with steam trap surveys and preventive maintenance programs and the energy savings that may be realized from such efforts. Trap survey organization, flexibility, simplicity, and mechanics will be reviewed, including the economic...

  7. Single microbe trap and release in sub-microfluidics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single microbe trap and release in sub-microfluidics. Single microbe trap and release in sub-microfluidics. Abstract: Lab-on-a-chip systems have substantially impacted the way...

  8. Feedback cooling of a single trapped ion

    E-Print Network [OSTI]

    Pavel Bushev; Daniel Rotter; Alex Wilson; Francois Dubin; Christoph Becher; Juergen Eschner; Rainer Blatt; Viktor Steixner; Peter Rabl; Peter Zoller

    2005-09-19T23:59:59.000Z

    Based on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electro-mechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical Master Equation.

  9. Simulating a quantum magnet with trapped ions

    E-Print Network [OSTI]

    Loss, Daniel

    systems we need a quantum leap in computer simulations. We cannot translate quantum behaviour arising from dynamics, we need a `quantum leap' in simulation efficiency. As proposed in ref. 1, a universal quantumLETTERS Simulating a quantum magnet with trapped ions A. FRIEDENAUER*, H. SCHMITZ*, J. T. GLUECKERT

  10. Quantum Stochastic Heating of a Trapped Ion

    E-Print Network [OSTI]

    L. Horvath; R. Fisher; M. J. Collett; H. J. Carmichael

    2007-11-09T23:59:59.000Z

    The resonant heating of a harmonically trapped ion by a standing-wave light field is described as a quantum stochastic process combining a coherent Schroedinger evolution with Bohr-Einstein quantum jumps. Quantum and semi-quantum treatments are compared.

  11. Dynamical Localization in the Paul Trap

    E-Print Network [OSTI]

    M. El Ghafar; P. Torma; V. Savichev; E. Mayr; A. Zeiler; W. P. Schleich

    1996-12-18T23:59:59.000Z

    We show that quantum localization occurs in the center-of-mass motion of an ion stored in a Paul trap and interacting with a standing laser field. The present experimental state of the art makes the observation of this phenomenon feasible.

  12. Trapping Light With Mirrors David Milovich Jr.

    E-Print Network [OSTI]

    Milovich, David

    Trapping Light With Mirrors David Milovich Jr. February 20, 2004 Abstract. We show that, given finitely many line-segment mirrors in the plane, that do not touch, and an arbitrary point source of light emitted light beams escape. This result is shown to imply that, for a given point source of light

  13. Acceleration of trapped particles and beams

    E-Print Network [OSTI]

    Er'el Granot; Boris Malomed

    2011-07-30T23:59:59.000Z

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. Analytical approximations are developed for the cases of small and large accelerations in the pulling regime, and also for a small acceleration in the stationary situation, and in the regime of pushing. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates are given for an atom steered by a stylus of a scanning tunneling microscope (STM), and for the optical beam guided by a bending stripe.

  14. Development of impregnated sorbents for the control of elemental mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Vidic, R.D.; Kwon, S.J.; Siler, D.P.

    1999-07-01T23:59:59.000Z

    Sulfur-impregnated activated carbon developed in the laboratory showed superior performance for mercury uptake in comparison to other potential sorbents. The objective of this study was to evaluate whether a different sulfur impregnation protocol using hydrogen sulfide as a sulfur source can produce an equally effective mercury sorbent. In addition, several other impregnates (copper chloride, anthraquinone, picolyl amine, and thiol) were evaluated for their ability to enhance adsorptive capacity of virgin activated carbon for elemental mercury. The effect of sulfur impregnation method on mercury removal efficiency was examined using impregnation with elemental sulfur (BPLS) at high temperature and hydrogen sulfide oxidation (BPLH-series) at low impregnation temperature. The performance of both BPLS and BPLH-series increased significantly over the virgin BPL carbon. BPL impregnated for 0.25 hr (BPLH-0.25) showed best performance for mercury adsorption. Although BPLS and BPLH-0.25 had similar sulfur content, BPLS showed much better performance. The dynamic adsorption capacity of BPL carbon impregnated with copper chloride (BPLC) was found to increase with an increase in empty bed contact time and chloride content and to decrease with an increase in process temperature. All chloride impregnated activated carbons exhibited appreciable initial mercury breakthrough due to slow kinetics of mercury uptake, while substantial concentrations of oxidized mercury species were detected in the effluent from a fixed-bed adsorber. The BPL impregnated with anthraquinone and thiol exhibited high dynamic adsorption capacities at 25 C, but had much lower dynamic adsorption capacities at 140 C. BPL impregnated with picolyl amine (BPLP) exhibited very poor dynamic adsorption capacities at both 25 and 140 C. The chelating agent-impregnated carbons exhibited lower dynamic adsorption capacities than BPLS.

  15. A system for trapping barium ions in a microfabricated surface trap

    SciTech Connect (OSTI)

    Graham, R. D., E-mail: rdgraham@uw.edu; Sakrejda, T.; Wright, J.; Zhou, Z.; Blinov, B. B., E-mail: blinov@uw.edu [University of Washington, Department of Physics, Box 351560, Seattle, WA 98195-1560 (United States); Chen, S.-P. [University of Washington, Department of Electrical Engineering, 185 Stevens Way, Paul Allen Center - Room AE100R, Campus Box 352500, Seattle, WA 98195-2500 (United States)

    2014-05-15T23:59:59.000Z

    We have developed a vacuum chamber and control system for rapid testing of microfabricated surface ion traps. Our system is modular in design and is based on an in-vacuum printed circuit board with integrated filters. We have used this system to successfully trap and cool barium ions and have achieved ion ‘dark' lifetimes of 31.6 s ± 3.4 s with controlled shuttling of ions. We provide a detailed description of the ion trap system including the in-vacuum materials used, control electronics and neutral atom source. We discuss the challenges presented in achieving a system which can work reliably over two years of operations in which the trap under test was changed at least 10 times.

  16. Trap Design for Vibratory Bowl Feeders Robert-Paul Berretty

    E-Print Network [OSTI]

    Utrecht, Universiteit

    devices such as wiper blades, grooves and traps. Most of these devices are filters Research is supported

  17. First Attempts at Antihydrogen Trapping in G.B. Andresen

    E-Print Network [OSTI]

    Wurtele, Jonathan

    . The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The de- vice comprises OF EACH PAPER CP1037, Cold Antimatter Plasmas and Application to Fundamental Physics, edited by Y. Kanai captured and cooled antiprotons in the catching trap. The catching trap includes a "rotating wall" electric

  18. An optical trap for relativistic plasmaa... Ping Zhang,b)

    E-Print Network [OSTI]

    Umstadter, Donald

    An optical trap for relativistic plasmaa... Ping Zhang,b) Ned Saleh, Shouyuan Chen, Zhengming Sheng November 2002; accepted 14 February 2003 The first optical trap capable of confining relativistic electrons that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude

  19. Enhancing entanglement trapping by weak measurement and quantum measurement reversal

    E-Print Network [OSTI]

    Ying-Jie Zhang; Wei Han; Heng Fan; Yun-Jie Xia

    2015-01-13T23:59:59.000Z

    In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths.

  20. Light trapping in photonic crystals Ken Xingze Wang,ab

    E-Print Network [OSTI]

    Cui, Yi

    Light trapping in photonic crystals Ken Xingze Wang,ab Zongfu Yu,bc Victor Liu,bd Aaswath Raman,b Yi Cuief and Shanhui Fan*b We consider light trapping in photonic crystals in the weak material-integrated absorption enhancement by light trapping is proportional to the photonic density of states. The tight bound

  1. Commons as insurance: safety nets or poverty traps? Philippe Delacote

    E-Print Network [OSTI]

    Langerhans, Brian

    Commons as insurance: safety nets or poverty traps? Philippe Delacote Economics Department, EUI. The aim of this paper is to consider the potential poverty-trap implications of this use. If the capacity, the introduction of an insurance scheme could be an exit to the poverty trap and relax pressure on the resource

  2. Energy Efficient Steam Trapping of Trace Heating Systems

    E-Print Network [OSTI]

    Krueger, R. G.; Wilt, G. W.

    1981-01-01T23:59:59.000Z

    to insure low back pressure. Caution: Make certain the trap you select can handle the system back pressure. Each trap has specific limitations in this regard. 8. A Y-Strainer is considered mandatory for use on any Tracer Trap to reduce the potential... for plugging based on the small orifice sizes being employed. (Refer to Fig. 3). 9. Freeze-proofing each trap should be in accord with each manufacturer's recommendations. 10. When multiple traps are installed to discharge into a common manifold, check...

  3. Trapped surfaces in vacuum arising dynamically from mild incoming radiation

    E-Print Network [OSTI]

    Xinliang An; Jonathan Luk

    2014-09-22T23:59:59.000Z

    In this paper, we study the "minimal requirement" on the incoming radiation that guarantees a trapped surface to form in vacuum. First, we extend the region of existence in Christodoulou's theorem on the formation of trapped surfaces and consequently show that the lower bound required to form a trapped surface can be relaxed. Second, we demonstrate that trapped surfaces form dynamically from a class of initial data which are large merely in a scaling-critical norm. This result is motivated in part by the scaling in Christodoulou's formation of trapped surfaces theorem for the Einstein-scalar field system in spherical symmetry.

  4. An ion trap built with photonic crystal fibre technology

    E-Print Network [OSTI]

    F. Lindenfelser; B. Keitch; D. Kienzler; D. Bykov; P. Uebel; M. A. Schmidt; P. St. J. Russell; J. P. Home

    2015-01-20T23:59:59.000Z

    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787(24) quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 um and 10 um.

  5. An ion trap built with photonic crystal fibre technology

    E-Print Network [OSTI]

    Lindenfelser, F; Kienzler, D; Bykov, D; Uebel, P; Schmidt, M A; Russell, P St J; Home, J P

    2015-01-01T23:59:59.000Z

    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787(24) quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 um and 10 um.

  6. Transport of hydrogen in metals with occupancy dependent trap energies

    SciTech Connect (OSTI)

    Schmid, K., E-mail: klaus.schmid@ipp.mpg.de; Toussaint, U. von; Schwarz-Selinger, T. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching b. München (Germany)

    2014-10-07T23:59:59.000Z

    Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12?H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

  7. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  8. Effect of trapping in degenerate quantum plasmas

    SciTech Connect (OSTI)

    Shah, H. A.; Qureshi, M. N. S. [Department of Physics, GC University, Lahore 54000 (Pakistan); Tsintsadze, N. [Department of Physics, GC University, Lahore 54000 (Pakistan); Salam Chair, GC University, Lahore 54000 (Pakistan)

    2010-03-15T23:59:59.000Z

    In the present work we consider the effect of trapping as a microscopic process in a plasma consisting of quantum electrons and nondegenerate ions. The formation of solitary structures is investigated in two cases: first when the electrons are fully degenerate and second when small temperature effects are taken into account. It is seen that not only rarefactive but coupled rarefactive and compressive solitons are obtained under different temperature conditions.

  9. Thermodynamics of Interacting Fermions in Atomic Traps

    SciTech Connect (OSTI)

    Chen Qijin; Stajic, Jelena; Levin, K. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States)

    2005-12-31T23:59:59.000Z

    We calculate the entropy in a trapped, resonantly interacting Fermi gas as a function of temperature for a wide range of magnetic fields between the BCS and Bose-Einstein condensation end points. This provides a basis for the important technique of adiabatic sweep thermometry and serves to characterize quantitatively the evolution and nature of the excitations of the gas. The results are then used to calibrate the temperature in several ground breaking experiments on {sup 6}Li and {sup 40}K.

  10. Reduce Steam Trap Failures at Chambers Works 

    E-Print Network [OSTI]

    Kouba, C.

    2010-01-01T23:59:59.000Z

    automatically within SAP ? Survey performed and work orders created ? Surveyor/Team Leader coordinates repair work ? Use backlog of work to justify number of mechanics ? Prioritize work for mechanics ? Repair Mechanics work across the site ? SAP Work Order... history updated for individual traps ? Surveyor updates excel spreadsheet with repair history ? Monthly reports sent to area and site management 10/20/2010 11Piloted Solution Key Learnings ? SAP Cumbersome and slows repair process ? Use SAP...

  11. Steam Trap Maintenance as a Profit Center

    E-Print Network [OSTI]

    Bouchillon, J. L.

    of the proper piping arrangements to all your basic equipment showing the traps, strainers, air vents, vacuum breakers, etc. These diagrams need to apply only to your plant, not to the hundreds of possibilities found in an all-purpose publication. See Fig... and rust ("dirt") E Size L Mechanical failure usually is... OJ Recommended design factor 2-3 Loud, popping condensate discharge No Renewable wlo piping disassembly No Requires strainer No Tbennal efficiency (low steam loss) Fair Condensate Wscharge...

  12. The relative efficiency of the Malaise trap and animal-baited traps for collecting biting flies in Southwest Texas

    E-Print Network [OSTI]

    Easton, Emmett Richard

    1967-01-01T23:59:59.000Z

    to laboratory animals. A trap model was desired that would require little or no handling of the trapped animal. Disney (1966) placed a metal sheet around a cubical rat cage and liberally applied castor oil to the metal sheet so that phlebotomine sand flies... could be caught and trapped in the castor oil. Since this sand fly moves in a hopping fashion the trap would seem to be more efficient for this fly than for mosquitoes. Bellamy and Res~ca (1952) employed a 110-lb. lard can as a portable baited trap...

  13. A Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture

    E-Print Network [OSTI]

    to form calcium carbonate (CaCO3) in the exothermic, non-solar carbonation reaction, CaO + CO2 CaCO3, Żh0 CO2 and regener- ated CaO sorbent in the endothermic, solar-driven calcination reaction, CaCO3 Ca consists of two solid-phase species, CaCO3 and CaO, and two fluid-phase species, CO2 and air. The numerical

  14. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar [Institute Center for Microsystems – iMicro, Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology Abu Dhabi (United Arab Emirates)] [Institute Center for Microsystems – iMicro, Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology Abu Dhabi (United Arab Emirates); Okyay, Ali K. [Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey) [Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey); UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2013-11-15T23:59:59.000Z

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  15. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    SciTech Connect (OSTI)

    Liu, C.F.; Shih, S.M. [Industrial Technological Research Institute, Hsinchu (Taiwan)

    2009-09-15T23:59:59.000Z

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  16. Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures

    SciTech Connect (OSTI)

    Rupp, Erik C.; Granite, Evan J. [U.S. DOE; Stanko, Dennis C. [U.S. DOE

    2013-01-01T23:59:59.000Z

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150–540 °C) to hot (>540 °C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 °C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/?-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/?-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/?-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  17. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  18. REMOVAL OF H2S AND SO2 BY CaCO3-BASED SORBENTS AT HIGH PRESSURES

    SciTech Connect (OSTI)

    Prof. Stratis V. Sotirchos

    2000-09-01T23:59:59.000Z

    The mechanism of the removal of SO{sub 2} and H{sub 2}S by CaCO{sub 3}-based sorbents in pressurized fluidized-bed coal combustors (PFBC) and high pressure gasifiers was investigated in this project. Reactivity evolution experiments were carried out in thermogravimetric apparatuses both under simulated high pressure conditions and at high pressures. Experiments at high pressure were conducted in a high pressure thermogravimetric arrangement that was set up and developed under this project. Two calcitic solids of high calcium carbonate content (over 97%) were employed in the experiments: a fine-grained distributed by Greer Limestone Co. (Greer Limestone) and a solid supplied in the form of large calcitic crystals (Iceland Spar). The decision to work with these solids was mainly based on the fact that they have been employed in several past studies of sulfation, sulfidation, and calcination in our laboratory, and therefore, a large volume of data on their performance under different conditions was available for comparison purposes. In addition to the experimental studies, work was also done on the development of rigorous mathematical models for the description of the occurrence of simultaneous processes (e.g., calcination and sulfation and carbonation and sulfation) in the interior of porous solids and for the simulation of the evolution of the pore structure of porous solids that undergo chemical transformation in their interior.

  19. Process development for production of coal/sorbent agglomerates. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Rapp, D.M.

    1991-12-31T23:59:59.000Z

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spaces are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.

  20. Energy Conservation Through Effective Steam Trapping

    E-Print Network [OSTI]

    Diamante, L.; Nagengast, C.

    1979-01-01T23:59:59.000Z

    fixed at one end with the valve plug on the other. The bellows are fillediwith the valve plug on the other. The bellows are filled with a liquid whose boiling temperature/pressure relationship parallels that of water only a few degrees be~ow it... resistance to the flow based on valve plug position. This promotes smooth control and additionally by allowing the pressure drop to occur in steps reduces wear on the critical seating surfaces. This trap provides excellent proportional control without...

  1. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01T23:59:59.000Z

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  2. Cooling trapped atoms in optical resonators

    E-Print Network [OSTI]

    Stefano Zippilli; Giovanna Morigi

    2007-03-20T23:59:59.000Z

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

  3. Parallel ion strings in linear multipole traps

    E-Print Network [OSTI]

    Mathieu Marciante; Caroline Champenois; J. Pedregosa-Gutierrez; Annette Calisti; Martina Knoop

    2011-03-13T23:59:59.000Z

    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off.

  4. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18T23:59:59.000Z

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  5. Measurements of PM Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies |Measurements of PM Traps

  6. Effective Steam Trap Selection/Maintenance - Its Payback

    E-Print Network [OSTI]

    Garcia, E.

    1984-01-01T23:59:59.000Z

    trap location, service, manufacturer, model, steam pressures, pipe size, type of connect ion, associated valves, strainer, and insulation. The condition in which each trap was found in the plant was reported and summarized as in Table 1. Other... leaks and any unsafe situations were also noted. Of the 5,000 surveyed traps, approximately 20% had failed open or were in another failure mode where live steam was leaking, 5% were found plugged, and 10% were found not losing steam but needing...

  7. Broadband laser cooling of trapped atoms with ultrafast pulses

    E-Print Network [OSTI]

    B. B. Blinov; R. N. Kohn Jr.; M. J. Madsen; P. Maunz; D. L. Moehring; C. Monroe

    2005-07-07T23:59:59.000Z

    We demonstrate broadband laser cooling of atomic ions in an rf trap using ultrafast pulses from a modelocked laser. The temperature of a single ion is measured by observing the size of a time-averaged image of the ion in the known harmonic trap potential. While the lowest observed temperature was only about 1 K, this method efficiently cools very hot atoms and can sufficiently localize trapped atoms to produce near diffraction-limited atomic images.

  8. Inertial measurement with trapped particles: A microdynamical system

    SciTech Connect (OSTI)

    Post, E. Rehmi; Popescu, George A.; Gershenfeld, Neil [Center for Bits and Atoms, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, Massachusetts 02139 (United States)

    2010-04-05T23:59:59.000Z

    We describe an inertial measurement device based on an electrodynamically trapped proof mass. Mechanical constraints are replaced by guiding fields, permitting the trap stiffness to be tuned dynamically. Optical readout of the proof mass motion provides a measurement of acceleration and rotation, resulting in an integrated six degree of freedom inertial measurement device. We demonstrate such a device - constructed without microfabrication - with sensitivity comparable to that of commercial microelectromechanical systems technology and show how trapping parameters may be adjusted to increase dynamic range.

  9. Ratchet Cellular Automata for Colloids in Dynamic Traps

    E-Print Network [OSTI]

    C. J. Olson Reichhardt; C. Reichhardt

    2006-02-13T23:59:59.000Z

    We numerically investigate the transport of kinks in a ratchet cellular automata geometry for colloids interacting with dynamical traps. We find that thermal effects can enhance the transport efficiency in agreement with recent experiments. At high temperatures we observe the creation and annihilation of thermally induced kinks that degrade the signal transmission. We consider both the deterministic and stochastic cases and show how the trap geometry can be adjusted to switch between these two cases. The operation of the dynamical trap geometry can be achieved with the adjustment of fewer parameters than ratchet cellular automata constructed using static traps.

  10. Location Of Hole And Electron Traps On Nanocrystalline Anatase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how...

  11. adult trapping program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types...

  12. ap-8 trapped proton: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types...

  13. acid phosphatase trap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types...

  14. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

  15. Wavebreaking and Particle Trapping in Collisionless Plasmas: Final Report

    SciTech Connect (OSTI)

    Shadwick, Bradley A [University of Nebraska-Lincoln

    2013-08-01T23:59:59.000Z

    The final report describing accomplishments in understanding phase-space processes involved in particle trapping and in developing advance numerical models of laser-plasma interactions.

  16. Spacetime near isolated and dynamical trapping horizons

    E-Print Network [OSTI]

    Ivan Booth

    2014-06-02T23:59:59.000Z

    We study the near-horizon spacetime for isolated and dynamical trapping horizons (equivalently marginally outer trapped tubes). The metric is expanded relative to an ingoing Gaussian null coordinate and the terms of that expansion are explicitly calculated to second order. For the spacelike case, knowledge of the intrinsic and extrinsic geometry of the (dynamical) horizon is sufficient to determine the near-horizon spacetime, while for the null case (an isolated horizon) more information is needed. In both cases spacetime is allowed to be of arbitrary dimension and the formalism accomodates both general relativity as well as more general field equations. The formalism is demonstrated for two applications. First, spacetime is considered near an isolated horizon and the construction is both checked against the Kerr-Newman solution and compared to the well-known near-horizon limit for stationary extremal black hole spacetimes. Second, spacetime is examined in the vicinity of a slowly evolving horizon and it is demonstrated that there is always an event horizon candidate in this region. The geometry and other properties of this null surface match those of the slowly evolving horizon to leading order and in this approximation the candidate evolves in a locally determined way. This generalizes known results for Vaidya as well as certain spacetimes known from studies of the fluid-gravity correspondence.

  17. Energy trapping from Hagedorn densities of states

    E-Print Network [OSTI]

    Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

    2013-04-26T23:59:59.000Z

    In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

  18. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States)] [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)] [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01T23:59:59.000Z

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  19. ECOLOGY AND BEHAVIOR Treating Panel Traps With a Fluoropolymer Enhances Their Efficiency

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ECOLOGY AND BEHAVIOR Treating Panel Traps With a Fluoropolymer Enhances Their Efficiency to improve trap capture and retention, researchers have treated intercept traps with Rain-X, a polysiloxane that are deployed to capture cerambycid beetles, using untreated traps as controls. Fluon-treated traps captured

  20. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a PenningMalmberg trap used for antihydrogen trapping

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning­Malmberg trap of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole into the trap wall when the trap also employs a magnetic multipole. The multipole's function is to confine H

  1. Fundamental limit of nanophotonic light trapping in solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    -generation solar cells. The ultimate success of photovoltaic (PV) cell technology requires great advancementsFundamental limit of nanophotonic light trapping in solar cells Zongfu Yu1 , Aaswath Raman and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping

  2. Broadband laser cooling of trapped atoms with ultrafast pulses

    E-Print Network [OSTI]

    Blinov, Boris

    Broadband laser cooling of trapped atoms with ultrafast pulses B. B. Blinov,* R. N. Kohn, Jr., M. J ions in an rf trap using ultrafast pulses from a mode-locked laser. The temperature of a single ion On the other hand, an ultrafast laser whose pulse is a few picoseconds long will naturally have a bandwidth

  3. Blue Crab, Callinectes sapidus, Trap Selectivity Studies: Mesh Size

    E-Print Network [OSTI]

    Blue Crab, Callinectes sapidus, Trap Selectivity Studies: Mesh Size VINCENT GUILLORY and PAUL had replaced drop nets and trot lines as the dominant gear in the commercial blue crab, Callinectes, LA 70343. ABSTRACT-Catch rates and sizes of blue crabs, Callinectes sapidus, were com pared in traps

  4. A Microscale Gas Trapping Investigation Markus Buchgraber, Anthony R. Kovscek

    E-Print Network [OSTI]

    Stanford University

    A Microscale Gas Trapping Investigation Markus Buchgraber, Anthony R. Kovscek Department of Energy unit Residual Trapping Sgi Sg,max krg krg Sgt(Soi) Sgt,max Gas Saturation Gas relative Land Model * * ** 1 )( gi gi gigt CS S SS + = Sgf Sg Sgt,max kd rg Sg Gas Saturation

  5. Surface-electrode ion trap with integrated light source

    E-Print Network [OSTI]

    Kim, Tony Hyun

    An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupolequbit transition of ...

  6. Steam Trap Testing and Evaluation: An Actual Plant Case Study

    E-Print Network [OSTI]

    Feldman, A. L.

    1981-01-01T23:59:59.000Z

    With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process...

  7. Novel Dipole Trapped Spheromak Configuration M. R. Brown,1,

    E-Print Network [OSTI]

    Brown, Michael R.

    Novel Dipole Trapped Spheromak Configuration M. R. Brown,1, * C. D. Cothran,1 J. Fung,1 M. J. Schaffer,2 and E. Belova3 We report the observation and characterization of a spheromak formed in the Swarthmore Spheromak Experiment (SSX) and trapped in a simple dipole magnetic field. The spheromak is studied

  8. Simulations of plasma confinement in an antihydrogen trap

    SciTech Connect (OSTI)

    Gomberoff, K.; Fajans, J.; Friedman, A.; Grote, D.; Vay, J.-L.; Wurtele, J.S.

    2007-10-15T23:59:59.000Z

    The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration (W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)). In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg-Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg-Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reducesthe positron losses seen with a quadrupole field. A unique method for obtaining a 3-D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well.

  9. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect (OSTI)

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

    2008-05-15T23:59:59.000Z

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  10. Clean Coal Technology: Reduction of NO{sub x} and SO{sub 2} using gas reburning, sorbent injection, and integrated technologies. Topical report No. 3, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program), is a unique government/industry cost-shared effort to develop these advanced coal-based technologies. The CCT Program provides numerous options for addressing a wide range of energy and environmental issues, including acid rain, global climate change, improved energy efficiency, energy security, and environmental qualitiy. It is intended to demonstrate a new generation of full-scale, ``showcase`` facilities built through the United States. Gas Reburning, Sorbent Injection and Integrated Technologies -- the subject of this Topical Report -- are one such set of promising innovative developments. In addition to discussing the technologies involved, this report will describe two specific projects, results to date, and the commercial promise of these processes. The objectives of Gas Reburning and Sorbent Injection were to have a 60% reduction in NO{sub x} emissions and a 50% reduction in SO{sub 2} emissions. These objectives have been achieved at the tangentially-fired boiler at the Hennepin site of Illinois Power and at the cyclone-fired boiler operated by City Water, Light and Power in Springfield, Illinois. The other project, Gas Reburning and Low NO{sub x} Burners had the goal of a 70% NO{sub x} reduction from the wall-fired boiler operated by Public Service of Colorado at Denver. In early preliminary testing, this goal was also achieved. Energy and Environmental Research (EER) is now ready to design and install Gas Rebunting and Sorbent Injection systems, and Gas Reburning-Low NO{sub x}, Burner systems for any utility or industrial application. These technologies are offered with performance and emission control guarantees.

  11. Fabrication and heating rate study of microscopic surface electrode ion traps

    E-Print Network [OSTI]

    Daniilidis, N.

    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with a trapping height of approximately 240 ?m. Using the Doppler recooling method, we characterize the trap heating rates ...

  12. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    SciTech Connect (OSTI)

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20T23:59:59.000Z

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  13. Simplified motional heating rate measurements of trapped ions

    E-Print Network [OSTI]

    Epstein, R J; Leibfried, D; Wesenberg, J H; Bollinger, J J; Amini, J M; Blakestad, R B; Britton, J; Home, J P; Itano, W M; Jost, J D; Knill, E; Langer, C; Ozeri, R; Shiga, N; Wineland, D J

    2007-01-01T23:59:59.000Z

    We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

  14. Can aerosols be trapped in open flows?

    E-Print Network [OSTI]

    Rafael D. Vilela; Adilson E. Motter

    2008-01-22T23:59:59.000Z

    The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.

  15. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  16. Switchable cell trapping using superparamagnetic beads

    SciTech Connect (OSTI)

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30T23:59:59.000Z

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  17. Debris trap in a turbine cooling system

    DOE Patents [OSTI]

    Wilson, Ian David (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  18. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 27, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-15T23:59:59.000Z

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal-fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone-fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions through a combination of two technologies, gas reburning and sorbent injection.

  19. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    SciTech Connect (OSTI)

    Hallenbeck, Alexander P.; Kitchin, John R.

    2013-08-01T23:59:59.000Z

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 #14;C) in air. It is concluded that desulfurization of the flue gas stream prior to CO{sub 2} capture will greatly improve the economic viability of using this solid sorbent in a post-combustion CO{sub 2} capture process.

  20. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential...

  1. Nanoscale interfacial structure for Novel Opto-electronic and Ion-trapping Devices

    E-Print Network [OSTI]

    Ulin-Avila, Erick

    2013-01-01T23:59:59.000Z

    SEM pictures of Aluminum alloy trap A,B. ) trap details C. )including Graphene, Aluminum alloys, Copper, Gold andwe use an specific aluminum alloy, which annealed increases

  2. Progress towards high precision measurements on ultracold metastable hydrogen and trapping deuterium

    E-Print Network [OSTI]

    Steinberger, Julia K., 1974-

    2004-01-01T23:59:59.000Z

    (cont.) not achieve deuterium trapping through helium-surface cooling. It is proposed that buffer gas loading can be used to cryogenically cool and trap deuterium.

  3. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Kirby, Neil; /SLAC

    2009-10-30T23:59:59.000Z

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

  4. Ultrafine calcium aerosol: Generation and use as a sorbent for sulfur in coal combustion. Volume 1, Experimental work: Final report, August 1, 1988--October 31, 1991

    SciTech Connect (OSTI)

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E. [comps.] [Ohio Coal Research Center, Athens, OH (United States)

    1991-11-01T23:59:59.000Z

    Studies conducted at Ohio University and elsewhere have demonstrated that ultrafine aerosols, which have the highest surface area per unit mass, have enhanced potential to efficiently remove sulfur dioxide form combustion gases. Therefore it is proposed to generate a very fine aerosol calcium-rich sorbent (or similar aerosols) for gas conditioning. The aerosol will be generated by vaporization of the sorbent compound and subsequent homogeneous nucleation. In experimental studies liquids as well as solids will be converted into ultrafine aerosols by using suitable aerosol generator. The aerosol generator could be a simple bubbler or a flame spray jet using powders of calcium ``Compounds. Studies will then be carried out, to determine the dynamics of sulfur dioxide capture by the ultrafine aerosol. The primary objective of this research was to generate fine aerosols and to use them for coal combustion SO{sub 2}/NO{sub x} gas removal purposes. From the background study on the dry scrubbing system, it can be concluded that the most important experimental parameters are addition ratio, reactor temperature, residence time, total inlet flow rate and inlet SO{sub 2} concentration. Addition ratio is the inlet molar ratio of calcium to sulfur. Before any experimentation, it was necessary to decide and investigate the values of each of the parameters. Each of these parameters were investigated individually and the effects on SO{sub 2} removal were determined.

  5. Stability and dynamics of ion rings in linear multipole traps

    E-Print Network [OSTI]

    Florian Cartarius; Cecilia Cormick; Giovanna Morigi

    2013-01-10T23:59:59.000Z

    Trapped singly-charged ions can crystallize as a result of laser cooling. The emerging structure depends on the number of particles and on the geometry of the trapping potential. In linear multipole radiofrequency traps, the geometry of the radial potential can lead to the formation of single-ring structures. We analyse the conditions and stability of single rings as a function of the number of poles. For larger numbers of ions the rings form tubes in which the arrangement of the ions corresponds to a triangular lattice folded onto a cylinder. The stability of these tubular structures is numerically studied for different lattice constants and their normal mode spectrum is determined.

  6. Commissioning of the Francium Trapping Facility at TRIUMF

    E-Print Network [OSTI]

    M. Tandecki; J. Zhang; R. Collister; S. Aubin; J. A. Behr; E. Gomez; G. Gwinner; L. A. Orozco; M. R. Pearson

    2013-12-12T23:59:59.000Z

    We report on the successful commissioning of the Francium Trapping Facility at TRIUMF. Large laser-cooled samples of francium are produced from a francium ion beam delivered by the ISAC radioactive ion beam facility. The ion beam is neutralized on an yttrium foil, which is subsequently heated to transfer the atoms into the magneto-optical trapping region. We have successfully trapped $^{207}$Fr, $^{209}$Fr and $^{221}$Fr, with a maximum of $2.5 \\times 10^5$ $^{209}$Fr atoms. The neutral cold atoms will be used in studies of the weak interaction through measurements of atomic parity non-conservation.

  7. Trap seal for open circuit liquid cooled turbines

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

    1980-01-01T23:59:59.000Z

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  8. Quantum information processing with trapped electrons and superconducting electronics

    E-Print Network [OSTI]

    Nikos Daniilidis; Dylan J Gorman; Lin Tian; Hartmut Häffner

    2013-04-17T23:59:59.000Z

    We describe a parametric frequency conversion scheme for trapped charged particles which enables a coherent interface between atomic and solid-state quantum systems. The scheme uses geometric non-linearities of the potential of a coupling electrode near a trapped particle. Our scheme does not rely on actively driven solid-state devices, and is hence largely immune to noise in such devices. We present a toolbox which can be used to build electron-based quantum information processing platforms, as well as quantum interfaces between trapped electrons and superconducting electronics.

  9. Dynamic modeling and control of a solid-sorbent CO{sub 2} capture process with two-stage bubbling fluidized bed adsorber reactor

    SciTech Connect (OSTI)

    Modekurti, S.; Bhattacharyya, D.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developed in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.

  10. ablation ion trap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geometry that generates a two dimensional lattice of point Paul traps. C. E. Pearson; D. R. Leibrandt; W. S. Bakr; W. J. Mallard; K. R. Brown; I. L. Chuang 2005-11-02 15...

  11. advanced ion trap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geometry that generates a two dimensional lattice of point Paul traps. C. E. Pearson; D. R. Leibrandt; W. S. Bakr; W. J. Mallard; K. R. Brown; I. L. Chuang 2005-11-02 17 Cold...

  12. acoustic waves trapped: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a magnetoplasma with a pair of trapped ions CERN Preprints Summary: The nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma with a pair of...

  13. Cold trapped positrons and progress to cold antihydrogen

    E-Print Network [OSTI]

    Estrada, John Karl, 1970-

    2002-01-01T23:59:59.000Z

    A new physical mechanism for positron accumulation is explained and demonstrated. Strongly magnetized Rydberg positronium is formed and then ionized, allowing us to trap equal numbers of either positrons or electrons over ...

  14. Laser ablation loading of a surface-electrode ion trap

    E-Print Network [OSTI]

    David R. Leibrandt; Robert J. Clark; Jaroslaw Labaziewicz; Paul Antohi; Waseem Bakr; Kenneth R. Brown; Isaac L. Chuang

    2007-06-22T23:59:59.000Z

    We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful ($\\gtrsim$ 500 meV).

  15. The Release of Trapped Gases from Amorphous Solid Water Films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Top-Down" Crystallization-Induced Crack Propagation Probed The Release of Trapped Gases from Amorphous Solid Water Films: I. Top-Down" Crystallization-Induced Crack Propagation...

  16. Coherent control of a qubit is trap-free

    E-Print Network [OSTI]

    Alexander Pechen; Nikolay Il'in

    2014-07-19T23:59:59.000Z

    There is a strong interest in optimal manipulating of quantum systems by external controls. Traps are controls which are optimal only locally but not globally. If they exist, they can be serious obstacles to the search of globally optimal controls in numerical and laboratory experiments, and for this reason the analysis of traps attracts considerable attention. In this paper we prove that for a wide range of control problems for two-level quantum systems all locally optimal controls are also globally optimal. Hence we conclude that two-level systems in general are trap-free. In particular, manipulating qubits---two-level quantum systems forming a basic building block for quantum computation---is free of traps for fundamental problems such as the state preparation and gate generation.

  17. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6 Reductants Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and...

  18. Time-optimal controls for frictionless cooling in harmonic traps

    E-Print Network [OSTI]

    Salamon, Peter

    OFFPRINT Time-optimal controls for frictionless cooling in harmonic traps K. H. Hoffmann, P payment Details on preparing, submitting and tracking the progress of your manuscript from submission

  19. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    SciTech Connect (OSTI)

    John, Sajeev [University of Toronto

    2014-08-15T23:59:59.000Z

    We provide designs of thin-film solar cells utilizing optimized photonic-crystal light-trapping and numerical simulations of their solar-to-electrical power conversion efficiencies.

  20. Wednesday, January 30, 2013 Infrared Trapping the "Greenhouse Effect"

    E-Print Network [OSTI]

    Toohey, Darin W.

    Wednesday, January 30, 2013 Infrared Trapping ­ the "Greenhouse Effect" Goals ­ to look is the same as a 1.8 degree F change. #12;Last time - Greenhouse effect demo Selective absorption. Greenhouse

  1. Novel trapping techniques for shaping Bose-Einstein condensates

    E-Print Network [OSTI]

    Boyd, Micah (Micah Scott)

    2007-01-01T23:59:59.000Z

    A combination of radio frequency radiation and magnetic field gradients was used to trap atoms in dressed states. In a magnetic field with a quadrupole minimum. RF fields resonant with the (I F. m)) 11. -1) -- 1, 0) ...

  2. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-12-19T23:59:59.000Z

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  3. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01T23:59:59.000Z

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  4. Quantum gates, sensors, and systems with trapped ions

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    2012-01-01T23:59:59.000Z

    Quantum information science promises a host of new and useful applications in communication, simulation, and computational algorithms. Trapped atomic ions are one of the leading physical systems with potential to implement ...

  5. Solar cell efficiency enhancement via light trapping in printable resonant

    E-Print Network [OSTI]

    Atwater, Harry

    Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere´de´rale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid

  6. Light trapping limits in plasmonic solar cells: an analytical investigation

    E-Print Network [OSTI]

    Sheng, Xing

    We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

  7. Effects of H{sub 2}O and particles on the simultaneous removal of SO{sub 2} and fly ash using a fluidized-bed sorbent/catalyst reactor

    SciTech Connect (OSTI)

    Rau, J.Y.; Chen, J.C.; Wey, M.Y.; Lin, M.D. [National Chung Hsing University, Taichung (Taiwan). Dept. of Environmental Engineering

    2009-12-15T23:59:59.000Z

    This study investigated the potential of a fluidized-bed sorbent/catalyst reactor for the simultaneous removals of SO{sub 2} and fly ash from a simulated flue gas containing different H{sub 2}O and particles. Experimental results showed that the removal efficiency of particles and SO{sub 2} was 85%-96% and 5.75-2.97 mg SO{sub 2}/g, respectively, as the H{sub 2}O content was 1.5-5.3%. The activities of sorbent/catalysts for simultaneous removals of SO{sub 2} and particles were inhibited by H{sub 2}O and particles, and the inhibition effects increased with the content of H{sub 2}O. As the H{sub 2}O content increased, the particle size distribution (PSD) of fine particles shifted to the coarse particles. The results of BET analysis show that the obstruction phenomenon of the sorbent/catalyst caused by the particles was diminished with the increased content of H{sub 2}O. The results showed this aggregation phenomenon of fine particles shifted to the coarse particles may cause increased water vapor content in fluidized-bed sorbent/catalyst reactor.

  8. Low temperature cold trapping of uranium hexafluoride containing hydrogen fluoride

    SciTech Connect (OSTI)

    Hobbs, W.E.; Barber, E.J.; Jones, C.G.

    1990-10-01T23:59:59.000Z

    The use of a freezer-sublimer system operating at low desublimation pressures to replace 10-in. nuclearly safe cold traps for low assay (<5% U-235) uranium hexafluoride (UF{sub 6}) would significantly simplify operations and is economically attractive provided the nuclear safety of the system can be assured. A major requirement of such assurance is the availability of conditions guaranteeing that the nuclear safety design criterion, which requires that the H/U atomic ratio in the condensate in the freezer-sublimer always be less than 0.33 for assays up to 5%, will never be violated. A general vapor pressure equation giving the vapor pressure of HF-UF{sub 6} solutions as a function of temperature and mole fraction UF{sub 6} has been developed. The precision of the data at the 95% confidence level is {plus minus}0.1 torr at temperatures between {minus}100{degree}F and {minus}121{degree}F. The calculated vapor pressure of pure HF is 4.6 torr at {minus}100{degree}F and 3.1 torr at {minus}108{degree}F. Theoretical considerations suggest that the true value will be slightly lower. In experimental studies of the cold trapping operation at {minus}108{degree}F and at a trap pressure of 2.2 torr, only 7.3% of the HF entering the trap was retained in the trap. At a trap pressure of 4.6 torr, over 80% of the HF entering the trap was retained. The data obtained in this study confirms that the physical chemistry of the HF-UF{sub 6} system previously developed accurately describes the behavior of the system and that so long as the pressure in the trap is maintained below the vapor pressure of pure HF at the trap temperatures, there is no way that sufficient HF can be trapped to give an H/U ratio of 0.33 regardless of the HF/UF{sub 6} ratio in the feed to the trap. 5 refs., 4 tabs.

  9. Master equation approach to protein folding and kinetic traps

    E-Print Network [OSTI]

    Marek Cieplak; Malte Henkel; Jan Karbowski; Jayanth R. Banavar

    1998-04-21T23:59:59.000Z

    The master equation for 12-monomer lattice heteropolymers is solved numerically and the time evolution of the occupancy of the native state is determined. At low temperatures, the median folding time follows the Arrhenius law and is governed by the longest relaxation time. For good folders, significant kinetic traps appear in the folding funnel whereas for bad folders, the traps also occur in non-native energy valleys.

  10. Laser induced rotation of trapped chiral and achiral nematic droplets

    E-Print Network [OSTI]

    Marjan Mosallaeipour; Yashodhan Hatwalne; N. V. Madhusudana; Sharath Ananthamurthy

    2010-02-05T23:59:59.000Z

    We study the response of optically trapped achiral and chiralised nematic liquid crystal droplets to linear as well as circular polarised light. We find that there is internal dissipation in rotating achiral nematic droplets trapped in glycerine. We also demonstrate that some chiralised droplets rotate under linearly polarised light. The best fit to our data on chiralised droplets indicates that rotational frequency of these droplets with radius R is approximately proportional to1/R^2, rather than to 1/R^3.

  11. What To Do With Cold Traps and Why

    E-Print Network [OSTI]

    Risko, J. R.; Walter, J. P.

    2012-01-01T23:59:59.000Z

    . Individual CDL often consist of up to a full-size tee on a distribution line, inlet strainer, isolation valves, steam trap, check valve, mud leg, blowdown valve, bypass line, tagging, and pipe insulation. The initial cost for designing and installing... or resource to periodically blow down strainers / drip pockets? 14. Is there a ?one size fits all? approach towards steam trap selection; using the same model for all drip and tracer applications? 15. Does the site remove strainer screens from steam...

  12. Optical Trapping and Control of a Nanowire by a Nanoaperture

    E-Print Network [OSTI]

    Aporvari, Mehdi Shafiei; Volpe, Giovanni

    2015-01-01T23:59:59.000Z

    We demonstrate that a single sub-wavelength nanoaperture in a metallic thin film can be used to achieve dynamic optical trapping and control of a single dielectric nanowire. A nanoaperture can trap a nanowire, control its orientation when illuminated by a linearly-polarized incident field, and also rotate the nanowire when illuminated by a circularly-polarized incident field. Compared to other designs, this approach has the advantages of a low-power driving field entailing low heating and photodamage.

  13. Nanoantennas for enhanced light trapping in transparent organic solar cells

    E-Print Network [OSTI]

    Voroshilov, Pavel M; Belov, Pavel A

    2014-01-01T23:59:59.000Z

    We propose a light-trapping structure offering a significant enhancement of photovoltaic absorption in transparent organic solar cells operating at infrared while the visible light transmission keeps sufficiently high. The main mechanism of light trapping is related with the excitation of collective oscillations of the metal nanoantenna arrays, characterized by advantageous field distribution in the volume of the solar cell. It allows more than triple increase of infrared photovoltaic absorption.

  14. Fast optimal frictionless atom cooling in harmonic traps

    E-Print Network [OSTI]

    Xi Chen; A. Ruschhaupt; S. Schmidt; A. del Campo; D. Guery-Odelin; J. G. Muga

    2009-10-05T23:59:59.000Z

    A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a perfectly slow adiabatic expansion, i.e., keeping the populations of the instantaneous initial and final levels invariant, but in a much shorter time. This may require that the harmonic trap becomes an expulsive parabolic potential in some time interval. The cooling times achieved are also shorter than previous minimal times using optimal-control bang-bang methods and real frequencies.

  15. Thermal Trap for DNA Replication Christof B. Mast and Dieter Braun*

    E-Print Network [OSTI]

    Kersting, Roland

    and simultaneously accumulates the replicated molecules in an efficient thermophoretic trap. The non- equilibrium

  16. Trapping of Single Nano-objects in Dynamic Temperature Fields Marco Braun and Frank Cichos

    E-Print Network [OSTI]

    Boyer, Edmond

    is considered. The present study complements the dynamic thermophoretic trapping with a theoretical basis

  17. Global sound modes in mirror traps with anisotropic pressure

    SciTech Connect (OSTI)

    Skovorodin, D. I.; Zaytsev, K. V.; Beklemishev, A. D. [Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)] [Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2013-10-15T23:59:59.000Z

    Global oscillations of inhomogeneous plasma with frequencies close to the bounce frequency of ions in mirror traps have been studied. It has been shown that, in some cases, the sound can be reflected from the axial plasma inhomogeneity. The ideal magnetohydrodynamic (MHD) model with Chew-Goldberger-Low approximation has been utilized to determine conditions of existence of the standing waves in the mirror-confined plasma. Linearized wave equation for the longitudinal plasma oscillations in thin anisotropic inhomogeneous plasma with finite ? has been derived. The wave equation has been treated numerically. The oscillations are studied for the case of the trap with partially filled loss-cone and the trap with sloshing ions. It has been shown that in cells of the multiple-mirror trap standing waves can exist. The frequency of the wave is of the order of the mean bounce-frequency of ions. In the trap with sloshing ions, the mode supported by the pressure of fast ions could exist. The results of oscillations observation in the experiment on the Gas Dynamic Trap have been presented.

  18. Fuel traps: mapping stability via water association.

    SciTech Connect (OSTI)

    Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

    2007-03-01T23:59:59.000Z

    Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

  19. System and method for trapping and measuring a charged particle in a liquid

    DOE Patents [OSTI]

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23T23:59:59.000Z

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  20. System and method for trapping and measuring a charged particle in a liquid

    DOE Patents [OSTI]

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2012-10-23T23:59:59.000Z

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  1. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATEPHASE II INTERIM REPORT FOR EXTERNAL RELEASE

    SciTech Connect (OSTI)

    Hobbs, D; Michael Poirier, M; Mark Barnes, M; Mary Thompson, M

    2006-08-31T23:59:59.000Z

    This document provides an interim summary report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST materials. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger laboratory scale, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and characterization of the modified MST. Key findings and conclusions include the following: (1) Samples of the modified MST prepared by Method 2 and Method 3 exhibited the best combination of strontium and actinide removal. (2) We selected Method 3 to scale up and test performance with actual waste solution. (3) We successfully prepared three batches of the modified MST using the Method 3 procedure at a 25-gram scale. (4) Performance tests indicated successful scale-up to the 25-gram scale with excellent performance and reproducibility among each of the three batches. For example, the plutonium decontamination factors (6-hour contact time) for the modified MST samples averaged 13 times higher than that of the baseline MST sample at half the sorbent concentration (0.2 g L{sup -1} for modified MST versus 0.4 g L{sup -1} for baseline MST). (5) Performance tests with actual waste supernate demonstrated that the modified MST exhibited better strontium and plutonium removal performance than that of the baseline MST. For example, the decontamination factors for the modified MST measured 2.6 times higher for strontium and between 5.2 to 11 times higher for plutonium compared to the baseline MST sample. The modified MST did not exhibit improved neptunium removal performance over that of the baseline MST. (6) Two strikes of the modified MST provided increased removal of strontium and actinides from actual waste compared to a single strike. The improved performance exhibited by the modified MST indicates that fewer strikes of the modified MST would be needed to successfully treat waste that contain very high activities of {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST. (7) Reuse tests with actual waste confirmed that partially loaded MST exhibits reduced removal of strontium and actinides when contacted with fresh waste. (8) Samples of modified MST prepared by Method 3 and the baseline MST exhibited very similar particle size distributions. (9) Dead-end filtration tests showed that the modified MST samples exhibited similar filtration characteristics as the baseline MST sample. (10) Performance testing indicated no change in strontium and neptunium removal after storing the modified MST for 6-months at ambient temperature. The results suggested that plutonium removal performance may be decreased slightly after 6-months of storage. However, the change in plutonium removal is not statistically significant at the 95% confidence limit. Based on these findings we recommend continued development of the modified MST as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

  2. Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  3. Development of Dodecaniobate Keggin Chain Materials as Alternative Sorbents for SR and Actinide Removal from High-Level Nuclear Waste Solutions

    SciTech Connect (OSTI)

    Nyman, May; Bonhomme, Francois

    2004-03-28T23:59:59.000Z

    The current baseline sorbent (monosodium titanate) for Sr and actinide removal from Savannah River Site's high level wastes has excellent adsorption capabilities for Sr but poor performance for the actinides. We are currently investigating the development of alternative materials that sorb radionuclides based on chemical affinity and/or size selectivity. The polyoxometalates, negatively-charged metal oxo clusters, have known metal binding properties and are of interest for radionuclide sequestration. We have developed a class of Keggin-ion based materials, where the Keggin ions are linked in 1- dimensional chains separated by hydrated, charge-balancing cations. These Nb-based materials are stable in the highly basic nuclear waste solutions and show good selectivity for Sr and Pu. Synthesis, characterization and structure of these materials in their native forms and Sr-exchanged forms will be presented.

  4. Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

    E-Print Network [OSTI]

    Sunil Kumar; Sumit Sarkar; Gunjan Verma; Chetan Vishwakarma; Md. Noaman; Umakant Rapol

    2014-08-20T23:59:59.000Z

    We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \\%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve the Bose-Einstein condensation having more than $10^{5}$ atoms.

  5. Recent progress in tailoring trap-based positron beams

    SciTech Connect (OSTI)

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

    2013-03-19T23:59:59.000Z

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  6. Single Ion Trapping for the Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC; ,

    2006-03-28T23:59:59.000Z

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  7. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect (OSTI)

    Maggiore, M., E-mail: mario.maggiore@lnl.infn.it; Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatŕ, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S. [INFN-LNL, viale dell’Universitŕ 2, 35020 Legnaro (Italy)] [INFN-LNL, viale dell’Universitŕ 2, 35020 Legnaro (Italy); Caruso, A.; Longhitano, A. [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy)] [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy); Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M. [INFN Sezione di Milano and Dipartimento di Fisica, Universitŕ degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [INFN Sezione di Milano and Dipartimento di Fisica, Universitŕ degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2014-02-15T23:59:59.000Z

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  8. Scalable Digital Hardware for a Trapped Ion Quantum Computer

    E-Print Network [OSTI]

    Mount, Emily; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-01-01T23:59:59.000Z

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for trapping and cooling the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  9. Ion trapping in the emitter sheath in thermionic converters

    SciTech Connect (OSTI)

    Lundgren, L.

    1985-12-01T23:59:59.000Z

    The effect of ion trapping in the emitter sheath in ignited thermionic converters is studied. The ion trapping prevents the emitter-sheath barrier from being higher than approximately 0.1 eV, when the current decreases in the converter. This gives a condition for the constriction of the arc. I-V curves are calculated for an ignited thermionic converter with a hydrodynamic plasma theory that takes into account the effect of Coulomb scattering and volume recombination, but assumes that the electron temperature is constant in the plasma.

  10. Electron Trapping in Shear Alfven Waves that Power the Aurora

    SciTech Connect (OSTI)

    Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

    2009-01-30T23:59:59.000Z

    Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

  11. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    SciTech Connect (OSTI)

    Courtney, Charles R. P., E-mail: c.r.p.courtney@bath.ac.uk [Department of Mechanical Engineering, University of Bath, Bath (United Kingdom); Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy [Institute of Medical Science and Technology, University of Dundee, Dundee (United Kingdom); Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom)

    2014-04-14T23:59:59.000Z

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35?MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-?m-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers.

  12. Interface-trap charge-pump temperature sensor

    E-Print Network [OSTI]

    Sharifi, Reza

    2001-01-01T23:59:59.000Z

    and connections. If the source is kept at a constant voltage to allow the area underneath the gate to move between inversion and accumulation the following relations must hold: VGP & VFB+ VW Voa ? Vs & Vr (2) Where VFs is flat band voltage, Vr is Threshold... occupied energy level in conduction band corresponds to free electron energy. These two bands are separated by bandgap where traps energy levels are located. The density of traps in the bandgap is a process dependent quality. vo vw Source vs N (well...

  13. Fidelity decay in trapped Bose-Einstein condensates

    E-Print Network [OSTI]

    G. Manfredi; P. -A. Hervieux

    2008-01-29T23:59:59.000Z

    The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity (Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small random potential such as that created by a laser speckle. Numerical experiments show that the quantum fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation period. The critical time depends logarithmically on the number of condensed atoms and on the perturbation amplitude. This behavior may be observable by measuring the interference fringes of two condensates evolving in slightly different potentials.

  14. Recurrent Shocks, Poverty Traps and the Degradation of the Social Capital Base of Pastoralism: A Case Study from Southern Ethiopia

    E-Print Network [OSTI]

    Berhanu, Wassie

    2009-01-01T23:59:59.000Z

    2009 Recurrent Shocks, Poverty Traps and the Degradation of2009) Recurrent Shocks, Poverty Traps and the Degradation ofMay J, 2006. Exploring Poverty Traps and Social Exclusion in

  15. Loading a planar RF Paul Trap from a cold Yb? source

    E-Print Network [OSTI]

    Shields, Brendan John

    2006-01-01T23:59:59.000Z

    In this thesis, we demonstrate a functioning planar radio frequency, three-rod Paul Trap, loaded with Yb+ ions that have been photoionized from a source of neutral atoms, which were cooled in a magneto-optical trap. Planar ...

  16. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

  17. Comparison of traps and baits for censusing small mammals in Neotropical lowlands.

    E-Print Network [OSTI]

    Woodman, Neal; Timm, Robert M.; Slade, Norman A.; Doonan, Terry J.

    1996-02-01T23:59:59.000Z

    Snap-traps, live-traps, and baits affect the ability to capture small mammals, but few previous studies have involved sampling communities of small mammals in tropical environments. We tested differences in captures of small marsupials and rodents...

  18. Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demsy and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demésy and Sajeev://jap.aip.org/about/rights_and_permissions #12;Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demesya

  19. Design of superconducting transmission line integrated surface-electrode ion-traps

    E-Print Network [OSTI]

    Meyer, David Thomas

    2011-01-01T23:59:59.000Z

    We fabricated superconducting surface electrode ion traps with integrated microwave coplanar waveguides using direct-write optical lithography and a niobium on sapphire process. We then tested these traps in a closed cycle ...

  20. Trapping capacity of fault zones, downdip Yegua Formation, Texas Gulf Coast basin 

    E-Print Network [OSTI]

    Hintz, Jena Christine

    2001-01-01T23:59:59.000Z

    The homogenization of sediment from shearing forms traps in both the hanging wall and footwall due to capillary pressure differences. The sheared zone associated with large faults can form traps. Sheared zones associated ...

  1. EFFECT OF PORE SIZE ON TRAPPING ZINC VAPORS

    SciTech Connect (OSTI)

    Korinko, P.

    2010-12-17T23:59:59.000Z

    A series of experiments were conducted to determine the effect of pore size on pumping efficiency and zinc vapor trapping efficiency. A simple pumping efficiency test was conducted for all five pore diameters where it was observed that evacuation times were adversely affected by reducing the pore size below 5 {micro}m. Common test conditions for the zinc trapping efficiency experiments were used. These conditions resulted in some variability, to ascribe different efficiencies to the filter media. However, the data suggest that there is no significant difference in trapping efficiency for filter media with pores from 0.2 to 20 {micro}m with a thickness of 0.065-inch. Consequently, the 20 {micro}m pore filter media that is currently used at SRS is a suitable filter material for to utilize for future extractions. There is evidence that smaller pore filter will adversely affect the pumping times for the TEF and little evidence to suggest that a smaller pore diameters have significant impact on the trapping efficiency.

  2. Coronal Trapping of Energetic Flare Particles: Yohkoh/HXT Observations

    E-Print Network [OSTI]

    Metcalf, Thomas R.

    the energization of the solar corona. The most common interpretation for the production of the observed HXR fluxes Alexander Lockheed Martin Solar and Astrophysics Laboratory, Department H1­12, Bldg. 252, 3251 Hanover St in a search for spectral evidence of the coronal trapping of energetic particles during solar flares. Two

  3. Classical thermodynamics of particles in harmonic traps Martin Ligarea

    E-Print Network [OSTI]

    Ligare, Martin

    , and the heat capacities. I also consider cyclic thermodynamic processes in a harmonically confined gas. © 2010 of state for a gas of N noninteract- ing particles in a rigid volume V is derived in almost every text and pressure vary with position within such traps, and the volume of the gas is not well defined

  4. Steam Traps-The Oft Forgotten Energy Conservation Treasure

    E-Print Network [OSTI]

    Pychewicz, F. S.

    on the part of several vendors to design trap internals to our specifications; namely, a thermostatic bellows with a restricted orifice (5/64") and an internal strainer screen. Another criteria was a fail closed design. The vendors primarily feared use...

  5. Progress in year 1995 1. Optically plugged magnetic quadrupole trap

    E-Print Network [OSTI]

    Progress in year 1995 1. Optically plugged magnetic quadrupole trap In 1995, we have demonstrated samples of ultracold atoms at unprecedented densities (>1014 cm-3) and to evaporatively cool atoms to Bose Dressed-StateEnergyMagneticField Atoms During evaporative cooling, the cloud shrunk and finally split up

  6. The TITAN in-trap decay spectroscopy facility at TRIUMF

    E-Print Network [OSTI]

    K. G. Leach; A. Grossheim; A. Lennarz; T. Brunner; J. R. Crespo López-Urrutia; A. T. Gallant; M. Good; R. Klawitter; A. A. Kwiatkowski; T. Ma; T. D. Macdonald; S. Seeraji; M. C. Simon; C. Andreoiu; J. Dilling; D. Frekers

    2014-11-22T23:59:59.000Z

    This article presents an upgraded in-trap decay spectroscopy apparatus which has been developed and constructed for use with TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). This device consists of an open-access electron-beam ion-trap (EBIT), which is surrounded radially by seven low-energy planar Si(Li) detectors. The environment of the EBIT allows for the detection of low-energy photons by providing backing-free storage of the radioactive ions, while guiding charged decay particles away from the trap centre via the strong (up to 6 T) magnetic field. In addition to excellent ion confinement and storage, the EBIT also provides a venue for performing decay spectroscopy on highly-charged radioactive ions. Recent technical advancements have been able to provide a significant increase in sensitivity for low-energy photon detection, towards the goal of measuring weak electron-capture branching ratios of the intermediate nuclei in the two-neutrino double beta ($2\

  7. Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli

    E-Print Network [OSTI]

    van Rooij, Robert

    and by improving their photovoltaic conversion efficiency. For Si solar cells, both challenges can be achievedLight Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli #12;Summary Photovoltaics of energy for our society. In order for this to happen, photovoltaics needs to be economically competitive

  8. Radiation trapping in a cold atomic gas Guillaume Labeyrie,1

    E-Print Network [OSTI]

    field of study deals with the transport of near resonant light in such media. Using cold atoms, one can at the end of the 20th century that studies of light transport in optically thick clouds of cold atomsRadiation trapping in a cold atomic gas Guillaume Labeyrie,1 Robin Kaiser,1, and Dominique Delande

  9. Dielectric nanostructures for broadband light trapping in organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model

  10. Towards electron-electron entanglement in Penning traps

    E-Print Network [OSTI]

    L. Lamata; D. Porras; J. I. Cirac; J. Goldman; G. Gabrielse

    2010-02-05T23:59:59.000Z

    Entanglement of isolated elementary particles other than photons has not yet been achieved. We show how building blocks demonstrated with one trapped electron might be used to make a model system and method for entangling two electrons. Applications are then considered, including two-qubit gates and more precise quantum metrology protocols.

  11. Theory and Simulation of Neoclassical Transport Processes, with Local Trapping

    E-Print Network [OSTI]

    California at San Diego, University of

    Theory and Simulation of Neoclassical Transport Processes, with Local Trapping Daniel H. E. Dubin of a plasma with static electric and/or magnetic fields are of central importance in plasma theory and experiment. For exam- ple, in the theory of neoclassical transport, a magnetically confined plasma interacts

  12. On the Design of Traps for Feeding 3D Parts on Vibratory Tracks

    E-Print Network [OSTI]

    Utrecht, Universiteit

    a sequence of mechanical devices such as wiper blades, grooves and traps. Most of these devices are filters

  13. Minimal Trap Design Pankaj K. Agarwal, Anne D. Collinsy, and John L. Harerz

    E-Print Network [OSTI]

    Agarwal, Pankaj K.

    ].) Along this track is placed a sequence of obstacles (ramps, wiper blades, traps, etc.) designed to allow

  14. Trap Design for Vibratory Bowl Feeders # RobertPaul Berretty +# Ken Goldberg Mark H. Overmars +

    E-Print Network [OSTI]

    Utrecht, Universiteit

    devices such as wiper blades, grooves and traps. Most of these devices are filters # Research is supported

  15. Trapping and hysteresis in two-phase flow in porous media: A pore-network study

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    of hydrocarbon, and carbon sequestration problems where trap- ping of CO2 leads to safe underground storage. [4

  16. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pt-KMgAl2O4 lean NOx trap catalysts. Characteristics of Pt-KMgAl2O4 lean NOx trap catalysts. Abstract: We report the various characteristics of Pt-KMgAl2O4 lean NOx trap (LNT)...

  17. Note and Record A note on polyvinyl chloride (PVC) pipe traps for

    E-Print Network [OSTI]

    Pretoria, University of

    Note and Record A note on polyvinyl chloride (PVC) pipe traps for sampling vegetation of traditional traps, and many are furtive (Myers et al., 2007; Pittman et al., 2008). PVC pipe traps, which and Hyperolius (see Channing, 2001; du Preez & Carruthers, 2009), may be attracted to artificial refugia of PVC

  18. A Double Ion Trap for Large Coulomb Crystals Caroline Champenois, Jofre Pedregosa-Gutierrez, Mathieu Marciante,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : 37.10.Ty; 52.25.Kn;52.27.Jt MULTIPOLE TRAPS Thirty years after Wolfgang Paul's introduction of the 3D, the multipole trap is combined in line with a quadrupole trap, using a shuttling protocol between both parts

  19. DISSERTATION THE EFFECT OF TRAPPING DEFECTS ON CIGS SOLAR-CELL

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION THE EFFECT OF TRAPPING DEFECTS ON CIGS SOLAR-CELL PERFORMANCE Submitted by Pamela K ENTITLED THE EFFECT OF TRAPPING DEFECTS ON CIGS SOLAR-CELL PERFORMANCE BE ACCEPTED AS FULFILLING IN PART RE OF DISSERTATION THE EFFECT OF TRAPPING DEFECTS ON CIGS SOLAR-CELL PERFORMANCE The relationship between basic solar-cell

  20. Cooling and Heating of the Quantum Motion of Trapped Cd+ Louis Deslauriers

    E-Print Network [OSTI]

    Monroe, Christopher

    ABSTRACT Cooling and Heating of the Quantum Motion of Trapped Cd+ Ions by Louis Deslauriers Chair information processor has seen tremendous progress in many fields of physics. In the last decade, trapped ions for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped

  1. Future works The Ion trap -Laser cooling technique has the ad-

    E-Print Network [OSTI]

    Hensinger, Winfried

    Future works The Ion trap - Laser cooling technique has the ad- vantages to easily manipulate apparatus for trace isotope analysis. Guidance of the ion beams to the trap Laser cooling of ions with this apparatus Realization of trapping ions from ICP-MS Optimization of the experimental system for detecting

  2. Angular constraint on light-trapping absorption enhancement in solar cells and Shanhui Fan

    E-Print Network [OSTI]

    Fan, Shanhui

    trapping results in a thinner active region in a solar cell, which lowers the pro- duction cost by reducingAngular constraint on light-trapping absorption enhancement in solar cells Zongfu Yua and Shanhui 2010; accepted 5 December 2010; published online 4 January 2011 Light trapping for solar cells can

  3. Light traps are one of a number of different gears used to sample

    E-Print Network [OSTI]

    438 Light traps are one of a number of different gears used to sample pelagic larval and juvenile fishes. In contrast to conventional towed nets, light traps primarily collect larger size classes and Cowen, 1996; Wilson, 2001). The relative ease with which multiple synoptic light trap samples can

  4. Academy of Natural Sciences An Effective Trapping and Marking Method for Aquatic Beetles

    E-Print Network [OSTI]

    Aiken, Ron

    suffer from one or more deficiencies. Glass bottles are heavy, awkwardto store and subject to vandalismin, Hydradephaga,marking, trapping] The first discussion of bottle traps used to studyaquaticbeetlesin North trapand a varietyof othersam- pling devices used in his studies in California ponds. His bottle trap

  5. FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER

    E-Print Network [OSTI]

    FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER if; Marine Biological LabofdiuryKay, Secretary Fish and Wildlife Service, Albert M. Day, Director FLUCTUATION IN TRAP NET CATCHES IN THE UPPER Gear used 3 Methods 5 Statistical considerations 5 Season trends in catch of trap nets 6 Black crappie

  6. Efficient Dynamic Contracts: Enabling A Poor borrower To Get Out of Poverty Trap

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    of poverty trap is synonymous to getting loan from the formal sector. The MFI discipline the borrower to saveEfficient Dynamic Contracts: Enabling A Poor borrower To Get Out of Poverty Trap Dyotona Dasgupta, New Delhi 110016, India Keywords: Dynamic Contracts, Progressive Lending, Collateral, Poverty Trap

  7. With Exhaustible Resources, Can A Developing Country Escape From The Poverty Trap?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    With Exhaustible Resources, Can A Developing Country Escape From The Poverty Trap? Cuong Le Van is convex-concave, so that the economy may be locked into a poverty trap. We show that the extent to which the country will escape from the poverty trap depends, besides the interactions between its technology and its

  8. The Impact of Simple Institutions in Experimental Economies with Poverty Traps

    E-Print Network [OSTI]

    Greer, Julia R.

    The Impact of Simple Institutions in Experimental Economies with Poverty Traps C. Mónica Capra a threshold. The threshold externality generates two equilibria--a suboptimal "poverty trap" and an optimal typically sink into the poverty trap and the optimal equilibrium is never reached. However, the ability

  9. Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore Torquatob)

    E-Print Network [OSTI]

    Torquato, Salvatore

    Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore of a Brownian particle diffusing among a, digitized lattice-based domain of traps. Following the first, the inverse of the trapping rate, is obtained for a variety of configurations involving digitized spheres

  10. Laser Stabilization for Quantum Computing with Trapped Barium ions Corey Adams

    E-Print Network [OSTI]

    Blinov, Boris

    system used to trap and cool Ba+ ions used for quantum computation research. The lasers, at 650 and 985 perform ex- periments, including trapping ions themselves. A trap works using both a laser cooling system in the cooling system is important to its success. A proposed method to stabilize lasers is to use an external

  11. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

    SciTech Connect (OSTI)

    Korinko, P.

    2011-03-25T23:59:59.000Z

    To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations were large and suggest that all three temperatures exhibited comparable gains. No zinc was detected on the backside surface of the filters indicating high efficiency for front and internal trapping. A zinc rich deposit was formed on the surface of the 60 C filter. Based on a simple tape adhesion test, the surface zinc was readily removed from the 60 C filter while less zinc deposit was removed from the 120 and 200 C filter samples. It is surmised that the higher temperatures enable the zinc to deposit within the filter media rather than on the surface. Based on the findings that all three statistically trapped the same quantity of zinc vapor and that the higher temperatures resulted in a more adherent/better trapped product, operating the filters at 120 to 200 C is recommended.

  12. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31T23:59:59.000Z

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  13. Fabrication and heating rate study of microscopic surface electrode ion traps

    E-Print Network [OSTI]

    N. Daniilidis; S. Narayanan; S. A. Möller; R. Clark; T. E. Lee; P. J. Leek; A. Wallraff; St. Schulz; F. Schmidt-Kaler; H. Häffner

    2010-09-15T23:59:59.000Z

    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.

  14. Real-time calibration of a feedback trap

    SciTech Connect (OSTI)

    Gavrilov, Mom?ilo; Jun, Yonggun; Bechhoefer, John, E-mail: johnb@sfu.ca [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

    2014-09-15T23:59:59.000Z

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

  15. Scattering of short laser pulses from trapped fermions

    E-Print Network [OSTI]

    T. Wong; Ozgur Mustecaplioglu; L. You; M. Lewenstein

    2000-03-28T23:59:59.000Z

    We investigate the scattering of intense short laser pulses off trapped cold fermionic atoms. We discuss the sensitivity of the scattered light to the quantum statistics of the atoms. The temperature dependence of the scattered light spectrum is calculated. Comparisons are made with a system of classical atoms who obey Maxwell-Boltzmann statistics. We find the total scattering increases as the fermions become cooler but eventually tails off at very low temperatures (far below the Fermi temperature). At these low temperatures the fermionic degeneracy plays an important role in the scattering as it inhibits spontaneous emission into occupied energy levels below the Fermi surface. We demonstrate temperature dependent qualitative changes in the differential and total spectrum can be utilized to probe quantum degeneracy of trapped Fermi gas when the total number of atoms are sufficiently large $(\\geq 10^6)$. At smaller number of atoms, incoherent scattering dominates and it displays weak temperature dependence.

  16. GRANIT project: a trap for gravitational quantum states of UCN

    E-Print Network [OSTI]

    Pignol, G; Rebreyend, D; Vezzu, F; Nesvizhevsky, V V; Petukhov, A K; Börner, H G; Soldner, T; Schmidt-Wellenburg, P; Kreuz, M; Forest, D; Ganau, P; Mackowski, J M; Michel, C; Montorio, J L; Morgado, N; Pinard, L; Remillieux, A; Gagarski, A M; Petrov, G A; Kusmina, A M; Strelkov, A V; Abele, H; Baeßler, S; Voronin, A Yu

    2007-01-01T23:59:59.000Z

    Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenberg's uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.

  17. GRANIT project: a trap for gravitational quantum states of UCN

    E-Print Network [OSTI]

    G. Pignol; K. V. Protasov; D. Rebreyend; F. Vezzu; V. V. Nesvizhevsky; A. K. Petukhov; H. G. Börner; T. Soldner; P. Schmidt-Wellenburg; M. Kreuz; D. Forest; P. Ganau; J. M. Mackowski; C. Michel; J. L. Montorio; N. Morgado; L. Pinard; A. Remillieux; A. M. Gagarski; G. A. Petrov; A. M. Kusmina; A. V. Strelkov; H. Abele; S. Baeßler; A. Yu. Voronin

    2007-08-19T23:59:59.000Z

    Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenberg's uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.

  18. Dipole Excitation With A Paul Ion Trap Mass Spectrometer

    SciTech Connect (OSTI)

    MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A. [Atomic and Molecular Physics Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-06-01T23:59:59.000Z

    Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion with numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.

  19. Quantum-enhanced deliberation of learning agents using trapped ions

    E-Print Network [OSTI]

    Vedran Dunjko; Nicolai Friis; Hans J. Briegel

    2015-01-31T23:59:59.000Z

    A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization. In particular, classical random walks were substituted by Szegedy-type quantum walks, allowing for a speed-up. In this work we propose how such classical and quantum agents can be implemented in systems of trapped ions. We employ a generic construction by which the classical agents are `upgraded' to their quantum counterparts by nested coherent controlization, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models.

  20. Jaynes-Cummings Models with trapped electrons on liquid Helium

    E-Print Network [OSTI]

    Miao Zhang; H. Y. Jia; L. F. Wei

    2009-09-01T23:59:59.000Z

    Jaynes-Cummings model is a typical model in quantum optics and has been realized with various physical systems (e.g, cavity QED, trapped ions, and circuit QED etc..) of two-level atoms interacting with quantized bosonic fields. Here, we propose a new implementation of this model by using a single classical laser beam to drive an electron floating on liquid Helium. Two lowest levels of the {\\it vertical} motion of the electron acts as a two-level "atom", and the quantized vibration of the electron along one of the {\\it parallel} directions, e.g., $x$-direction, serves the bosonic mode. These two degrees of freedom of the trapped electron can be coupled together by using a classical laser field. If the frequencies of the applied laser fields are properly set, the desirable Jaynes-Cummings models could be effectively realized.