Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

2

Preserving the Volume of Fluid Using Multi-phase Flow Approach Roman Durikovic  

E-Print Network [OSTI]

complex behaviors. We often see rising bubbles or flow of muddy water, such flows involve sev- eral fluids volume when the fluid passes through a donor cell to an acceptor cell. The VOF method was improved

Durikovic, Roman

3

Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry  

DOE Patents [OSTI]

An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

Sinha, Dipen N. (Los Alamos, NM)

2005-11-01T23:59:59.000Z

4

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

1997-01-01T23:59:59.000Z

5

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

6

Sampling device for withdrawing a representative sample from single and multi-phase flows  

DOE Patents [OSTI]

A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

1984-01-01T23:59:59.000Z

7

Surface tension of multi-phase flow with multiple junctions governed by the variational principle  

E-Print Network [OSTI]

We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie, Nardone, Scardovelli, Zaleski and Zanetti (J. Comp. Phys. \\vol{113} \\yr{1994} \\pages{134-147}) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase ($N$-phase, $N\\ge2$) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation of motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

Shigeki Matsutani; Kota Nakano; Katsuhiko Shinjo

2011-08-02T23:59:59.000Z

8

Multi-Phase Flow: Direct Numerical Simulation Igor Bolotnov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014Mud3-000 Multi-Phase

9

Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions  

SciTech Connect (OSTI)

In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.

Chen, Xiaodong [The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Vigor, E-mail: vigor.yang@aerospace.gatech.edu [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)

2014-07-15T23:59:59.000Z

10

Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow and Inclined Wellbore Conditions  

E-Print Network [OSTI]

SPE 30975 Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow, 163245 SPEUT. Abstract Pressure drop prediction in pipes is an old petroleum engineering problem. There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. Some

Mohaghegh, Shahab

11

An Inertial Cell Model for the Drag Force in Multi-phase Flow  

E-Print Network [OSTI]

A new model for the drag coefficient of a sphere in a concentrated system is described. It is based upon a cell-averaged model for the Stokes regime combined with a physically motivated extrapolation to arbitrary Reynolds number. It can be used as an alternative to the isolated particle drag coefficient in Euler-Lagrange modelling of solid-liquid multi-phase flow.The corresponding drag force also provides a dynamic bed equation for use in Euler-Euler modelling.

Tupper, Gary; Mainza, Aubrey

2015-01-01T23:59:59.000Z

12

Multi-phase flow well test analysis in multi-layer reservoirs  

SciTech Connect (OSTI)

This paper investigates the performance of an oil well under multi-phase flow test conditions when the reservoir pressure falls below the bubble point pressure and is correspond with the performance of dissolved gas reservoirs. The model reservoir comprises two commingled layer, where a well test is conducted on a fully perforated interval. The water phase is assumed immobile. The main objective of this work is to interpret the flowing well pressure response and to predict reservoir characteristics based on its performance. The work presented is based on a constant terminal rate analysis, but it can also applied to constant bottomhole pressure and can be used to predict the Inflow Performance Relationship (IPR).

Jatmiko, W.; Archer, J.S. [Imperial College, London (United Kingdom); Daltaban, T.S.

1996-12-31T23:59:59.000Z

13

Method and apparatus for measuring the mass flow rate of a fluid  

DOE Patents [OSTI]

A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

2002-01-01T23:59:59.000Z

14

Energy Dependence of Directed Flow in Au+Au Collisions from a Multi-phase Transport Model  

E-Print Network [OSTI]

The directed flow of charged hadron and identified particles has been studied in the framework of a multi-phase transport (AMPT) model, for $^{197}$Au+$^{197}$Au collisions at $\\sqrt{s_{NN}}=$200, 130, 62.4, 39, 17.2 and 9.2 GeV. The rapidity, centrality and energy dependence of directed flow for charged particles over a wide rapidity range are presented. AMPT model gives the correct $v_1(y)$ slope, as well as its trend as a function of energy, while it underestimates the magnitude. Within the AMPT model, the proton $v_1$ slope is found to change its sign when the energy increases to 130 GeV - a feature that is consistent with ``anti-flow''. Hadronic re-scattering is found having little effect on $v_1$ at top RHIC energies. These studies can help us to understand the collective dynamics at early times in relativistic heavy-ion collisions, and they can also be served as references for the RHIC Beam Energy Scan program.

J. Y. Chen; J. X. Zuo; X. Z. Cai; F. Liu; Y. G. Ma; A. H. Tang

2009-12-09T23:59:59.000Z

15

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

16

A thermodynamical formulation for chemically active multi-phase turbulent flows  

SciTech Connect (OSTI)

A generalized thermodynamics for chemically active multiphase solid-fluid mixtures in turbulent state of motion is formulated. The global equations of balance for each phase are ensemble averaged and the local conservation laws for the mean motions are derived. The averaged and the local conservation laws for the mean motions are derived. The averaged form of the Clausius-Duhem inequality is used and the thermodynamics of the chemically active mixtures in turbulent motion is studied. Particular attention is given to the species concentration and chemical reaction effects, in addition to transport and interaction of the phasic fluctuation energies. Based on the averaged entropy inequality, constitutive equations for the stresses, energy, heat and mass fluxes of various species are developed. The explicit governing equations of motion are derived and discussed.

Ahmadi, G.; Cao, J.

1995-03-01T23:59:59.000Z

17

Exact regularized point particle method for multi-phase flows in the two-way coupling regime  

E-Print Network [OSTI]

Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any "ah hoc" assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.

P. Gualtieri; F. Picano; G. Sardina; C. M. Casciola

2014-05-27T23:59:59.000Z

18

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

19

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

20

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Insertable fluid flow passage bridgepiece and method  

DOE Patents [OSTI]

A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

Jones, Daniel O. (Glenville, NV)

2000-01-01T23:59:59.000Z

22

Multi-phasing CFD  

SciTech Connect (OSTI)

Computational fluid dynamics for multiphase flows is an emerging field. Due to the complexity and divergence of multiphase thermal and hydraulic problems, further development of multiphase flow modelling, closure laws and numerical methods is needed in order to achieve the general purpose and optimised CFD (Computational Fluid Dynamics) methods, which will be applicable to the wide variety of multiphase flow problems. In the paper, an original approach to the various aspects of multiphase CFD modelling is presented. It is based on the multi-fluid modelling approach, development of necessary closure laws and derivation of appropriate numerical methods for efficient governing equations solution. Velocity and pressure fields are solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type pressure-corrector method developed for the multiphase flow conditions. For the solution of scalar parameters transport equations both implicit and explicit methods are presented. The implicit method is suitable for steady state, slow transients and problems without the sharp fronts propagation. Explicit method is developed in order to predict scalar parameters fronts propagation, as well as phase interface tracking problems. The challenge towards the multiphase flow solution on both the macro and micro level is presented in order to perform multiphase CFD simulations and analyses of multiphase flows in complex geometry of nuclear power plant components, such as nuclear fuel rod bundles thermal-hydraulics. Presented methodology and obtained CFD results comprise micro-scale phenomena of phases' separation, interface tracking, heated surfaces dry-out and critical heat flux occurrence, as well as macro-scale transport and distributions of phase volumes. (authors)

Stosic, Zoran V. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia)

2002-07-01T23:59:59.000Z

23

AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems  

SciTech Connect (OSTI)

The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di#14;fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

Modest, Michael

2013-11-15T23:59:59.000Z

24

Non-Newtonian fluid flow  

E-Print Network [OSTI]

zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

Osinski, Charles Anthony

1963-01-01T23:59:59.000Z

25

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network [OSTI]

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

26

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

Santos, Juan

27

Fluid Flow Simulation in Fractured Reservoirs  

E-Print Network [OSTI]

The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

Sarkar, Sudipta

2002-01-01T23:59:59.000Z

28

Process for retarding fluid flow  

SciTech Connect (OSTI)

A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

Sandford, B.B.; Zillmer, R.C.

1989-01-10T23:59:59.000Z

29

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

santos

30

Application of Neutron Imaging and Scattering to Fluid Flow and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

31

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

32

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-06-15T23:59:59.000Z

33

Fluid flow control with transformation media  

E-Print Network [OSTI]

We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations, and physically implemented with anisotropic porous media permeable to the flow of fluids. In two different situations - for an impermeable object situated either in a free-flowing fluid or in a fluid-filled porous medium - we show that the object can be coated with a properly chosen inhomogeneous, anisotropic permeable medium, such as to preserve the streamlines of flow and the pressure distribution that would have existed in the absence of the object. The proposed fluid flow cloak completely eliminates any disturbance of the flow by the object, including the downstream wake. Consequently, the structure helps prevent the onset of turbulence by keeping the flow laminar even above the typical critical Reynolds number for the object of the same shape and size. The cloak also cancels the viscous drag force. This...

Urzhumov, Yaroslav A

2011-01-01T23:59:59.000Z

34

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in the presence of a fracture, and the interactions between fluid flow in the fracture and the adjacent matrix. Preliminary results demonstrate that the flow patterns are significantly impacted by the presence of the fracture. Bypassing is quantified and we expect to be able to extract from the modeling the distribution of properties in the fracture and the adjacent matrix.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

2002-10-28T23:59:59.000Z

35

Directed flow fluid rinse trough  

DOE Patents [OSTI]

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

36

Directed flow fluid rinse trough  

DOE Patents [OSTI]

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

37

Method and apparatus for controlling fluid flow  

DOE Patents [OSTI]

A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

Miller, J.R.

1980-06-27T23:59:59.000Z

38

Newtonian fluid flow through Microfabricated Hyperbolic Contractions  

E-Print Network [OSTI]

spraying (Barnes et al. 1989). Optimization of these processes requires accurate measurements for measurement of extensional viscosity involves studying the fluid flow through contractions profiled to give extensional viscosity. To remove the effect of shear at the walls of contractions Shaw (1975) proposed the use

39

Momentum spectra, anisotropic flow, and ideal fluids  

E-Print Network [OSTI]

If the matter produced in ultrarelativistic heavy-ion collisions reaches thermal equilibrium, its subsequent evolution follows the laws of ideal fluid dynamics. We show that general predictions can be made on this basis alone, irrespective of the details of the hydrodynamical model. We derive several scaling rules for momentum spectra and anisotropic flow (in particular the elliptic flow, v2, and the hexadecupole flow, v4) of identified particles. Comparison with existing data is briefly discussed, and qualitative predictions are made for LHC.

N. Borghini; J. -Y. Ollitrault

2006-07-28T23:59:59.000Z

40

Separation of particles from gaseous fluid flows  

SciTech Connect (OSTI)

In a gas washer and similar separator devices which utilize stationary wall means to deflect a gas flow and to subject the same to centrifugal force for continuously separating out foreign particulate matter which is collected on or adjacent the stationary wall means, the invention provides spirally curved laminae constituting the stationary wall means and co-operating to define passage means, at least a part of which has a cross-section which first narrows and then widens in the direction of fluid flow and which is also curved spirally first in one and then in the opposite direction. Nozzle means may be arranged to feed moisture into the fluid flow to assist wet separation, and by electrically insulating conductive laminae from one another, the invention may also be used as an electrostatic precipitator.

Paul, E.; Reither, K.

1980-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

42

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

Kronberg, J.W.

1993-10-12T23:59:59.000Z

43

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN  

E-Print Network [OSTI]

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT between pore fluid flow and the concurring deformation of the solid rock matrix. The governing equations and constitutive relations of fluid flow are coupled to stress-strain relations. With the appropriate boundary

44

Multi-Phase Fracture-Matrix Interactions Under Stress Changes  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering. A group of Shear fractures were studied, with layers perpendicular and parallel to the main axis of the sample. The structures of the fractures as well as their impact on absolute permeability and on oil displacement by water were evaluated. Shear fractures perpendicular to the layers lead to a wide distribution of pores and to an overall increase in absolute permeability. Shear fractures parallel to the layers lead to an overall increase in absolute permeability, but a decrease in displacement efficiency. This DoE project funded or partially funded three Ph.D. and four M.Sc. students at the Pennsylvania State University. The results from the research have yielded several abstracts, presentations and papers. Much of the work is still in the process of being published.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-12-07T23:59:59.000Z

45

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and Characterization of Natural...

46

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

47

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah...

48

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah Energy &...

49

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

50

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

51

Device for deriving energy from a flow of fluid  

SciTech Connect (OSTI)

Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

van Holten, T.

1982-12-07T23:59:59.000Z

52

MATHEMATICAL MODELING AND SIMULATION FOR FLUID FLOW IN POROUS MEDIA  

E-Print Network [OSTI]

1 MATHEMATICAL MODELING AND SIMULATION FOR FLUID FLOW IN POROUS MEDIA Ewing, Richard Texas A is to understand the complex chemical, physical, and fluid flow processes occurring in an underground porous medium with one pass through these four steps. Once a computer code has been developed which gives concrete

Ewing, Richard E.

53

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents [OSTI]

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

Heath, William O. (Richland, WA); Virden, Jr., Judson W. (Richland, WA); Richardson, R. L. (West Richland, WA); Bergsman, Theresa M. (Richland, WA)

1993-01-01T23:59:59.000Z

54

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents [OSTI]

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

1993-10-19T23:59:59.000Z

55

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect (OSTI)

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

56

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network [OSTI]

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

57

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Broader source: Energy.gov (indexed) [DOE]

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

58

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network [OSTI]

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

59

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

60

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Can We Accurately Model Fluid Flow in Shale?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

62

On the acceleration potential in perfect fluid flow  

E-Print Network [OSTI]

ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis By RAYMOND RUDOLPH MAESTRI Submitted. to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfrllment of the requirements for the degree of MASTER... OF SCIENCE August, 1960 Department of Aeronautical Engineering Major Subject: Aeronautical Engineering ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis RAYMOND RUDOLPH MAESTRI Approved as to style and content by: Chairman of Commit e...

Maestri, Raymond Rudolph

1960-01-01T23:59:59.000Z

63

Numerical simulation of flow separation control by oscillatory fluid injection  

E-Print Network [OSTI]

NUMERICAL SIMULATION OF FLOW SEPARATION CONTROL BY OSCILLATORY FLUID INJECTION A Dissertation by CELERINO RESENDIZ ROSAS Submitted to the O?ce of Graduate Studies of Texas A&M University in partial ful?llment of the requirements for the degree... of DOCTOR OF PHILOSOPHY May 2005 Major Subject: Aerospace Engineering NUMERICAL SIMULATION OF FLOW SEPARATION CONTROL BY OSCILLATORY FLUID INJECTION A Dissertation by CELERINO RESENDIZ ROSAS Submitted to Texas A&M University in partial ful...

Resendiz Rosas, Celerino

2005-08-29T23:59:59.000Z

64

System and method measuring fluid flow in a conduit  

DOE Patents [OSTI]

A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

Ortiz, Marcos German (Idaho Falls, ID); Kidd, Terrel G. (Blackfoot, ID)

1999-01-01T23:59:59.000Z

65

PAPER B3: PHYSICS OF FLUID FLOWS Hilary Term 2010  

E-Print Network [OSTI]

,...) · Aerodynamics ­ important advances in fluid dynamics c. 1900 ­ still active today · Lubrication of mechanical systems · Industry ­ e.g. gases in pipes, polymer flows · Oil extraction ­ liquids flowing through eff n, where `effective diameter' deff 0.3 nm, say. 2 � 10-7 m = 200 nm. In FD, we consider scales

Read, Peter L.

66

The Flow of Newtonian Fluids in Axisymmetric Corrugated Tubes  

E-Print Network [OSTI]

This article deals with the flow of Newtonian fluids through axially-symmetric corrugated tubes. An analytical method to derive the relation between volumetric flow rate and pressure drop in laminar flow regimes is presented and applied to a number of simple tube geometries of converging-diverging nature. The method is general in terms of fluid and tube shape within the previous restrictions. Moreover, it can be used as a basis for numerical integration where analytical relations cannot be obtained due to mathematical difficulties.

Taha Sochi

2010-06-08T23:59:59.000Z

67

Multiphase Turbulent Flow Ken Kiger -UMCP  

E-Print Network [OSTI]

interacting ­ Distinguish multiphase and/or multicomponent · Liquid/Gas or Gas/Liquid · Gas/Solid · Liquid/Liquid ­ Technically, two immiscible liquids are "multi-fluid", but are often referred to as a "multiphase" flow due emulsions Multi-phase Steam bubble in H20 Ice slurry Coal particles in air Sand particle in H20 #12

Gruner, Daniel S.

68

Multiphase fluid flow and time lapse seismics  

E-Print Network [OSTI]

Time-lapse seismic surveys aim to monitor the migration and dispersal of the CO2 ... of CO2-brine flow and seismic wave propagation to model and monitor CO2 ...

santos

69

Electromagnetic Radiations as a Fluid Flow  

E-Print Network [OSTI]

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

70

Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings  

E-Print Network [OSTI]

The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....

San Andres, Luis

2009-01-01T23:59:59.000Z

71

Flow of fractal fluid in pipes: Non-integer dimensional space Vasily E. Tarasov  

E-Print Network [OSTI]

Flow of fractal fluid in pipes: Non-integer dimensional space approach Vasily E. Tarasov of an incompressible viscous fractal fluid in the pipe. Fractal fluid is described as a continuum in non solution for steady flow of fractal fluid in a pipe and corresponding fractal fluid discharge are suggested

Tarasov, Vasily E.

72

Two-Phase Fluid-Solid Flow Name of Supervisor: Dr D. Harris  

E-Print Network [OSTI]

in the fluid and the dispersion may be maintained by a fluid flow. There is a mechanical interaction between of discrete particles, (2) as a fluid, (3) as a dense gas and using the statistical mechanics of granular flowTwo-Phase Fluid-Solid Flow Name of Supervisor: Dr D. Harris Email: david

Sidorov, Nikita

73

Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation  

E-Print Network [OSTI]

Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions)" #12;Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions, cavitation, fluid flow load, CFD. Abstract: The evaluation of fluid forces on the stem is important for wear

Paris-Sud XI, Université de

74

Robust processing of optical flow of fluids Ashish Doshi and Adrian G. Bors, Senior Member, IEEE  

E-Print Network [OSTI]

the computational fluid dynamics (CFD). Navier-Stokes equations have been extensively studied in fluid mechanics Terms--Optical flow of fluids, computational fluid dy- namics, diffusion, vortex detection I displaying fluid movement. Velocity fields, characterizing the motion of fluids can be modelled using

Bors, Adrian

75

Continuous multi-phase feeding of broiler chickens  

E-Print Network [OSTI]

, continuous multi-phase feeding of broiler chickens using corn-soy diets does not appear to be justified by either increased performance or reduced nitrogen excretion....

Nasril

2005-02-17T23:59:59.000Z

76

Radiation Modeling In Fluid Flow Iain D. Boyd  

E-Print Network [OSTI]

· Closing remarks #12;3 Radiation In Fluid Flows · Radiation transport is an important phenomenon in many 5800 K #12;7 Fundamentals of Radiation Transport · Radiation does not require a medium !!! dI (s, ! ) ds +(p +g )I (s, ! )+ p I (s, ! ) Radiative Transfer Equation (RTE) - spectral intensity

Wang, Wei

77

Numerical simulation of fluid flow in porous/fractured media  

SciTech Connect (OSTI)

Theoretical models of fluid flow in porous/fractured media can help in the design of in situ fossil energy and mineral extraction technologies. Because of the complexity of these processes, numerical solutions are usually required. Sample calculations illustrate the capabilities of present day computer models.

Travis B.J.; Cook, T.L.

1981-01-01T23:59:59.000Z

78

Multiscale Modeling and Simulation of Fluid Flows in Inelastic Media  

E-Print Network [OSTI]

in porous media (e.g. soil), Elasticity equations in heterogeneous media (concrete, asphalt), etc porous media s The Fluid-Structure interaction (FSI) problem at the microscale and numerical methods with computational solutions s Numerical upscaling of flow in deformable porous media #12;- p. 3/42 Why homogenize

Popov, Peter

79

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network [OSTI]

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

80

Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry  

DOE Patents [OSTI]

An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

Sinha, Dipen N. (Los Alamos, NM)

2005-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry  

DOE Patents [OSTI]

An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

Sinha, Dipen N.

2003-11-11T23:59:59.000Z

82

Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry  

DOE Patents [OSTI]

An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

Sinha, Dipen N. (Los Alamos, NM)

2007-06-12T23:59:59.000Z

83

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES  

E-Print Network [OSTI]

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES.............................................................................................................7 Composite Materials...................................................................................................7 Material Properties

84

Heat transfer to a fluid flowing in an annulus  

E-Print Network [OSTI]

. ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

Logan, Earl

2012-06-07T23:59:59.000Z

85

System for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

Fincke, James R. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

86

Reducing or stopping the uncontrolled flow of fluid such as oil from a well  

DOE Patents [OSTI]

The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

Hermes, Robert E

2014-02-18T23:59:59.000Z

87

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs  

Broader source: Energy.gov [DOE]

Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

88

Influence of formation clays on the flow of aqueous fluids  

SciTech Connect (OSTI)

Most sandstone formations contain clays that can have a significant effect on the flow of aqueous fluids. The clays most frequently detected are smectite, mixed layer, illite, kaolinite, and chlorite. All of these clays are capable of migrating and causing permeability damage when they are contacted by waters foreign to the formation. Normally, these waters alter ionic environments around the clays, which causes the clays to be dislodged from their original positions. Thus, any time clay is present in the rock, it can be assumed that permeability damage can occur. The degree of damage depends upon the concentration and types of clays present, their relative position in the rock, the severity of the ionic environmental change; and fluid velocity. Permeability damage has been minimized in oil and gas wells through the use of potassium and ammonium ions. 15 references.

Hower, W.F.

1981-01-01T23:59:59.000Z

89

Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface  

E-Print Network [OSTI]

equations system for heavy fluid over an arbitrary surface in shallow water approximation is studied to the study of nonlinear flows of heavy fluid described by the shallow water magnetohydrodynamic equations1 Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface

90

The simulation of free surface flows with Computational Fluid Dynamics B. Godderidge1  

E-Print Network [OSTI]

1 The simulation of free surface flows with Computational Fluid Dynamics B. Godderidge1 A of these applications make their simulation with computational fluid dynamics particularly challenging. The successful Computational fluid dynamics is a powerful and versatile tool for the analysis of flow problems encountered

91

Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2  

E-Print Network [OSTI]

engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. LĂłpez-LĂłpez1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

Boyer, Edmond

92

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

93

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, James R. (Rigby, ID)

1982-01-01T23:59:59.000Z

94

Microscale Fluid Flow Induced by Thermoviscous Expansion Along a Traveling Wave Franz M. Weinert,1  

E-Print Network [OSTI]

are negli- gible if the velocities are small with respect to the speed of sound, fluid flow is essentially confinement of a liquid changes its flow behavior markedly since the importance of surface forces relative a novel mechanism to generate net flow in a thin fluid chamber, i.e., a viscous liquid confined between

Kersting, Roland

95

Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination of fluid streaming. These findings support the hypothesis that a history of PD for a certain period could serve as a trigger of EPS after stoppage of PD.

Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan)] [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan)] [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan)] [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan)] [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)

2011-12-16T23:59:59.000Z

96

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

97

Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium  

E-Print Network [OSTI]

We use confocal microscopy to directly visualize the simultaneous flow of both a wetting and a non-wetting fluid through a model three-dimensional (3D) porous medium. We find that, for small flow rates, both fluids flow through unchanging, distinct, connected 3D pathways; in stark contrast, at sufficiently large flow rates, the non-wetting fluid is broken up into discrete ganglia. By performing experiments over a range of flow rates, using fluids of different viscosities, and with porous media having different geometries, we show that this transition can be characterized by a state diagram that depends on the capillary numbers of both fluids, suggesting that it is controlled by the competition between the viscous forces exerted on the flowing oil and the capillary forces at the pore scale. Our results thus help elucidate the diverse range of behaviors that arise in two-phase flow through a 3D porous medium.

Sujit S. Datta; Jean-Baptiste Dupin; David A. Weitz

2014-06-26T23:59:59.000Z

98

Advanced tomographic flow diagnostics for opaque multiphase fluids  

SciTech Connect (OSTI)

This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

1997-05-01T23:59:59.000Z

99

Wave-induced fluid flow in random porous media: Attenuation and ...  

E-Print Network [OSTI]

wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous .... tenuation is controlled by the integrand, that is, by the prod-.

2005-04-20T23:59:59.000Z

100

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Broader source: Energy.gov (indexed) [DOE]

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Stress and Fluid-Flow Interaction for the Coso Geothermal Field...  

Open Energy Info (EERE)

California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within...

102

System and method for bidirectional flow and controlling fluid flow in a conduit  

DOE Patents [OSTI]

A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

Ortiz, Marcos German (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

103

System and method for bidirectional flow and controlling fluid flow in a conduit  

DOE Patents [OSTI]

A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

Ortiz, M.G.

1999-03-23T23:59:59.000Z

104

On fluid flow in a heterogeneous medium under nonisothermal conditions  

SciTech Connect (OSTI)

An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.

D.W., Vasco

2010-11-01T23:59:59.000Z

105

Characterization of fracture networks for fluid flow analysis  

SciTech Connect (OSTI)

The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.

Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

1989-06-01T23:59:59.000Z

106

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

107

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

108

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

109

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes  

E-Print Network [OSTI]

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes The relationship between enhancement flow and structure of core-softened fluids confined inside nanotubes has been was employed to create a pressure gradient between two reservoirs connected by a nanotube. We show how

Barbosa, Marcia C. B.

110

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network [OSTI]

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial with heat transfer along the stator, which corresponds to the experiment of Djaoui et al. [2]. Our results

Boyer, Edmond

111

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law  

E-Print Network [OSTI]

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

Boyer, Edmond

112

Using Euler-Lagrange Variational Principle to Obtain Flow Relations for Generalized Newtonian Fluids  

E-Print Network [OSTI]

Euler-Lagrange variational principle is used to obtain analytical and numerical flow relations in cylindrical tubes. The method is based on minimizing the total stress in the flow duct using the fluid constitutive relation between stress and rate of strain. Newtonian and non-Newtonian fluid models; which include power law, Bingham, Herschel-Bulkley, Carreau and Cross; are used for demonstration.

Taha Sochi

2013-01-13T23:59:59.000Z

113

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network [OSTI]

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

114

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network [OSTI]

and packed beds, but also a function of orientation (open area ratio). The overall heat transfer dependsThe effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular

Wadley, Haydn

115

Pulsatile flow of a chemically-reacting non-linear fluid  

E-Print Network [OSTI]

of such fluids could change because of the chemical reactions and the flow. Here, I investigate the pulsatile flow of a chemically-reacting fluid whose viscosity depends on the concentration of a species (constituent) that is governed by a convection...

Bridges, Ronald Craig, II

2007-09-17T23:59:59.000Z

116

Excitation and control of multi-phase periodic waves in  

E-Print Network [OSTI]

the phase of the excited wave by the driver ("phase-locking") control the wave by varying parametersExcitation and control of multi-phase periodic waves in sine-Gordon equation Arkadiy Shagalovµcr U ()eff U ()eff Threshold condition for phase-locking: µ > µcr = 0.41 > cr = 3.28 3/2 0m 3

Fominov, Yakov

117

Subcritical finite-amplitude solutions in plane Couette flow of visco-elastic fluids  

E-Print Network [OSTI]

Plane Couette flow of visco-elastic fluids is shown to exhibit a purely elastic subcritical instability in spite of being linearly stable. The mechanism of this instability is proposed and the nonlinear stability analysis of plane Couette flow of the Upper-Convected Maxwell fluid is presented. It is found that above the critical Weissenberg number, a small finite-size perturbation is sufficient to create a secondary flow, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases. The results suggest a scenario for weakly turbulent visco-elastic flow which is similar to the one for Newtonian fluids as a function of Reynolds number.

Alexander N. Morozov; Wim van Saarloos

2004-11-10T23:59:59.000Z

118

Magnetic fluid flow phenomena in DC and rotating magnetic fields  

E-Print Network [OSTI]

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01T23:59:59.000Z

119

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network [OSTI]

Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

120

Dynamic dielectric response of electrorheological fluids in drag and pressure flow  

E-Print Network [OSTI]

We have determined the response time of dilute electrorheological fluids (ER) in drag flow, in pressure-driven flow, and in the quiescent state from the dynamic dielectric response. The dependence of the response times on the electric field strength, the shear rate, and the flow velocity were investigated. In the case of ER fluids in drag flow, the response times were also determined from the stress response of the fluid measured simultaneously with the dielectric properties. Comparing the dielectric and rheological response times measured at the same conditions, a significant discrepancy was found, which was attributed to the different instrumental response times of the employed methods. The dielectric permittivity of the quiescent ER fluid was estimated on the basis of formulas derived from the Clausius-Mossotti equation. This simple theoretical model was extended and applied to ER fluids under shear to evaluate the experimental dielectric results.

B. Horváth; I. Szalai

2014-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in  

E-Print Network [OSTI]

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

Maruyama, Shigeo

122

Post-Project Performance Assessment of a Multi-Phase Urban Stream Restoration Project on Lower Codornices Creek  

E-Print Network [OSTI]

of a Multi-Phase Urban Stream Restoration Project on Lowerof a Multi-Phase Urban Stream Restoration Project on Lowerof a Multi-Phase Urban Stream Restoration Project on Lower

Docto, Mia; Hoffman, Johanna; Walls, Scott

2011-01-01T23:59:59.000Z

123

Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System  

SciTech Connect (OSTI)

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

2013-07-30T23:59:59.000Z

124

Multi-phase CFD modeling of solid sorbent carbon capture system  

SciTech Connect (OSTI)

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE

2013-01-01T23:59:59.000Z

125

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Broader source: Energy.gov (indexed) [DOE]

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

126

6. Fluid mechanics: fluid statics; fluid dynamics  

E-Print Network [OSTI]

1/96 6. Fluid mechanics: fluid statics; fluid dynamics (internal flows, external flows) Ron and Flow Engineering | 20500 Turku | Finland 2/96 6.1 Fluid statics Ă?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/96 Fluid statics, static pressure /1 Two types

Zevenhoven, Ron

127

Fluid Flow and Infiltration in Structured Fibrous Porous Media  

SciTech Connect (OSTI)

Present the results of an extensive computational investigation of flow through structured fibrous media.

Papathanasiou, Thanasis D.

2006-08-09T23:59:59.000Z

128

The stability of viscoelastic fluids in complex flows : the role of shear and extensional rheology  

E-Print Network [OSTI]

Understanding the flow of polymeric fluids is important for optimizing commercial processes such as injection molding and fiber spinning. The combination of streamwise curvature and elastic normal stresses can lead to the ...

Rothstein, Jonathan P. (Jonathan Philip), 1974-

2001-01-01T23:59:59.000Z

129

Analysis of multiphase fluid flows via high speed and synthetic aperture three dimensional imaging  

E-Print Network [OSTI]

Spray flows are a difficult problem within the realm of fluid mechanics because of the complicated interfacial physics involved. Complete models of sprays having even the simplest geometries continue to elude researchers ...

Scharfman, Barry Ethan

2012-01-01T23:59:59.000Z

130

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...  

Open Energy Info (EERE)

FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS,...

131

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

132

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

133

Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally  

E-Print Network [OSTI]

of the Wilcox formation has been investigated using distilled water and 1 M solutions of NaCl, KCl, and CaCl2 and permeabilities depend on fluid composition. Permeabilities to flow of 1 M CaCl2 are 3­5 times greater than values is greater for transport of 1 M CaCl2 than that for transport of the other pore fluids. Assuming that fluid

Herbert, Bruce

134

Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report  

SciTech Connect (OSTI)

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

Wilson, J.L.

1997-01-01T23:59:59.000Z

135

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow  

E-Print Network [OSTI]

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W.B. Gu and C.Y. Wang GATE Center of Excellence for Advanced Energy Storage Department of Mechanical are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves

Wang, Chao-Yang

136

American Institute of Aeronautics and Astronautics Three-dimensional Plasma and Fluid Flow Structures inside a  

E-Print Network [OSTI]

devices. Mechanical micropumps drive the working fluid through a membrane or diaphragm, while non-mechanical1 American Institute of Aeronautics and Astronautics Three-dimensional Plasma and Fluid Flow Plasma Dynamics Laboratory and Test Facility Mechanical and Aerospace Engineering Department University

Roy, Subrata

137

Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems  

E-Print Network [OSTI]

Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems L. Qian1 ; D. M. Causon2 ; D. M. Ingram3 ; and C. G. Mingham4 Abstract: A two-fluid solver which can be applied to a variety of hydraulic with a sloping beach is also calculated to demonstrate the applicability of the method to real hydraulic problems

Ingram, David

138

FLOW OF A FLUID THROUGH A POROUS SOLID DUE TO HIGH PRESSURE GRADIENTS  

E-Print Network [OSTI]

applications involving the flow of fluids through a porous media, like the problems of enhanced oil recovery and geotechnical engineering, for example problems such as enhanced oil recovery and carbon di-oxide sequestration than one fluid is involved such as steam and oil in enhanced oil recovery. However before embarking

Bonito, Andrea

139

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

140

Multiphase flow and control of fluid path in microsystems  

E-Print Network [OSTI]

Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network ...

Jhunjhunwala, Manish

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Multi-phase back contacts for CIS solar cells  

DOE Patents [OSTI]

Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

Rockett, A.A.; Yang, L.C.

1995-12-19T23:59:59.000Z

142

Multi-phase back contacts for CIS solar cells  

DOE Patents [OSTI]

Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

Rockett, Angus A. (505 Park Haven Ct., Champaign, IL 61820); Yang, Li-Chung (1107 W. Green St. #328, Urbana, IL 61801)

1995-01-01T23:59:59.000Z

143

1. Introduction Fluid flow in continuous casting of steel is of great inter-  

E-Print Network [OSTI]

-phase fluid flow owing to the simulation kinematic viscosity of steel and water, the flow pattern itself and entrainment of the mold slag, · transient fluctuations and waves in the top surface level, and their effect, such as intermixing during a grade change and segregation. Extensive past work has employed physical water models

Thomas, Brian G.

144

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with  

E-Print Network [OSTI]

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

Paris-Sud XI, Université de

145

Journal of Fluids and Structures 24 (2008) 250269 Numerical and experimental study of expiratory flow  

E-Print Network [OSTI]

, the pharynx, the mouth and the larynx (Fig. 1), is the most external part of the respiratory system. Modelling deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow and Depollier, 1995; Huang, 1995; Balint and Lucey, 2005), numerical simulations of the respiratory fluid flow

Van Hirtum, Annemie

2008-01-01T23:59:59.000Z

146

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS  

E-Print Network [OSTI]

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS Alexander N. Morozov of an eigenfunction of the linearized equations of motion becomes subcritically unstable, and the threshold value, subcritical instabilities, amplitude equation Introduction In the last decades, stability of flows of polymers

van Saarloos, Wim

147

Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates  

E-Print Network [OSTI]

We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...

Ober, Thomas J. (Thomas Joseph)

2013-01-01T23:59:59.000Z

148

Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics  

SciTech Connect (OSTI)

The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

Holloway, Mary V. [United States Naval Academy, 117 Decatur Road, Annapolis, MD 21402-5018 (United States); Beasley, Donald E. [Clemson University, Clemson, S.C. 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel (United States)

2006-07-01T23:59:59.000Z

149

NMRI methods for characterizing fluid flow in porous media  

E-Print Network [OSTI]

in the measurement and the prediction of flow permeability in rocks. We have investigated the application of Nuclear Magnetic Resonance Imaging to velocity measurement. A stimulated echo pulse field gradient approach was proposed to measure the localized velocity...

Yao, Xiaoli

1997-01-01T23:59:59.000Z

150

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...  

Open Energy Info (EERE)

section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix...

151

A MEMS BODY FLUID FLOW SENSOR Ellis Meng1  

E-Print Network [OSTI]

for its stability, accuracy, and high temperature coefficient of resistivity (TCR). Additional packaging the device using compressed air. The flow rate is adjusted by a metering valve and calibrated using

Meng, Ellis

152

Criteria for shear banding in time-dependent flows of complex fluids  

E-Print Network [OSTI]

Within a highly generalised theoretical framework for the flow properties of complex fluids, we study the onset of shear banding in the three most common time-dependent experimental protocols: step stress, step strain and shear startup. By means of a linear stability analysis we derive a fluid-universal criterion for the onset of banding, separately for each protocol, that depends only on the shape of the experimentally measured time-dependent rheological response function, independent of the constitutive law and internal state variables of the particular fluid in question. Our predictions thus have the same status, in these time-dependent flows, as the widely known criterion for banding in steady state (of negatively sloping shear stress vs. shear rate). We support them with simulations of the rolie-poly model of polymeric fluids, the soft glassy rheology model, and a fluidity model.

Robyn L. Moorcroft; Suzanne M. Fielding

2013-01-21T23:59:59.000Z

153

Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow  

SciTech Connect (OSTI)

This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim [Korea Institute of Nuclear Safety, 19 Kusung-dong, Yusung-gu, Taejon 305-338 (Korea, Republic of)

2004-07-01T23:59:59.000Z

154

Start-up flow of a viscoelastic fluid in a pipe with fractional Maxwell's model  

E-Print Network [OSTI]

Unidirectional start-up flow of a viscoelastic fluid in a pipe with fractional Maxwell's model is studied. The flow starting from rest is driven by a constant pressure gradient in an infinite long straight pipe. By employing the method of variable separations and Heaviside operational calculus, we obtain the exact solution, from which the flow characteristics are investigated. It is found that the start-up motion of fractional Maxwell's fluid with parameters $\\alpha$ and $\\beta$, tends to be at rest as time goes to infinity, except the case of $\\beta=1$. This observation, which also can be predicted from the mechanics analogue of fractional Maxwell's model, agrees with the classical work of Friedrich and it indicates fractional Maxwell's fluid presents solid-like behavior if $\\be\

Di Yang; Ke-Qin Zhu

2010-06-27T23:59:59.000Z

155

Effect of Fluid Flow on Inclusion Coarsening in Low-Alloy Steel Welds  

SciTech Connect (OSTI)

Oxide inclusions form in welds because of deoxidation reactions in the weld pool. These inclusions control the weld microstructure development. Thermodynamic and kinetic calculation of oxidation reaction can describe inclusion characteristics such as number density, size, and composition. Experimental work has shown that fluid-flow velocity gradients in the weld pool can accelerate inclusion growth by collision and coalescence. Moreover, fluid flow in welds can transport inclusions to different temperature regions that may lead to repeated dissolution and growth of inclusions. These phenomena are being studied with the help of computational coupled heat transfer, fluid-flow, thermodynamic, and kinetic models. The results show that the inclusion formation in steel welds can be described as a function of the welding processes, process parameters, and steel composition.

Babu, S.S.; David, S.A.; DebRoy, T.; Hong, T.

1998-02-28T23:59:59.000Z

156

Non-Steady wall-bounded flows of viscoelastic fluids under periodic forcing  

E-Print Network [OSTI]

The problem of oscillating flows inside pipes under periodic forcing of viscoelastic fluids is addressed here. Starting from the linear Oldroyd-B model, a generalized Darcy's law is obtained in frequency domain and an explicit expression for the dependence of the dynamic permeability on fluid parameters and forcing frequency is derived. Previous results in both viscoelastic and Newtonian fluids are here shown to be particular cases of our results. On the basis of our calculations, a possible explanation for the observed damping of local dynamic response as the forcing frequency increases is given. Good fitting with recent experimental studies of wave propagation in viscoelastic media is here exhibited. Sound wave propagation in viscoelastic media flowing inside straight pipes is investigated. In particular, we obtain the local dynamic response for weakly compressible flows.

Anier Hernández-García; Antonio Fernández-Barbero; Oscar Sotolongo-Costa

2013-01-18T23:59:59.000Z

157

Heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat pump systems.  

E-Print Network [OSTI]

??This thesis presents a series of studies on heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat… (more)

Hu, Jinshan

2007-01-01T23:59:59.000Z

158

Flows of Incompressible Newtonian and Generalized Newtonian Fluids over a Circular Cylinder  

E-Print Network [OSTI]

This thesis presents numerical solutions of the boundary value problems describing the isothermal and non-isothermal steady flows of incompressible Newtonian, power-law and Carreau fluids over a circular cylinder using the hpk-finite element process...g_i...max fluids (power-law and Carreau models) only shear thinning fluids are considered. Numerical studies demonstrate decoupled behavior of the temperature field from the rest of the deformation field. Shear thinning behavior and viscous dissipation for progressively increasing Reynolds numbers are simulated accurately without any difficulty....

Klein, Kayla

2012-05-31T23:59:59.000Z

159

Microscale fluid flow induced by thermoviscous expansion along a traveling wave  

E-Print Network [OSTI]

The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The couplings generate the possibility for net fluid flow at the microscale controlled by external heating. This novel thermo-mechanical effect is investigated for a thin fluid chamber by a numerical solution of the Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment confirms the basic mechanism and quantitatively validates our theoretical analysis.

Franz M. Weinert; Jonas A. Kraus; Thomas Franosch; Dieter Braun

2008-04-02T23:59:59.000Z

160

Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density  

DOE Patents [OSTI]

This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

Hamel, William R. (Farragut, TN)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids  

E-Print Network [OSTI]

Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.

I. V. Khalzov; A. I. Smolyakov; V. I. Ilgisonis

2007-12-11T23:59:59.000Z

162

Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery  

SciTech Connect (OSTI)

The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

Luttman, A.

2012-03-30T23:59:59.000Z

163

A Preliminary Study to Assess Model Uncertainties in Fluid Flows  

E-Print Network [OSTI]

of the fluid. ? The sound speed, c, is assumed to be constant even if it usually depends on the temperature and the pressure. This is a good approximation for liquids but not for gases. The sound speed is reactor-dependent. ? The Equation Of State (EOS... to the temperature. This parameter is assumed constant in this model. 7 ? ???P is the dilatation of the density due to the pressure. This parameter is also assumed constant but is different for different sound speeds. Its expression is as follows: ?? ?P = 1...

Delchini, Marc Olivier

2011-08-08T23:59:59.000Z

164

Multi-Phase Galaxy Formation and Quasar Absorption Systems  

E-Print Network [OSTI]

The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

Ariyeh H. Maller

2005-05-06T23:59:59.000Z

165

1. INTRODUCTION Fluid flows are often so complicated that laboratory  

E-Print Network [OSTI]

with vertical stratification. For a single-hemisphere basin, self-sustained oscillations of the flow and period of the oscillations are partly determined by the energy avail- able for vertical mixing if v, University of Stockholm, Sweden. 4Department of Geosciences, University of Bremen, Germany. 5Climate

Nilsson, Johan

166

Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits  

E-Print Network [OSTI]

In this paper, analytical expressions correlating the volumetric flow rate to the pressure drop are derived for the flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin slits. The derivation is based on the application of Weissenberg-Rabinowitsch-Mooney-Schofield method to obtain flow solutions for generalized Newtonian fluids through pipes and our adaptation of this method to the flow through slits. The derived expressions are validated by comparing their solutions to the solutions obtained from direct numerical integration. They are also validated by comparison to the solutions obtained from the variational method which we proposed previously. In all the investigated cases, the three methods agree very well. The agreement with the variational method also lends more support to this method and to the variational principle which the method is based upon.

Sochi, Taha

2015-01-01T23:59:59.000Z

167

Characterization of non-Darcy multiphase flow in petroleum bearing formations. Annual status report, May 14, 1991--May 13, 1992  

SciTech Connect (OSTI)

The objectives of this research are: Develop a proper theoretical model for characterizing non-Darcy multi-phase flow in petroleum bearing formations. Develop an experimental technique for measuring non-Darcy flow coefficients under multiphase flow at insitu reservoir conditions. Develop dimensional consistent correlations to express the non-Darcy flow coefficient as a function of rock and fluid properties for consolidated and unconsolidated porous media. The research accomplished during the period May 1991--May 1992 focused upon theoretical and experimental studies of multiphase non-Darcy flow in porous media.

Evans, R.D.; Civan, F.

1992-12-31T23:59:59.000Z

168

Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation  

SciTech Connect (OSTI)

A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

Tchelepi, Hamdi

2014-11-14T23:59:59.000Z

169

Fast, Streaming 3D Levelset on the GPU for Smooth Multi-phase Segmentation  

E-Print Network [OSTI]

Fast, Streaming 3D Levelset on the GPU for Smooth Multi-phase Segmentation Ojaswa Sharma1 , Qin at Austin, Austin, Texas, 78712-0027, USA {zqyork@ices,bajaj@cs}.utexas.edu Abstract. Level set method based. We show vol- umetric segmentation using higher order, multi-phase level set method with speedups

Texas at Austin, University of

170

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives  

E-Print Network [OSTI]

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives Fabien Meinguet*, Eric deals with an on-line fault detection method for multi-phase PMSM drives. The method is based an original method for detecting an abnormal asymmetrical behavior in five-phase PMSM drives and we apply

Paris-Sud XI, Université de

171

A splitting method for numerical simulation of free surface flows of incompressible fluids with surface tension  

E-Print Network [OSTI]

with surface tension Kirill D. Nikitin Maxim A. Olshanskii Kirill M. Terekhov Yuri V. Vassilevski§ Abstract to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface models a free surface flow of viscous incompressible fluid subject to surface tension forces. Further

Olshanskii, Maxim A.

172

Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures  

E-Print Network [OSTI]

the original gel. The residual gel exhibits a higher yield stress, and is difficult to remove after fracture closure. But non-Newtonian fluid has complicated rheological equation and its flow behavior in porous media is difficult to be described and modeled...

Ouyang, Liangchen

2013-12-10T23:59:59.000Z

173

Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems  

SciTech Connect (OSTI)

A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited.

Hart, R.D.

1981-01-01T23:59:59.000Z

174

Similarity flow solutions of a non-Newtonian power-law fluid Mohamed Guedda, Zakia Hammouch  

E-Print Network [OSTI]

for a steady-state laminar bound- ary layer flow, governed by the Ostwald-de Wael power-law model-Newtonian fluid mechanics is the Ostwald-de Wael model (with a power-law rheology [2, 3, 4, 5, 6]), which

Paris-Sud XI, Université de

175

Application of x-ray microtomography to environmental fluid flow D. Wildenschild*a,c  

E-Print Network [OSTI]

environmental processes are controlled by the micro-scale interaction of water and air with the solid phaseApplication of x-ray microtomography to environmental fluid flow problems D. Wildenschild*a,c , K resource management, contaminant remediation, and agriculture. Many of these physical processes operative

Wildenschild, Dorthe

176

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network [OSTI]

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

177

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event  

E-Print Network [OSTI]

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow, the Cambrian carbonates underwent ductile deformation and greenschist facies metamorphism. The same is true-temperature metamorphic rocks within the overlying nappes. It is assumed that a late-Variscan hydrothermal event, which

Boni, Maria

178

Mathematical Modeling and Simulation for Applications of Fluid Flow in Porous Media \\Lambda  

E-Print Network [OSTI]

Mathematical Modeling and Simulation for Applications of Fluid Flow in Porous Media \\Lambda Richard descriptions at various length scales, modeling the effects of this heterogeneity of the porous medium a computer code has been developed which gives concrete quantitative results for the total model, this out

Ewing, Richard E.

179

A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy equations  

E-Print Network [OSTI]

A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy. In some of these ap- plications, multiple internal energy equations such as those for electron, ion developed which are designed to solve the internal energy equation directly. These schemes can be easily

Shu, Chi-Wang

180

3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations  

E-Print Network [OSTI]

1 3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations H.L. HUANG Huang@fusion.ucla.edu Abstract: The purpose of this paper is to present our recent efforts on 3D MHD-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause

California at Los Angeles, University of

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits  

E-Print Network [OSTI]

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits J. Ashmore(1,a), A.Q. Shen(1,b), H.P. Kavehpour(2,c), H.A. Stone(1) & G.H. McKinley(2) 1: Division of Engineering and Applied of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (a): Current address: TIAX

182

CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke  

E-Print Network [OSTI]

M2 CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke Department- oped on top of the MCIRQ simulator with the aim to produce an automated FMEA for aircraft fuel systems similar to pre- viously developed automated electrical FMEA. Introduction This paper describes a circuit

Snooke, Neal

183

Dynamics of a confined dusty fluid in a sheared ion flow  

SciTech Connect (OSTI)

Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-07-15T23:59:59.000Z

184

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid  

E-Print Network [OSTI]

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid

Attard, Phil

185

Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid-structure interaction  

E-Print Network [OSTI]

and the larynx (fig. 1), is the most external part of the respiratory system. Modelling the fluid flow is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical of the respiratory fluid flow (Shome et al., 1998; Allen et al., 2004; Xu et al., 2006; Sung et al., 2006; Liu et al

Paris-Sud XI, Université de

186

Fluid Flow Model Development for Representative Geologic Media | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for Energyof

187

Flow of mantle fluids through the ductile lower crust: Heliumisotope trends  

SciTech Connect (OSTI)

Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

Kennedy, B. Mack; van Soest, Matthijs C.

2007-10-07T23:59:59.000Z

188

Exact Solutions for a Rotational Flow of Generalized Second Grade Fluids Through a Circular Cylinder  

E-Print Network [OSTI]

In this note the velocity field and the associated tangential stress corresponding to the rotational flows of a generalized second grade fluid within an infinite circular cylinder are determined by means of the Laplace and Hankel transforms. At time t=0 the fluid is at rest and the motion is produced by the rotation of the cylinder, around its axis, with the angular velocity $\\Omega.t$. The velocity field and the adequate shear stress are presented under integral and series forms in terms of the generalized G-functions. Furthermore, they are presented as a sum between the Newtonian solutions and the adequate non-Newtonian contributions. The corresponding solutions for the ordinary second grade fluid and Newtonian fluid are obtained as particular cases of our solutions for $\\beta = 1$, respectively $\\alpha = 0$ and $\\beta = 1$.

Amir Mahmood; Saifullah; Qammar Rubab

2008-02-26T23:59:59.000Z

189

Investigation of aluminum surface cleaning using cavitating fluid flow  

SciTech Connect (OSTI)

This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavi?iaus str.28, 03224, Vilnius (Lithuania)

2013-12-16T23:59:59.000Z

190

Flow modeling of flat oval ductwork elbows using computational fluid dynamics  

SciTech Connect (OSTI)

Incompressible turbulent flow fields in heating, ventilating, and air-conditioning (HVAC) elbows were computed using an incompressible, three-dimensional computational fluid dynamics (CFD) solver implementing a {kappa}-{epsilon} turbulence model. Two different geometries were investigated, including 90-degree five-gore hard-bend and easy-bend flat oval elbows. The geometries represent a subset of many configurations analyzed in ASHRAE RP-854, Determination of Duct Fitting Resistance by Numerical Analysis. For each configuration, the zero-length pressure loss coefficient was calculated. The flow was described through contours of velocity and plots of static pressure. The Reynolds number for these flows was held constant at 100,000 based on duct diameter and mean fluid velocity.

Mahank, T.A.; Mumma, S.A. [Pennsylvania State Univ., University Park, PA (United States)

1997-12-31T23:59:59.000Z

191

Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data  

E-Print Network [OSTI]

Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K

2014-01-01T23:59:59.000Z

192

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents [OSTI]

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

193

A turnstile mechanism for fronts propagating in fluid flows  

E-Print Network [OSTI]

We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified ("active") turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable \\emph{burning invariant manifolds}---one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the burning invariant manifolds (BIMs) are one-dimensional curves in a three-dimensional ($xy\\theta$) phase space, their projection into $xy$-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom.

John R. Mahoney; Kevin A. Mitchell

2013-05-22T23:59:59.000Z

194

Motion of a Viscoelastic Micellar Fluid Around a Cylinder: Flow and Fracture  

E-Print Network [OSTI]

We present an experimental study of the motion of a viscoelastic micellar material around a moving cylinder, which ranges in response from fluid-like flow to solid-like tearing and fracture, depending on the cylinder radius and velocity. The observation of viscoelastic crack propagation driven by the cylinder indicates an extremely low tear strength, approximately equal to the steady state surface tension of the fluid. At the highest speeds a driven crack is observed in front of the cylinder, propagating with a fluctuating speed equal on average to the cylinder speed, here as low as 5% of the elastic wave speed in the medium.

Joseph R. Gladden; Andrew Belmonte

2006-05-25T23:59:59.000Z

195

J. Non-Newtonian Fluid Mech., 72 (1997) 7386 Start-up of flow of a FENE-fluid through a 4:1:4 constriction in  

E-Print Network [OSTI]

. Introduction Elastic fluids resist converging flow through an orifice, responding by increasing the pressure drop to good accuracy. As a further numerical convenience, we make the shape of the constriction round the flow through a small orifice in a large plate between two reservoirs. They used HPAM and PEO solutions

Hinch, John

196

Particle-fluid-structure interaction for debris flow impact on flexible barriers  

E-Print Network [OSTI]

Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the Discrete Element Method (DEM) governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the Lattice-Boltzmann Method (LBM). Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a non-negligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.

A. Leonardi; F. K. Wittel; M. Mendoza; R. Vetter; H. J. Herrmann

2014-09-29T23:59:59.000Z

197

Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media  

DOE Patents [OSTI]

Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)

1999-01-01T23:59:59.000Z

198

TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems  

SciTech Connect (OSTI)

The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

Moridis, G.J.; Pruess (editor), K.

1992-11-01T23:59:59.000Z

199

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

200

On the 3D steady flow of a second grade fluid past an obstacle  

E-Print Network [OSTI]

We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in \\cite{Koch} and properties of solutions to steady transport equation to get up to arbitrarily small $\\ep$ the same decay as the Oseen fundamental solution.

Pawe? Konieczny; Ond?ej Kreml

2010-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical method for fluid flow and heat transfer in magnetohydrodynamic flow  

SciTech Connect (OSTI)

A new numerical algorithm was developed to provide a fully detailed flow field in liquid metal MHD flow with a relatively large Hartmann number and interaction parameter. The algorithm includes the effects of advection and diffusion, and is capable of predicting momentum and heat transfer in MHD flows. Using this algorithm, an incompressible, viscous, three-dimensional MHD flow in a square duct is investigated at a low magnetic Reynolds number by means of the finite volume method. The velocity and temperature profiles are obtained in the developing region for constant wall temperature. The result shows that large velocities are obtained near the insulating walls parallel to the magnetic field. Also, near the perfectly conducting walls perpendicular to the field, a velocity profile like a Hartmann layer is obtained. In association with the velocity profiles, Nusselt number at the insulating walls (with side layer) is seen to be larger than that at the perfectly conducting walls (with Hartmann layer).

Kim, C.N.; Abdou, M.A.

1989-03-01T23:59:59.000Z

202

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation  

E-Print Network [OSTI]

The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

Haghshenas, Arash

2013-04-24T23:59:59.000Z

203

The influence of fluid flow through granitic crust: a thermo-tectonic study in and on Mont Blanc  

E-Print Network [OSTI]

The influence of fluid flow through granitic crust: a thermo-tectonic study in and on Mont Blanc Tim Dempster, Cristina Persano and Zoe Shipton *Tim.Dempster@ges.gla.ac.uk Granitic and gneissose within a evolving mountain zone, the metasomatic influence of fluids in granite gneiss and the resulting

Glasgow, University of

204

A photographic study of fluid flow theory for two-dimensional laminar flow around solid bodies  

E-Print Network [OSTI]

water flows through sides M, DC and ?9, these three sides can be t, rea ed s, insulated suri'aces in the heat conduction problems. A&sr drawing small circles and squares ix the tubes shown in 54 and using the resistance uxG. tp one can find that tube...

Lee, Wen Ho

1966-01-01T23:59:59.000Z

205

Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media  

SciTech Connect (OSTI)

In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

2013-04-15T23:59:59.000Z

206

TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow  

SciTech Connect (OSTI)

TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.

Pruess, K.

1991-05-01T23:59:59.000Z

207

Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk  

SciTech Connect (OSTI)

For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

Tomutsa, Liviu; Silin, Dmitriy

2004-08-19T23:59:59.000Z

208

Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report  

SciTech Connect (OSTI)

Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

Detwiler, Russell

2014-04-30T23:59:59.000Z

209

Journal of Fluids and Structures 20 (2005) 129140 Blood flow and damage by the roller pumps during  

E-Print Network [OSTI]

Journal of Fluids and Structures 20 (2005) 129­140 Blood flow and damage by the roller pumps during created in a centrifugal pump used for a cardiopulmonary bypass, little is known about the blood flow and consequent damage in a roller pump. A time- dependent moving boundary problem is solved in this paper

Luo, Xiaoyu

210

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N. Morozov and Wim van Saarloos  

E-Print Network [OSTI]

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N is shown to exhibit a purely elastic subcritical instability at a very small-Reynolds number in spite. In this Letter we show that visco- elastic plane Couette flow (PCF) exhibits a subcritical instability to finite

van Saarloos, Wim

211

Bulletin of the Seismological Society of America, Vol. 94, No. 5, pp. 18171830, October 2004 Faulting Induced by Forced Fluid Injection and Fluid Flow Forced by  

E-Print Network [OSTI]

is a technique used to image the volume of rock stimulated by hydraulic fracturing (Al- bright and Pearson, 1982. The method has been applied in devel- oping hot dry rock reservoirs (e.g., Pine and Batchelor, 1984; House al., 2003). Beyond mapping gross structure and fluid-flow paths, rela- tive source location

212

The Properties of Confined Water and Fluid Flow at the Nanoscale  

SciTech Connect (OSTI)

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

213

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

SciTech Connect (OSTI)

The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

Freifeld, B.; Finsterle, S.

2010-12-10T23:59:59.000Z

214

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect (OSTI)

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

215

A Finite-Difference Numerical Method for Onsager's Pancake Approximation for Fluid Flow in a Gas Centrifuge  

SciTech Connect (OSTI)

Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.

de Stadler, M; Chand, K

2007-11-12T23:59:59.000Z

216

An overview of instability and fingering during immiscible fluid flow in porous and fractured media  

SciTech Connect (OSTI)

Wetting front instability is an important phenomenon affecting fluid flow and contaminant transport in unsaturated soils and rocks. It causes the development of fingers which travel faster than would a uniform front and thus bypass much of the medium. Water saturation and solute concentration in such fingers tend to be higher than in the surrounding medium. During infiltration, fingering may cause unexpectedly rapid arrival of water and solute at the water-table. This notwithstanding, most models of subsurface flow and transport ignore instability and fingering. In this report, we survey the literature to assess the extent to which this may or may not be justified. Our overview covers experiments, theoretical studies, and computer simulations of instability and fingering during immiscible two-phase flow and transport, with emphasis on infiltration into soils and fractured rocks. Our description of instability in an ideal fracture (Hele-Shaw cell) includes an extension of existing theory to fractures and interfaces having arbitrary orientations in space. Our discussion of instability in porous media includes a slight but important correction of existing theory for the case of an inclined interface. We conclude by outlining some potential directions for future research. Among these, we single out the effect of soil and rock heterogeneities on instability and preferential flow as meriting special attention in the context of nuclear waste storage in unsaturated media.

Chen, G.; Neuman, S.P. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Water Resources; Taniguchi, M. [Nara Univ. of Education (Japan). Dept. of Earth Sciences

1995-04-01T23:59:59.000Z

217

Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow  

SciTech Connect (OSTI)

A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

Donna Post Guillen

2009-07-01T23:59:59.000Z

218

High-heat-flux removal by phase-change fluid and particulate flow  

SciTech Connect (OSTI)

A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

1993-07-01T23:59:59.000Z

219

Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows  

SciTech Connect (OSTI)

The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.

Ueckermann, M.P., E-mail: mpuecker@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Lermusiaux, P.F.J., E-mail: pierrel@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Sapsis, T.P., E-mail: sapsis@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)

2013-01-15T23:59:59.000Z

220

Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow  

SciTech Connect (OSTI)

Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

Moller, Nancy; Weare J. H.

2008-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers  

SciTech Connect (OSTI)

Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

Maher, Kate; DePaolo, Donald J.; Christensen, John N.

2005-12-27T23:59:59.000Z

222

Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry  

SciTech Connect (OSTI)

The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

Hassan, T.A.

1992-12-01T23:59:59.000Z

223

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects  

SciTech Connect (OSTI)

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Spane, Frank A.

2013-04-29T23:59:59.000Z

224

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

225

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Y.C.

2001-05-29T23:59:59.000Z

226

Unsteady, high Reynolds number validation cases for a multi-phase CFD analysis tool have been  

E-Print Network [OSTI]

and constituent volume fraction transport/generation for liquid, condensable vapor and non-condensable gas fields1 Abstract Unsteady, high Reynolds number validation cases for a multi-phase CFD analysis tool have of the effect of cavitation number, Reynolds number and turbulence model has been made. Analysis of the modeled

Kunz, Robert Francis

227

1 Copyright 1999 by ASME MULTI-PHASE CFD ANALYSIS OF NATURAL AND VENTILATED CAVITATION  

E-Print Network [OSTI]

volume fraction transport/generation for liquid, condensable vapor and non-con- densable gas fields between condensable vapor and non-condensable gas, a requirement of our current applica- tion. By solving1 Copyright © 1999 by ASME MULTI-PHASE CFD ANALYSIS OF NATURAL AND VENTILATED CAVITATION ABOUT

Kunz, Robert Francis

228

Similarity Flow Solutions of a Non-Newtonian Power-law Fluid  

E-Print Network [OSTI]

In this paper we present a mathematical analysis for a steady-state laminar boundary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non- Newtonian fluid past a semi-infinite power-law stretched flat plate with uniform free stream velocity. A generalization of the usual Blasius similarity transformation is used to find similarity solutions [1]. Under appropriate assumptions, partial differential equations are transformed into an autonomous third-order nonlinear degenerate ordinary differential equation with boundary conditions. Using a shooting method, we establish the existence of an infinite number of global unbounded solutions. The asymptotic behavior is also discussed. Some properties of those solutions depend on the viscosity power-law index.

Guedda, Mohamed

2009-01-01T23:59:59.000Z

229

Nanometer-scale imaging and pore-scale fluid flow modeling inchalk  

SciTech Connect (OSTI)

For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.

Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

2005-08-23T23:59:59.000Z

230

A multi-phase network situational awareness cognitive task analysis  

SciTech Connect (OSTI)

Abstract The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into making certain that we had feedback from network analysts and managers and understand what their genuine needs are. This article discusses the cognitive task-analysis methodology that we followed to acquire feedback from the analysts. This article also provides the details we acquired from the analysts on their processes, goals, concerns, the data and metadata that they analyze. Finally, we describe the generation of a novel task-flow diagram representing the activities of the target user base.

Erbacher, Robert; Frincke, Deborah A.; Wong, Pak C.; Moody, Sarah; Fink, Glenn A.

2010-06-16T23:59:59.000Z

231

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

232

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

SciTech Connect (OSTI)

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15T23:59:59.000Z

233

Method and apparatus for balancing discharge fluid flow in drilling mud treatment units  

SciTech Connect (OSTI)

A method of controlling fluid flow in the drilling mud treatment units of an oil/gas well drilling rig such as, for example, the shale shaker, desander, desilter, and mud cleaner portions thereof provides floating the inlet of an intake conduit at the supernatent liquid layer of the drilling rig reserve pit and providing a common distributor head for routing the supernatent liquid to the various solid control units. A pump is connected to the intake conduit and the header at the intake and discharge respectively. The pump transmits the reserve pit supernatent from the reserve pit to the header by pumping. There is provided one or more branch lines affixed to the header each discharging respectively into the drain of a drilling mud treatment unit associated with the drilling rig with the flow of reserve pit supernatent liquid keeping the various drains open. The drains are positioned to discharge back into the reserve pit. The method saves the use of fresh water for the purpose of keeping drains open by the use of the supernatent liquid.

Gay, C.J.

1983-03-29T23:59:59.000Z

234

Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids  

E-Print Network [OSTI]

We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...

Banik, Indranil

2013-01-01T23:59:59.000Z

235

Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac BaFFe deposits  

E-Print Network [OSTI]

of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. BaMagnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented

Paris-Sud XI, Université de

236

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal b  

E-Print Network [OSTI]

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal form 16 April 2010 Accepted 28 May 2010 Available online 8 June 2010 Keywords: Nested Cartesian grid procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating

Mittal, Rajat

237

Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics Processing Unit  

E-Print Network [OSTI]

Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics solve Navier-Stokes equations and other transportation equations for energy and species at a speed of 50 it in parallel on a Graphics Processing Unit (GPU). This study validated the FFD on the GPU by simulating

Chen, Qingyan "Yan"

238

Application of Multi-rate Flowing Fluid Electric ConductivityLogging Method to Well DH-2, Tono Site, Japan  

SciTech Connect (OSTI)

The flowing fluid electric conductivity (FEC) logging method, wellbore fluid is replaced with de-ionized water, following which FEC profiles in the wellbore are measured at a series of times while the well is pumped at a constant rate. Locations were fluid enters the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow strengths and salinities of permeable features intersected by the wellbore. In multi-rate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates, which enables the transmissivities and inherent pressure heads of these features to be estimated as well. We perform multi-rate FEC logging on a deep borehole in fractured granitic rock, using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. By using three pumping rates rather than the minimum number of two, we obtain an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multi-rate flowing FEC logging method.

Doughty, Christine; Takeuchi, Shinji; Amano, Kenji; Shimo, Michito; Tsang, Chin-Fu

2004-10-04T23:59:59.000Z

239

Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.  

SciTech Connect (OSTI)

A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

Tentner, A.; Nuclear Engineering Division

2009-10-13T23:59:59.000Z

240

Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows  

E-Print Network [OSTI]

We present a numerical method for Large Eddy Simulations (LES) of compressible two-phase flows. The method is validated for the flow in a micro channel with a step-like restriction. This setup is representative for typical cavitating multi-phase flows in fuel injectors and follows an experimental study of Iben et al., 2010. While a diesel-like test fuel was used in the experiment, we solve the compressible Navier-Stokes equations with a barotropic equation of state for water and vapor and a simple phase-change model based on equilibrium assumptions. Our LES resolve all wave dynamics in the compressible fluid and the turbulence production in shear layers.

Hickel, S; Schmidt, S J

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine  

DOE Patents [OSTI]

Methods, system and apparatus are provided for quickly approximating a peak summed magnitude (A) of a phase voltage (Vph) waveform in a multi-phase system that implements third harmonic injection.

Ransom, Ray M. (Big Bear City, CA); Gallegos-Lopez, Gabriel (Torrance, CA); Kinoshita, Michael H. (Redondo Beach, CA)

2012-07-31T23:59:59.000Z

242

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

SciTech Connect (OSTI)

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

243

: DUNE for Multi-{Phase, Component, Scale, Physics, ...} Flow and Transport in Porous Media  

E-Print Network [OSTI]

Research Simulator (GPRS)38 serves as a research platform for reservoir simulation, [8, 9]. Integrated Par combination with a sophisticated time step management.24 The capabilities of DUNE are heavily exploited reservoir simulator35 (GEM), [6]. Finite Element Heat and Mass Transfer Simulator (FEHM) is36 a porous media

Cirpka, Olaf Arie

244

A MultiPhase Power Flow Model for Grid Analysis A. P. Sakis Meliopoulos  

E-Print Network [OSTI]

Madison, Wisconsin lasseter@engr.wisc.edu Abstract This paper presents a new advanced model of an electric via inverters and typically without available storage). In addition, since the interface to the grid is via converters a multiplicity of control functions can be anticipated, such as control of imbalances

245

On the influence of an absorption term in incompressible fluid flows  

E-Print Network [OSTI]

|, they approximate the Ostwald-de Waele model for power law fluids, very often used to model non-Newtonian fluids and q as follows: Newtonian if µ0 > 0 and µ1 = 0 Ostwald-de Waele if µ0 = 0 and µ1 > 0 Bingham

Lisbon, University of

246

Statistical Estimation of Fluid Flow Fields Johnny Chang David Edwards Yizhou Yu  

E-Print Network [OSTI]

their motion fields. 1 Introduction Dynamic fluids, such as rivers, ocean waves, moving clouds, smoke and fires (4) where is the kinematic viscosity of the fluid, is its den- sity and f is an external force scale. A good ex- ample is the changing surface geometry of a water surface. This is because the self

Yu, Yizhou

247

One-dimensional fluid diffusion induced by constant-rate flow injection: Theoretical analysis and application  

E-Print Network [OSTI]

is essential in the exploitation of natural fluid resources, such as water, steam, petroleum, and natural gas advantages of our method are the reliability of the testing method, its economy of time, and the flexibility wastes. [3] In general, the nature of fluids in reservoir rocks can be characterized in terms of quantity

248

Application of X-ray CT for investigating fluid flow and conformance control during CO2 injection in highly heterogeneous media  

E-Print Network [OSTI]

were performed using homogeneous and heterogeneous cores and a 4th generation X-Ray CT scanner was used to visualize heterogeneity and fluid flow in the core. Porosity and saturation measurements were made during the course of the experiment...

Chakravarthy, Deepak

2005-08-29T23:59:59.000Z

249

Swirling structure for mixing two concentric fluid flows at nozzle outlet  

DOE Patents [OSTI]

A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

Mensink, D.L.

1993-07-20T23:59:59.000Z

250

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

251

Multi-phase decline curve analysis with normalized rate and time  

E-Print Network [OSTI]

Material Balance Equation. The purpose of the current work is to develop a normalized time and a normalized rate which can be applied to the Fetkovich type curve or any other decline type curve. From a Fetkovich type curve analysis, an engineer can...MULTI-PHASE DECLINE CURVE ANALYSIS WITH NORMALIZED RATE AND TIME A Thesis by MICHAEL LEE FRAIM Submitted to the Graduate College of Texas ARM University &n partial fulf 111ment of the requirements for the degree of MASTER OF SCIENCE August...

Fraim, Michael Lee

1988-01-01T23:59:59.000Z

252

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect (OSTI)

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

253

Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed  

SciTech Connect (OSTI)

A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

Qussai Marashdeh

2012-09-30T23:59:59.000Z

254

Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids  

E-Print Network [OSTI]

In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal ...

Fardin, M. A.

255

Airfoil Shape Optimization for Transonic Flows of BetheZel'dovichThompson Fluids  

E-Print Network [OSTI]

of gasdynamics : 1 a @a @ s (1) where is the fluid density, a is the sound speed, and s is the entropy of thermodynamic conditions above the liquid/vapor coexistence curve, such that the fundamental derivative

Paris-Sud XI, Université de

256

Interfacial exchange relations for two-fluid vapor-liquid flow : a simplified regime map approach  

E-Print Network [OSTI]

A simplified approach is described for selection of the constitutive relations for the inter-phase exchange terms in the two-fluid code, THERMIT. The approach used distinguishes between pre-CHF and post-CHF conditions. ...

Kelly, J. E.

1981-01-01T23:59:59.000Z

257

Flow through porous media : from mixing of fluids to triggering of earthquakes  

E-Print Network [OSTI]

Enhanced oil recovery by displacing oil with solvents such as carbon dioxide requires development of miscibility between the two fluids to maximize the displacement efficiency. Prevention of inadvertent triggering of ...

Jha, Birendra, Ph. D. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering

2014-01-01T23:59:59.000Z

258

A Semi-Lagrangian approach for dilute non-collisional fluid-particle flows  

E-Print Network [OSTI]

sprays [3, 4, 30, 52], environmental studies on pollutant transport [28, 54, 55, 58, 65], the formation viscosity of the fluid, and d the mass per unit volume of the droplets (see [19] and the references therein

Goudon, Thierry

259

Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock  

SciTech Connect (OSTI)

Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

2005-07-01T23:59:59.000Z

260

The effect of various mixers on the viscosity and flow properties of an oil well drilling fluid  

E-Print Network [OSTI]

of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January, 1957 MaJor SubJect. Petroleum Englneerlng THE EFFECT OF VARIOUS MIXERS ON THE VISCOSITY AND FLOW PROPERTIES QF AN OIL WELL DRILLING FLUID A Thesis... on the 300 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the 600 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the Plastic Viscosity of a Bentonite Mud 16 Temperature Variation of the Drilling Mud Mixed in Variou...

Spannagel, Johnny Allen

1957-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime  

E-Print Network [OSTI]

We derive a criterion for the breakdown of solutions to the Oldroyd-B model in $\\R^3$ in the limit of zero Reynolds number (creeping flow). If the initial stress field is in the Sobolev space $H^m$, $m> 5/2$, then either a unique solution exists within this space indefinitely, or, at the time where the solution breaks down, the time integral of the $L^\\infty$-norm of the stress tensor must diverge. This result is analogous to the celebrated Beale-Kato-Majda breakdown criterion for the inviscid Eluer equations of incompressible fluids.

Raz Kupferman; Claude Mangoubi; Edriss S. Titi

2007-09-10T23:59:59.000Z

262

This is a 1D model of an active magnetic regenerative refrigerator (AMRR) that was developed in MATLAB. The model uses cycle inputs such as the fluid mass flow and  

E-Print Network [OSTI]

to the fluid-mechanical-magnetic processes associated with the cycle implementation. The interface between in MATLAB. The model uses cycle inputs such as the fluid mass flow and magnetic field profiles, fluid temperature profile of the fluid and regenerator. Using the temperature profiles, the cooling load produced

Wisconsin at Madison, University of

263

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect (OSTI)

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

264

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

265

A correction function method to solve incompressible fluid flows to high accuracy with immersed geometries  

E-Print Network [OSTI]

Numerical simulations of incompressible viscous flows in realistic configurations are increasingly important in many scientific and engineering fields. In Aeronautics, for instance, relatively cheap numerical computations ...

Marques, Alexandre Noll

2012-01-01T23:59:59.000Z

266

NMR imaging techniques and applications in the flow behavior of fluids in porous media  

E-Print Network [OSTI]

proton magnetic resonance technique can be used to determine the oil saturation in the pores of a rock. The NMR system can produce images of the molecules under investigation because the signals recorded are obtained directly from fluids contained... in liquids as well. This should enable us to obtain additional information about the fluids in the rock '4. Spin-spin relaxation has a characteristic time T~. T~ is the time constant for the decay of the precessing R-Zo component of the magnetization...

Halimi, Hassan I

1990-01-01T23:59:59.000Z

267

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

SciTech Connect (OSTI)

This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

Rutqvist, J.

2010-06-01T23:59:59.000Z

268

Vortical Inviscid Flows with Two-Way Solid-Fluid Coupling  

E-Print Network [OSTI]

, the net force acting on a solid immersed in an irrotational and inviscid flow is zero. For instance methods are used to accurately calculate forces in mechanical engineering applications such as airfoils [6, a sphere in an inviscid constant uniform flow would experience zero drag which is clearly incorrect. Our

Lee, WonSook

269

MATHEMATICAL MODELING OF THREE-DIMENSIONAL DIE FLOWS OF VISCOPLASTIC FLUIDS WITH WALL SLIP  

E-Print Network [OSTI]

of filled polymers, and concentrated suspensions in screw extruders and dies of complex shapes is undertaken-dimensional flows including flows through dies, single/twin-screw extruders and other processing geometries m o n p * (1b) where Rs is the screw radius of the twin screw extruder preceding the die

270

A Well-Balanced Scheme For Two-Fluid Flows In Variable Cross-Section ducts  

E-Print Network [OSTI]

, ) p = p(, s, ), h = h(, s, ). (21) Then in these variables the sound speed c satisfies c2 = p = h. (22 of a mixture of two compressible fluids (a gas (1) and a liquid (2), for instance) in a cross-section duct

Paris-Sud XI, Université de

271

Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid  

E-Print Network [OSTI]

at the entrance of the tube. Results were also obtained for the phase change process under hydro dynamically and thermally fully developed conditions. In case of a smooth circular tube with phase change material (PCM) fluid, results of Nusselt number were obtained...

Ravi, Gurunarayana

2010-01-14T23:59:59.000Z

272

Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium flow  

E-Print Network [OSTI]

Fusion Engineering and Design 82 (2007) 2217­2225 Integrated thermo-fluid analysis towards helium. Andob, I. Komadab a Fusion Engineering Sciences, Mechanical and Aerospace Eng. Department, University the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE

Abdou, Mohamed

273

LETTER TO THE EDITOR AC Electric-Field-Induced Fluid Flow in Microelectrodes  

E-Print Network [OSTI]

glass substrates. The electrodes were made from a series of metal layers: 10 nm Ti, 10 nm Pd, 100 nm Au relaxation time, with a reproducible pattern occurring close to and across the electrode surface. This paper reports measurements of the fluid velocity as a function of frequency and position across the electrode

274

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents [OSTI]

A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, L.S.

1993-01-26T23:59:59.000Z

275

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents [OSTI]

A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, Laurence S. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

276

On the Fundamental Unsteady Fluid Dynamics of Shock-Induced Flows through Ducts  

E-Print Network [OSTI]

Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow...

Mendoza, Nicole Renee

2013-04-29T23:59:59.000Z

277

Modeling fluid flow through single fracture using experimental, stochastic, and simulation approaches  

E-Print Network [OSTI]

This research presents an approach to accurately simulate flow experiments through a fractured core using experimental, stochastic, and simulation techniques. Very often, a fracture is assumed as a set of smooth parallel plates separated by a...

Alfred, Dicman

2004-09-30T23:59:59.000Z

278

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network [OSTI]

-00975626,version1-8Apr2014 Author manuscript, published in "International Journal of Thermal Sciences 67 based on and r. Rej Jet Reynolds number based on W and D. ReU Cross-flow Reynolds number Ro Rossby

Boyer, Edmond

279

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies,...

280

Numerical modeling of fluid flow and time-lapse seismics to monitor ...  

E-Print Network [OSTI]

May 30, 2014 ... and saturation. The model considers the geometrical features of the formations, .... mudstone layers inside the Utsira formation the complex bulk and shear ..... obtained from the flow simulator to build a 2D model of the Utsira.

santos

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Multiphase flow and Encapsulation simulations using the moment of fluid method 1  

E-Print Network [OSTI]

, spray cooling, icing, combustion and agricultural irrigation. The instability of the interface, mass exist for the accurate and effi- cient computation of multiphase flows. First, the density and viscosity

Sussman, Mark

282

Under consideration for publication in J. Fluid Mech. 1 Nonlinear free surface flows past a semi-  

E-Print Network [OSTI]

- infinite flat plate in water of finite depth M. M A L E E W O N G 1 AND R. H. J. G R I M S H A W2 1 ??) We consider the steady free surface two-dimensional flow past a semi-infinite flat plate in water (draft) of the depressed plate. For small d and subcritical flows, we may use the linearized problem

283

The role of homology in fluid vortices I: non-relativistic flow  

E-Print Network [OSTI]

The methods of singular and de Rham homology and cohomology are reviewed to the extent that they are applicable to the structure and motion of vortices. In particular, they are first applied to the concept of integral invariants. After a brief review of the elements of fluid mechanics, when expressed in the language of exterior differential forms and homology theory, the basic laws of vortex theory are shown to be statements that are rooted in the homology theory of integral invariants.

D. H. Delphenich

2014-12-09T23:59:59.000Z

284

PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME  

SciTech Connect (OSTI)

There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

Buscheck, Timothy Eric

1980-03-01T23:59:59.000Z

285

Elevated thermal maturation in Pennsylvanian rocks, Cherokee basin, southeastern Kansas: Importance of regional fluid flow  

SciTech Connect (OSTI)

Thermal history of sedimentary basins is commonly assumed to be dominated by burial heating. Marked contrast between reconstructed burial temperatures and other temperature determinations would suggest alternative processes. In the Cherokee basin of southeastern Kansas, reconstruction of burial and thermal history indicates that basal Pennsylvanian strata were not buried more than 1.8 km, and should have reached only about 90C. However, the study of Pennsylvanian rocks of the Cherokee basin indicates that higher temperatures were reached and that the pattern of thermal maturation is inconsistent with simple burial heating. Regional pattern of vitrinite reflectance reveals several warm spots' where thermal maturation is elevated above the regional background. Primary fluid inclusions in late Ca-Mg-Fe carbonate cements yield homogenization-temperature modes or petrographically consistent populations ranging from 100 to 150C. These data suggest that the samples experienced at least those temperatures, hence fluid inclusions closely agree with vitrinite and Rock-Eval. Elevated temperatures, warm spots, confined thermal spikes, a low R{sub m} gradient argue against simple burial heating. These observations are consistent with regional invasion of warm fluids, probably from the Ouachita-Arkoma system, and their subsequent upward migration into Pennsylvanian strata through faults and fractures. Petroleum exploration should consider the possibility of regionally elevated thermal maturation levels with even more elevated local maxima. Consequences may include local generation of hydrocarbons or local changes in diagenetic patterns.

Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. (Univ. of Kansas, Lawrence (United States)); Barker, C.E. (Geological Survey, Denver, CO (United States))

1991-03-01T23:59:59.000Z

286

Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992  

SciTech Connect (OSTI)

The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

Hassan, T.A.

1992-12-01T23:59:59.000Z

287

Computational Fluid Dynamics Modeling of the Bonneville Project: Tailrace Spill Patterns for Low Flows and Corner Collector Smolt Egress  

SciTech Connect (OSTI)

In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is concern for egress issues for smolt passing through the spillway, the spill pattern and volume need to be revisited.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

2010-12-01T23:59:59.000Z

288

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

SciTech Connect (OSTI)

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

289

Perturbative analysis of sheared flow Kelvin-Helmholtz instability in a weakly relativistic magnetized electron fluid  

SciTech Connect (OSTI)

In the interaction of intense lasers with matter/plasma, energetic electrons having relativistic energies get created. These energetic electrons can often have sheared flow profiles as they propagate through the plasma medium. In an earlier study [Phys. Plasmas 17, 022101 (2010)], it was shown that a relativistic sheared electron flow modifies the growth rate and threshold condition of the conventional Kelvin-Helmholtz instability. A perturbative analytic treatment for the case of weakly relativistic regime has been provided here. It provides good agreement with the numerical results obtained earlier.

Sundar, Sita; Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

2012-05-15T23:59:59.000Z

290

Two-fluid flowing equilibria of compact plasmas Loren C. Steinhauer  

E-Print Network [OSTI]

or presence of a jĂ?B force. The force-free class may have significant flows. Spheromaks are in this class-force-free class is energetically favorable. This sheds light on the FRC-spheromak bifurcation observed- perimentally only in certain arrangements reversed-field pinch, spheromak and then only in the central ``core

Washington at Seattle, University of

291

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network [OSTI]

....................................................... 66 5.3.1 Modeling Field Data ..................................................................... 68 5.3.2 Optimal Location of Permanent Downhole Gauge....................... 71 5.4 Effect of Gauge Location on Pressure-Transient Analysis... at the midpoint of the flow string................................. 70 Figure 5.26 Downhole gauge placement configurations .............................................. 71 Figure 5.27 Temperature and density profiles in the wellbore...

Izgec, Bulent

2009-05-15T23:59:59.000Z

292

Slip Flow Fluid-Structure-Interaction J. van Rij, T. Harman, T. Ameel*  

E-Print Network [OSTI]

per unit mass E Young's modulus of elasticity, ( )KGGK 39 + f force per unit volume FD drag force Fo Fourier number, 2 Dt G shear modulus of elasticity * Corresponding author. Tel.: +1-801-585-9730; fax: +1 moment of inertia K bulk modulus of elasticity rsK momentum exchange coefficient slip rsK slip flow

Utah, University of

293

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

Broader source: Energy.gov [DOE]

Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

294

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network [OSTI]

is subjected to a periodic increase and decrease in cross-section area. Such conditions are frequently observed in the flow of blood through blood vessels, movement of lubricating oils through the ground during the oil extraction process, in the process...

Aiyalur Shankaran, Rohit

2009-05-15T23:59:59.000Z

295

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network [OSTI]

is subjected to a periodic increase and decrease in cross-section area. Such conditions are frequently observed in the flow of blood through blood vessels, movement of lubricating oils through the ground during the oil extraction process, in the process...

Aiyalur Shankaran, Rohit

2008-10-10T23:59:59.000Z

296

Different approximations of shallow fluid flow over an obstacle B. T. Nadiga and L. G. Margolin  

E-Print Network [OSTI]

sets of shallow water equations, representing different levels of approximation are considered the dispersive shallow water DSW solutions and those of the highly simplified, hyperbolic shallow water SW; it is only when the flows are entirely subcritical or entirely supercritical and when the obstacles are very

Nadiga, Balasubramanya T. "Balu"

297

Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential  

E-Print Network [OSTI]

, 2002. 1. Introduction [2] Detecting subsurface groundwater circulation using geophysical methods to result from the electrokinetic coupling associated with a vertical groundwater flow connecting a constant pore pressure source to the bottom of the lakes. Numerical modeling indicates that the spatial

Adolphs, Ralph

298

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

299

Viscoelastic fluid flow in a 2D channel bounded above by a deformable finite thickness elastic wall  

E-Print Network [OSTI]

The steady flow of three viscoelastic fluids (Oldroyd-B, FENE-P, and Owens model for blood) in a two-dimensional channel, partly bound by a deformable, finite thickness neo-Hookean solid, is computed. The limiting Weissenberg number beyond which computations fail to converge is found to increase with increasing dimensionless solid elasticity parameter {\\Gamma}, following the trend Owens > FENE- P > Oldroyd-B. The highly shear thinning nature of Owens model leads to the elastic solid always collapsing into the channel, for the wide range of values of {\\Gamma} considered here. In the case of the FENE-P and Oldroyd-B models, however, the fluid-solid interface can be either within the channel, or bulge outwards, depending on the value of {\\Gamma}. This behaviour differs considerably from predictions of earlier models that treat the deformable solid as a zero-thickness membrane, in which case the membrane always lies within the channel. The capacity of the solid wall to support both pressure and shear stress, in c...

Chakraborty, Debadi

2015-01-01T23:59:59.000Z

300

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect (OSTI)

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution  

SciTech Connect (OSTI)

Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

Mukhopadhyay, Sumit; Tsang, Yvonne W.

2008-08-01T23:59:59.000Z

302

Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

303

Fluid dynamics of dilatant fluid  

E-Print Network [OSTI]

Dense mixture of granules and liquid often shows a sever shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, instantaneous hardening upon external impact. Analysis of the model reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits {\\it the shear thickening oscillation}, i.e. the oscillatory shear flow alternating between the thickened and the relaxed states. Results of numerical simulations are presented for one and two-dimensional systems.

Hiizu Nakanishi; Shin-ichiro Nagahiro; Namiko Mitarai

2011-12-20T23:59:59.000Z

304

Identification of fluid-flow paths in the Cerro Prieto geothermal field  

SciTech Connect (OSTI)

A hydrogeologic model of the Cerro Prieto geothermal field has been developed based on geophysical and lithologic well logs, downhole temperature, and well completion data from about 90 deep wells. The hot brines seem to originate in the eastern part of the field, flowing in a westward direction and rising through gaps in the shaly layers which otherwise act as partial caprocks to the geothermal resource.

Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.

1982-05-01T23:59:59.000Z

305

A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools  

SciTech Connect (OSTI)

MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

McHugh, P.R.; Ramshaw, J.D.

1991-11-01T23:59:59.000Z

306

Materials Science and Engineering B 117 (2005) 5361 Finite element analysis-based design of a fluid-flow control nano-valve  

E-Print Network [OSTI]

of a fluid-flow control nano-valve M. Grujicica,, G. Caoa, B. Pandurangana, W.N. Royb a Department A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction

Grujicic, Mica

307

Fluid dynamics of rivulet flow between plates W. Drenckhan, H. Ritacco, A. Saint-Jalmes, A. Saugey, P. McGuinness, A. van der Net, D. Langevin, and D.  

E-Print Network [OSTI]

spaced, vertical glass plates. Such a "rivulet" is bounded by two liquid/solid and two mobile liquid/gas interfaces, posing fluid dynamic problems of direct relevance to local fluid flow in liquid foams/liquid or liquid/gas interfaces, as found in foams and emulsions, which respond to flow by adjusting their shape

Paris-Sud XI, Université de

308

CFD evaluation of pipeline gas stratification at low fluid flow due to temperature effects  

E-Print Network [OSTI]

variance in chord averaged velocities is apparent at these conditions. CFD analysis was performed. Low flow velocities of 0.1524 m/sec, 0.3048 m/sec and 0.6096 m/sec and temperature differences of 5.5 o K, 13.8 o K and 27.7 o K were considered. When... with gas velocity below 0.6096 m/sec. v DEDICATION To my family for their love and support. vi ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Gerald Morrison for his valuable guidance and support. I...

Brar, Pardeep Singh

2005-02-17T23:59:59.000Z

309

A numerical study of steady fluid flow in the entry region of a straight circular tube  

E-Print Network [OSTI]

region. The Basic Equations The flow under i nves ti gati on is governed by the Navier-Stokes equations p ? = F - . + uv Du Dt x ax p ? = F - @uv v, Dv a A 2 Dt y ay (2) Dw= F ma+ Dt w as and the continuity equation "u av aw + ? = p ay... + w D a a a a Ut = at ax ay as and 2 a2 a2 a2 ax2 ay2 as2 Expressed in cylindrical form, the previous equations become 2 P = Fr M + & v V r e D Ve 2aV Dt r " ar r2ae DVe V Ve 2aV V p + ? = Fe - ~a + u & Ve + r - e Dt r rae (2a) F -22+ pv V...

Crain, John Kee

1967-01-01T23:59:59.000Z

310

3rd International symposium on fluid flow measurement effects of acoustic noise on orifice meters  

SciTech Connect (OSTI)

It is known that in-pipe acoustic noise can cause errors in orifice plate metering. The international metering community voted this topic as the highest priority for further research during a {open_quotes}working{close_quotes} held at N.T.I.S. in 1983. Most published work to date has been concerned with periodic, low frequency noise or pulsations, as encountered on reciprocating compressor installations where errors or their side effects may be readily noticed. Many orifice metering locations are, however, subject to high frequency noise emanating from control valves and centrifugal compressors. High frequency in-pipe noise is seldom suspected as a source of metering error and consequently it is a neglected topic. Square root error, which stems form the non-linear flow-differential pressure relationship of an orifice plate, has been well researched for low frequencies but the work has not been extended to high frequencies. To investigate this topic, high pressure studies at the British Gas Bishop Auckland Test Facility were carried out with a noise source (a pressure drop across a ball valve) and a 600 mm 0.4 {beta} orifice meter. These studies identified the effect of high frequency acoustic noise on orifice plate accuracy.

Norman, R.; Graham, P.; Drew, W.A. [Engineering Research Station, Newcastle Upon Tyne (United Kingdom)

1995-12-31T23:59:59.000Z

311

Fundamentals of Engineering (FE) Exam Fluid Mechanics Review  

E-Print Network [OSTI]

Fundamentals of Engineering (FE) Exam Fluid Mechanics Review Steven Burian Civil & Environmental Engineering March 22, 2013 #12;Morning (Fluid Mechanics) A. Flow measurement B. Fluid properties C. Fluid, and compressors K. Non-Newtonian flow L. Flow through packed beds Fluids and FE #12;#12;#12;Fluids § Fluids

Provancher, William

312

Rheology and microstructural evolution in pressure-driven flow of a magnetorheological fluid with strong particle-wall interactions  

E-Print Network [OSTI]

The interaction between magnetorheological (MR) fluid particles and the walls of the device that retain the field-responsive fluid is critical as this interaction provides the means for coupling the physical device to the ...

Ocalan, Murat

313

Large-eddy simulation of multiphase flows in complex combustors  

E-Print Network [OSTI]

Large-eddy simulation of multiphase flows in complex combustors S. V. Apte1 , K. Mahesh2 , F. Ham1 to accurately predict reacting multi-phase flows in practical combustors involving complex physical phenomena-turbine combustor geometries to evaluate the predictions made for multiphase, turbulent flow. 1 Introduction

Mahesh, Krishnan

314

Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation  

SciTech Connect (OSTI)

Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a â??sub-porosityâ?ť within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The â??sub-porosityâ?ť may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.

Pyrak-Nolte, Laura J. [Purdue University

2013-04-27T23:59:59.000Z

315

Lecture notes Introductory fluid mechanics  

E-Print Network [OSTI]

Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (22nd February 2013 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow 2.1 Flow A material essential to all modern car braking mechanisms. Fluids can be further subcatergorized. There are ideal

Malham, Simon J.A.

316

DEVELOPMENT OF PIV TECHNIQUE UNDER MAGNETIC FIELDS AND MEASUREMENT OF TURBULENT PIPE FLOW OF FLIBE SIMULANT FLUID  

E-Print Network [OSTI]

sufficiently large heat transfer using high Prandtl number fluid coolant, high turbulence is required, and the heat transfer characteristics of low Prandtl number fluids are con heat transfer (low film temperature drop) to cool first wall structures. In order to obtain

Abdou, Mohamed

317

Extended Sleeve Products Allow Control and Monitoring of Process Fluid Flows Inside Shielding, Behind Walls and Beneath Floors - 13041  

SciTech Connect (OSTI)

Throughout power generation, delivery and waste remediation, the ability to control process streams in difficult or impossible locations becomes increasingly necessary as the complexity of processes increases. Example applications include radioactive environments, inside concrete installations, buried in dirt, or inside a shielded or insulated pipe. In these situations, it is necessary to implement innovative solutions to tackle such issues as valve maintenance, valve control from remote locations, equipment cleaning in hazardous environments, and flow stream analysis. The Extended Sleeve family of products provides a scalable solution to tackle some of the most challenging applications in hazardous environments which require flow stream control and monitoring. The Extended Sleeve family of products is defined in three groups: Extended Sleeve (ESV), Extended Bonnet (EBV) and Instrument Enclosure (IE). Each of the products provides a variation on the same requirements: to provide access to the internals of a valve, or to monitor the fluid passing through the pipeline through shielding around the process pipe. The shielding can be as simple as a grout filled pipe covering a process pipe or as complex as a concrete deck protecting a room in which the valves and pipes pass through at varying elevations. Extended Sleeves are available between roughly 30 inches and 18 feet of distance between the pipeline centerline and the top of the surface to which it mounts. The Extended Sleeve provides features such as ± 1.5 inches of adjustment between the pipeline and deck location, internal flush capabilities, automatic alignment of the internal components during assembly and integrated actuator mounting pads. The Extended Bonnet is a shorter fixed height version of the Extended Sleeve which has a removable deck flange to facilitate installation through walls, and is delivered fully assembled. The Instrument Enclosure utilizes many of the same components as an Extended Sleeve, yet allows the installation of process monitoring instruments, such as a turbidity meter to be placed in the flow stream. The basis of the design is a valve body, which, rather than having a directly mounted bonnet has lengths of concentric pipe added, which move the bonnet away from the valve body. The pipe is conceptually similar to an oil field well, with the various strings of casing, and tubing installed. Each concentric pipe provides a required function, such as the outermost pipes, the valve sleeve and penetration sleeve, which provide structural support to the deck flange. For plug valve based designs, the next inner pipe provides compression on the environmental seals at the top of the body to bonnet joint, followed by the innermost pipe which provides rotation of the plug, in the same manner as an extended stem. Ball valve ESVs have an additional pipe to provide compressive loading on the stem packing. Due to the availability of standard pipe grades and weights, the product can be configured to fit a wide array of valve sizes, and application lengths, with current designs as short as seven inches and as tall as 18 feet. Central to the design is the requirement for no special tools or downhole tools to remove parts or configure the product. Off the shelf wrenches, sockets or other hand tools are all that is required. Compared to other products historically available, this design offers a lightweight option, which, while not as rigidly stiff, can deflect compliantly under extreme seismic loading, rather than break. Application conditions vary widely, as the base product is 316 and 304 stainless steel, but utilizes 17-4PH, and other allows as needed based on the temperature range and mechanical requirements. Existing designs are installed in applications as hot as 1400 deg. F, at low pressure, and separately in highly radioactive environments. The selection of plug versus ball valve, metal versus soft seats, and the material of the seals and seats is all dependent on the application requirements. The design of the Extended Sleeve family of products provid

Abbott, Mark W. [Flowserve Corporation, 1978 Foreman Drive Cookeville, TN 38506 (United States)] [Flowserve Corporation, 1978 Foreman Drive Cookeville, TN 38506 (United States)

2013-07-01T23:59:59.000Z

318

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows  

E-Print Network [OSTI]

surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause...

Jeon, Sae Il

2012-10-19T23:59:59.000Z

319

Spinning fluids reactor  

DOE Patents [OSTI]

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

320

Petrologic and stable isotopic evidence for reaction-enhanced fluid flow during metamorphism of Precambrian-Cambrian sedimentary rocks, Lone Mountain, Nevada  

SciTech Connect (OSTI)

Upper Precambrian to Cambrian sedimentary rocks, regionally metamorphosed during the Mesozoic to produce marbles and calc-silicate rocks, were contact metamorphosed at the end of the Cretaceous by the Lone Mountain granitic pluton. Mineral assemblages within the calc-silicates were in equilibrium with H[sub 2]O-rich fluids, while the marbles were in equilibrium with more CO[sub 2]-rich fluids. Mineralogical variation between two different calc-silicate lithologies is the result of differences in bulk rock chemical composition, which also results in differences in isotopic composition between the calc-silicate lithologies. delta O-18 and delta C-13 values show differences of greater than 6 and 4 per mil respectively across lithologic boundaries between interlayered calc-silicates and between interlayered marbles and calc-silicates. The absence of any systematic variation between delta O-18 and delta C-13 values in the calc-silicates suggests that isotopic variation due to decarbonation reactions was limited. The differences in mineralogy and isotopic composition indicate that permeability was enhanced by reaction, permitting the focused flow of fluid through the calc-silicates. Calculated mass balance variations in delta O-18 based on reaction space analysis and Rayleigh decarbonation cannot explain the observed variations of delta O-18, requiring infiltration of externally derived fluids, while the delta C-13 compositions in the calc-silicates can be explained by Rayleigh decarbonation alone.

Richards, I.J.; Labotka, T.C. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geochemical Sciences)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities  

E-Print Network [OSTI]

Flow regimes, local heat transfer coefficients, and temperature distributions along the wall have been studied for film boiling inside a vertical tube with upward flow of a saturated liquid. The area of interest has been ...

Dougall, R. S.

1963-01-01T23:59:59.000Z

322

Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics  

E-Print Network [OSTI]

We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

Jain, Antone Kumar

2009-01-01T23:59:59.000Z

323

The Effects of Fluid Flow On Shear Localization and Frictional Strength From Dynamic Models Of Fault Gouge During Earthquakes  

E-Print Network [OSTI]

have an increased localization toward the boundaries of the gouge layer (type III), and no occurrence of distributed (type I) shear. Systems with lower N and k show liquefaction events. Liquefaction events originate from increases in fluid pressure...

Bianco, Ronald

2013-12-02T23:59:59.000Z

324

An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization  

SciTech Connect (OSTI)

Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

McHugh, P.R.

1995-10-01T23:59:59.000Z

325

Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C  

SciTech Connect (OSTI)

This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

Vince Maio

2014-08-01T23:59:59.000Z

326

Internat. Congress on Science & Technology of Steelmaking, Charlotte, NC, May 9-12, AIST, Warrendale, PA, 2005, pp. 847-861. Modeling of Continuous-Casting Defects Related to Mold Fluid Flow  

E-Print Network [OSTI]

that is neither too cold nor too turbulent. In addition, the flow conditions should minimize exposure to air optimization. Fluid flow in the mold is controlled by many design parameters and operating conditions. Nozzle geometry is the most important, and includes the bore size, port angle, port opening size, nozzle wall

Thomas, Brian G.

327

Solutions Manual x Fluid Mechanics, Fifth Edition190 Solution: (a) For incompressible flow, the volume flow is the same at piston and exit  

E-Print Network [OSTI]

, the volume flow is the same at piston and exit: 3 3 2 1 1 16 0.366 (0.75 ) , . (a) 4 piston cm in Q A V in V solve V Ans s s S in 0.83 s (b) If there is 10% leakage, the piston must deliver both needle flow

Bahrami, Majid

328

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect (OSTI)

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

329

Lecture notes Introductory fluid mechanics  

E-Print Network [OSTI]

Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (17th March 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

Malham, Simon J.A.

330

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

331

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network [OSTI]

with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning management for the evaluation of the Yucca Mountain site as a repository for nuclear wastes. In this context of developing a 3D flow model of the Yucca Mountain site, involving computational grids of to blocks

Elmroth, Erik

332

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network [OSTI]

6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid of Energy's civilian nuclear waste management for the evaluation of the Yucca Mountain site as a repository is currently in charge of developing a 3D flow model of the Yucca Mountain site, involving computational grids

Elmroth, Erik

333

Finite element simulation of electrorheological fluids  

E-Print Network [OSTI]

Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

Rhyou, Chanryeol, 1973-

2005-01-01T23:59:59.000Z

334

A two-dimensional fluid-structure coupling algorithm for the interaction of high-speed flows with open shells  

E-Print Network [OSTI]

The design of future light aerospace structures will require numerical tools to accurately describe the strongly coupled dynamics of the interactions between a light structure and a flow surrounding it. Specific examples ...

Tam, Daniel See Wai, 1980-

2004-01-01T23:59:59.000Z

335

Laminar Flow Forced Convection Heat Transfer Behavior of Phase Change Material Fluid in Straight and Staggered Pin Microchannels  

E-Print Network [OSTI]

? Density Subscripts b Bulk i Inlet w Wall 1 Start of melting 2 End of melting Superscripts `` Flux - Average Acronyms CHF Constant heat glux CWT Constant wall temperature PCM Phase change material ix TABLE...:8 microchannel under T boundary condition .............. 52 Figure 32 Nusselt number for square pins geometry using CHF boundary condition ... 55 Figure 33 Nusselt number for circular pins geometry using CHF boundary condition . 55 Figure 34 Fluid...

Kondle, Satyanarayana

2011-10-21T23:59:59.000Z

336

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

337

Ultrasonic fluid quality sensor system  

DOE Patents [OSTI]

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-10-08T23:59:59.000Z

338

Ultrasonic Fluid Quality Sensor System  

DOE Patents [OSTI]

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2003-10-21T23:59:59.000Z

339

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

340

Pore-scale characteristics of multiphase flow in porous media: A comparison of airwater and oilwater experiments  

E-Print Network [OSTI]

Pore-scale characteristics of multiphase flow in porous media: A comparison of air­water and oil area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow Ltd. All rights reserved. Keywords: Multi-phase flow; NAPLs; Porous media; Microtomography

Wildenschild, Dorthe

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

342

A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows  

E-Print Network [OSTI]

& Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China a r t i c l e i n f o processes such as chemical reactor, power plant, copper refining and internal combustion engine developed to simulate complex two-phase flow problems. The most important methods include the front tracking

Frey, Pascal

343

Low Speed Virtual Wind Tunnel Simulation For Educational Studies In Introducing Computational Fluid Dynamics And Flow Visualization  

E-Print Network [OSTI]

............................................................................................................... 25 3.2.4. Starting FlowLab ...................................................................................................................... 26 3.2.5. Geometry Settings... OF THE PROGRAMMING....................................................................... 52 v List of Figures FIGURE 2.1 ? COST AND TIME RELATIONSHIP WITH RESPECT TO CFD AND WIND TUNNELS............................. 5 FIGURE 2.2 - BOEING 777 DESIGN...

Yang, Cher-Chiang

2008-05-05T23:59:59.000Z

344

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network [OSTI]

, a measure of the flow conductance of the solid matrix, depends on several factors including: porosity, particles shape and size distribution and particles arrangement. The permeability is calculated either dates back to experimental works of Carman [5] and Sullivan [6] in 1940s and theoretical analyses

Bahrami, Majid

345

Simulation of fluid flow mechanisms in high permeability zones (Super-K) in a giant naturally fractured carbonate reservoir  

E-Print Network [OSTI]

and fractures were treated as two systems. Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better...

Abu-Hassoun, Amer H.

2009-05-15T23:59:59.000Z

346

J. Non-Newtonian Fluid Mech. 142 (2007) 135142 Cessation of annular Poiseuille flows of Bingham plastics  

E-Print Network [OSTI]

plastics Maria Chatziminaa, Christos Xenophontosa, Georgios C. Georgioua,, Ioannis Argyropaidasb, Evan plastics for various values of the diameter ratio, using the regularized constitutive equation proposed, 1984]. © 2006 Elsevier B.V. All rights reserved. Keywords: Annular Poiseuille flow; Bingham plastic

Georgiou, Georgios

2007-01-01T23:59:59.000Z

347

Investigating the changes in matrix and fracture properties and fluid flow under different stress-state conditions  

E-Print Network [OSTI]

pressure of 500 psi................................................................33 3.16 The average flow rate comparison between laboratory and simulation results at 5 cc/min and each different overburden pressure.............................35... .........................................................................................................87 xiii FIGURE Pa ge 5.28 Sample scans taken along the length of the core with 500 psi overburden pressure...

Muralidharan, Vivek

2004-11-15T23:59:59.000Z

348

Using x-ray microtomography and pore-scale modeling to quantify sediment mixing and fluid flow in a developing streambed  

SciTech Connect (OSTI)

X-ray micro-tomography (XMT), image processing, and lattice Boltzmann (LB) methods were combined to observe sediment mixing, subsurface structure, and patterns of hydrogeological properties associated with bed sediment transport. Transport and mixing of sand and spherical glass beads were observed in a laboratory flume, beginning from a well-defined layered initial condition. Cores were obtained from the streambed at four different times, and each core was scanned by XMT in order to assess the evolution of spatial patterns within the bed. Image analysis clearly revealed the propagation of a sediment mixing front that began at the bed surface. The image data were used as boundary conditions in 3D LB simulation of pore fluid flow, showing that sediment sorting produced strong vertical gradients in permeability near the streambed surface. This new methodological approach offers potential for greatly improved characterization of mixing and transport of fine sediments in a wide variety of aquatic systems.

Chen, Cheng; Packman, Aaron I.; Gaillard, Jean-Francois; (NWU)

2010-01-22T23:59:59.000Z

349

Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310  

SciTech Connect (OSTI)

Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2013-07-01T23:59:59.000Z

350

Flow control techniques for real-time media applications in best-effort networks using fluid models  

E-Print Network [OSTI]

at the application layer. An end-to-end ?uid model is used, including the source bu?er, the network and the destination bu?er. Traditional con- trol techniques, along with more advanced adaptive predictive control methods, are considered in order to provide... OF THE END-TO-END FLOW TRANSPORT SYSTEM : : : : : : : : : : : : : : : : : : : : : : 25 A. Source Bu?er Model . . . . . . . . . . . . . . . . . . . . . 25 B. Network Dynamic Model . . . . . . . . . . . . . . . . . . . 27 1. Time-Varying Time Delay Model...

Konstantinou, Apostolos

2004-11-15T23:59:59.000Z

351

Multiphase fluid characterization system  

DOE Patents [OSTI]

A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

Sinha, Dipen N.

2014-09-02T23:59:59.000Z

352

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1 WORDS: Multi­fluids, Two­phase flows, Embedded interfaces, Finite element method, Surface tension

Buscaglia, Gustavo C.

353

Bacteria in shear flow  

E-Print Network [OSTI]

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

354

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

355

NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows  

SciTech Connect (OSTI)

The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

Bouillard, J.X. [Argonne National Lab., IL (United States); Sinton, S.W. [Lockheed Missiles and Space Co., Palo Alto, CA (United States). Research Lab.

1995-02-01T23:59:59.000Z

356

Ultrasonic flow metering system  

DOE Patents [OSTI]

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

357

Fiber optic fluid detector  

DOE Patents [OSTI]

Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

Angel, S.M.

1987-02-27T23:59:59.000Z

358

Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes are the best and possibly the only...

359

Application of direct-fitting, mass-integral, and multi-ratemethods to analysis of flowing fluid electric conductivity logs fromHoronobe, Japan  

SciTech Connect (OSTI)

The flowing fluid electric conductivity (FFEC) loggingmethod is an efficient way to provide information on the depths,salinities, and transmissivities of individual conductive featuresintercepted by a borehole, without the use of specialized probes. Usingit in a multiple-flow-rate mode allows, in addition, an estimate of theinherent "far-field" pressure heads in each of the conductive features.The multi-rate method was successfully applied to a 500-m borehole in agranitic formation and reported recently. The present paper presents theapplication of the method to two zones within a 1000-m borehole insedimentary rock, which produced, for each zone, three sets of logs atdifferent pumping rates, each set measured over a period of about oneday. The data sets involve a number of complications, such as variablewell diameter, free water table decline in the well, and effects ofdrilling mud. To analyze data from this borehole, we apply varioustechniques that have been developed for analyzing FFEC logs:direct-fitting, mass-integral, and the multi-rate method mentioned above.In spite of complications associated with the tests, analysis of the datais able to identify 44 hydraulically conducting fractures distributedover the depth interval 150-775 meters below ground surface. Thesalinities (in FEC), and transmissivities and pressure heads (indimensionless form) of these 44 features are obtained and found to varysignificantly among one another. These results are compared with datafrom eight packer tests with packer intervals of 10-80 m, which wereconducted in this borehole over the same depth interval. They are foundto be consistent with these independent packer-test data, thusdemonstrating the robustness of the FFEC logging method under non-idealconditions.

Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S.; Kurikami, H.

2007-08-01T23:59:59.000Z

360

USER’S GUIDE of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0  

SciTech Connect (OSTI)

TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

Xiong, Yi [Colorado School of Mines; Fakcharoenphol, Perapon [Colorado School of Mines; Wang, Shihao [Colorado School of Mines; Winterfeld, Philip H. [Colorado School of Mines; Zhang, Keni [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

362

Fluid varieties  

E-Print Network [OSTI]

We invent the notion of a derived and fluid variety. Fluid variety has no proper derived variety as its subvariety. We examine some properties of fluid and derived varieties. Examples of such varieties of bands are presented.

Ewa Graczynska; Dietmar Schweigert

2005-07-01T23:59:59.000Z

363

Department of Chemical Engineering Thermal and Flow Engineering Laboratory  

E-Print Network [OSTI]

Aug.2013 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

Zevenhoven, Ron

364

Department of Chemical Engineering Thermal and Flow Engineering Laboratory  

E-Print Network [OSTI]

August 12 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

Zevenhoven, Ron

365

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

366

Valve for fluid control  

DOE Patents [OSTI]

A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

367

Variable flexure-based fluid filter  

DOE Patents [OSTI]

An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

2007-03-13T23:59:59.000Z

368

Multi-Phased, Post-Accident Support of the Fukushima Dai-Ichi Nuclear Power Plant - 12246  

SciTech Connect (OSTI)

In the wake of the March 11 earthquake and tsunami and the subsequent flooding of several of the Fukushima Dai-Ichi reactors, Japan and the Japanese utility TEPCO faced a crisis situation with incredible challenges: substantial amounts of radioactive mixed seawater and freshwater accumulated in the basements of four reactor and other buildings on the site. This water held varying levels of contamination due to the fact that it had been in contact with damaged fuel elements in the cores and with other contaminated components. The overall water inventory was estimated at around 110,000 tons of water with contamination levels up to the order of 1 Ci/l. Time was of the essence to avoid overflow of this accumulated water into the ocean. AREVA proposed, designed and implemented a water treatment solution using a proven chemical coprecipitation process with ppFeNi reagent, which is currently in use for effluent treatment on several nuclear sites including AREVA sites. In addition to the extremely short schedule the other challenge was to adapt the chemical treatment process to the expected composition of the Fukushima water and, in particular, to evaluate the impact of salinity on process performance. It was also necessary to define operating conditions for the VEOLIA equipment that had been selected for implementation of the process in the future facility. The operation phase began on June 17, and by the end of July more than 30,000 tons of highly radioactive saltwater had been decontaminated - the Decontamination Factor (DF) for Cesium was ?10{sup 4}. It allowed recycling the contaminated water to cool the reactors while protecting workers and the environment. This paper focuses on the Actiflo{sup TM}-Rad water treatment unit project that was part of the TEPCO general water treatment scheme. It presents a detailed look at the principles of the Actiflo{sup TM}-Rad, related on-the-fly R and D, an explanation of system implementation challenges, and a brief summary of operation results to date. AREVA's response to the Fukushima Dai-Ichi crisis was multi-phased: emergency aid and relief supply was sent within days after the accident; AREVA-Veolia engineering teams designed and implemented a water treatment solution in record time, only 3 months; and AREVA continues to support TEPCO and propose solutions for waste management, soil remediation and decontamination of the Fukushima Dai-Ichi site. Despite the huge challenges, the Actiflo{sup TM}-Rad project has been a success: the water treatment unit started on time and performed as expected. The performance is the result of many key elements: AREVA expertise in radioactive effluents decontamination, Veolia know-how in water treatment equipments in crisis environment, and of course AREVA and Veolia teams' creativity. The project success is also due to AREVA and Veolia teams' reactivity and high level of commitment with engineering teams working 24/7 in Japan, France and Germany. AREVA and Veolia deep knowledge of the Japanese industry ensured that the multi-cultural exchanges were not an issue. Finally the excellent overall project management and execution by TEPCO and other Japanese stakeholders was very efficient. The emergency water treatment was a key step of the roadmap towards restoration from the accident at Fukushima Dai-Ichi that TEPCO designed and keeps executing with success. (authors)

Gay, Arnaud; Gillet, Philippe; Ytournel, Bertrand; Varet, Thierry; David, Laurent; Prevost, Thierry; Redonnet, Carol; Piot, Gregoire; Jouaville, Stephane; Pagis, Georges [AREVA NC (France)

2012-07-01T23:59:59.000Z

369

A real two-phase submarine debris flow and tsunami  

SciTech Connect (OSTI)

The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.

Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

2012-09-26T23:59:59.000Z

370

Direct numerical simulation of a reacting turbulent channel flow with thermo-chemical ablation  

E-Print Network [OSTI]

species; 2) pyrolysis of the composite material resin (series of chemical reactions arising and multicompo- nent physics, multi-phase flow dynamics, thermo-structural mechanics of composite materials attack. Graphite and carbon-carbon composites are widely used because they offer excellent thermo

Nicoud, Franck

371

Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions  

E-Print Network [OSTI]

for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...

Ali, Muhammad

2014-04-22T23:59:59.000Z

372

Journal of Fluid Mechanics A furtive stare at an  

E-Print Network [OSTI]

Journal of Fluid Mechanics Focus luids on F A furtive stare at an intra-cellular flow T. M. SQUIRES of the fluid flow within individual living cells, which agree quantitatively with their fluid mechanical model. Introduction Nature has long inspired researchers in fluid mechanics to explore the mechanical strategies used

Goldstein, Raymond E.

373

COMPUTATIONAL FLUID DYNAMICS INCOMPRESSIBLE FLOW  

E-Print Network [OSTI]

to numerically solve the Euler equations in order to predict effects of bomb blast waves following WW II­71, and was published the following year [1]. Computing power at that time was still grossly inadequate for what we.S., in Europe (especially France, Great Britain and Sweden) and in the (former) Soviet Union. Today

McDonough, James M.

374

Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics  

E-Print Network [OSTI]

Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ă?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ă?bo Akademi Univ - Thermal and Flow Engineering

Zevenhoven, Ron

375

Fluid Mixing from Viscous Fingering  

E-Print Network [OSTI]

Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

Jha, Birendra

376

Basic fluid system trainer  

DOE Patents [OSTI]

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

377

Multiple source/multiple target fluid transfer apparatus  

DOE Patents [OSTI]

A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

Turner, Terry D. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

378

Multiple source/multiple target fluid transfer apparatus  

DOE Patents [OSTI]

A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

Turner, T.D.

1997-08-26T23:59:59.000Z

379

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

380

hal-00145315,version3-2Aug2007 Viscous potential free-surface flows in a fluid layer of finite depth  

E-Print Network [OSTI]

´equations. Key words: potential flow, free-surface flow, viscosity, dissipation, water waves, wave damping-surface elevation. A new predominant nonlocal viscous term is derived in the bottom kinematic boundary condition potential flow theories [7]. Corresponding long wave model equations are derived. R´esum´e Ecoulements

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Using Stochastic Discounted Cash Flow and Real Option Monte Carlo Simulation to Analyse the Impacts of Contingent Taxes on  

E-Print Network [OSTI]

on the economics of their projects. This paper examines the valuation of a multi-phase copper-gold project to government, smelters and refineries, creditors and equity. Non-linear cash flows have a curved or `kinked of a copper-gold project. An analysis of the recent Mongolian windfall tax illustrates how tax changes affect

382

MECH 502: Fluid Mechanics Winter semester 2010  

E-Print Network [OSTI]

MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow

383

Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle  

SciTech Connect (OSTI)

Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

Hosni, Mohammad H.

2014-03-30T23:59:59.000Z

384

Spreading of viscous fluids and granular materials on slopes  

E-Print Network [OSTI]

advance of long lava flows is studied by considering the flow of viscous fluid released on sloping channels. A scaling analysis, in agreement with analog experiments and field data, offers a practical tool for predicting the advance of lava flows...

Takagi, Daisuke

2010-11-16T23:59:59.000Z

385

Compressor bleed cooling fluid feed system  

DOE Patents [OSTI]

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

386

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light  

E-Print Network [OSTI]

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

Paris-Sud XI, Université de

387

Euler's fluid equations: Optimal Control vs Optimization  

E-Print Network [OSTI]

An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

Darryl D. Holm

2009-09-28T23:59:59.000Z

388

Microelectromechanical flow control apparatus  

DOE Patents [OSTI]

A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

Okandan, Murat (NE Albuquerque, NM)

2009-06-02T23:59:59.000Z

389

Fluid inflation  

SciTech Connect (OSTI)

In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

Chen, X. [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Firouzjahi, H. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, M.H. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, M., E-mail: x.chen@damtp.cam.ac.uk, E-mail: firouz@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2013-09-01T23:59:59.000Z

390

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

391

Periodic Exponential Shear of Complex Fluids  

E-Print Network [OSTI]

We define a class of flows with exponential kinematics termed Periodic Exponential Shear (PES) flow which involve periodic exponential stretching of fluid elements along with their rotation. We exhibit analytical and numerical results for PES flow by using the Oldroyd-B model for viscoelastic fluids. We calculate the growth in the shear and the normal stresses analytically as well as demonstrate that repeated application of the flow leads to stable oscillatory shear and normal stresses. We define a material function applicable to a periodic, unsteady shear flow and show numerically that this material function exhibits deformation-rate thickening behavior for viscoelastic fluids subject to PES flow. We demonstrate the feasibility of PES flow by presenting preliminary experimental results from a controlled-strain rate rheometer, using a Newtonian mineral oil.

Chirag Kalelkar; Gareth McKinley

2012-05-31T23:59:59.000Z

392

Noncommutative Fluids  

E-Print Network [OSTI]

We review the connection between noncommutative gauge theory, matrix models and fluid mechanical systems. The noncommutative Chern-Simons description of the quantum Hall effect and bosonization of collective fermion states are used as specific examples.

Alexios P. Polychronakos

2007-06-27T23:59:59.000Z

393

40th Fluid Dynamics Conference and Exhibit, 28 Jun -1 Jul 2010, Chicago, Illinois Transition of hypersonic flow past flat plate with  

E-Print Network [OSTI]

of hypersonic flow past flat plate with roughness elements Prahladh S Iyer , Suman Muppidi and Krishnan Mahesh and Astronautics #12;I. Introduction Studying laminar-turbulent transition in supersonic and hypersonic boundary-turbulent transition.2 Schneider3 gives a comprehensive review of the effects of roughness on hypersonic boundary layer

Mahesh, Krishnan

394

Numerical simulation of the fluid flow and heat transfer processes during scavenging in a two-stroke engine under steady-state conditions  

SciTech Connect (OSTI)

A numerical simulation of the scavenging process in a two-stroke flat-piston model engine has been developed. Air enters the cylinder circumferentially, inducting a three-dimensional turbulent swirling flow. The problem was modeled as a steady-state axisymmetric flow through a cylinder with uniform wall temperature. The steady-state regime was simulated by assuming the piston head fixed at the bottom dead center. The calculation was performed employing the {kappa}-{epsilon} model of turbulence. A comparison of the results obtained for the flow field with available experimental data showed very good agreement, and a comparison with an available numerical solution revealed superior results. The effects of the Reynolds number, inlet port angles, and engine geometry on the flow and in-cylinder heat transfer characteristics were investigated. The Nusselt number substantially increases with larger Reynolds numbers and a smaller bore-to-stroke ratio. It is shown that the positioning of the exhaust value(s) is the main parameter to control the scavenging process.

Castro Gouveia, M. de; Reis Parise, J.A. dos; Nieckele, A.O. (Pontificia Univ. Catolica, Rio de Janeiro (Brazil))

1992-05-01T23:59:59.000Z

395

Random walks and L'evy flights observed in fluid flows Eric R. Weeks \\Lambda and Harry L. Swinney \\Lambda\\Lambda  

E-Print Network [OSTI]

motion of the individual molecules in mixing dye to all parts of the system. When this stirring is random rotating tank filled with water to study the random walks of tracer particles in two different flows: one with coherent structures (vortices and jets), and one without (weakly turbulent). Most random walks

Texas at Austin. University of

396

Numerical Linear Algebra with Applications, Vol. 0(0), 0--0 (1996) The Potential Fluid Flow Problem and the Convergence  

E-Print Network [OSTI]

's law and the continuity equation is solved. Mixed­hybrid finite element formulation based on general residual method Rate of convergence Asymptotic convergence factor 1. Introduction The potential flow of polluted groundwater in porous media is usually modelled by a mixed or mixed­hybrid formulations which

TĂąma, Miroslav

397

Computational fluid dynamic applications  

SciTech Connect (OSTI)

The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

2000-04-03T23:59:59.000Z

398

Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals  

SciTech Connect (OSTI)

In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

2012-04-01T23:59:59.000Z

399

Three-Dimensional Characteristics of Post-CHF Behaviour Within a Rod Bundle for Loss-of-Flow Simulation: Experimental and Three-Fluid Porous Media Numerical Analyses  

SciTech Connect (OSTI)

The investigation of three-dimensional transient propagations of dry-out fronts within a nuclear fuel rod bundle is performed, based on experimental and numerical simulations. The spreading of Critical Heat Flux (CHF) fronts across a bundle, caused by sudden decrease of coolant mass flow rate followed by delayed gradual decrease of power generation is predicted, and the locus of dry patches is shown. Simultaneous occurrence of CHF and re-wet multi-fronts in here-analysed flow transient has not been detected so obvious as in power transient, previously analysed. Due to a possible building of a vapour zone, the CHF front spatial propagation has to be carefully analysed in transient conditions. (authors)

Stosic, Zoran V. [Framatome ANP GmbH, PO Box 3220, Erlangen, 91050 (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Tadashi Iguchi [Japan Atomic Energy Research Institute, Tokai-mura 319-1195 (Japan)

2002-07-01T23:59:59.000Z

400

Fluid jet electric discharge source  

DOE Patents [OSTI]

A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

Bender, Howard A. (Ripon, CA)

2006-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report  

SciTech Connect (OSTI)

An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

Celik, I.; Chattree, M.

1988-07-01T23:59:59.000Z

402

Flow cytometry apparatus  

DOE Patents [OSTI]

An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

Pinkel, Daniel (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

403

Fluid permeability measurement system and method  

DOE Patents [OSTI]

A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

2008-02-05T23:59:59.000Z

404

Multi-phase-center IFSAR.  

SciTech Connect (OSTI)

We present new methods for resolving IFSAR ambiguities and SAR layover. The analytic properties of these techniques make them well suited for reliable, efficient computation.

Bickel, Douglas Lloyd; DeLaurentis, John Morse

2006-01-01T23:59:59.000Z

405

Electric Power Generation from Coproduced Fluids from Oil and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

oil and gas settings. lowgosnoldcoproducedfluids.pdf More Documents & Publications Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical...

406

ascitic fluid analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period...

407

amniotic fluid index: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid Flows Physics (arXiv) Summary: Dow Jones Index time series exhibit irregular or fractal fluctuations on all time scales from days, months to years. The nonlinear...

408

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

409

Effects of interstitial flow on tumor cell migration  

E-Print Network [OSTI]

Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial ...

Polacheck, William J. (William Joseph)

2010-01-01T23:59:59.000Z

410

ANALYSIS OF TWO-PHASE FLOW MODELS WITH TWO MOMENTUM EQUATIONS.  

SciTech Connect (OSTI)

An analysis of the standard system of differential equations describing multi-speed flows of multi-phase media is performed. It is proved that the Cauchy problem, as posed in most best-estimate thermal-hydraulic codes, results in unstable solutions and potentially unreliable description of many physical phenomena. A system of equations, free from instability effects, is developed allowing more rigorous numerical modeling.

KROSHILIN,A.E.KROSHILIN,V.E.KOHUT,P.

2004-03-15T23:59:59.000Z

411

R fluids  

E-Print Network [OSTI]

A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

R. Caimmi

2007-10-20T23:59:59.000Z

412

Diffusion driven object propulsion in density stratified fluids  

E-Print Network [OSTI]

An experimental study was conducted in order to verify the appropriateness of a two dimensional model of the flow creating diffusion driven object propulsion in density stratified fluids. Initial flow field experiments ...

Lenahan, Conor (Conor P.)

2009-01-01T23:59:59.000Z

413

Locomotion in complex fluids: Integral theorems  

E-Print Network [OSTI]

The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

Eric Lauga

2014-10-15T23:59:59.000Z

414

SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS  

SciTech Connect (OSTI)

A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

Caughey, David

2010-10-08T23:59:59.000Z

415

Fuel cell membrane hydration and fluid metering  

DOE Patents [OSTI]

A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

2003-01-01T23:59:59.000Z

416

Fluid extraction  

DOE Patents [OSTI]

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

417

A study of a flapping flag in viscoelastic fluids and its implications for micro-scale swimming in biofluids  

E-Print Network [OSTI]

Biological cells and organisms employ a different method of propulsion when in viscous, viscolelastic fluids rather than Newtonian fluids. By studying the dynamics of a flag under a flow of a viscoelastic fluid, we hope ...

Fellman, Batya A. (Batya Ayala)

2008-01-01T23:59:59.000Z

418

BEE 331. Bio-Fluid Mechanics Fall Semester 2005  

E-Print Network [OSTI]

BEE 331. Bio-Fluid Mechanics Fall Semester 2005 1. Course Outcomes: Outcome 1. Learn the principles of fluid hydrostatics and dynamics in biological systems. Assessment Metrics: Home work assignments 1, 2. Become familiar with methods of measuring fluid flow. Assessment Metrics: Homework assignments: 2

Walter, M.Todd

419

Ambient fluid motions influence swimming and feeding by the ctenophore  

E-Print Network [OSTI]

current erosion and fluid mechanical signal noise within turbulent flows affect the mechanics of predatorAmbient fluid motions influence swimming and feeding by the ctenophore Mnemiopsis leidyi KELLY R) fluid interactions during feeding by the lobate ctenophore, Mnemiopsis leidyi, a highly successful

Dabiri, John O.

420

Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002  

SciTech Connect (OSTI)

The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E. (INEEL); Shenoy, A.; Baccaglini, G. (General Atomics); Pletcher, R.H. (Iowa State U.); Wallace, J.M.; Vukoslavcevic, P. (U. Maryland); Jackson, J.D. (U. Manchester, UK); Kunugi, T. (Kyoto U., Japan); Satake, S.-i. (Tokyo U. Science, Japan)

2002-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

422

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network [OSTI]

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

423

Pressure balanced drag turbine mass flow meter  

DOE Patents [OSTI]

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, M.W.; Cole, J.H.

1980-04-23T23:59:59.000Z

424

Pressure balanced drag turbine mass flow meter  

DOE Patents [OSTI]

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, Michael W. (Gilbert, AR); Cole, Jack H. (Fayetteville, AR)

1982-01-01T23:59:59.000Z

425

Isotropic singularities in shear-free perfect fluid cosmologies  

E-Print Network [OSTI]

We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.

Geoffery Ericksson; Susan M. Scott

2001-08-02T23:59:59.000Z

426

Determination of several variables affecting laboratory measurements of cross-linked fracture fluids  

E-Print Network [OSTI]

SHEAR RATE o) PSEUDOPLASTIC NEWTONIAN SHEAR RATE b) Figure 3 ? Fluid Flow Behavior shear rate. These fluids are also called shear-thinning fluids. The power law (Ostwald-dewaele) model is the most popular model used to describe the flow behavior...

Wilson, Matilda Jane

1982-01-01T23:59:59.000Z

427

Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials  

E-Print Network [OSTI]

on their mechanical properties and the speed of the incident fluid flow. Therefore, a flow impinging on the systemHarnessing fluid-structure interactions to design self-regulating acoustic metamaterials Filippo defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept

428

Electrokinetic micro-fluid mixer  

DOE Patents [OSTI]

A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

429

Suggested Courses for ME Students Interested in Thermal/Fluids Sciences: Required courses  

E-Print Network [OSTI]

­ Intro Thermal Fluids Engineering (2 credits) Basics of thermodynamics, fluid mechanics, and heat and engineering concepts introduced in thermodynamics, fluid mechanics, and heat transfer with applications) Course designed to build upon and broaden a basic traditional engineering knowledge of fluid flows

Virginia Tech

430

Fluid Inclusion Gas Analysis  

SciTech Connect (OSTI)

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

431

Fluid Inclusion Gas Analysis  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

432

Fluid Dynamics in Sucker Rod Pumps  

SciTech Connect (OSTI)

Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

Cutler, R.P.; Mansure, A.J.

1999-01-14T23:59:59.000Z

433

Radial flow pulse jet mixer  

DOE Patents [OSTI]

The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

VanOsdol, John G.

2013-06-25T23:59:59.000Z

434

Chemically Reactive Working Fluids  

Broader source: Energy.gov (indexed) [DOE]

commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

435

Simulating Fluids Exhibiting Microstructure  

E-Print Network [OSTI]

... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial macroscopic behavior due to interactions occurring on micro/mesoscopic scales.

436

Resistance of louvers to fluid flow  

E-Print Network [OSTI]

, 994 0 ~ 986 0 e994 0 ~ 994 4522 29 88 2539 1V86 824 2979 2510 1507 996 846 595 275 993 837 32~780 21~697 18' 436 12, 985 5, 998 16 ' 030 13 ' 526 0. 602 0, 262 0. 197 0. 100 0. 023 0 ~ 284 0 ~ 211 2. 290 2. 279 2. 374 2. 434...

Bevier, Charles Wayland

2012-06-07T23:59:59.000Z

437

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

438

RESEARCH ARTICLE Time resolved measurements of the flow generated  

E-Print Network [OSTI]

relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities. The flow is interesting from a fluid mechanical perspective as it includes high spatial gradients-structure interactions. Forces are a function of the biomechanical forces within the fish and the fluid mechanical

Wainwright, Peter C.

439

SHORT-TUBE SUBCRITICAL FLOW Enerag Division  

E-Print Network [OSTI]

#12;SHORT-TUBE SUBCRITICAL FLOW Y. C. Mei Enerag Division Oak Ridge National Laboratory Oak Ridge-tube subcritical flow. For short tubes used as refrigerant expansion devices, the orifice model is found inadequate-TUBE SUBCRITICAL FLOW INTRODUCTION Much theoretical and experimental work regarding short tube fluid flow has

Oak Ridge National Laboratory

440

Holographic Fluids with Vorticity and Analogue Gravity  

E-Print Network [OSTI]

We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

Robert G. Leigh; Anastasios C. Petkou; P. Marios Petropoulos

2012-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pumping viscoelastic two-fluid media  

E-Print Network [OSTI]

Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

Hirofumi Wada

2010-04-08T23:59:59.000Z

442

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

443

Methods of conveying fluids and methods of sublimating solid particles  

DOE Patents [OSTI]

A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

Turner, Terry D; Wilding, Bruce M

2013-10-01T23:59:59.000Z

444

Selfgravitation in a general-relativistic accretion of steady fluids  

E-Print Network [OSTI]

The selfgravity of an infalling gas can alter significantly the accretion of gases. In the case of spherically symmetric steady flows of polytropic perfect fluids the mass accretion rate achieves maximal value when the mass of the fluid is 1/3 of the total mass. There are two weakly accreting regimes, one over-abundant and the other poor in fluid content. The analysis within the newtonian gravity suggests that selfgravitating fluids can be unstable, in contrast to the accretion of test fluids.

Bogusz Kinasiewicz; Patryk Mach; Edward Malec

2006-06-20T23:59:59.000Z

445

Lattice Versus Lennard-Jones Models with a Net Particle Flow  

E-Print Network [OSTI]

. Such phenomenol- ogy occurs in flowing fluids [3], and during phase separation in colloidal [4], granular [5, 6

Garrido, Pedro L.

446

Fluid transport container  

DOE Patents [OSTI]

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

447

System and method for improving performance of a fluid sensor for an internal combustion engine  

DOE Patents [OSTI]

A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

Kubinski, David (Canton, MI); Zawacki, Garry (Livonia, MI)

2009-03-03T23:59:59.000Z

448

Nonlinear effects on interfacial wave growth into slug flow  

E-Print Network [OSTI]

It is known that when two fluids flow through a horizontal channel, depending on the relative velocity between the two fluids, two different instability mechanisms can create initial wave disturbances on the interface: the ...

Campbell, Bryce K

2009-01-01T23:59:59.000Z

449

Microscale fluid transport using optically controlled marangoni effect  

DOE Patents [OSTI]

Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

Thundat, Thomas G (Knoxville, TN); Passian, Ali (Knoxville, TN); Farahi, Rubye H (Oak Ridge, TN)

2011-05-10T23:59:59.000Z

450

Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids  

DOE Patents [OSTI]

An apparatus and method for continuous separation of magnetic particles from non-magnetic fluids including particular rods, magnetic fields and flow arrangements.

Oder, Robin R. (Export, PA); Jamison, Russell E. (Burrell, PA)

2011-11-08T23:59:59.000Z

451

Properties of CO2-Rich Pore Fluids and Their Effect on Porosity...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs An integrated experimental and numerical...

452

Multiscale Simulations for Polymeric Flow  

E-Print Network [OSTI]

Multiscale simulation methods have been developed based on the local stress sampling strategy and applied to three flow problems with different difficulty levels: (a) general flow problems of simple fluids, (b) parallel (one-dimensional) flow problems of polymeric liquids, and (c) general (two- or three-dimensional) flow problems of polymeric liquids. In our multiscale methods, the local stress of each fluid element is calculated directly by performing microscopic or mesoscopic simulations according to the local flow quantities instead of using any constitutive relations. For simple fluids (a), such as the Lenard-Jones liquid, a multiscale method combining MD and CFD simulations is developed based on the local equilibrium assumption without memories of the flow history. (b), the multiscale method is extended to take into account the memory effects that arise in hydrodynamic stress due to the slow relaxation of polymer-chain conformations. The memory of polymer dynamics on each fluid element is thus resolved by performing MD simulations in which cells are fixed at the mesh nodes of the CFD simulations.For general (two- or three-dimensional) flow problems of polymeric liquids (c), it is necessary to trace the history of microscopic information such as polymer-chain conformation, which carries the memories of past flow history, along the streamline of each fluid element. A Lagrangian-based CFD is thus implemented to correctly advect the polymer-chain conformation consistently with the flow. On each fluid element, coarse-grained polymer simulations are carried out to consider the dynamics of entangled polymer chains that show extremely slow relaxation compared to microscopic time scales.

Takahiro Murashima; Takashi Taniguchi; Ryoichi Yamamoto; Shugo Yasuda

2011-01-06T23:59:59.000Z

453

2.25 Advanced Fluid Mechanics, Fall 2002  

E-Print Network [OSTI]

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. ...

Sonin, A. A.

454

The effect of lymphatic fluid protein concentration on lymphatic resistance  

E-Print Network [OSTI]

were manipulated by altering the height of the outflow port. Two fluids - lactated Ringers solution and 6% albumin in lactated Ringers solution - were introduced alternately into the vessels. Flow through the vessel was determined for several pressure...

Walker, Ellen Marie

2013-02-22T23:59:59.000Z

455

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network [OSTI]

Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

Franke, Rudiger

2010-01-01T23:59:59.000Z

456

Heat Transfer in Complex Fluids  

SciTech Connect (OSTI)

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

457

Graduate Studies Environmental Fluid Mechanics  

E-Print Network [OSTI]

Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering GRADUATE COURSESResourcesManagement · IntermediateFluidMechanics · AdvancedFluidMechanics · EnvironmentalFluidMechanics · AdvancedEnvironmental FluidMechanics · FluidMechanicsofOrganisms · OpenChannelHydraulics · SedimentTransport · ComputationalFluidMechanics

Storici, Francesca

458

A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS  

SciTech Connect (OSTI)

A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory

2007-10-16T23:59:59.000Z

459

Fundamental studies of fluid mechanics and stability in porous media  

SciTech Connect (OSTI)

This report summarizes accomplished and proposed work for the fundamental studies of fluid mechanics and stability in porous media. Topics discussed include: viscous fingering in miscible displacements; polymer flow interactions in free shear layers of viscoelastic fluids; effect of nonmonotonic viscosity profiles on the stability of miscible displacements in porous media; and references. (JL)

Homsy, G.M.

1991-08-01T23:59:59.000Z

460

Shear-induced sedimentation in yield stress fluids Guillaume Ovarlez  

E-Print Network [OSTI]

if a given material will remain ho- mogeneous during a flow. Using MRI techniques, we study the time the local shear rate in the interstitial fluid. Keywords: Sedimentation; Yield stress fluid; Suspension; MRI some lift or dispersion forces to the particles. This principle is typically used in fluidization

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fluid&ParticulateSystems 424514/2010  

E-Print Network [OSTI]

wall thickness m E d c 1 speed of sound in the liquid in tube m/s cwp 0 speed: Internal energy: Kinetic energy: Neglected at non-compressible flow when assuming that the liquid mass: The kinetic energy of the liquid in motion will compress the fluid and expand the pipe (a slightly bigger

Zevenhoven, Ron

462

New boundary conditions for granular fluids  

E-Print Network [OSTI]

We present experimental evidence, which contradicts the the standard boundary conditions used in continuum theories of non-cohesive granular flows for the velocity normal to a boundary u.n=0, where n points into the fluid. We propose and experimentally verify a new boundary condition for u.n, based on the observation that the boundary cannot exert a tension force Fb on the fluid. The new boundary condition is u.n=0 if Fb.n>=0 else n.P.n=0, where P is the pressure tensor. This is the analog of cavitation in ordinary fluids, but due the lack of attractive forces and dissipation it occurs frequently in granular flows.

Mark D. Shattuck

2007-03-22T23:59:59.000Z

463

Piezoelectric axial flow microvalve  

SciTech Connect (OSTI)

This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

2007-01-09T23:59:59.000Z

464

Classification of Two-Phase Flow Patterns by Ultrasonic Sensing  

E-Print Network [OSTI]

in addition to several other factors such as the bulk flow rate, fluid properties, and flow boundary conditions [1]. Characterization of flow patterns and identification of the associ- ated flow regimes instrumentation, both for void fraction identification and flow pattern classification. High-speed photog- raphy

Ray, Asok

465

Environmentally safe fluid extractor  

DOE Patents [OSTI]

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

466

Fluid sampling tool  

DOE Patents [OSTI]

The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

2001-09-25T23:59:59.000Z

467

Viscous fluid dynamics  

E-Print Network [OSTI]

We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

A. K. Chaudhuri

2007-03-12T23:59:59.000Z

468

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

469

15th INT SYMP ON APPLICATIONS OF LASER TECHNIQUES TO FLUID MECHANICS Lisbon, Portugal, 05-08 July, 2010 # 1647  

E-Print Network [OSTI]

15th INT SYMP ON APPLICATIONS OF LASER TECHNIQUES TO FLUID MECHANICS Lisbon, Portugal, 05-08 July in "15th International Symposium on Applications of Laser Techniques in Fluid Mechanics, Lisbonne scientific studies of fluid flow. Dominant coherent structures are defined as organized fluid elements

Boyer, Edmond

470

High-Fidelity Simulation of Complex Suspension Flow for Practical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to develop a fundamental framework to understand important physical mechanisms that control the flow of such complex fluid systems. Results from this study will advance the...

471

Light propagation around a relativistic vortex flow of dielectric medium  

E-Print Network [OSTI]

We determine the path of the light around a dielectric vortex described by the relativistic vortex flow of a perfect fluid.

B. Linet

2000-11-06T23:59:59.000Z

472

Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media  

E-Print Network [OSTI]

, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park from civil and petro- leum engineering studies of fluid flow through packed soil beds with uniform

Mench, Matthew M.

473

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

2006-05-30T23:59:59.000Z

474

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2007-09-25T23:59:59.000Z

475

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

476

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

477

Graduate Studies Environmental Fluid Mechanics  

E-Print Network [OSTI]

Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING (EFMWR) The environmental fluid mechanics and water resources Environmental Fluid Mechanics and Hydraulic Engineering research focuses on turbulent entrainment, transport

Jacobs, Laurence J.

478

Method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

Sloan, Jr., Earle D. (Golden, CO)

1995-01-01T23:59:59.000Z

479

The mathematical structure of multiphase thermal models of flow in porous media  

E-Print Network [OSTI]

The mathematical structure of multiphase thermal models of flow in porous media By Daniel E.A. van with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow typical flow behaviour that occurs during fluid injection into a reservoir. Keywords: porous media flow

480

High precision high flow range control valve  

DOE Patents [OSTI]

A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

McCray, J.A.

1999-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Design rules for pumping and metering of highly viscous fluids in microfluidics  

E-Print Network [OSTI]

Design rules for pumping and metering of highly viscous fluids in microfluidics Sarah L. Perry.1039/c0lc00035c The use of fluids that are significantly more viscous than water in microfluidics has a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly

Kenis, Paul J. A.

482

Oil and Gas CDT What happens inside a frack? Particle-laden fluid transport in  

E-Print Network [OSTI]

such as food engineering where particle-laden fluids are common, to study the flow of particle-laden fluidsOil and Gas CDT What happens inside a frack? Particle-laden fluid transport in fracture networks. University of Strathclyde (Civil & Environmental Engineering and Chemical & Process Engineering) Supervisory

Henderson, Gideon

483

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications of Immersed Boundary Methods  

E-Print Network [OSTI]

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications-00983110,version1-25Apr2014 Author manuscript, published in "ASME Fluids Engineering Summer Meeting METHOD FOR SOLID-POROUS-FLUID MEDIA WITH APPLICATION TO PASSIVE FLOW CONTROL Chlo´e Mimeau Univ. Grenoble

Paris-Sud XI, Université de

484

Membrane fluids and Dirac membrane fluids  

E-Print Network [OSTI]

There are two different methods to describe membrane (string) fluids, which use different field content. The relation between the methods is clarified by construction of combined method. Dirac membrane field appears naturally in new approach. It provides a possibility to consider new aspects of electrodynamics-type theories with electric and magnetic sources. The membrane fluid models automatically prohibit simulatenos existence of electric and magnetic currents. Possible applications to the dark energy problem are mentioned.

M. G. Ivanov

2005-05-04T23:59:59.000Z

485

Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics  

E-Print Network [OSTI]

In this paper, a 3D Smooth Particle Hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow ...

Holmes, David W.

486

Optimizing interventions for the treatment of vascular flow disruptions  

E-Print Network [OSTI]

All tissues rely on perfusion and therefore intact blood flow. When flow is disrupted the coupled interaction between the functional and fluid domains of a tissue is impeded and viability is lost. Aortic stenosis is a ...

Boval, Brett Lawrence

2014-01-01T23:59:59.000Z

487

Theoretical uncertainty of orifice flow measurement  

SciTech Connect (OSTI)

Orifice meters are the most common meters used for fluid flow measurement, especially for measuring hydrocarbons. Meters are rugged, mechanically simple, and well suited for field use under extreme weather conditions. Because of their long history of use and dominance in the fluid flow measurement, their designs, installation requirements, and equations for flow rate calculation have been standardized by different organizations in the United States and internationally. These standards provide the guideline for the users to achieve accurate flow measurement. and minimize measurement uncertainty. This paper discusses different factors that contribute to the measurement inaccuracy and provide an awareness to minimize or eliminate these errors. Many factors which influence the overall measurement uncertainty are associated with the orifice meter application. Major contributors to measurement uncertainty include the predictability of flow profile, fluid properties at flowing condition, precision of empirical equation for discharge coefficient, manufacturing tolerances in meter components, and the uncertainty associated with secondary devices monitoring the static line pressure, differential pressure across the orifice plate, flowing temperature, etc. Major factors contributing to the measurement uncertainty for a thin, concentric, square-edged orifice flowmeter are as follows: (a) Tolerances in prediction of coefficient of discharge, (b) Predictability in defining the physical properties of the flowing fluid, (c) Fluid flow condition, (d) Construction tolerances in meter components, (e) Uncertainty of secondary devices/instrumentation, and (f) Data reduction and computation. Different factors under each of the above areas are discussed with precautionary measures and installation procedures to minimize or eliminate measurement uncertainty.

Husain, Z.D. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

488

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil

Daripa, Prabir

489

Thaw flow control for liquid heat transport systems  

DOE Patents [OSTI]

In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

Kirpich, Aaron S. (Broomall, PA)

1989-01-01T23:59:59.000Z

490

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

491

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010)  

E-Print Network [OSTI]

based on anisotropic mesh adaptation for solving two-fluid flows Thi Thu Cuc Bui1,,, P. Frey1,2 and B of the computational domain in the vicinity of the interface for better accuracy. Copyright 2010 John Wiley & Sons, Ltd@ann.jussieu.fr Contract/grant sponsor: French Centre National de la Recherche Scientifique Copyright 2010 John Wiley

Frey, Pascal

492

Methods for separating a fluid, and devices capable of separating a fluid  

DOE Patents [OSTI]

Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.

TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D

2013-05-14T23:59:59.000Z

493

Metalworking and machining fluids  

DOE Patents [OSTI]

Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

2010-10-12T23:59:59.000Z

494

Purely radiative perfect fluids  

E-Print Network [OSTI]

We study `purely radiative' (div E = div H = 0) and geodesic perfect fluids with non-constant pressure and show that the Bianchi class A perfect fluids can be uniquely characterized --modulo the class of purely electric and (pseudo-)spherically symmetric universes-- as those models for which the magnetic and electric part of the Weyl tensor and the shear are simultaneously diagonalizable. For the case of constant pressure the same conclusion holds provided one also assumes that the fluid is irrotational.

B. Bastiaensen; H. R. Karimian; N. Van den Bergh; L. Wylleman

2007-05-08T23:59:59.000Z

495

Drill pipe corrosion control using an inert drilling fluid  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.; Copass, K.S.

1981-01-01T23:59:59.000Z

496

MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS  

E-Print Network [OSTI]

MECH 386 ­ INDUSTRIAL FLUID MECHANICS 1 INDUSTRIAL FLUID MECHANICS MECH 386 Contact information Dr This course is an introduction to industrial fluid mechanics. According to J. C. R. Hunt (a famous fluid mechanics specialist): "industrial fluid mechanics broadly covers those aspects of the design, manufacture

497

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

498

A Semiconductor Microlaser for Intracavity Flow Cytometry  

SciTech Connect (OSTI)

Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.

Akhil, O.; Copeland, G.C.; Dunne, J.L.; Gourley, P.L.; Hendricks, J.K.; McDonald, A.E.

1999-01-20T23:59:59.000Z

499

Design and Fabrication of a Vertical Pump Multiphase Flow Loop  

E-Print Network [OSTI]

is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them...

Kirkland, Klayton 1965-

2012-08-24T23:59:59.000Z

500

Diagnosis of Fracture Flow Conditions with Acoustic Sensing  

E-Print Network [OSTI]

that this turbulent flow can generate sound as fluid flows from the fracture into the well. According to Testud et al. (2009) it is widely known that industry pipe systems, valves, taps and orifices whistle when fluid flows through them. Lacombe et al. (2013... of the fluid downstream of the shear layer (Lacombe et al. 2013). During this process there is a transfer of energy from the fluid moving to vortices that create sound. Poldervaart et al. (1974) illustrated how vortices can act as an acoustic source in Fig...

Martinez, Roberto

2014-07-10T23:59:59.000Z