Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

2

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents (OSTI)

A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

1997-01-01T23:59:59.000Z

3

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

4

Sampling device for withdrawing a representative sample from single and multi-phase flows  

DOE Patents (OSTI)

A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

1984-01-01T23:59:59.000Z

5

Surface tension of multi-phase flow with multiple junctions governed by the variational principle  

E-Print Network (OSTI)

We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie, Nardone, Scardovelli, Zaleski and Zanetti (J. Comp. Phys. \\vol{113} \\yr{1994} \\pages{134-147}) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase ($N$-phase, $N\\ge2$) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation of motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

Shigeki Matsutani; Kota Nakano; Katsuhiko Shinjo

2011-08-02T23:59:59.000Z

6

An Inertial Cell Model for the Drag Force in Multi-phase Flow  

E-Print Network (OSTI)

A new model for the drag coefficient of a sphere in a concentrated system is described. It is based upon a cell-averaged model for the Stokes regime combined with a physically motivated extrapolation to arbitrary Reynolds number. It can be used as an alternative to the isolated particle drag coefficient in Euler-Lagrange modelling of solid-liquid multi-phase flow.The corresponding drag force also provides a dynamic bed equation for use in Euler-Euler modelling.

Tupper, Gary; Mainza, Aubrey

2015-01-01T23:59:59.000Z

7

Multi-phase flow well test analysis in multi-layer reservoirs  

SciTech Connect

This paper investigates the performance of an oil well under multi-phase flow test conditions when the reservoir pressure falls below the bubble point pressure and is correspond with the performance of dissolved gas reservoirs. The model reservoir comprises two commingled layer, where a well test is conducted on a fully perforated interval. The water phase is assumed immobile. The main objective of this work is to interpret the flowing well pressure response and to predict reservoir characteristics based on its performance. The work presented is based on a constant terminal rate analysis, but it can also applied to constant bottomhole pressure and can be used to predict the Inflow Performance Relationship (IPR).

Jatmiko, W.; Archer, J.S. [Imperial College, London (United Kingdom); Daltaban, T.S.

1996-12-31T23:59:59.000Z

8

The Norsk Hydro Multi Phase Flow Loop. A high pressure flow loop for real three-phase hydrocarbon systems  

Science Journals Connector (OSTI)

In order to achieve better understanding and better predictive models for three-phase systems, Norsk Hydro ASA has designed and built a unique industrial-scale test facility for investigations of such systems. The test facility includes a 200 m long 3? diameter flow loop where a section can be tilted upwards or downwards. The fluids can be any combination of real hydrocarbon oil, gas and water (with salts included) as long as the partial pressures of CO2 and H2S are below 20 bar and 0.05 bar, respectively. The maximum operating temperature and pressure are 140 ?C and 110 bar absolute, respectively. The test facility is designed to implement total control of both flow conditions and system chemistry. This makes it possible to undertake investigations on the phenomena that occur in multiphase flow. It is optional to add production chemicals to the process fluid. The test facility is presented in detail with descriptions of the chosen solutions, the instrumentation and the range of possible applications. It has successfully undertaken tests with a large range of well fluids from the North Sea, and a listing of these tests is included.

Berit Robřle; Harald Knut Kvandal; Reidar Barfod Schüller

2006-01-01T23:59:59.000Z

9

Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials  

E-Print Network (OSTI)

integral methods in two dimensions to multi-component fluid flows and multi-phase problems in materials, and more recently to multi-phase problems in materials science. By multi-fluid or multi-phase we mean systems where the constituitive properties of the fluid or material change abruptly at a dividing

10

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

11

Exact regularized point particle method for multi-phase flows in the two-way coupling regime  

E-Print Network (OSTI)

Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any "ah hoc" assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.

P. Gualtieri; F. Picano; G. Sardina; C. M. Casciola

2014-05-27T23:59:59.000Z

12

Fluid Flow Modeling in Fractures  

E-Print Network (OSTI)

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

13

Acoustic concentration of particles in fluid flow  

SciTech Connect

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

14

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

15

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

16

Acoustic Concentration Of Particles In Fluid Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. Available for thumbnail of...

17

High-resolution numerical methods for compressible multi-phase flow in hierarchical porous media. Progress report, September 1993--September 1994  

SciTech Connect

This is the second year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously.

Trangenstein, J.A.

1994-03-15T23:59:59.000Z

18

Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media  

E-Print Network (OSTI)

where is the rock porosity, S and are the saturation (fluid volume fraction) and density of phase is the permeability (a tensor) of the rock, k is the relative permeability, is the viscosity, p the pressure in phase 2012 Accepted 10 January 2012 Available online 24 January 2012 Keywords: Reservoir simulation Numerical

Cirpka, Olaf Arie

19

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

20

Simulation of hysteretic effects in multi-phase flows in aquifers N. D. Botkin, M. Brokate, K.-H. Hoffmann, O. A. Pykhteev, and V. L. Turova  

E-Print Network (OSTI)

the caprock. Supercritical carbon dioxide, CO2 that has been compressed to a phase between gas and fluid, may-Ditt-Bogen, 380939 MĂĽnchen, Germany Abstract. We derive a multiphase flow model oriented to CO2 sequestration warming is caused by the growing concentration of carbon dioxide (CO2) in the atmosphere. The objective

Turova, Varvara

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Releases & Briefs - MFIX: Particle-fluid flow modeling, fast and free  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX: Particle-fluid Flow Modeling, Fast and Free MFIX: Particle-fluid Flow Modeling, Fast and Free Until recently, full solution of the complex set of equations that describe gas-particle flows was nearly impossible. But an open-source code developed by researchers at the National Energy Technology Laboratory (NETL), and designed to run on inexpensive PC (Beowulf) clusters, makes it relatively simple. Called MFIX (Multi-phase Flow with Interphase eXchange), the code incorporates special numerical techniques that provide an efficient solution to the coupled equations, exceeding the capabilities of commercial software. Originally developed at NETL to model fixed, fluidized and bubbling coal gasification technologies, its power has been used in research ranging from catalytic cracking in oil refineries to volcanology. A free, fully-functional version is available at www.mfix.org

22

Application of Neutron Imaging and Scattering to Fluid Flow and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

23

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

24

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-06-15T23:59:59.000Z

25

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in the presence of a fracture, and the interactions between fluid flow in the fracture and the adjacent matrix. Preliminary results demonstrate that the flow patterns are significantly impacted by the presence of the fracture. Bypassing is quantified and we expect to be able to extract from the modeling the distribution of properties in the fracture and the adjacent matrix.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

2002-10-28T23:59:59.000Z

26

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

27

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

28

Newtonian fluid flow through Microfabricated Hyperbolic Contractions  

E-Print Network (OSTI)

spraying (Barnes et al. 1989). Optimization of these processes requires accurate measurements for measurement of extensional viscosity involves studying the fluid flow through contractions profiled to give extensional viscosity. To remove the effect of shear at the walls of contractions Shaw (1975) proposed the use

29

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents (OSTI)

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

30

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents (OSTI)

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

Kronberg, J.W.

1993-10-12T23:59:59.000Z

31

Heat Transfer in Wedge Flow of a Micropolar Fluid  

Science Journals Connector (OSTI)

The theory of fluids with microstructures was first given by Eringen ... , 1965), and they are called micropolar fluids. These fluids exhibit microrotational effects and microrotational inertia. The flow of such

V. M. Soundalgekar; H. S. Takhar

1980-01-01T23:59:59.000Z

32

Fluid flow and solute transport modeling with lattice Boltzmann models  

E-Print Network (OSTI)

Fluid flow and solute transport modeling with lattice Boltzmann models Ph.D. Proposal: Shadab Anwar with solute transport and fluid flow modeling in porous media using lattice Boltzmann model (LBM). LBM

Sukop, Mike

33

Heat transfer in channel flow of a micropolar fluid  

Science Journals Connector (OSTI)

The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present ... the temperature profile for flow of a micropolar fluid in a...

Renuka Rajagopalan; K. S. Bhatnagar

1969-10-01T23:59:59.000Z

34

Multi-Phase Fracture-Matrix Interactions Under Stress Changes  

SciTech Connect

The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering. A group of Shear fractures were studied, with layers perpendicular and parallel to the main axis of the sample. The structures of the fractures as well as their impact on absolute permeability and on oil displacement by water were evaluated. Shear fractures perpendicular to the layers lead to a wide distribution of pores and to an overall increase in absolute permeability. Shear fractures parallel to the layers lead to an overall increase in absolute permeability, but a decrease in displacement efficiency. This DoE project funded or partially funded three Ph.D. and four M.Sc. students at the Pennsylvania State University. The results from the research have yielded several abstracts, presentations and papers. Much of the work is still in the process of being published.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-12-07T23:59:59.000Z

35

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

E-Print Network (OSTI)

multiphase fluid flow, heat transfer, and deformation infor multiphase fluid flow, heat transfer and deformation in

Rutqvist, J.

2011-01-01T23:59:59.000Z

36

Radiative heat transfer in a flow of rheologically complex fluid  

Science Journals Connector (OSTI)

The problem of complex radiative and convective heat transfer in steady-state generalized Couette flow of a nonlinear viscoplastic fluid is examined.

V. F. Volchenok; Z. P. Shul'man

1980-09-01T23:59:59.000Z

37

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and Characterization of Natural...

38

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

39

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah...

40

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah Energy &...

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

42

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

43

Monitoring and Modeling Fluid Flow in a Developing EGS  

Energy.gov (U.S. Department of Energy (DOE))

Monitoring and Modeling Fluid Flow in a Developing EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

44

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Self-potential 2 | US DOE Geothermal Program eere.energy.gov * Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal...

45

Device for deriving energy from a flow of fluid  

SciTech Connect

Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

van Holten, T.

1982-12-07T23:59:59.000Z

46

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents (OSTI)

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

Heath, William O. (Richland, WA); Virden, Jr., Judson W. (Richland, WA); Richardson, R. L. (West Richland, WA); Bergsman, Theresa M. (Richland, WA)

1993-01-01T23:59:59.000Z

47

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents (OSTI)

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

1993-10-19T23:59:59.000Z

48

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

49

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network (OSTI)

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

50

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

51

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

52

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

53

Feedback regulated induction heater for a flowing fluid  

DOE Patents (OSTI)

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

54

Feedback regulated induction heater for a flowing fluid  

DOE Patents (OSTI)

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

55

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

56

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov…

1978-01-01T23:59:59.000Z

57

MULTIDIMENSIONAL NUMERICAL SIMULATION OF FLUID FLOW IN FRACTURED POROUS MEDIA  

E-Print Network (OSTI)

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:Fig. 13. Simulation of hydraulic fracturing: field data on

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

58

On the acceleration potential in perfect fluid flow  

E-Print Network (OSTI)

ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis By RAYMOND RUDOLPH MAESTRI Submitted. to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfrllment of the requirements for the degree of MASTER... OF SCIENCE August, 1960 Department of Aeronautical Engineering Major Subject: Aeronautical Engineering ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis RAYMOND RUDOLPH MAESTRI Approved as to style and content by: Chairman of Commit e...

Maestri, Raymond Rudolph

1960-01-01T23:59:59.000Z

59

A preliminary study to Assess Model Uncertainties in Fluid Flows  

SciTech Connect

The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.

Marc Oliver Delchini; Jean C. Ragusa

2009-09-01T23:59:59.000Z

60

Electromagnetic Radiations as a Fluid Flow  

E-Print Network (OSTI)

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings  

E-Print Network (OSTI)

The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....

San Andres, Luis

2009-01-01T23:59:59.000Z

62

Two-phase fluid flow through nozzles and abrupt enlargements  

SciTech Connect

The behavior of a fluid undergoing a phase change from liquid to vapor while flowing through a duct is of interest to engineers in many practical situations. For the case of interest to us, geothermal hot water flowing through various channels (well bores, surface pipes, equipment, etc.) may reach its flash point and choke point under appropriate conditions. The proper design of energy conversion systems depends on the ability of the engineer to predict this behavior with an acceptable degree of accuracy. The present study was in part motivated by the task of designing the blow-down, two-phase fluid flow test facility at Brown University. In that facility, a refrigerant (dichlorotetrafluoroethane or R-114) is boosted to a selected stagnation state and allowed to flow through a nozzle orifice into a long straight tube. The operation relies on the fluid being choked at the inlet section, and under certain circumstances, at the downstream section as well. A simple schematic of the test section is shown. This paper treats the problem generically and analytically, making use of the basic laws of fluid mechanics and thermodynamics. Specific calculations have been performed using R-114 as the flowing medium. They attempt to identify and describe all possible flow conditions in and downstream of the nozzle for all possible stagnation conditions.

Olia, H.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

1983-10-01T23:59:59.000Z

63

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

64

Experimental study of fluid flow and heat transfer in tortuous microchannels.  

E-Print Network (OSTI)

??Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in… (more)

Dai, Zhenhui

2014-01-01T23:59:59.000Z

65

Numerical simulation of fluid flow in porous/fractured media  

SciTech Connect

Theoretical models of fluid flow in porous/fractured media can help in the design of in situ fossil energy and mineral extraction technologies. Because of the complexity of these processes, numerical solutions are usually required. Sample calculations illustrate the capabilities of present day computer models.

Travis B.J.; Cook, T.L.

1981-01-01T23:59:59.000Z

66

Leaf Deformation Taking Into Account Fluid Flow Paulo Silva  

E-Print Network (OSTI)

the leaf, and couple the mass-spring parameters with a simulation representing the fluid flow is composed by a mass-spring system embedded in a mesh representing the input leaf. This mass- spring system the parameters of our system. Those parameters include spring constants and spring rest lengths. Then by updating

Ouhyoung, Ming

67

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network (OSTI)

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

68

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

for Simulating Fluid Flow and Heat Transfer in Unsaturatedcomplex multiphase fluid flow and heat-transfer processes.of the coupled fluid-flow and heat-transfer processes has

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

69

Convective heat transfer in the vertical channel flow of a clear fluid adjacent to a nanofluid layer: a two-fluid model  

Science Journals Connector (OSTI)

A two-fluid vertical channel flow and convective heat transfer model in which one of the two fluids is a nanofluid demonstrates that the nanofluid can modify the fluid velocity at the interface of the two fluids,...

Robert A. Van Gorder; K. V. Prasad; K. Vajravelu

2012-07-01T23:59:59.000Z

70

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN  

E-Print Network (OSTI)

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN IMMERSED-BOUNDARY FINITE of the immersed boundary technique for simulating fluid flow and heat transfer problems over or inside complex. Several phenomenologically different fluid flow and heat transfer problems are simulated using

Pacheco, Jose Rafael

71

Heat transfer to a fluid flowing in an annulus  

E-Print Network (OSTI)

. ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

Logan, Earl

2012-06-07T23:59:59.000Z

72

System for measuring multiphase flow using multiple pressure differentials  

DOE Patents (OSTI)

An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

Fincke, James R. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

73

Convective flow of sisko fluid over a bidirectional stretching sheet  

E-Print Network (OSTI)

The present investigation discusses the flow and heat transfer characteristics of a steady three dimensional Sisko fluid. The flow is induced due to bidirectional stretching sheet. The influence of power-law index and stretching ratio on flow and heat transfer is studied thoroughly. Governing partial differential equations are reduced to coupled ordinary differential equations by suitable similarity variable. The resulting equations are then solved numerically by shooting method using adaptive Runge Kutta algorithm in combination with Broyden's method in the domain . The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio are presented through tabulated data. The numerical results are verified with the results obtained by HAM. Additionally, the results are also validated with previously ...

Munir, Asif; Khan, Masood

2014-01-01T23:59:59.000Z

74

Reducing or stopping the uncontrolled flow of fluid such as oil from a well  

DOE Patents (OSTI)

The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

Hermes, Robert E

2014-02-18T23:59:59.000Z

75

Different approximations of shallow fluid flow over an obstacle  

SciTech Connect

Three different sets of shallow water equations, representing different levels of approximation are considered. The numerical solutions of these different equations for flow past bottom topography in several different flow regimes are compared. For several cases the full Euler solutions are computed as a reference, allowing the assessment of the relative accuracies of the different approximations. Further, the differences between the dispersive shallow water (DSW) solutions and those of the highly simplified, hyperbolic shallow water (SW) equations is studied as a guide to determining what level of approximation is required for a particular flow. First, the Green-Naghdi (GN) equations are derived as a vertically-integrated rational approximation of the Euler equations, and then the generalized Boussinesq (gB) equations are obtained under the further assumption of weak nonlinearity. A series of calculations, each assuming different values of a set of parameters{emdash}undisturbed upstream Froude number, and the height and width of the obstacle, are then presented and discussed. In almost all regions of the parameter space, the SW and DSW theories yield different results; it is only when the flows are entirely subcritical or entirely supercritical and when the obstacles are very wide compared to the depth of the fluid that the SW and DSW theories are in qualitative and quantitative agreement. It is also found that while the gB solutions are accurate only for small bottom topographies (less than 20{percent} of the undisturbed fluid depth), the GN solutions are accurate for much larger topographies (up to 65{percent} of the undisturbed fluid depth). The limitation of the gB approximation to small topographies is primarily due to the generation of large amplitude upstream propagating solitary waves at transcritical Froude numbers, and is consistent with previous analysis. (Abstract Truncated)

Nadiga, B.T.; Margolin, L.G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smolarkiewicz, P.K. [National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)] [National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

1996-08-01T23:59:59.000Z

76

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

77

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network (OSTI)

A numerical study of flow of a shear thinning fluid through a pair of corrugated plates was carried out. The aim of the study was to observe and understand the behavior of the flow of shear thinning fluids through channels were the fluid...

Aiyalur Shankaran, Rohit

2008-10-10T23:59:59.000Z

78

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network (OSTI)

A numerical study of flow of a shear thinning fluid through a pair of corrugated plates was carried out. The aim of the study was to observe and understand the behavior of the flow of shear thinning fluids through channels were the fluid...

Aiyalur Shankaran, Rohit

2009-05-15T23:59:59.000Z

79

Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2  

E-Print Network (OSTI)

engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. LĂłpez-LĂłpez1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

Boyer, Edmond

80

Continuous multi-phase feeding of broiler chickens  

E-Print Network (OSTI)

in Petersime battery brooders to primarily access nitrogen balance while birds in experiment 4 were raised in a floor pen on pine shaving litter to resemble commercial broiler production. The results indicated that intensive multi-phase feeding improved body...

Nasril

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas–liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices  

Science Journals Connector (OSTI)

This communication describes the gas–liquid two-phase flow patterns and the formation of bubbles in non-Newtonian fluids in microfluidic flow-focusing devices. Experiments were conducted in two different polym...

Taotao Fu; Youguang Ma; Denis Funfschilling; Huai Z. Li

2011-05-01T23:59:59.000Z

82

Fluid mechanics experiments in oscillatory flow. Volume 1  

SciTech Connect

Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

Seume, J.; Friedman, G.; Simon, T.W. [Univ. of Minnesota, Minneapolis, MN (United States)

1992-03-01T23:59:59.000Z

83

High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Task Task Description Sample calculations LBL-PMC Future Work High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems Jian Cai 1 Ricardo Marquez 1 Michael F. Modest 2 1 Postdoctoral Research Associate 2 Shaffer and George Professor of Engineering University of California Merced Merced, CA 95343, USA DE-FG26-10FE0003801 May 2012 - Pittsburgh 2/17 Introduction Task Description Sample calculations LBL-PMC Future Work Radiation Challenges in Multi-Phase Reacting Flows Radiative heat transfer in high temperature combustion systems Thermal radiation becomes very important at elevated temperatures Coal and hydrocarbon fuels C n H m → H 2 O, CO 2 , CO, NO x , soot, char, ash CO 2 , H 2 O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels) Radiative effects are conveniently ignored or treated with very crude models Neglecting

84

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

85

Heat transfer due to stagnation point flow of a non-Newtonian fluid  

Science Journals Connector (OSTI)

Heat transfer analysis for steady, laminar flow of an incompressible, homogeneous, non-Newtonian fluid of second grade at a stagnation point...K, of the fluid. The energy equation is discretized using central ......

V. K. Garg

1994-01-01T23:59:59.000Z

86

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite ... vary with temperature, that is a compressible fluid. If the temper...

A. R. Bestman; S. K. Adjepong

87

Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space.  

SciTech Connect

The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion.

Stockman, Harlan Wheelock

2005-01-01T23:59:59.000Z

88

Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination of fluid streaming. These findings support the hypothesis that a history of PD for a certain period could serve as a trigger of EPS after stoppage of PD.

Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan)] [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan)] [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan)] [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan)] [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)

2011-12-16T23:59:59.000Z

89

Numerical Studies of Fluid Leakage from a Geologic Disposal Reservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and Heat Transfer  

E-Print Network (OSTI)

Feedback between Fluid Flow and Heat Transfer Karsten Pruessfeedback between fluid flow and heat transfer tends to limitfluid mobility (viscosity and relative permeability effects), are countered by effects arising from limitations in the rate of conductive heat transfer.

Pruess, Karsten

2005-01-01T23:59:59.000Z

90

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

91

Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium  

E-Print Network (OSTI)

We use confocal microscopy to directly visualize the simultaneous flow of both a wetting and a non-wetting fluid through a model three-dimensional (3D) porous medium. We find that, for small flow rates, both fluids flow through unchanging, distinct, connected 3D pathways; in stark contrast, at sufficiently large flow rates, the non-wetting fluid is broken up into discrete ganglia. By performing experiments over a range of flow rates, using fluids of different viscosities, and with porous media having different geometries, we show that this transition can be characterized by a state diagram that depends on the capillary numbers of both fluids, suggesting that it is controlled by the competition between the viscous forces exerted on the flowing oil and the capillary forces at the pore scale. Our results thus help elucidate the diverse range of behaviors that arise in two-phase flow through a 3D porous medium.

Sujit S. Datta; Jean-Baptiste Dupin; David A. Weitz

2014-06-26T23:59:59.000Z

92

Heat transfer in the nonisothermal flow of an anomalously viscous fluid in a helical duct  

Science Journals Connector (OSTI)

The problem of heat transfer in the initial section of a helical ... with a steady flow of an anomalously viscous fluid is solved numerically.

A. I. Mumladze; Yu. G. Nazmeev; O. V. Maminov

1982-08-01T23:59:59.000Z

93

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments  

Energy.gov (U.S. Department of Energy (DOE))

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado.

94

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure  

Energy.gov (U.S. Department of Energy (DOE))

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure presentation at the April 2013 peer review meeting held in Denver, Colorado.

95

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

96

Stress and Fluid-Flow Interaction for the Coso Geothermal Field...  

Open Energy Info (EERE)

California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within...

97

System and method for bidirectional flow and controlling fluid flow in a conduit  

DOE Patents (OSTI)

A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

Ortiz, M.G.

1999-03-23T23:59:59.000Z

98

Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures  

Science Journals Connector (OSTI)

In the paper, a simplified numerical model-the periodic unit duct model was presented for the numerical simulation of shellside characteristics in heat exchanger with longitudinal flow of shellside fluid, and its...

Yongqing Wang; Qiwu Dong; Minshan Liu

2007-01-01T23:59:59.000Z

99

Pulsatile flow of a chemically-reacting non-linear fluid  

E-Print Network (OSTI)

with the fluid undergoing a pulsatile flow are studied numerically. A comparison of the shear-thinning/chemical-thinning fluid to the shear-thinning/chemicalthickening fluid using a new non-dimensional parameter�the competition number (CN) shows that both...

Bridges, Ronald Craig, II

2007-09-17T23:59:59.000Z

100

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER STRONG MAGNETIC FIELD  

E-Print Network (OSTI)

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER to the heat transfer characteristic: Flibe is a high Prandtl number fluid. For high Prandtl number fluid, there is a severe limitation of temperature window due to its high melting point. The turbulent heat transfer is

Abdou, Mohamed

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Numerical Simulation of the Flow of a Power Law Fluid in an Elbow Bend  

E-Print Network (OSTI)

A numerical study of flow of power law fluid in an elbow bend has been carried out. The motivation behind this study is to analyze the velocity profiles, especially the pattern of the secondary flow of power law fluid in a bend as there are several...

Kanakamedala, Karthik

2010-07-14T23:59:59.000Z

102

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet * Corresponding author : souad.harmand@univ-valenciennes.fr Abstract Fluid flow and convective heat transfer, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward

Boyer, Edmond

103

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

1 Review of fluid flow and convective heat transfer within rotating disk cavities with impinging axial direction #12;5 Introduction Fluid flow and convective heat transfer in rotor-stator configuration heat transfer in rotor-stator configurations, which are of great importance in different engineering

Paris-Sud XI, Université de

104

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular and packed beds, but also a function of orientation (open area ratio). The overall heat transfer depends

Wadley, Haydn

105

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

1 The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J The fluid-flow and heat-transfer features of copper cellular metal structures made by the transient liquid media. The experimental results for pressure drop and heat transfer were expressed on the basis

Wadley, Haydn

106

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes  

E-Print Network (OSTI)

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes The relationship between enhancement flow and structure of core-softened fluids confined inside nanotubes has been was employed to create a pressure gradient between two reservoirs connected by a nanotube. We show how

Barbosa, Marcia C. B.

107

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law  

E-Print Network (OSTI)

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

Boyer, Edmond

108

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network (OSTI)

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

109

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived  

Open Energy Info (EERE)

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Details Activities (1) Areas (1) Regions (0) Abstract: The efficiency of geothermal energy production at the Coso Geothermal Field in eastern California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range and adjacent areas are

110

Subcritical finite-amplitude solutions in plane Couette flow of visco-elastic fluids  

E-Print Network (OSTI)

Plane Couette flow of visco-elastic fluids is shown to exhibit a purely elastic subcritical instability in spite of being linearly stable. The mechanism of this instability is proposed and the nonlinear stability analysis of plane Couette flow of the Upper-Convected Maxwell fluid is presented. It is found that above the critical Weissenberg number, a small finite-size perturbation is sufficient to create a secondary flow, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases. The results suggest a scenario for weakly turbulent visco-elastic flow which is similar to the one for Newtonian fluids as a function of Reynolds number.

Alexander N. Morozov; Wim van Saarloos

2004-11-10T23:59:59.000Z

111

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network (OSTI)

Time-lapse seismic monitoring repeats 3 D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

112

Synthetic aperture imaging for three dimensional resolution of fluid flows  

E-Print Network (OSTI)

Fluid mechanics and instrumentation have a long history together, as experimental fluids studies play an important role in describing a more complete physical picture in a variety of problems. Presently. state-of-the-art ...

Belden, Jesse (Jesse Levi)

2011-01-01T23:59:59.000Z

113

Effect of heat transfer on the plane-channel poiseuille flow of a thermo-viscous fluid  

Science Journals Connector (OSTI)

A steady-state plane channel flow of viscous incompressible fluid with no-slip and heat transfer boundary conditions is considered. The flow is ... induced by a fixed pressure difference and the fluid viscosity d...

S. N. Aristov; V. G. Zelenina

114

A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale  

E-Print Network (OSTI)

Computational fluid dynamics Microchannel Minichannel Surface roughness Roughness elements Heat transfer Fluid to achieve enhancement in heat transfer with relatively low cooling fluid flow rate [1]. In spite of havingA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat

Kandlikar, Satish

115

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in  

E-Print Network (OSTI)

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

Maruyama, Shigeo

116

A Model For The Transient Temperature Effects Of Horizontal Fluid Flow In  

Open Energy Info (EERE)

Transient Temperature Effects Of Horizontal Fluid Flow In Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Model For The Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: A characteristic temperature versus depth (T-D) profile is observed in various geothermal environments. Particular features of the T-D profile can be explained in terms of a simple time-dependent two-dimensional (x, z) hydrothermal model. In this model a hot fluid is constrained to flow along a thin aquifer buried at a depth l from the surface with conductive heat transfer into the rocks both above and below the aquifer. In many geothermal systems transient changes in the flow

117

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

118

Multi-phase CFD modeling of solid sorbent carbon capture system  

SciTech Connect

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE

2013-01-01T23:59:59.000Z

119

Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System  

SciTech Connect

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

2013-07-30T23:59:59.000Z

120

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso  

Open Energy Info (EERE)

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Details Activities (1) Areas (1) Regions (0) Abstract: cap rock, permeability, fault, fracture, clay, Coso Author(s): Davatzes, N.C.; Hickman, S.H. Published: Geothermal Resource Council Transactions 2005, 1/1/2005 Document Number: Unavailable DOI: Unavailable Conceptual Model At Coso Geothermal Area (2005-2007) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Controls_on_Fault-Hosted_Fluid_Flow:_Preliminary_Results_from_the_Coso_Geothermal_Field,_CA&oldid=473359"

122

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

123

Lattice-Boltzmann Simulations of Three-Dimensional Fluid Flow on a Desktop Computer  

Science Journals Connector (OSTI)

Lattice-Boltzmann Simulations of Three-Dimensional Fluid Flow on a Desktop Computer ... Algorithms for building lattices and solving the equations are not trivial, and memory demands are relatively high. ...

Jeffrey D. Brewster

2007-02-24T23:59:59.000Z

124

Heat transfer during laminar fluid flow in a pipe with radiative heat removal  

Science Journals Connector (OSTI)

The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a ... pipe having a parabolic entry velocity distribution and heat removal by radiation from the surface of...

Ya. S. Kadaner; Yu. P. Rassadkin; É. L. Spektor

1971-01-01T23:59:59.000Z

125

Second-order fluid flow past a stretching sheet with heat transfer  

Science Journals Connector (OSTI)

The heat transfer in the flow of a second-order fluid, obeying Coleman and Noll's constitutive equation...KC/v. The thermal boundary layer thickness decreases and the Nusselt numberNu x increases ...

N. M. Bujurke; S. N. Biradar; P. S. Hiremath

1987-07-01T23:59:59.000Z

126

Heat transfer in a radiating fluid with slug flow in a parallel-plate channel  

Science Journals Connector (OSTI)

As a step towards a better understanding of combined conduction, convection, and radiation, fully developed heat transfer in slug flow in a flat duct ... , nonblack, isothermal surfaces. The gray radiating fluid ...

R. Viskanta

1964-01-01T23:59:59.000Z

127

Heat transfer in the flow of a viscoelastic fluid over a stretching sheet  

Science Journals Connector (OSTI)

The problem of heat transfer in the viscoelastic fluid flow over a stretching sheet is examined. ... such as the skin-friction coefficient and the heat transfer coefficient, are determined. It is found that the heat

P. Sam Lawrence; Dr. B. Nageswara Rao

1992-01-01T23:59:59.000Z

128

The stability of viscoelastic fluids in complex flows : the role of shear and extensional rheology  

E-Print Network (OSTI)

Understanding the flow of polymeric fluids is important for optimizing commercial processes such as injection molding and fiber spinning. The combination of streamwise curvature and elastic normal stresses can lead to the ...

Rothstein, Jonathan P. (Jonathan Philip), 1974-

2001-01-01T23:59:59.000Z

129

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...  

Open Energy Info (EERE)

FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS,...

130

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

131

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

132

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES  

E-Print Network (OSTI)

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES the guidance and direction provided by my advisors: Dr. Mandell, Dr. Cairns and Dr. Larsen. I would also like

133

Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally  

E-Print Network (OSTI)

of the Wilcox formation has been investigated using distilled water and 1 M solutions of NaCl, KCl, and CaCl2 and permeabilities depend on fluid composition. Permeabilities to flow of 1 M CaCl2 are 3­5 times greater than values is greater for transport of 1 M CaCl2 than that for transport of the other pore fluids. Assuming that fluid

Herbert, Bruce

134

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD  

E-Print Network (OSTI)

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD Background: The lattice Boltzmann method is a new numerical method of computational fluid dynamics (CFD). Con on a continuous picture of matter. The lattice Boltzmann method instead relies on discrete particles having

MĂĽller,Bernhard

135

Flows of Incompressible Newtonian and Generalized Newtonian Fluids over a Circular Cylinder  

E-Print Network (OSTI)

for progressively increasing flow rates corresponding to Re = 20, 40, 60, 100 and 200 for Newtonian and Carreau fluids and Re_n = 15.6, 37.2, 64.2, 118.8 and 285.0 for power-law fluids. The inlet length and the height of the domain are established so that boundaries...

Klein, Kayla

2012-05-31T23:59:59.000Z

136

Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report  

SciTech Connect

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

Wilson, J.L.

1997-01-01T23:59:59.000Z

137

A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca  

Open Energy Info (EERE)

Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Details Activities (0) Areas (0) Regions (0) Abstract: A three-dimensional unsaturated-zone numerical model has been developed to simulate flow and distribution of moisture, gas and heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor, air and heat in the highly heterogeneous, fractured porous rock in the unsaturated zone (UZ). This model is intended for use in the prediction of the current and future conditions in the UZ so

138

Inhomogeneity of fluid flow in Stirling engine regenerators  

SciTech Connect

The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

Jones, J.D. (School of Engineering Science, Simon Fraser Univ. Burnaby, British Columbia (CA))

1989-10-01T23:59:59.000Z

139

Lattice Boltzmann simulations of binary fluid flow through porous media  

Science Journals Connector (OSTI)

...V. Coveney and S. Succi Lattice Boltzmann simulations of binary fluid...D-80290 Munchen, Germany The lattice Boltzmann equation is often advocated...three-dimensional 19 velocity lattice Boltzmann model for immiscible binary...

2002-01-01T23:59:59.000Z

140

Multiphase flow and control of fluid path in microsystems  

E-Print Network (OSTI)

Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network ...

Jhunjhunwala, Manish

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows  

Science Journals Connector (OSTI)

...J. 1981 Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas. Plasma Physics Laboratory report, Princeton University. PPPL-1793, p. 20. Morrison, P.J 1998Hamiltonian description of the ideal...

2006-01-01T23:59:59.000Z

142

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

143

Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope  

Open Energy Info (EERE)

Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Details Activities (5) Areas (5) Regions (0) Abstract: Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum He-3/He-4 ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The

144

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

Science Journals Connector (OSTI)

This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC^3^D geomechanical ... Keywords: FLAC3D, Fluid flow, Geomechanics, Modeling, TOUGH

Jonny Rutqvist

2011-06-01T23:59:59.000Z

145

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

146

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

147

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS  

E-Print Network (OSTI)

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS Alexander N. Morozov of an eigenfunction of the linearized equations of motion becomes subcritically unstable, and the threshold value, subcritical instabilities, amplitude equation Introduction In the last decades, stability of flows of polymers

van Saarloos, Wim

148

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system  

E-Print Network (OSTI)

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system S [1, 2] widely validated in various rotor-stator cavities with throughflow [3­5] and heat transfer [6: RANS modeling, Reynolds Stress Model, Taylor-Couette-Poiseuille flow, turbulence, heat transfer. hal

Paris-Sud XI, Université de

149

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with  

E-Print Network (OSTI)

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

Paris-Sud XI, Université de

150

Multi-phase back contacts for CIS solar cells  

DOE Patents (OSTI)

Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

Rockett, Angus A. (505 Park Haven Ct., Champaign, IL 61820); Yang, Li-Chung (1107 W. Green St. #328, Urbana, IL 61801)

1995-01-01T23:59:59.000Z

151

Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates  

E-Print Network (OSTI)

We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...

Ober, Thomas J. (Thomas Joseph)

2013-01-01T23:59:59.000Z

152

The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect  

Science Journals Connector (OSTI)

The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dep...

Dorin Lelea; Adrian Eugen Cioabla

2011-07-01T23:59:59.000Z

153

The Effects of Fluid Flow On Shear Localization and Frictional Strength From Dynamic Models Of Fault Gouge During Earthquakes  

E-Print Network (OSTI)

This thesis explores the effects of fluid flow on shear localization and frictional strength of fault gouge through the use of a coupled 2-phase (pore fluid-grain) Finite Difference-Discrete Element Numerical model. The model simulates slip...

Bianco, Ronald

2013-12-02T23:59:59.000Z

154

Visualization of two-fluid flows of superfluid helium-4  

Science Journals Connector (OSTI)

...results on the flow past an oscillating sphere (64) and additional...visualization of unsteady/oscillating flows is a new line of inquiry...of the formation of cosmic strings . Nature 368 : 315 – 317...particles observed near a sphere oscillating in superfluid turbulent 4...

Wei Guo; Marco La Mantia; Daniel P. Lathrop; Steven W. Van Sciver

2014-01-01T23:59:59.000Z

155

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...subsurface reservoirs. The tapping of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

156

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...preparation. Dendritic river sands formed in deltas later collect...accumulations ofhydrocarbons (tar sands) on our planet were produced...constrained by consideration of phase diagrams for rele-vant bulk...is intimately linked to the behavior of C-O-H fluids (2) at...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

157

NMRI methods for characterizing fluid flow in porous media  

E-Print Network (OSTI)

for fluids in porous media are very small and the NMR signals decay very fast. Furthermore, a narrow pulse approximation concept was applied so that the velocities of spins don't have to be assumed constant during the entire observation time. Preliminary...

Yao, Xiaoli

2012-06-07T23:59:59.000Z

158

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...Mesozoic sandstones, siltstones...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...and water quality), and at...fracture porosity and permeability...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

159

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...and water quality), and at...fracture porosity and permeability...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

160

Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics  

SciTech Connect

The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

Holloway, Mary V. [United States Naval Academy, 117 Decatur Road, Annapolis, MD 21402-5018 (United States); Beasley, Donald E. [Clemson University, Clemson, S.C. 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network (OSTI)

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21] studied convective heat transfer of slug flows in a macro-sized tube by using viscoelastic fluids-26 September 2008 NUMERICAL STUDY ON CONVECTIVE HEAT TRANSFER OF GAS-LIQUID SLUG FLOW IN A MICRO TUBE Qunwu He

Kasagi, Nobuhide

162

Electrochemically Actuated Mercury Pump for Fluid Flow and Delivery  

Science Journals Connector (OSTI)

The design and construction of the pump are detailed, and the potential attributes of this design, including the generated pumping pressure, flow rate, and power consumption, are discussed. ... In evaluations of flow rate, a set of ball-style check valves was attached to each end of the flow channel in the top platform with heat-shrinkable tubing. ... Because of the critical nature of the alignment of the two columns, the variability between setups for the smallest of the pumps (i.e., pump 4) can be as large as 15% if not aligned carefully. ...

Jing Ni; Chuan-Jian Zhong; Shelley J. Coldiron; Marc D. Porter

2000-11-22T23:59:59.000Z

163

Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Clay and granitic units are potential host media for future repositories for used nuclear fuel. The report addresses the representation and characterization of flow in these two media within...

164

A MEMS BODY FLUID FLOW SENSOR Ellis Meng1  

E-Print Network (OSTI)

for its stability, accuracy, and high temperature coefficient of resistivity (TCR). Additional packaging the device using compressed air. The flow rate is adjusted by a metering valve and calibrated using

Meng, Ellis

165

Three-phase fluid flow in porous media  

SciTech Connect

In the regions of two-phase flow, with a third phase stationary, the third phase plays an important role in the resulting relative permeability relationships. Wettability has an extremely significant effect on the permeability and flow behavior of the system. This report presents a review of the literature on three-phase relative permeability, a suggested unsteady-state method for finite-difference calculation procedure.

Donaldson, E.C.; Kayser, M.B.

1981-04-01T23:59:59.000Z

166

Conjugated heat transfer in the flow of a non-Newtonian fluid with variable properties in a flat duct  

Science Journals Connector (OSTI)

We solve the problem of the flow of a nonlinearly viscoelastic fluid in the presence of large pressure drops and appreciable nonisothermicity.

N. V. Tyabin; O. Kh. Dakhin; A. V. Baranov…

1983-09-01T23:59:59.000Z

167

Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density  

DOE Patents (OSTI)

This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

Hamel, William R. (Farragut, TN)

1984-01-01T23:59:59.000Z

168

New Lagrangian diagnostics for characterizing fluid flow mixing  

E-Print Network (OSTI)

A new kind of Lagrangian diagnostic family is proposed and a specific form of it is suggested for characterizing mixing: the maximal extent of a trajectory (MET). It enables the detection of coherent structures and their dynamics in two- (and potentially three-) dimensional unsteady flows in both bounded and open domains. Its computation is much easier than all other Lagrangian diagnostics known to us and provides new insights regarding the mixing properties on both short and long time scales and on both spatial plots and distribution diagrams. We demonstrate its applicability to two dimensional flows using two toy models and a data set of surface currents from the Mediterranean Sea.

Mundel, Ruty; Gildor, Hezi; Rom-Kedar, Vered

2014-01-01T23:59:59.000Z

169

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...Recent work shows that in the Salton Sea geothermal system a deep saline brine (nearly saturated...variability offluid flow in the Salton Sea geothermal area would be quite different. Perspective...year-'. This heat can be removed by heating 40 km offluids to 350 C (heat capacity...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

170

Fluid flow at the interface between elastic solids with randomly rough surfaces  

E-Print Network (OSTI)

I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.

B. N. J. Persson

2010-04-07T23:59:59.000Z

171

Multi-Phase Galaxy Formation and Quasar Absorption Systems  

E-Print Network (OSTI)

The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

Ariyeh H. Maller

2005-05-06T23:59:59.000Z

172

Heat source/sink effects on non-Newtonian MHD fluid flow and heat transfer over a permeable stretching surface: Lie group analysis  

Science Journals Connector (OSTI)

An analysis is performed for flow and heat transfer of a non-Newtonian fluid known as Casson fluid over a permeable stretching surface through a...

M. N. Tufail; A. S. Butt; A. Ali

2014-01-01T23:59:59.000Z

173

Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation  

SciTech Connect

A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

Tchelepi, Hamdi

2014-11-14T23:59:59.000Z

174

Interference well testing—variable fluid flow rate  

Science Journals Connector (OSTI)

At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 2–3 values of pressure drops are matched) is used to estimate the porosity–total compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

I M Kutasov; L V Eppelbaum; M Kagan

2008-01-01T23:59:59.000Z

175

On the 1D Modeling of Fluid Flowing through a Junction  

E-Print Network (OSTI)

Consider a fluid flowing through a junction between two pipes with different sections. Its evolution is described by the 2D or 3D Euler equations, whose analytical theory is far from complete and whose numerical treatment may be rather costly. This note compares different 1D approaches to this phenomenon.

Rinaldo M. Colombo; Mauro Garavello

2009-03-04T23:59:59.000Z

176

Application of x-ray microtomography to environmental fluid flow D. Wildenschild*a,c  

E-Print Network (OSTI)

environmental processes are controlled by the micro-scale interaction of water and air with the solid phaseApplication of x-ray microtomography to environmental fluid flow problems D. Wildenschild*a,c , K resource management, contaminant remediation, and agriculture. Many of these physical processes operative

Wildenschild, Dorthe

177

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network (OSTI)

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

178

A splitting method for numerical simulation of free surface flows of incompressible fluids with surface tension  

E-Print Network (OSTI)

with surface tension Kirill D. Nikitin Maxim A. Olshanskii Kirill M. Terekhov Yuri V. Vassilevski§ Abstract to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface models a free surface flow of viscous incompressible fluid subject to surface tension forces. Further

Olshanskii, Maxim A.

179

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network (OSTI)

showing cleanup period.......................................................... 68 Figure 5.21 Geothermal gradient and sea water temperature profile............................. 68 Figure 5.22 Mimicking oil production rate input... into this category. 5 Miller (1980) developed one of the earliest transient wellbore simulators, which accounts for changes in geothermal-fluid energy while flowing up the wellbore. In this model, mass and momentum equations are combined...

Izgec, Bulent

2009-05-15T23:59:59.000Z

180

Similarity flow solutions of a non-Newtonian power-law fluid Mohamed Guedda, Zakia Hammouch  

E-Print Network (OSTI)

for a steady-state laminar bound- ary layer flow, governed by the Ostwald-de Wael power-law model-Newtonian fluid mechanics is the Ostwald-de Wael model (with a power-law rheology [2, 3, 4, 5, 6]), which

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke  

E-Print Network (OSTI)

M2 CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke Department- oped on top of the MCIRQ simulator with the aim to produce an automated FMEA for aircraft fuel systems similar to pre- viously developed automated electrical FMEA. Introduction This paper describes a circuit

Snooke, Neal

182

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event  

E-Print Network (OSTI)

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow, the Cambrian carbonates underwent ductile deformation and greenschist facies metamorphism. The same is true-temperature metamorphic rocks within the overlying nappes. It is assumed that a late-Variscan hydrothermal event, which

Boni, Maria

183

3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations  

E-Print Network (OSTI)

1 3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations H.L. HUANG Huang@fusion.ucla.edu Abstract: The purpose of this paper is to present our recent efforts on 3D MHD-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause

California at Los Angeles, University of

184

Space-Time Discontinuous Galerkin Finite Element Method for Two-Fluid Flows.  

E-Print Network (OSTI)

different fluids, due to surface tension and other effects. In addition, the density and pressure arising from the cut-cell refinement are merged to improve the stability and performance. The interface flows with bubbles, droplets or solid particles, wave-structure interactions, dam breaking, bed

Al Hanbali, Ahmad

185

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits  

E-Print Network (OSTI)

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits J. Ashmore(1,a), A.Q. Shen(1,b), H.P. Kavehpour(2,c), H.A. Stone(1) & G.H. McKinley(2) 1: Division of Engineering and Applied of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (a): Current address: TIAX

186

Dynamics of a confined dusty fluid in a sheared ion flow  

SciTech Connect

Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-07-15T23:59:59.000Z

187

Boundary layer flow and heat transfer analysis of a second-grade fluid  

SciTech Connect

Boundary layer flow and heat transfer analysis of a homogeneous, incompressible, non-Newtonian fluid of grade two at a stagnation point is presented. The flow is assumed to be steady and laminar. A power-law representation is assumed for the velocity distribution and wall temperature variation. The governing equations are solved using an iterative central difference approximation method in a non-uniform grid domain. This analysis show the effect of non-Newtonian nature of the fluid and the effect of suction/injection on the velocity profile. The effect of non-Newtonian nature of the fluid on the heat transfer coefficient at the wall for different values of Prandtl number and wall-temperature variation is also presented. (VC)

Massoudi, M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1992-04-01T23:59:59.000Z

188

Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method  

Science Journals Connector (OSTI)

We present a stable numerical scheme for modelling multiphase flow in porous media, where the characteristic size of the flow domain is of the order of microns to millimetres. The numerical method is developed for efficient modelling of multiphase flow ... Keywords: Pore-scale modelling, Porous media, Two-phase flow, Volume of fluid

Ali Q. Raeini; Martin J. Blunt; Branko Bijeljic

2012-07-01T23:59:59.000Z

189

Computational Fluid Dynamics Simulation of Open-Channel Flows Over Bridge-Decks Under Various Flooding Conditions  

E-Print Network (OSTI)

. This study simulates limited scaled experimental data conducted elsewhere for bridge flooding in open channel simulation, Computational fluid dynamics, Flooding flows, Turbulence modeling, VOF modeling. 1. IntroductionComputational Fluid Dynamics Simulation of Open-Channel Flows Over Bridge-Decks Under Various

Kostic, Milivoje M.

190

MecE 630 Fluid Dynamics (Fall 2013) Course objectives: To explore the essential dynamics of flowing fluids by expanding upon ma-  

E-Print Network (OSTI)

and vortex tubes. · Fluid kinematics and vector calculus ­ Summation notation, ­ Normal vs. shear strain- ing novel research projects. Course topics: · Review of basic concepts ­ Definition of a fluid is Incompressible Flow (fourth edition) by R.L. Panton. Problem sets: Roughly one per course topic. Problem sets

Flynn, Morris R.

191

Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures  

SciTech Connect

A nonlinear formulation is presented to deal with the combined action of Rayleigh-Taylor and Kelvin-Helmholtz instabilities as well as combined Ricthmyer-Meshkov and Kelvin-Helmholtz instabilities at the two fluid interface under the influence of viscosity and consequent shear flow. Using Layzer's model, the development of the interfacial structures like bubbles is investigated analytically and numerically. It is found that the growth and normal velocity of the structures are dependent on the relative velocity shear and the kinematic coefficient of viscosity of both the fluids. Both the bubble growth and growth rate are reduced significantly for fluids of higher viscosity coefficient with small velocity shear difference. It is also observed that, for viscous fluids, the transverse velocity of the perturbed interface becomes slower under certain conditions.

Banerjee, Rahul [Department of Instrumentation Science and Centre for Plasma Studies, Jadavpur University, Kolkata 700032 (India); St Paul's Cathedral Mission College, 33/1, Raja Rammohan Roy Sarani, Kolkata 700009 (India); Mandal, Labakanta; Khan, M.; Gupta, M. R. [Department of Instrumentation Science and Centre for Plasma Studies, Jadavpur University, Kolkata 700032 (India)

2012-12-15T23:59:59.000Z

192

Socially-Aware Multi-phase Opportunistic Routing for Distributed Mobile Social Networks  

Science Journals Connector (OSTI)

The work presented in this paper focuses on opportunistic routing in distributed Mobile Social Networks (MSNs). It proposes a novel routing protocol called Socially-Aware Multi-Phase Opportunistic (SAMPhO), where the routing procedure for each message ... Keywords: Mobile social networks, Multi-phase, OMNeT++, Opportunistic routing, Social network discovery, Social ties

Nikolaos Vastardis, Kun Yang, Supeng Leng

2014-11-01T23:59:59.000Z

193

A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters*  

E-Print Network (OSTI)

A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters* N. J: TECHNOLOGY TRENDS: Energy Sources and Energy Harvesting Abstract A full-wave rectifier has been fabricated, AND HURST 1 A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters* N. J

Hurst, Paul J.

194

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives  

E-Print Network (OSTI)

An On-line Method for Stator Fault Detection in Multi-phase PMSM Drives Fabien Meinguet*, Eric deals with an on-line fault detection method for multi-phase PMSM drives. The method is based have been investigated for transport applications such as hybrid electric vehicle [1], [2] and ship

Paris-Sud XI, Université de

195

The flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore coupled with flow in heavy oil reservoirs  

Science Journals Connector (OSTI)

Abstract As a new improved oil-recovery technique, multi-thermal fluid injection technology through a horizontal well has been widely used in the development process of heavy oil reservoirs. The flow and heat transfer characteristic of multi-thermal fluid in horizontal wellbore is significantly important for the productivity evaluation and parameters design of the horizontal well. Considering the specific physical properties of multi-thermal fluid, fluid absorption in perforation holes and pressure drop characteristics along the horizontal wellbore, this paper developed the flow and heat transfer model of multi-thermal fluid in perforated horizontal wellbore. In order to evaluate the heating effect of the multi-thermal fluid, a concept of effective heating length of a horizontal well is proposed. Then, a sensitivity analysis process is performed to study the influence of reservoir/fluid parameters and operating parameters on the flowing process of multi-thermal fluid in horizontal wellbore. Simultaneously, using the method of orthogonal numerical test, differential analysis and variance analysis are also conducted. Results show that the flowing process of multi-thermal fluid in horizontal wellbore includes a single-phase flowing process and a gas–liquid two-phase flowing process. The influence of oil viscosity on the flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore is most significant. Thereafter, the solution of our semi-analytical model is compared against the test results of an actual horizontal well from an oilfield in China. It is shown that the model results are in good agreement with the real test results. This model could be used to calculate and predict the flow and heat transfer characteristics of multi-thermal fluid (or saturated steam) in a perforated horizontal wellbore.

Xiaohu Dong; Huiqing Liu; Zhaoxiang Zhang; Changjiu Wang

2014-01-01T23:59:59.000Z

196

Investigation of aluminum surface cleaning using cavitating fluid flow  

SciTech Connect

This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavi?iaus str.28, 03224, Vilnius (Lithuania)

2013-12-16T23:59:59.000Z

197

Flow modeling of flat oval ductwork elbows using computational fluid dynamics  

SciTech Connect

Incompressible turbulent flow fields in heating, ventilating, and air-conditioning (HVAC) elbows were computed using an incompressible, three-dimensional computational fluid dynamics (CFD) solver implementing a {kappa}-{epsilon} turbulence model. Two different geometries were investigated, including 90-degree five-gore hard-bend and easy-bend flat oval elbows. The geometries represent a subset of many configurations analyzed in ASHRAE RP-854, Determination of Duct Fitting Resistance by Numerical Analysis. For each configuration, the zero-length pressure loss coefficient was calculated. The flow was described through contours of velocity and plots of static pressure. The Reynolds number for these flows was held constant at 100,000 based on duct diameter and mean fluid velocity.

Mahank, T.A.; Mumma, S.A. [Pennsylvania State Univ., University Park, PA (United States)

1997-12-31T23:59:59.000Z

198

A method to visualise near wall fluid flow patterns using locally resolved heat transfer experiments  

Science Journals Connector (OSTI)

Abstract The present study demonstrates an alternative approach for describing fluid flow characteristics very close to the wall, using locally resolved convective heat transfer experiments. Heat transfer coefficients on the base surface and around a surface mounted vortex generator of delta-wing shape design, are evaluated with the transient liquid crystal measurement technique and over a range of freestream velocities. Therefore, the local values of exponent m in the equation Nu x ? Re x m , which is directly linked to the structure of the boundary layer, can be determined over the complete heat transfer area. The local distributions of exponent m are then directly compared to the footprint of the flow obtained with typical oil and dye surface flow visualisation. The results indicate that a more appropriate interpretation of the flow structures very close to the wall is possible by analysing the spatial variation of exponent m, which approximates better the flow pattern compared to the heat transfer coefficients. As a result, fluid flow topologies can be directly evaluated from the heat transfer experiments since the distributions of oil-flow visualisation and exponent m are qualitatively similar.

Alexandros Terzis; Jens von Wolfersdorf; Bernhard Weigand; Peter Ott

2015-01-01T23:59:59.000Z

199

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents (OSTI)

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

200

Visualization of the recovery-bioler flow fields predicted by computational fluid dynamics  

SciTech Connect

Flow patterns in the kraft recovery furnace can be simulated using models based on computational fluid dynamics (CFD). The use of CFD is becoming increasingly common as computer workstations become more powerful and CFD software is improved. In this article, the authors present simulated results for flow fields in the lower furnace. Because the flows in the lower furnace are dominated by the air system, the authors chose to simulate flow fields under isothermal conditions. The predicted flow fields were used to supplement results obtained from physical modeling. When a physical model is used for testing, each air-system configuration is typically evaluated based on air and gas velocities and the mixing distribution as measured at a limited number of test planes. Such measurements are commonly used to quantitatively assess air-system configurations for modeling studies or to validate CFD models.

Chapman, P.J.; Janik, S.G. (Kreisinger Development Lab. ABB Combustion Engineering Systems, Windsor, CT (United States)); Jones, A.K. (ABB Canada, Ottawa, ON (Canada))

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Stable Numerical Approximation of Two-Phase Flow with a Boussinesq--Scriven Surface Fluid  

E-Print Network (OSTI)

We consider two-phase Navier--Stokes flow with a Boussinesq--Scriven surface fluid. In such a fluid the rheological behaviour at the interface includes surface viscosity effects, in addition to the classical surface tension effects. We introduce and analyze parametric finite element approximations, and show, in particular, stability results for semi-discrete versions of the methods, by demonstrating that a free energy inequality also holds on the discrete level. We perform several numerical simulations for various scenarios in two and three dimensions, which illustrate the effects of the surface viscosity.

Barrett, John W; Nürnberg, Robert

2014-01-01T23:59:59.000Z

202

Motion of a Viscoelastic Micellar Fluid Around a Cylinder: Flow and Fracture  

E-Print Network (OSTI)

We present an experimental study of the motion of a viscoelastic micellar material around a moving cylinder, which ranges in response from fluid-like flow to solid-like tearing and fracture, depending on the cylinder radius and velocity. The observation of viscoelastic crack propagation driven by the cylinder indicates an extremely low tear strength, approximately equal to the steady state surface tension of the fluid. At the highest speeds a driven crack is observed in front of the cylinder, propagating with a fluctuating speed equal on average to the cylinder speed, here as low as 5% of the elastic wave speed in the medium.

Joseph R. Gladden; Andrew Belmonte

2006-05-25T23:59:59.000Z

203

Heat and Mass Transfer in the MHD Flow of a Visco-elastic Fluid in a Rotating Porous Channel with Radiative Heat  

Science Journals Connector (OSTI)

This paper deals with heat and mass transfer in the magnetohydrodynamic flow of a visco-elastic fluid in a rotating porous channel with radiative heat. The flow phenomenon has been characterized by the fluid para...

M. Jena; M. Goswami; S. Biswal

2014-12-01T23:59:59.000Z

204

J. Non-Newtonian Fluid Mech., 72 (1997) 7386 Start-up of flow of a FENE-fluid through a 4:1:4 constriction in  

E-Print Network (OSTI)

. Introduction Elastic fluids resist converging flow through an orifice, responding by increasing the pressure drop to good accuracy. As a further numerical convenience, we make the shape of the constriction round the flow through a small orifice in a large plate between two reservoirs. They used HPAM and PEO solutions

Hinch, John

205

Particle-fluid-structure interaction for debris flow impact on flexible barriers  

E-Print Network (OSTI)

Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the Discrete Element Method (DEM) governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the Lattice-Boltzmann Method (LBM). Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a non-negligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.

A. Leonardi; F. K. Wittel; M. Mendoza; R. Vetter; H. J. Herrmann

2014-09-29T23:59:59.000Z

206

Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media  

DOE Patents (OSTI)

Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)

1999-01-01T23:59:59.000Z

207

This is a 1D model of an active magnetic regenerative refrigerator (AMRR) that was developed in MATLAB. The model uses cycle inputs such as the fluid mass flow and  

E-Print Network (OSTI)

in MATLAB. The model uses cycle inputs such as the fluid mass flow and magnetic field profiles, fluid

Wisconsin at Madison, University of

208

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow in microchannels and nanochannels  

E-Print Network (OSTI)

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn 1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that

Luo, Li-Shi

209

Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle  

SciTech Connect

It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier-Stokes equations for the fluid. (authors)

Desbonnets, Quentin; Broc, Daniel [CEA, Lab Etudes Mecan Sism, DEN, SEMT, DM2S, F-91191 Gif Sur Yvette, (France)

2012-07-01T23:59:59.000Z

210

Equipment and procedures for fluid flow and wettability tests of geological materials  

SciTech Connect

The Bartlesville Energy Technology Center, US Department of Energy, has developed several unique types of laboratory apparatus: (1) equipment for measurement of petroleum reservoir fluids at simulated subsurface conditions of temperature and pressure, (2) apparatus for saturation of geological cores with liquids, (3) design of a low internal volume pressure relief valve, and (4) apparatus and procedures for the quantitative determination of the relative wetting of oil and water on geologic materials. The fluid flow apparatus operates on the principles of liquid chromatography except for the replacement of the standard chromatographic column by a geologic core sample; it can be operated at an internal pore pressure of 400 atmospheres and 150/sup 0/C. The apparatus can be applied to the measurement of the adsorption characteristics of reservoir fluids such as surfactants, polymers, chemical tracers and biocides; it is also applicable to the determination of relative permeability relationships and miscible and immiscible fluid flow behavior. The apparatus for the saturation of geologic cores is adaptable for simultaneous saturation of several small cores or a single core up to 50 cm in length and 4 cm in diameter. The pressure relief valve has an internal volume less than 0.5 ml and can operate at pressures as high as 500 atmospheres. The apparatus for determination of wettability was constructed by modification of a commercial centrifuge and the procedure is based on the thermodynamic work required for fluid displacement from a porous medium. This paper incorporates the design features and operational procedures of the apparatus in addition to the computer programs for calculation of miscible phase dispersion of reservoir fluids and adsorption characteristics of reservoir chemicals.

Donaldson, E.C.; Kendall, R.F.; Pavelka, E.A.; Crocker, M.E.

1980-05-01T23:59:59.000Z

211

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

212

Fluid flow release regulating device, ERIP {number_sign}624: Final report  

SciTech Connect

DOE/ERIP project {number_sign}624 ``Fluid Flow Release Regulating Device`` designed, constructed, tested, and installed a rubber crest gate for regulating water levels at an impoundment such as a hydroelectric dam. A 92 foot long by 27 inch high rubber panel was installed in January 1997. Initial results were good until fabric degradation internal to the rubber caused loss of stiffness. Substitutes for the failed fabric are being tested. The project will continue after DOE participation terminates.

NONE

1997-12-01T23:59:59.000Z

213

On the 3D steady flow of a second grade fluid past an obstacle  

E-Print Network (OSTI)

We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in \\cite{Koch} and properties of solutions to steady transport equation to get up to arbitrarily small $\\ep$ the same decay as the Oseen fundamental solution.

Pawe? Konieczny; Ond?ej Kreml

2010-10-29T23:59:59.000Z

214

Numerical simulation of fluid flow and heat transfer in a passage with moving boundary  

Science Journals Connector (OSTI)

In this paper, a method is presented in detail that can be used to solve the fluid flow and heat transfer in domains with moving boundaries. The primitive variables formulation is adopted and a non-staggered grid, with Cartesian velocity components used as the primary unkowns in the momentum equations, is utilised. Discretisation is carried out using a control-volume method, the simplified QUICK scheme combined with a deferred correction approach is adopted for the convective fluxes and implicit time stepping is used for temporal differencing. The well-known SIMPLE algorithm is employed for handling the velocityâ??pressure coupling. The computational method is applied for the prediction of fluid flow and heat transfer in a channel with a boundary moving in a prescribed manner. Results show that both the amplitude and Strouhal number have great influences on the characteristics of fluid flow and heat transfer, and in the range studied, the heat transfer rate increases monotonously with the amplitude, whereas the Strouhal number only has a small effect on heat transfer.

D. S. Zhang; Q. W. Wang; W. Q. Tao

2002-01-01T23:59:59.000Z

215

Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels  

Science Journals Connector (OSTI)

We study compressible fluid flow in narrow two-dimensional channels using a molecular-dynamics simulation method. In the simulation area, an upstream source is maintained at constant density and temperature while a downstream reservoir is kept at vacuum. The channel is sufficiently long in the direction of the flow that the finite length has little effect on the properties of the fluid in the central region. The simulated system is represented by an efficient data structure, whose internal elements are created and manipulated dynamically in a layered fashion. Consequently the computer code is highly efficient and manifests completely linear performance in simulations of large systems. We obtain the steady-state velocity, temperature, and density distributions in the system. The velocity distribution across the channel is very nearly a quadratic function of the distance from the center of the channel and reveals velocity slip at the boundaries; the temperature distribution is only approximately a quartic function of this distance from the center to the channel. The density distribution across the channel is nonuniform. We attribute this nonuniformity to the relatively high Mach number, approximately 0.5, in the fluid flow. An equation for the density distribution based on simple compressibility arguments is proposed; its predictions agree well with the simulation results. The validity of the concept of local dynamic temperature and the variation of the temperature along the channel are discussed.

M. Sun and C. Ebner

1992-10-15T23:59:59.000Z

216

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network (OSTI)

Imperial and Mexicali Valleys. 8 A Study of the Structural Control of Fluid Flow within the Cerro Prieto GeothermalImperial-Mexicali Valley is recognized as having a potential for large scale production of elec- dominated geothermal

Noble, John E.

2011-01-01T23:59:59.000Z

217

Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)  

Science Journals Connector (OSTI)

The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is i...

M. A. A. Mahmoud; S. E. Waheed

2014-08-01T23:59:59.000Z

218

Heat and mass transfer on MHD heat generating flow through a porous medium in a rotating fluid  

Science Journals Connector (OSTI)

The problem of the free-convection flow of a viscous heat generating fluid through porous media in a rotating frame of reference is considered for the case when a strong magnetic field is imposed in a directio...

P. C. Ram

219

Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid  

Science Journals Connector (OSTI)

Boundary layer solutions are presented to investigate the steady flow and heat transfer characteristics from a continuous flat surface moving in a parallel free stream of viscoelastic fluid. Numerical results are...

I. A. Hassanien

1992-10-01T23:59:59.000Z

220

3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement  

Science Journals Connector (OSTI)

Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes...V E...=0–16 kV) are investigated in detail...

Chia-Wen Lin; Jiin-Yuh Jang

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

222

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation  

E-Print Network (OSTI)

The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

Haghshenas, Arash

2013-04-24T23:59:59.000Z

223

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming  

SciTech Connect

Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

1996-08-01T23:59:59.000Z

224

Effect of mean fluid flow on an acoustic standing wave in an open cavity  

Science Journals Connector (OSTI)

Acoustic radiation pressure can be used to concentrate or remove small particles from an airborne aerosol. In this application an ultrasonic transducer mounted flush to one wall of a channel is used to excite an integer half?wavelength standing wave of high amplitude that propagates perpendicular to the aerosol flow direction. An expression for the Fourier transform of the acoustic pressure in a semi?infinite channel including the effect of mean fluid flow and finite transducer aperture has been obtained. A parabolic (laminar) mean flow was assumed. The acoustic pressure was found to be governed by the Mach number of the flow defined by the projection of the propagation direction relative to the mean flow velocity vector; and the aperture function of the transducer. Near a frequency of 50 kHz numerical inversions of the acoustic pressure transform showed that the presence of mean flow in the velocity range 0?2 m/s caused changes in acoustic pressure on the order of 1%–4%. Corresponding experimental measurements showed changes in acoustic pressure up to 10%. The highest changes in measured acoustic pressure were found to occur up? and down stream relative to the transducer and these patterns were in agreement with predictions of the analytical model.

2002-01-01T23:59:59.000Z

225

Flow and Heat Transfer of a MHD Viscoelastic Fluid in a Channel with Stretching Walls: Some Applications to Haemodynamics  

E-Print Network (OSTI)

Of concern in the paper is a study of steady incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a parallel plate channel with stretching walls in the presence of a magnetic field applied externally. The flow is considered to be governed by Walter's liquid B fluid. The problem is solved by developing a suitable numerical method. The results are found to be in good agrement with those of earlier investigations reported in existing scientific literatures. The study reveals that a back flow occurs near the central line of the channel due to the stretching walls and further that this flow reversal can be stopped by applying a strong external magnetic field. The study also shows that with the increase in the strength of the magnetic field, the fluid velocity decreases but the temperature increases. Thus the study bears potential applications in the study of the haemodynamic flow of blood in the cardiovascular system when subjected to an external magnetic field.

Misra, J C; Rath, H J

2010-01-01T23:59:59.000Z

226

Heat transfer and fluid flow over a single disk in a fluid rotating as a rigid body  

Science Journals Connector (OSTI)

Laminar heat transfer problem is analyzed for a disk rotating ... the angular speed ? in a co-rotating fluid (with the angular speed ?). The fluid is swirled in accordance with a forced- ... self-similar profiles...

Igor V. Shevchuk Ph.D.; Matthias H. Buschmann

2004-08-01T23:59:59.000Z

227

Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media  

SciTech Connect

In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

2013-04-15T23:59:59.000Z

228

Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk  

SciTech Connect

For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

Tomutsa, Liviu; Silin, Dmitriy

2004-08-19T23:59:59.000Z

229

Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report  

SciTech Connect

Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

Detwiler, Russell

2014-04-30T23:59:59.000Z

230

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N. Morozov and Wim van Saarloos  

E-Print Network (OSTI)

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N is shown to exhibit a purely elastic subcritical instability at a very small-Reynolds number in spite. In this Letter we show that visco- elastic plane Couette flow (PCF) exhibits a subcritical instability to finite

van Saarloos, Wim

231

J. Non-Newtonian Fluid Mech. 130 (2005) 128 The dynamics of single-molecule DNA in flow  

E-Print Network (OSTI)

J. Non-Newtonian Fluid Mech. 130 (2005) 1­28 Review The dynamics of single-molecule DNA in flow Abstract Within the last decade, fluorescence microscopy of single molecules of DNA in a plethora of flow of the microscopy, employing a spectrum of possible DNA molecules, fragments, and concatemers with dynamic

Shaqfeh, Eric

232

Journal of Fluids and Structures 20 (2005) 129140 Blood flow and damage by the roller pumps during  

E-Print Network (OSTI)

Journal of Fluids and Structures 20 (2005) 129­140 Blood flow and damage by the roller pumps during created in a centrifugal pump used for a cardiopulmonary bypass, little is known about the blood flow and consequent damage in a roller pump. A time- dependent moving boundary problem is solved in this paper

Luo, Xiaoyu

233

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

234

Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model  

Science Journals Connector (OSTI)

Abstract This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fourier’s Law and the Cattaneo–Christov heat flux model is also presented.

Shihao Han; Liancun Zheng; Chunrui Li; Xinxin Zhang

2014-01-01T23:59:59.000Z

235

The Properties of Confined Water and Fluid Flow at the Nanoscale  

SciTech Connect

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

236

Self-assembly of magnetically interacting cubes by a turbulent fluid flow  

Science Journals Connector (OSTI)

Previous work has demonstrated that combining mechanical vibration with magnetic interactions can result in the self-assembly of complex structures, albeit at low yield. Here we introduce a system where the yield of self-assembled structures is quantitatively predicted by a theoretical analysis. Millimeter-sized magnetic blocks, designed to form chains as their minimal energy state, are placed in a turbulent fluid flow. The distribution of chain lengths that form is quantitatively consistent with predictions, showing that the chain length distribution coincides with that of monomers or polymers in a thermal bath, with the turbulence strength parametrizing the effective temperature.

Filip Ilievski; Madhav Mani; George M. Whitesides; Michael P. Brenner

2011-01-05T23:59:59.000Z

237

Uncertainty quantification for porous media flows  

SciTech Connect

Uncertainty quantification is an increasingly important aspect of many areas of computational science, where the challenge is to make reliable predictions about the performance of complex physical systems in the absence of complete or reliable data. Predicting flows of oil and water through oil reservoirs is an example of a complex system where accuracy in prediction is needed primarily for financial reasons. Simulation of fluid flow in oil reservoirs is usually carried out using large commercially written finite difference simulators solving conservation equations describing the multi-phase flow through the porous reservoir rocks. This paper examines a Bayesian Framework for uncertainty quantification in porous media flows that uses a stochastic sampling algorithm to generate models that match observed data. Machine learning algorithms are used to speed up the identification of regions in parameter space where good matches to observed data can be found.

Christie, Mike [Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland (United Kingdom)]. E-mail: mike.christie@pet.hw.ac.uk; Demyanov, Vasily [Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland (United Kingdom); Erbas, Demet [Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland (United Kingdom)

2006-09-01T23:59:59.000Z

238

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet  

E-Print Network (OSTI)

Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

2013-01-01T23:59:59.000Z

239

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

240

Fluid Flow, Thermal History, and Diagenesis of the Cambrian-Ordovician Arbuckle Group and Overlying Units in South-Central Kansas  

E-Print Network (OSTI)

A diagenetic study of the Cambrian-Ordovician Arbuckle Group to the Middle Pennsylvanian Cherokee Group in south-central Kansas produced evidence of regional advective fluid flow and more localized fracture-controlled fluid ...

King, Bradley Donald

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows  

SciTech Connect

The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.

Ueckermann, M.P., E-mail: mpuecker@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Lermusiaux, P.F.J., E-mail: pierrel@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Sapsis, T.P., E-mail: sapsis@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)

2013-01-15T23:59:59.000Z

242

Aspects of non-Newtonian flow and displacement in porous media  

SciTech Connect

The rheology of many heavy oils has been shown to be non-Newtonian, Bingham plastics being one manifestation of heavy oil flow. In EOR applications, non-Newtonian fluids such as low concentration polymer solutions, emulsions, gels etc. are simultaneously injected to increase the viscosity of driving agents that displace oil. Such rheologically complex fluids are used to improve sweep efficiencies, divert displacing fluids and block swept zones. The present study has been undertaken to understand the flow of non-Newtonian fluids through porous media. The work considered involves the numerical (pore network) modeling of both single and multiphase flow of power-law and Bingham plastic fluids in network-like porous media. We consider aspects of both single- and multi-phase flow and displacement. Section 2 describes elementary aspects of non-Newtonian flow and some simple models for porous media. Viscoelastic effects in the flow of non-Newtonian fluids are also discussed. The section includes a brief literature review on non-Newtonian flow in porous media. Section 3 describes single-phase flow.

Shah, C.; Yortsos, Y.C.

1993-02-01T23:59:59.000Z

243

DOE-HDBK-1012/3-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 3 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-92 3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019791 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

244

DOE-HDBK-1012/2-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 2 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-92 2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 2 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019790 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

245

DOE-HDBK-1012/1-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 1 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-92 1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019789 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance

246

Multi-phase water-rhyolite interaction and ore fluid generation at Aljustrel, Portugal  

Science Journals Connector (OSTI)

Detailed study of the Aljustrel volcanic rocks, through petrography, mineral chemistry, whole-rock geochemistry, and previously published stable isotope data, show that the rocks experienced extreme metasomat...

F. J. A. S. Barriga; W. S. Fyfe

1997-12-01T23:59:59.000Z

247

INL Fusion Safety Program - Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

material oxidation, multi-phase fluid flow, multi-phase heat transfer, aerosol resuspension and transport, electrodynamics, radiant energy transport, and magnet arcing. More...

248

Convective flow and heat transfer of a viscous heat generating fluid in the presence of a moving, infinite, vertical, porous plate  

Science Journals Connector (OSTI)

The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, ... of the plate-motion and the presence of heat generation/absorption on the flow...

K. Vajravelu

1978-09-01T23:59:59.000Z

249

Similarity Flow Solutions of a Non-Newtonian Power-law Fluid  

E-Print Network (OSTI)

In this paper we present a mathematical analysis for a steady-state laminar boundary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non- Newtonian fluid past a semi-infinite power-law stretched flat plate with uniform free stream velocity. A generalization of the usual Blasius similarity transformation is used to find similarity solutions [1]. Under appropriate assumptions, partial differential equations are transformed into an autonomous third-order nonlinear degenerate ordinary differential equation with boundary conditions. Using a shooting method, we establish the existence of an infinite number of global unbounded solutions. The asymptotic behavior is also discussed. Some properties of those solutions depend on the viscosity power-law index.

Guedda, Mohamed

2009-01-01T23:59:59.000Z

250

Nanometer-scale imaging and pore-scale fluid flow modeling inchalk  

SciTech Connect

For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.

Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

2005-08-23T23:59:59.000Z

251

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

252

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect

This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Y.C.

2001-05-29T23:59:59.000Z

253

Stability analysis of multi-phase AC arc discharge for in-flight glass melting  

Science Journals Connector (OSTI)

A stable multi-phase AC arc was generated to by transformers at a commercial electric system. The arc discharge behavior and the stability were investigated by the high-speed video camera observation synchronized with the voltage waveform analysis. The effect of the number of phase and the flaming gas addition into the arc region on the arc behavior and the arc stability were studied. Results showed that the re-ignition occurred between adjacent electrodes periodically. Two kinds of the stability analysis methods were introduced. The estimated fluctuation degree showed that an increase of the number of the phase leads to the stable multi-phase AC arc. The deviation of the arc voltage from the average arc voltage was estimated to evaluate the uniformity of the multi-phase AC arc. Although an addition of the oxygen flame into the arc region leads to lower uniformity, the modification of the electrode position can improve the uniformity of the multi-phase AC arc.

Manabu Tanaka; Yosuke Tsuruoka; Yaping Liu; Tsugio Matsuura; Takayuki Watanabe

2011-01-01T23:59:59.000Z

254

A multi-phase network situational awareness cognitive task analysis  

SciTech Connect

Abstract The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into making certain that we had feedback from network analysts and managers and understand what their genuine needs are. This article discusses the cognitive task-analysis methodology that we followed to acquire feedback from the analysts. This article also provides the details we acquired from the analysts on their processes, goals, concerns, the data and metadata that they analyze. Finally, we describe the generation of a novel task-flow diagram representing the activities of the target user base.

Erbacher, Robert; Frincke, Deborah A.; Wong, Pak C.; Moody, Sarah; Fink, Glenn A.

2010-06-16T23:59:59.000Z

255

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

SciTech Connect

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15T23:59:59.000Z

256

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

257

Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac BaFFe deposits  

E-Print Network (OSTI)

of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. BaMagnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented

Paris-Sud XI, Université de

258

Abstract 4455: Influence of convective fluid flow on the penetration of anti-cancer drugs through multicell layers  

Science Journals Connector (OSTI)

...drives convective fluid flow, the rate of which can be varied by increasing...When CFF was 0.19 ml/min, the penetration of gefitinib, imatinib and doxorubicin...CFF was zero. The enhancement of penetration rates was 75 fold for doxorubicin, 53...

Roger M. Phillips; Hafiz Makeen; Raj Periasamy; Paul M. Loadman; Pamela F. Jones; Brian D. Sleeman; Stephen W. Smye; and Chris Twelves

2011-04-15T23:59:59.000Z

259

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal b  

E-Print Network (OSTI)

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal form 16 April 2010 Accepted 28 May 2010 Available online 8 June 2010 Keywords: Nested Cartesian grid procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating

Mittal, Rajat

260

Temporal evolution of pore geometry, fluid flow, and solute transport resulting from colloid deposition  

SciTech Connect

Deposition of colloidal particles is one of many processes that lead to the evolution of the structure of natural porous media in groundwater aquifers, oil reservoirs, and sediment beds. Understanding of the mechanisms and effects of this type of structural evolution has been limited by a lack of direct observations of pore structure. Here, synchrotron X-ray difference microtomography (XDMT) was used to resolve the temporal evolution of pore structure and the distribution of colloidal deposits within a granular porous medium. Column filtration experiments were performed to observe the deposition of relatively high concentrations of colloidal zirconia (200 mg/l of particles having diameter {approx}1 {micro}m) in a packed bed of glass beads (diameters 210-300 {micro}m). Noninvasive XDMT imaging of the pore structure was performed three separate times during each column experiment. The structural information observed at each time was used to define internal boundary conditions for three-dimensional lattice Boltzmann (LB) simulations that show how the evolving pore structure affects pore fluid flow and solute transport. While the total deposit mass increased continuously over time, colloid deposition was observed to be highly heterogeneous and local colloid detachment was observed at some locations in a low ionic strength medium. LB simulations indicated that particle accumulation greatly reduced the permeability of the porous medium while increasing the tortuosity. The colloidal deposits also increased the spatial variability in pore water velocities, leading to higher dispersion coefficients. Anomalous dispersion behavior was investigated by simulation at the scale of the experimental system: weak tailing was found in the clean bed case, and the extent of tailing greatly increased following colloid deposition because of the development of extensive no-flow regions. As a result of this coupling between pore fluid flow, colloid accumulation, and the pore geometry, colloid deposition is expected to strongly influence long-term solute dynamics in cases where solute transport is either accompanied by high colloid influx or where the passage of the solute front mobilizes and then redistributes material from the porous matrix.

Chen, Cheng; Lau, Boris L.; Gaillard, J.-F.; Packman, A.I.; (NWU)

2010-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Numerical Simulation of Heat Transfer and Fluid Flow Characteristics of Server Rack in Datacenter  

Science Journals Connector (OSTI)

This chapter is studying the fluid mechanics and heat transfer of single server rack using the computational fluid dynamics software. The ... effect of the different structure parameters of server rack in datacen...

Jianfei Zhang; Donghao Liu; Xiping Qiao…

2014-01-01T23:59:59.000Z

262

Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow  

E-Print Network (OSTI)

and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluidNumerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative

263

Application of Multi-rate Flowing Fluid Electric ConductivityLogging Method to Well DH-2, Tono Site, Japan  

SciTech Connect

The flowing fluid electric conductivity (FEC) logging method, wellbore fluid is replaced with de-ionized water, following which FEC profiles in the wellbore are measured at a series of times while the well is pumped at a constant rate. Locations were fluid enters the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow strengths and salinities of permeable features intersected by the wellbore. In multi-rate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates, which enables the transmissivities and inherent pressure heads of these features to be estimated as well. We perform multi-rate FEC logging on a deep borehole in fractured granitic rock, using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. By using three pumping rates rather than the minimum number of two, we obtain an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multi-rate flowing FEC logging method.

Doughty, Christine; Takeuchi, Shinji; Amano, Kenji; Shimo, Michito; Tsang, Chin-Fu

2004-10-04T23:59:59.000Z

264

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

265

Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine  

DOE Patents (OSTI)

Methods, system and apparatus are provided for quickly approximating a peak summed magnitude (A) of a phase voltage (Vph) waveform in a multi-phase system that implements third harmonic injection.

Ransom, Ray M. (Big Bear City, CA); Gallegos-Lopez, Gabriel (Torrance, CA); Kinoshita, Michael H. (Redondo Beach, CA)

2012-07-31T23:59:59.000Z

266

Adaptive modelling of multi-phase flow Support of the German Research Foundation is gratefully acknowledged.  

E-Print Network (OSTI)

-method) Aavatsmark et. al (2008) Transport step Adaptation of sub-domains Next time-step Simple model (1p2c) Complex model (2p2c) Future Work Simulation of the Tensleep formation on an adaptive grid. Further application: 1p2c with linear T 2p2c with linear T Full 2p2cNI Only small parts of the domain are subject

Cirpka, Olaf Arie

267

Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field  

SciTech Connect

Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field. (author)

Li, Qiang; Xuan, Yimin [School of Power Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094 (China)

2009-04-15T23:59:59.000Z

268

On the influence of an absorption term in incompressible fluid flows  

E-Print Network (OSTI)

|, they approximate the Ostwald-de Waele model for power law fluids, very often used to model non-Newtonian fluids and q as follows: Newtonian if µ0 > 0 and µ1 = 0 Ostwald-de Waele if µ0 = 0 and µ1 > 0 Bingham

Lisbon, University of

269

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced with Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions  

Science Journals Connector (OSTI)

Equations describing the stationary heat conduction of composite bodies spatially reinforced with ... of smooth pipes, through which an incompressible heat-transfer fluid is pumped in laminar flow conditions, are...

A. P. Yankovskii

2014-03-01T23:59:59.000Z

270

Three-dimensional analysis of fluid flow and heat transfer in single- and two-layered micro-channel heat sinks  

Science Journals Connector (OSTI)

A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model ... power, the...

M. L.-J. Levac; H. M. Soliman; S. J. Ormiston

2011-11-01T23:59:59.000Z

271

Heat and mass transfer in a visco–elastic fluid flow over an accelerating surface with heat source/sink and viscous dissipation  

Science Journals Connector (OSTI)

...?In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipatio...

R. M. Sonth; S. K. Khan; M. S. Abel; K. V. Prasad

2002-02-01T23:59:59.000Z

272

On the influence of a magnetic field with circular field lines on the gravity flow of a magnetic fluid film down a thin cylinder  

Science Journals Connector (OSTI)

The gravity-induced flow of a magnetic fluid film down a vertical thin current-carrying cylindrical conductor is considered. The relative thickness of the film is small. A nonlinear equation is derived from a ...

V. M. Korovin

2009-10-01T23:59:59.000Z

273

Application of X-ray CT for investigating fluid flow and conformance control during CO2 injection in highly heterogeneous media  

E-Print Network (OSTI)

were performed using homogeneous and heterogeneous cores and a 4th generation X-Ray CT scanner was used to visualize heterogeneity and fluid flow in the core. Porosity and saturation measurements were made during the course of the experiment...

Chakravarthy, Deepak

2005-08-29T23:59:59.000Z

274

Swirling structure for mixing two concentric fluid flows at nozzle outlet  

DOE Patents (OSTI)

A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

Mensink, D.L.

1993-07-20T23:59:59.000Z

275

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

276

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

277

An approximate solution for the start-up flow of a power-law fluid in a tube  

Science Journals Connector (OSTI)

A theoretical solution of the unsteady-state momentum equation for the start-up flow of a power-law fluid in circular tubes is presented. The solution is obtained with an approximate technique which has previously proved to be useful in solving other transport problems involving nonlinear partial differential equations and explicit asymptotic expressions for the velocity profiles and flow-rates as functions of time are given. The accuracy of the method is checked by comparing the results with the existing exact analytical solution of Gromekha—Szymanski which applies for the Newtonian case and the results are believed to be good approximations for moderate and large values of time. An interesting aspect of the results is the effect of the flow behaviour index and the imposed pressure gradient on the start-up time.

J. Sestak; M.E. Charles

1968-01-01T23:59:59.000Z

278

DNS on turbulent heat transfer of viscoelastic fluid flow in a plane channel with transverse rectangular orifices  

Science Journals Connector (OSTI)

Heat-transfer characteristics of a viscoelastic turbulence past rectangular orifices were investigated in the context of the reduction effects of fluid elasticity on drag and heat transfer. To simulate the fully-developed channel flow through transverse orifices located periodically at intervals of 6.4 times channel height, we imposed periodic conditions at the upstream and downstream boundaries. To discuss the dissimilarity between the velocity and thermal fields, the molecular Prandtl number was set to be 1.0 and any temperature dependence of the fluid and rheological properties was not considered. In the present condition, the ratio of the reduction rates in drag and heat transfer was found to be 2.8:1.0, revealing that the present flow configuration is better than a smooth channel for avoiding the heat-transfer reduction. This phenomenon was attributed to the sustainment of the quasi-streamwise vortex downstream of the reattachment point despite the absence of strong spanwise vortices emanating from the orifice edge in the viscoelastic fluid. The longitudinal vortices behind the reattachment point caused a high turbulent heat flux and increased the local Nusselt number.

Takahiro Tsukahara; Tomohiro Kawase; Yasuo Kawaguchi

2013-01-01T23:59:59.000Z

279

Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids  

E-Print Network (OSTI)

In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal ...

Fardin, M. A.

280

Flow through porous media : from mixing of fluids to triggering of earthquakes  

E-Print Network (OSTI)

Enhanced oil recovery by displacing oil with solvents such as carbon dioxide requires development of miscibility between the two fluids to maximize the displacement efficiency. Prevention of inadvertent triggering of ...

Jha, Birendra, Ph. D. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

L3:MPO.CRUD.P8.02 Two-Phase Fluid Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

or equivalent) m Mobility of a particle in a fluid Pa m s Density kg m 3 Surface tension N m avg Average tortuosity for flowpaths and diffusion - c Contact...

282

Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed  

SciTech Connect

A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

Qussai Marashdeh

2012-09-30T23:59:59.000Z

283

Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms  

Science Journals Connector (OSTI)

Abstract The present work advances a recently introduced approach based on combining the Generalized Integral Transform Technique (GITT) and a single domain reformulation strategy, aimed at providing hybrid numerical–analytical solutions to convection–diffusion problems in complex physical configurations and irregular geometries. The methodology has been previously considered in the analysis of conjugated conduction–convection heat transfer problems, simultaneously modeling the heat transfer phenomena at both the fluid streams and the channels walls, by making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid–wall interfaces. The present work is aimed at extending this methodology to deal with both fluid flow and conjugated heat transfer within arbitrarily shaped channels and complex multichannel configurations, so that the solution of a cumbersome system of coupled partial differential equations defined for each individual sub-domain of the problem is avoided, with the proposition of the single-domain formulation. The reformulated problem is integral transformed through the adoption of eigenvalue problems containing the space variable coefficients, which provide the basis of the eigenfunction expansions and are responsible for recovering the transitional behavior among the different regions in the original formulation. For demonstration purposes, an application is first considered consisting of a microchannel with an irregular cross-section shape, representing a typical channel micro-fabricated through laser ablation, in which heat and fluid flow are investigated, taking into account the conjugation with the polymeric substrate. Then, a complex configuration consisting of multiple irregularly shaped channels is more closely analyzed, in order to illustrate the flexibility and robustness of the advanced hybrid approach. In both cases, the convergence behavior of the proposed expansions is presented and critical comparisons against purely numerical approaches are provided.

Diego C. Knupp; Renato M. Cotta; Carolina P. Naveira-Cotta

2014-01-01T23:59:59.000Z

284

Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model  

Science Journals Connector (OSTI)

A simple lattice Boltzmann model for numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration, which is of fundamental interest and practical importance in science as well as in engineering, is proposed in this paper. Unlike existing lattice Boltzmann models for such flows, which were based on “primitive-variable” Navier-Stokes equations, the target macroscopic equations of the present model for the flow field are vorticity–stream function equations, inspired by our recent work designed for nonrotating flows [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)]. The flow field and the temperature field both are solved by the D2Q5 model. Compared with the previous models, the present model is more efficient, more stable, and much simpler. It was found that, even though with a relatively low grid resolution, the present model can still work well when the Grashof number is very high. The advantages of the present model are validated by numerical experiments.

Sheng Chen; Jonas Tölke; Manfred Krafczyk

2009-07-14T23:59:59.000Z

285

A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime  

E-Print Network (OSTI)

We derive a criterion for the breakdown of solutions to the Oldroyd-B model in $\\R^3$ in the limit of zero Reynolds number (creeping flow). If the initial stress field is in the Sobolev space $H^m$, $m> 5/2$, then either a unique solution exists within this space indefinitely, or, at the time where the solution breaks down, the time integral of the $L^\\infty$-norm of the stress tensor must diverge. This result is analogous to the celebrated Beale-Kato-Majda breakdown criterion for the inviscid Eluer equations of incompressible fluids.

Raz Kupferman; Claude Mangoubi; Edriss S. Titi

2007-09-10T23:59:59.000Z

286

On the multidimensional modeling of fluid flow and heat transfer in SCWRS  

SciTech Connect

The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

Gallaway, T.; Antal, S. P.; Podowski, M. Z. [Center for Multiphase Research, Rensselaer Polytechnic Inst., 110 8th St., Troy, NY (United States)

2012-07-01T23:59:59.000Z

287

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

288

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

289

Non-Newtonian Fluids, Mudflows, and Debris Flows: A Rheological Approach  

Science Journals Connector (OSTI)

Just as examples: Pengcheng (1992) describes the turbulent debris flows of the the Jiangja ravine in China in terms of a Chezy-like formula $...

Fabio Vittorio De Blasio

2011-01-01T23:59:59.000Z

290

Numerical and experimental investigations on vibration of simulated CANDU fuel bundles subjected to turbulent fluid flow.  

E-Print Network (OSTI)

??Vibration of simulated CANDU fuel bundles induced by coolant flow is investigated in this thesis through experiments and numerical simulations. Two simulated bundles and a… (more)

Zhang, Xuan

2011-01-01T23:59:59.000Z

291

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

SciTech Connect

This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

Rutqvist, J.

2010-06-01T23:59:59.000Z

292

Vortical Inviscid Flows with Two-Way Solid-Fluid Coupling  

E-Print Network (OSTI)

, the net force acting on a solid immersed in an irrotational and inviscid flow is zero. For instance methods are used to accurately calculate forces in mechanical engineering applications such as airfoils [6, a sphere in an inviscid constant uniform flow would experience zero drag which is clearly incorrect. Our

Lee, WonSook

293

MATHEMATICAL MODELING OF THREE-DIMENSIONAL DIE FLOWS OF VISCOPLASTIC FLUIDS WITH WALL SLIP  

E-Print Network (OSTI)

of filled polymers, and concentrated suspensions in screw extruders and dies of complex shapes is undertaken-dimensional flows including flows through dies, single/twin-screw extruders and other processing geometries m o n p * (1b) where Rs is the screw radius of the twin screw extruder preceding the die

294

Airfoil Shape Optimization for Transonic Flows of BetheZel'dovichThompson Fluids  

E-Print Network (OSTI)

, in organic Rankine cycles (ORCs). Specific interest has developed in a particular class of dense gases, known in the same way as classical steam Rankine cycles, but due to the use of low-boiling compounds as working by their potential technological advantages as working fluids in energy- conversion cycles and, specifically

Paris-Sud XI, Université de

295

Hydraulic stimulation of geothermal reservoirs: fluid flow, electric potential and microseismicity relationships  

Science Journals Connector (OSTI)

......represents the reservoir relaxation process occurring around the openhole...Li (1987), it is a slow process and, therefore, it may not...to observe fluid diffusion processes is useful for the understanding...Abstracts of Papers , EAGE-56th Mtg. Tech. Exhib., I004. Li......

Mathieu Darnet; Guy Marquis; Pascal Sailhac

2006-07-01T23:59:59.000Z

296

Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium flow  

E-Print Network (OSTI)

Fusion Engineering and Design 82 (2007) 2217­2225 Integrated thermo-fluid analysis towards helium. Andob, I. Komadab a Fusion Engineering Sciences, Mechanical and Aerospace Eng. Department, University the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE

Abdou, Mohamed

297

Study of miscible fluid flows in a porous medium by an acoustical method  

E-Print Network (OSTI)

measurements in a pack of glass beads saturated with water- ethanol mixtures of various concentrations. We thus of glass beads packing a column, saturated with a water-ethanol mixture. We displace the saturating fluid by a water-ethanol mixture ofa different concentration. Concentration profiles (i.e. the concentration time

Boyer, Edmond

298

Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank with randomly distributed features  

Science Journals Connector (OSTI)

Abstract An elliptical hollow fiber membrane tube bank (EHFMTB) has better performances while being employed for air humidification. The EHFMTB is populated in a plastic shell to form a shell-and-tube heat exchanger like membrane contactor. The tube bank is always randomly populated in practical applications because of convenience and randomness in the manufacturing process. The fluid flow and heat transfer across a randomly distributed elliptical hollow fiber membrane tube bank (REHFMTB) are investigated. To disclose the influences of the fiber arrangements on the performances, three unit cells containing 20 fibers with different randomly distributions are selected as the calculating domains. A renormalization group k–? (RNG KE) turbulence model with enhanced wall treatment is used for solving the equations governing the momentum and heat transports. The friction factor and Nusselt number across the REHFMTB under various fiber distributions, Reynolds numbers (Re), packing fractions (?) and elliptical semiaxis ratios (b/a) are numerically obtained and experimentally validated. It is found that the comprehensive heat transfer performance is deteriorated for the fluid flow across the REHFMTB.

Runhua Jiang; Minlin Yang; Sheng Chen; Si-Min Huang; Xiaoxi Yang

2014-01-01T23:59:59.000Z

299

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents (OSTI)

A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, L.S.

1993-01-26T23:59:59.000Z

300

Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium  

DOE Patents (OSTI)

A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

Beller, Laurence S. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics  

Science Journals Connector (OSTI)

A three-dimensional model for gas-solid flow in a circulating fluidized bed (CFB) riser was developed based on computational particle ... experimental data validated the CPFD model for the CFB riser. The model pr...

Yinghui Zhang; Xingying Lan; Jinsen Gao

2012-12-01T23:59:59.000Z

302

Heat-transfer mechanism in turbulent flow of fluid at supercritical pressures  

Science Journals Connector (OSTI)

A hypothetical physical model of the heat-transfer process accompanying a forced flow of liquid at supercritical pressures is proposed. This model accounts for the anomalous improvements and deteriorations in ...

Sh. G. Kaplan

1971-09-01T23:59:59.000Z

303

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assume...

A. R. Bestman; S. K. Adjepong

304

Multiphase flow and Encapsulation simulations using the moment of fluid method 1  

E-Print Network (OSTI)

, spray cooling, icing, combustion and agricultural irrigation. The instability of the interface, mass exist for the accurate and effi- cient computation of multiphase flows. First, the density and viscosity

Sussman, Mark

305

Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration  

E-Print Network (OSTI)

With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number $H$, while the wall shear stress has a reducing effect on the Hartmann number $H$ and an enhancing effect on microrotation parameter $K$ as well as the constriction height $\\delta$.

Shit, G C

2012-01-01T23:59:59.000Z

306

Under consideration for publication in J. Fluid Mech. 1 Nonlinear free surface flows past a semi-  

E-Print Network (OSTI)

- infinite flat plate in water of finite depth M. M A L E E W O N G 1 AND R. H. J. G R I M S H A W2 1 ??) We consider the steady free surface two-dimensional flow past a semi-infinite flat plate in water (draft) of the depressed plate. For small d and subcritical flows, we may use the linearized problem

307

PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME  

SciTech Connect

There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

Buscheck, Timothy Eric

1980-03-01T23:59:59.000Z

308

Elevated thermal maturation in Pennsylvanian rocks, Cherokee basin, southeastern Kansas: Importance of regional fluid flow  

SciTech Connect

Thermal history of sedimentary basins is commonly assumed to be dominated by burial heating. Marked contrast between reconstructed burial temperatures and other temperature determinations would suggest alternative processes. In the Cherokee basin of southeastern Kansas, reconstruction of burial and thermal history indicates that basal Pennsylvanian strata were not buried more than 1.8 km, and should have reached only about 90C. However, the study of Pennsylvanian rocks of the Cherokee basin indicates that higher temperatures were reached and that the pattern of thermal maturation is inconsistent with simple burial heating. Regional pattern of vitrinite reflectance reveals several warm spots' where thermal maturation is elevated above the regional background. Primary fluid inclusions in late Ca-Mg-Fe carbonate cements yield homogenization-temperature modes or petrographically consistent populations ranging from 100 to 150C. These data suggest that the samples experienced at least those temperatures, hence fluid inclusions closely agree with vitrinite and Rock-Eval. Elevated temperatures, warm spots, confined thermal spikes, a low R{sub m} gradient argue against simple burial heating. These observations are consistent with regional invasion of warm fluids, probably from the Ouachita-Arkoma system, and their subsequent upward migration into Pennsylvanian strata through faults and fractures. Petroleum exploration should consider the possibility of regionally elevated thermal maturation levels with even more elevated local maxima. Consequences may include local generation of hydrocarbons or local changes in diagenetic patterns.

Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. (Univ. of Kansas, Lawrence (United States)); Barker, C.E. (Geological Survey, Denver, CO (United States))

1991-03-01T23:59:59.000Z

309

Numerical Analysis of Heat Transfer and Fluid Characteristics of Flowing Liquid Nitrogen in HTS Cable  

Science Journals Connector (OSTI)

Abstract High-temperature superconducting (HTS) cable has heat intrusion from the termination including joule heat generation at the terminal joint and from the room temperature cable through the Cu current lead. According to the length of the HTS cable, this heat loss may become a considerable amount which cannot be ignored in the HTS cable system. In this study, referring to a high-voltage cable (HV cable) which was developed in M-PACC project, the effect of heat transfer at the interface between the terminal joint and LN2 in the terminal vessel (ho) on the temperature of the HTS cable were calculated and evaluated. The condition of flow in the terminal vessel was assumed to be natural convection, forced flow or static condition for evaluating this effect with various heat transfer condition. As a result, in the case of the natural convection, most of heats flow into the LN2 in the terminal vessel where the volumetric flow of the LN2 is large since ho becomes high. Accordingly, the temperature rise of the LN2 in the inner pipe of Cu former and the terminal vessel can be restricted. However, in the cases of the forced flow and the static condition, most of heats flow into the LN2 in the inner pipe where the volumetric flow of the LN2 is small since ho becomes small. Accordingly, the temperature rise of the LN2 in the inner pipe becomes high. This temperature rise of the LN2 in the inner pipe makes the temperature of the HTS conductor large resulting in remarkable increase of AC losses. Consequently, on the HV cable design, for restriction of the AC loss increase, it is expected that designing the HTS cable termination such as extending outer surface of the terminal joint for increasing of the heat inflow from the terminal joint to the LN2 in the vessel is effective.

O. Maruyama; T. Ohkuma; T. Izumi; Y. Shiohara

2014-01-01T23:59:59.000Z

310

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

SciTech Connect

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

311

Different approximations of shallow fluid flow over an obstacle B. T. Nadiga and L. G. Margolin  

E-Print Network (OSTI)

sets of shallow water equations, representing different levels of approximation are considered the dispersive shallow water DSW solutions and those of the highly simplified, hyperbolic shallow water SW; it is only when the flows are entirely subcritical or entirely supercritical and when the obstacles are very

Nadiga, Balasubramanya T. "Balu"

312

Two-fluid flowing equilibria of compact plasmas Loren C. Steinhauer  

E-Print Network (OSTI)

or presence of a jĂ?B force. The force-free class may have significant flows. Spheromaks are in this class-force-free class is energetically favorable. This sheds light on the FRC-spheromak bifurcation observed- perimentally only in certain arrangements reversed-field pinch, spheromak and then only in the central ``core

Washington at Seattle, University of

313

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

314

Design of a continuous-flow reactor for in situ x-ray absorption spectroscopy of solids in supercritical fluids  

SciTech Connect

This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 deg. C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 deg. C and 24 MPa.

Dreher, M.; De Boni, E.; Nachtegaal, M.; Wambach, J.; Vogel, F. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2012-05-15T23:59:59.000Z

315

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

316

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

317

Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution  

SciTech Connect

Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

Mukhopadhyay, Sumit; Tsang, Yvonne W.

2008-08-01T23:59:59.000Z

318

Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding  

Science Journals Connector (OSTI)

Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6–8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclét-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a?1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ?m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.

Daniel F.C Pribnow; Claudia Schütze; Suzanne J Hurter; Christina Flechsig; John H Sass

2003-01-01T23:59:59.000Z

319

Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)  

DOE Data Explorer (OSTI)

The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

320

Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids  

SciTech Connect

These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of the proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MecE 630 Fluid Dynamics (Fall 2014) Course objectives: To explore the essential dynamics of flowing fluids by expanding upon ma-  

E-Print Network (OSTI)

and vortex tubes. · Fluid kinematics and vector calculus ­ Summation notation, ­ Normal vs. shear strain- ing novel research projects. Course topics: · Review of basic concepts ­ Definition of a fluid. Problem sets: Roughly one per course topic. Problem sets will be due 1-2 weeks after their initial

Flynn, Morris R.

322

Materials Science and Engineering B 117 (2005) 5361 Finite element analysis-based design of a fluid-flow control nano-valve  

E-Print Network (OSTI)

of a fluid-flow control nano-valve M. Grujicica,, G. Caoa, B. Pandurangana, W.N. Royb a Department A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction

Grujicic, Mica

323

Finite element investigation of multi-phase transformation within carburized carbon steel  

Science Journals Connector (OSTI)

Mechanical components for the automobiles, aircrafts and machines are required to have the higher strength, hardness and wear resistance, when these parts are generally subjected to high load and impact. Such mechanical properties can be obtained from the carburization and quenching processes. Thus, in this study, numerical investigation using three-dimensional finite element technique was made to simulate the carburization and multi-phase transformation processes within the carburized carbon steel during quenching. In order to simulate the carburization process, the second Fick's equation and carbon diffusional equation were adapted. For numerical simulation of the diffusional phase transformation occurred during the non-isothermal quenching process, subdivision of the cooling curve into various small isothermal steps was introduced with the help of various time–temperature–transformation (TTT) diagrams of carbon steel. In addition, Scheil's additive rule and Johnson–Mehl–Avarami–Kolmogorov (JMAK) equation were also solved. On the other hand, Koistinen and Marburger's equation was used to model the diffusionless transformation. Through numerical analyses of carburization and quenching processes, the temperature and volume fraction of each phase were predicted for simple cylindrical specimen and complex geometries considering the latent heat generated during phase transformation. The numerical results compared well with the data available in the literature.

Seong-Hoon Kang; Yong-Taek Im

2007-01-01T23:59:59.000Z

324

CFD evaluation of pipeline gas stratification at low fluid flow due to temperature effects  

E-Print Network (OSTI)

variance in chord averaged velocities is apparent at these conditions. CFD analysis was performed. Low flow velocities of 0.1524 m/sec, 0.3048 m/sec and 0.6096 m/sec and temperature differences of 5.5 o K, 13.8 o K and 27.7 o K were considered. When... with gas velocity below 0.6096 m/sec. v DEDICATION To my family for their love and support. vi ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Gerald Morrison for his valuable guidance and support. I...

Brar, Pardeep Singh

2005-02-17T23:59:59.000Z

325

A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes  

Science Journals Connector (OSTI)

Abstract This paper demonstrates a new concept of heat transfer fluid (HTF) for CSP applications, developed in the frame of both a National and a European project (CSP2 FP7 project). It involves a dense suspension of small solid particles. This innovation is currently. The dense suspension of particles receiver (DSPR) consists in creating the upward circulation of a dense suspension of particles (solid fraction in the range 30%-40%) in vertical absorbing tubes submitted to concentrated solar energy. So the suspension acts as a heat transfer fluid with a heat capacity similar to a liquid HTF but only limited in temperature by the working temperature limit of the receiver tubes. Suspension temperatures up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and carbon dioxide. First experimental results were obtained during on-sun testing with CNRS solar facility of a single tube DSPR for an outlet temperature lower than 300 °C. In this lab-scale experimental setup, the solar absorber is a single opaque metallic tube, containing upward solid circulation, located inside a cylindrical cavity dug in a receiver made of refractory, and submitted to the concentrated solar radiation through a 0.10m x 0.50m slot. The absorber is a 42.4 mm o.d. stainless steel tube. SiC was used because of its thermal properties, availability and rather low cost. The 63.9 ?m particle mean diameter permits a good fluidization with almost no bubbles, for very low air velocities. Solar flux densities in the range 200-250 kW/m2 were tested resulting in solid temperature increase ranging between 50 and 150 °C. The mean wall-to-suspension heat transfer coefficient (h) was calculated from experimental data. It is very sensitive to the solid fraction of the solid suspension, which was varied from 27% to 36%. These latter values are one order of magnitude larger than the solid fraction in circulating fluidized beds operating at much higher air velocity. Heat transfer coefficients ranging from 140 to 500 W/m2.K have been obtained; i.e. 400 W/m2.K mean value for standard operating conditions at low temperature.

G. Flamant; D. Gauthier; H. Benoit; J.-L. Sans; B. Boissičre; R. Ansart; M. Hemati

2014-01-01T23:59:59.000Z

326

A numerical study of steady fluid flow in the entry region of a straight circular tube  

E-Print Network (OSTI)

region. The Basic Equations The flow under i nves ti gati on is governed by the Navier-Stokes equations p ? = F - . + uv Du Dt x ax p ? = F - @uv v, Dv a A 2 Dt y ay (2) Dw= F ma+ Dt w as and the continuity equation "u av aw + ? = p ay... + w D a a a a Ut = at ax ay as and 2 a2 a2 a2 ax2 ay2 as2 Expressed in cylindrical form, the previous equations become 2 P = Fr M + & v V r e D Ve 2aV Dt r " ar r2ae DVe V Ve 2aV V p + ? = Fe - ~a + u & Ve + r - e Dt r rae (2a) F -22+ pv V...

Crain, John Kee

2012-06-07T23:59:59.000Z

327

3rd International symposium on fluid flow measurement effects of acoustic noise on orifice meters  

SciTech Connect

It is known that in-pipe acoustic noise can cause errors in orifice plate metering. The international metering community voted this topic as the highest priority for further research during a {open_quotes}working{close_quotes} held at N.T.I.S. in 1983. Most published work to date has been concerned with periodic, low frequency noise or pulsations, as encountered on reciprocating compressor installations where errors or their side effects may be readily noticed. Many orifice metering locations are, however, subject to high frequency noise emanating from control valves and centrifugal compressors. High frequency in-pipe noise is seldom suspected as a source of metering error and consequently it is a neglected topic. Square root error, which stems form the non-linear flow-differential pressure relationship of an orifice plate, has been well researched for low frequencies but the work has not been extended to high frequencies. To investigate this topic, high pressure studies at the British Gas Bishop Auckland Test Facility were carried out with a noise source (a pressure drop across a ball valve) and a 600 mm 0.4 {beta} orifice meter. These studies identified the effect of high frequency acoustic noise on orifice plate accuracy.

Norman, R.; Graham, P.; Drew, W.A. [Engineering Research Station, Newcastle Upon Tyne (United Kingdom)

1995-12-31T23:59:59.000Z

328

Multi-Phase Galaxy Formation: High Velocity Clouds and the Missing Baryon Problem  

E-Print Network (OSTI)

The standard treatment of cooling in Cold Dark Matter halos assumes that all of the gas within a ``cooling radius'' cools and contracts monolithically to fuel galaxy formation. Here we take into account the expectation that the hot gas in galactic halos is thermally unstable and prone to fragmentation during cooling and show that the implications are more far-reaching than previously expected: allowing multi-phase cooling fundamentally alters expectations about gas infall in halos and naturally explains the bright-end cutoff in the galaxy luminosity function. We argue that cooling should proceed via the formation of high-density, 10^4 K clouds, pressure-confined within a hot gas background. The background medium has a low density, and can survive as a stable corona with a long cooling time. The fraction of baryons contained in the residual hot core grows with halo mass because the cooling density increases, and this leads to an upper-mass limit in quiescent, non-merged galaxies of ~10^11 Msun. In this scenario, galaxy formation is fueled by the infall of pressure-supported clouds. For Milky-Way-size systems, clouds of mass ~ 5x10^6 Msun that formed or merged within the last several Gyrs should still exist as a residual population in the halo, with a total mass in clouds of ~ 2 x 10^10 Msun. The mass of the Milky Way galaxy is explained naturally in this model, and is a factor of two smaller than would result in the standard treatment without feedback. We expect clouds in galactic halos to be ~ 1 kpc in size and to extend ~150 kpc from galactic centers. The predicted properties of clouds match well the observed radial velocities, angular sizes, column densities, and velocity widths of High Velocity Clouds around our Galaxy. The clouds also explain high-ion absorption systems at z<1.

Ariyeh H. Maller; James S. Bullock

2004-06-28T23:59:59.000Z

329

Rheology and microstructural evolution in pressure-driven flow of a magnetorheological fluid with strong particle-wall interactions  

E-Print Network (OSTI)

The interaction between magnetorheological (MR) fluid particles and the walls of the device that retain the field-responsive fluid is critical as this interaction provides the means for coupling the physical device to the ...

Ocalan, Murat

330

Notes 09. Fluid inertia and turbulence in fluid film bearings  

E-Print Network (OSTI)

When fluid inertia effects are important. Bulk-flow model for inertial flows. Turbulence and inertia in short length journal bearings and open end dampers....

San Andres, Luis

2009-01-01T23:59:59.000Z

331

Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop  

Science Journals Connector (OSTI)

During drilling operations, control of the sub-surface pressure is of utmost importance. High density minerals, such as barite and hematite, are used to increase the density of drilling fluids and thereby control these pressures. However, contributing factors, such as the gravitational force, cause the weighting material particles to settle out of the suspension. This is designated as “sag” within the drilling industry and can lead to a variety of major drilling problems, including lost circulation, well control difficulties, poor cement jobs, and stuck pipes. The study of this phenomenon, including ways to mitigate its effects, has long been of interest. In this paper several methods for evaluating dynamic barite sag in oil-based drilling fluids are examined in a flow loop with the use of a rotational viscometer modified by the addition of a sag shoe (MRV). Tests using the MRV in the range of 0–100 RPM were conducted, and the effects of rotation speed on sag were correlated with flow loop tests performed by varying the inner pipe rotation speed. The combined effects of eccentricity and pipe rotation on dynamic barite sag in oil-based drilling fluids are also described in this paper. Flow loop test results indicate that pipe rotation has a greater impact on reducing sag when the pipe is eccentric rather than concentric. Additionally, results in the MRV indicate a strong correlation between the test RPM and the degree of measured sag.

Tan Nguyen; Stefan Miska; Mengjiao Yu; Nicholas Takach; Ramadan Ahmed; Arild Saasen; Tor Henry Omland; Jason Maxey

2011-01-01T23:59:59.000Z

332

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows  

E-Print Network (OSTI)

surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause...

Jeon, Sae Il

2012-10-19T23:59:59.000Z

333

Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method  

Science Journals Connector (OSTI)

The present paper deals with the two-dimensional numerical simulation of gaseous flow and heat transfer in planar microchannel and nanochannel with different wall temperatures in transitional regime 0.1?Kn?1. An atomistic molecular simulation method is used known as thermal lattice-Boltzmann method. The results of simulation are presented in four cases corresponding to the Fourier flow, shear-driven flow (Couette flow), pressure-driven flow (Poiseuille flow), and mixed shear–pressure-driven flow in the developing and fully developed regions. The mixed shear–pressure-driven flow is divided into two subcases with shear stress and pressure gradient acting in the same and the opposite directions. Normalized temperature and velocity profiles across the channel, distribution of local wall Nusselt number, and friction coefficient are illustrated. Using this method, nonlinear pressure distribution in the streamwise direction, reduction in mass flow rate, Cf?Re, and Nu by increasing the Knudsen number are studied. It is seen that for Couette flow, Nu over the hotter plate is greater than the cooler plate, but for the pressure-driven flow with stationary wall temperature dependency of viscosity and thermal conductivity causes this trend to be reversed. The reversed flow appearance in the velocity profile is captured in the case of opposite shear–pressure-driven flow.

J. Ghazanfarian and A. Abbassi

2010-08-13T23:59:59.000Z

334

Petrologic and stable isotopic evidence for reaction-enhanced fluid flow during metamorphism of Precambrian-Cambrian sedimentary rocks, Lone Mountain, Nevada  

SciTech Connect

Upper Precambrian to Cambrian sedimentary rocks, regionally metamorphosed during the Mesozoic to produce marbles and calc-silicate rocks, were contact metamorphosed at the end of the Cretaceous by the Lone Mountain granitic pluton. Mineral assemblages within the calc-silicates were in equilibrium with H[sub 2]O-rich fluids, while the marbles were in equilibrium with more CO[sub 2]-rich fluids. Mineralogical variation between two different calc-silicate lithologies is the result of differences in bulk rock chemical composition, which also results in differences in isotopic composition between the calc-silicate lithologies. delta O-18 and delta C-13 values show differences of greater than 6 and 4 per mil respectively across lithologic boundaries between interlayered calc-silicates and between interlayered marbles and calc-silicates. The absence of any systematic variation between delta O-18 and delta C-13 values in the calc-silicates suggests that isotopic variation due to decarbonation reactions was limited. The differences in mineralogy and isotopic composition indicate that permeability was enhanced by reaction, permitting the focused flow of fluid through the calc-silicates. Calculated mass balance variations in delta O-18 based on reaction space analysis and Rayleigh decarbonation cannot explain the observed variations of delta O-18, requiring infiltration of externally derived fluids, while the delta C-13 compositions in the calc-silicates can be explained by Rayleigh decarbonation alone.

Richards, I.J.; Labotka, T.C. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geochemical Sciences)

1992-01-01T23:59:59.000Z

335

Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics  

E-Print Network (OSTI)

We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

Jain, Antone Kumar

2009-01-01T23:59:59.000Z

336

Fluid force transducer  

DOE Patents (OSTI)

An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

Jendrzejczyk, Joseph A. (Warrenville, IL)

1982-01-01T23:59:59.000Z

337

Solutions Manual x Fluid Mechanics, Fifth Edition190 Solution: (a) For incompressible flow, the volume flow is the same at piston and exit  

E-Print Network (OSTI)

, the volume flow is the same at piston and exit: 3 3 2 1 1 16 0.366 (0.75 ) , . (a) 4 piston cm in Q A V in V solve V Ans s s S in 0.83 s (b) If there is 10% leakage, the piston must deliver both needle flow

Bahrami, Majid

338

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

339

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

340

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network (OSTI)

6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal many important areas in today's society, such as nuclear waste isolation, environmental remediation

Elmroth, Erik

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network (OSTI)

with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal important areas in today's society, such as nuclear waste isolation, environmental remediation, geothermal

Elmroth, Erik

342

One Time-step Finite Element Discretization of the Equation of Motion of Two-fluid Flows  

E-Print Network (OSTI)

at the boundary and at the interface between the two fluids. We discretize this system with the "mini boundary; "mini-element" INTRODUCTION This work is devoted to the numerical solution of the equations, an Arbitrary Lagrangian-Eulerian method of approximation (ALE), which is based on a grid that moves

Maury, Bertrand

343

Multi-phase decline curve analysis with normalized rate and time  

E-Print Network (OSTI)

under certain wel lbore conditions in a certain shaped reservoir (eg. a fractured well in a 2xl rectangle). Fetkovich (1980) presented a type curve for decline curve analys~s of we 1 ls in a radial reservoir, He combined the analytical solution... for radial flow from a finite wellbore in a finite reservoir with the Arps decline curves using 'b' values ranging from 0 to 1. Fetkovich gt al. (1984) presented case histories to suggest possible 'b' values for different reservoir conditions including two...

Fraim, Michael Lee

1988-01-01T23:59:59.000Z

344

Two-way Coupling of Fluids to Rigid and Deformable Solids and Shells Avi Robinson-Mosher  

E-Print Network (OSTI)

with varying densities plunge into a pool of water. (Center) Water splashes out of an elastic cloth bag. (Right show exactly conserves the momentum of the coupled system. Notably, our method uses the standard, working for smoke, water, and multi- phase fluids as well as both rigid and deformable solids, and both

Fedkiw, Ron

345

Lattice Boltzmann simulations of complex fluids  

Science Journals Connector (OSTI)

......research-article Articles Lattice Boltzmann simulations of complex fluids...OX1 3NP, UK We discuss how lattice Boltzmann simulations can be used to model...binary and lamellar fluids. lattice Boltzmann|complex fluids|shear flow......

J. M. YEOMANS; ALEXANDER J. WAGNER

2000-10-01T23:59:59.000Z

346

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Energy.gov (U.S. Department of Energy (DOE))

Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

347

Finite element simulation of electrorheological fluids  

E-Print Network (OSTI)

Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

Rhyou, Chanryeol, 1973-

2005-01-01T23:59:59.000Z

348

Inverse Fluid Convection Problems in Enclosures  

E-Print Network (OSTI)

Efficiency, security, and reliability of industrial and domestic processes essentially depend on the deep understanding of their actual processes of fluid flow and heat transfer. Actual processes of fluid flow control and ...

Zhao, Fu-Yun

2012-01-01T23:59:59.000Z

349

A numerica1 study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling  

Science Journals Connector (OSTI)

Four different microchannel heat sinks are designed to study the effects of structures in microchannel heat sinks for electronic chips cooling. Based on the theoretic analysis and numerical computation of flow...

Shanglong Xu; Guangxin Hu; Jie Qin…

2012-04-01T23:59:59.000Z

350

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

351

Liquid Metal Flow Can Be One Clue to Explain the Frequently Observed Fluid-Like Matters on Mars  

E-Print Network (OSTI)

The frequently discovered flooding structure on Mars and other planets has long been an intriguing mystery remained un-disclosed so far. Considering that on Earth, quite a few low melting point liquid metals or their alloy can be candidates of fluid like matters, we proposed here that there might also exists certain liquid metal instead of water or methane alone on Mars or the like planets. Compared with water, such liquid metal would be much easier to stay at the Mars surface because of its low melting point however extremely high evaporation point. Along this theoretical route, quite a few observations on the fluid like matters in former space explorations can be well interpreted. Such hypothesis for the existence of liquid metal on Mars surface does not mean refuting the possibility of water on Mars. This new point would be helpful for planning further exploration of Mars in a sense according to the characters of liquid metal. It at least identifies one more target fluid towards either finding or denying life at outer space. Whether the planet could harbor life in some form or it reaffirms Mars as an important future destination for human exploration still needs serious but not just enthusiasm explorations.

Jing Liu; Yunxia Gao; Huangde Li

2013-10-07T23:59:59.000Z

352

Liquid Metal Flow Can Be One Clue to Explain the Frequently Observed Fluid-Like Matters on Mars  

E-Print Network (OSTI)

The frequently discovered flooding structure on Mars and other planets has long been an intriguing mystery remained un-disclosed so far. Considering that on Earth, quite a few low melting point liquid metals or their alloy can be candidates of fluid like matters, we proposed here that there might also exists certain liquid metal instead of water or methane alone on Mars or the like planets. Compared with water, such liquid metal would be much easier to stay at the Mars surface because of its low melting point however extremely high evaporation point. Along this theoretical route, quite a few observations on the fluid like matters in former space explorations can be well interpreted. Such hypothesis for the existence of liquid metal on Mars surface does not mean refuting the possibility of water on Mars. This new point would be helpful for planning further exploration of Mars in a sense according to the characters of liquid metal. It at least identifies one more target fluid towards either finding or denying l...

Liu, Jing; Li, Huangde

2013-01-01T23:59:59.000Z

353

Flow chamber  

DOE Patents (OSTI)

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

354

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

355

Nuclear Fluid Dynamics versus Intranuclear Cascade—Possible Evidence for Collective Flow in Central High-Energy Nuclear Collisions  

Science Journals Connector (OSTI)

The predictions of a variety of current theoretical models of high-energy nuclear collisions are compared with recent experimental data for central collisions of Ne20 on U238 at Elab=393 MeV/u. The experimental observation of broad sideward maxima in the angular distributions of low- and medium-energy protons is reproduced by a nuclear fluid-dynamical calculation with final freezeout of the protons. In contrast, the current intranuclear-cascade and simplified collision models predict forward-peaked angular distributions.

H. Stöcker; C. Riedel; Y. Yariv; L. P. Csernai; G. Buchwald; G. Graebner; J. A. Maruhn; W. Greiner; K. Frankel; M. Gyulassy; B. Schürmann; G. Westfall; J. D. Stevenson; J. R. Nix; D. Strottman

1981-12-21T23:59:59.000Z

356

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

357

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 20143 years Edward J. Boyle F1: Edgemont, Fall River County, SD Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara......

358

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network (OSTI)

, a measure of the flow conductance of the solid matrix, depends on several factors including: porosity, particles shape and size distribution and particles arrangement. The permeability is calculated either dates back to experimental works of Carman [5] and Sullivan [6] in 1940s and theoretical analyses

Bahrami, Majid

359

Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff  

SciTech Connect

Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-02-01T23:59:59.000Z

360

Using x-ray microtomography and pore-scale modeling to quantify sediment mixing and fluid flow in a developing streambed  

SciTech Connect

X-ray micro-tomography (XMT), image processing, and lattice Boltzmann (LB) methods were combined to observe sediment mixing, subsurface structure, and patterns of hydrogeological properties associated with bed sediment transport. Transport and mixing of sand and spherical glass beads were observed in a laboratory flume, beginning from a well-defined layered initial condition. Cores were obtained from the streambed at four different times, and each core was scanned by XMT in order to assess the evolution of spatial patterns within the bed. Image analysis clearly revealed the propagation of a sediment mixing front that began at the bed surface. The image data were used as boundary conditions in 3D LB simulation of pore fluid flow, showing that sediment sorting produced strong vertical gradients in permeability near the streambed surface. This new methodological approach offers potential for greatly improved characterization of mixing and transport of fine sediments in a wide variety of aquatic systems.

Chen, Cheng; Packman, Aaron I.; Gaillard, Jean-Francois; (NWU)

2010-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure  

Science Journals Connector (OSTI)

Abstract This work deals with the effect of viscosity modifier nature and concentration on the rheological properties of model oil-based drilling fluids (OBM) submitted to high pressure. The oil-based fluids were formulated by dispersing, with a high shear mixer, two selected organobentonites in a mineral oil, at room temperature. The viscous flow behaviour of the corresponding dispersions was characterised as a function of pressure, organoclay nature and organoclay concentration, using a controlled-stress rheometer equipped with both pressure cell and coaxial cylinder geometries. A factorial Sisko–Barus model, which takes into account both shear and pressure effects in the same equation, fitted the experimental pressure–viscosity data fairly well. The influence of disperse phase concentration on the shear-thinning characteristics of these organoclay dispersions is related to the development of different microstructures, which depend on organoclay nature. In this sense, the resulting microstructure has been attributed to the cohesion energy between microgels domains. From the experimental results obtained, it can be concluded that the viscous flow behaviour of the OBM investigated is strongly affected by organoclay nature and concentration. The pressure–viscosity behaviour of these dispersions is mainly influenced by the piezoviscous properties of the oil and the properties of the continuous phase. The Sisko–Barus model proposed can be a useful tool, from an engineering point of view, for calculating pressure losses in the different sections of the bore, as well as being of significant help to solve other additional problems, such as hole cleaning, induced fracturing, and hole erosion during the drilling operation.

J. Hermoso; F. Martinez-Boza; C. Gallegos

2014-01-01T23:59:59.000Z

362

Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310  

SciTech Connect

Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2013-07-01T23:59:59.000Z

363

Flow control techniques for real-time media applications in best-effort networks using fluid models  

E-Print Network (OSTI)

at the application layer. An end-to-end ?uid model is used, including the source bu?er, the network and the destination bu?er. Traditional con- trol techniques, along with more advanced adaptive predictive control methods, are considered in order to provide... OF THE END-TO-END FLOW TRANSPORT SYSTEM : : : : : : : : : : : : : : : : : : : : : : 25 A. Source Bu?er Model . . . . . . . . . . . . . . . . . . . . . 25 B. Network Dynamic Model . . . . . . . . . . . . . . . . . . . 27 1. Time-Varying Time Delay Model...

Konstantinou, Apostolos

2004-11-15T23:59:59.000Z

364

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25T23:59:59.000Z

365

Multiphase fluid characterization system  

DOE Patents (OSTI)

A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

Sinha, Dipen N.

2014-09-02T23:59:59.000Z

366

Segmentation and morphometric analysis of subcortical regions in autistic MR brain images using fuzzy Gaussian distribution model-based distance regularised multi-phase level set  

Science Journals Connector (OSTI)

In this work, subcortical regions of autism spectrum disorder are analysed using fuzzy Gaussian distribution model-based distance regularised multi-phase level set method in autistic MR brain images. The fuzzy Gaussian distribution model is used as the intensity discriminator. The segmented images are validated with the ground truth using geometrical measure area. The results show that the fuzzy Gaussian distribution model-based multi-phase level set method is able to extract the subcortical tissue boundaries. The subcortical regions segmented using this method gives high correlation with ground truth. The corpus callosum area gives very high (R = 0.94) correlation. The brain stem and cerebellum present high correlations of 0.89 and 0.84, respectively. Also, it is found the segmented autistic subcortical regions have reduced area and are statistically significant (p brain area.

A.R. Jac Fredo; G. Kavitha; S. Ramakrishnan

2014-01-01T23:59:59.000Z

367

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

368

Bacteria in shear flow  

E-Print Network (OSTI)

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

369

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network (OSTI)

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

370

Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet  

Science Journals Connector (OSTI)

Abstract The flow structure and heat transfer of the air pulsed turbulent impinging jet are studied numerically. The gas turbulence is modelled with the Reynolds stress model. The effects of pulse frequency, ratio of on time to total cycle time, distance between pipe outlet and impinging flat plate and Reynolds number on heat transfer are numerically studied. The impingement heat transfer increases with distance from the pipe edge and target surface. The heat transfer decreases at high distance from the pipe edge and target surface. An increase in the Reynolds number causes reduction of heat transfer enhancement. Reduced heat transfer in comparison with the steady-state impinging jet is typical in the range of low frequencies of the pulse impinging jet.

M.A. Pakhomov; V.I. Terekhov

2015-01-01T23:59:59.000Z

371

Ultrasonic flow metering system  

DOE Patents (OSTI)

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

372

NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows  

SciTech Connect

The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

Bouillard, J.X. [Argonne National Lab., IL (United States); Sinton, S.W. [Lockheed Missiles and Space Co., Palo Alto, CA (United States). Research Lab.

1995-02-01T23:59:59.000Z

373

Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects  

Science Journals Connector (OSTI)

Abstract Recently, dimple and protrusion structure has been proved as an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. A compound heat transfer enhancement technique, the combination of ribs, dimples or protrusions, is applied to a U-shaped square channel similar with the gas turbine blade internal passage. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel in order to approximate more to the real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of turbine blade similar U-shaped channel with the combination structure of ribs, dimples or protrusions. The investigated Reynolds number is 1.25 million and considered rotational number includes 0, 0.4 and 0.6. From the results, the fluid patterns of two-pass channel with compound heat transfer enhancement structure are presented for none-rotating and rotating cases. Meanwhile, spatially Nusselt distributions of roughened walls are obtained to reveal the heat transfer rates. Finally, the area averaged Nusselt number ratio and channel friction penalty are evaluated. The results indicate that rib-protrusion structure seems to be the most effective structure while rib-dimple structure has only slight advantage than ribbed channel. Furthermore, the additional friction penalty by dimple and protrusion structure is tiny. It can also be expected that, the thermal performance of this compound structure can be even improved after a denser arrangement of dimple/protrusion structure and optimal shape design.

Zhongyang Shen; Yonghui Xie; Di Zhang

2015-01-01T23:59:59.000Z

374

Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study  

SciTech Connect

This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

Harmut Spetzler

2005-11-28T23:59:59.000Z

375

Fiber optic fluid detector  

DOE Patents (OSTI)

Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

Angel, S.M.

1987-02-27T23:59:59.000Z

376

Application of direct-fitting, mass-integral, and multi-ratemethods to analysis of flowing fluid electric conductivity logs fromHoronobe, Japan  

SciTech Connect

The flowing fluid electric conductivity (FFEC) loggingmethod is an efficient way to provide information on the depths,salinities, and transmissivities of individual conductive featuresintercepted by a borehole, without the use of specialized probes. Usingit in a multiple-flow-rate mode allows, in addition, an estimate of theinherent "far-field" pressure heads in each of the conductive features.The multi-rate method was successfully applied to a 500-m borehole in agranitic formation and reported recently. The present paper presents theapplication of the method to two zones within a 1000-m borehole insedimentary rock, which produced, for each zone, three sets of logs atdifferent pumping rates, each set measured over a period of about oneday. The data sets involve a number of complications, such as variablewell diameter, free water table decline in the well, and effects ofdrilling mud. To analyze data from this borehole, we apply varioustechniques that have been developed for analyzing FFEC logs:direct-fitting, mass-integral, and the multi-rate method mentioned above.In spite of complications associated with the tests, analysis of the datais able to identify 44 hydraulically conducting fractures distributedover the depth interval 150-775 meters below ground surface. Thesalinities (in FEC), and transmissivities and pressure heads (indimensionless form) of these 44 features are obtained and found to varysignificantly among one another. These results are compared with datafrom eight packer tests with packer intervals of 10-80 m, which wereconducted in this borehole over the same depth interval. They are foundto be consistent with these independent packer-test data, thusdemonstrating the robustness of the FFEC logging method under non-idealconditions.

Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S.; Kurikami, H.

2007-08-01T23:59:59.000Z

377

Low volume flow meter  

DOE Patents (OSTI)

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

378

Multi-Phased, Post-Accident Support of the Fukushima Dai-Ichi Nuclear Power Plant - 12246  

SciTech Connect

In the wake of the March 11 earthquake and tsunami and the subsequent flooding of several of the Fukushima Dai-Ichi reactors, Japan and the Japanese utility TEPCO faced a crisis situation with incredible challenges: substantial amounts of radioactive mixed seawater and freshwater accumulated in the basements of four reactor and other buildings on the site. This water held varying levels of contamination due to the fact that it had been in contact with damaged fuel elements in the cores and with other contaminated components. The overall water inventory was estimated at around 110,000 tons of water with contamination levels up to the order of 1 Ci/l. Time was of the essence to avoid overflow of this accumulated water into the ocean. AREVA proposed, designed and implemented a water treatment solution using a proven chemical coprecipitation process with ppFeNi reagent, which is currently in use for effluent treatment on several nuclear sites including AREVA sites. In addition to the extremely short schedule the other challenge was to adapt the chemical treatment process to the expected composition of the Fukushima water and, in particular, to evaluate the impact of salinity on process performance. It was also necessary to define operating conditions for the VEOLIA equipment that had been selected for implementation of the process in the future facility. The operation phase began on June 17, and by the end of July more than 30,000 tons of highly radioactive saltwater had been decontaminated - the Decontamination Factor (DF) for Cesium was ?10{sup 4}. It allowed recycling the contaminated water to cool the reactors while protecting workers and the environment. This paper focuses on the Actiflo{sup TM}-Rad water treatment unit project that was part of the TEPCO general water treatment scheme. It presents a detailed look at the principles of the Actiflo{sup TM}-Rad, related on-the-fly R and D, an explanation of system implementation challenges, and a brief summary of operation results to date. AREVA's response to the Fukushima Dai-Ichi crisis was multi-phased: emergency aid and relief supply was sent within days after the accident; AREVA-Veolia engineering teams designed and implemented a water treatment solution in record time, only 3 months; and AREVA continues to support TEPCO and propose solutions for waste management, soil remediation and decontamination of the Fukushima Dai-Ichi site. Despite the huge challenges, the Actiflo{sup TM}-Rad project has been a success: the water treatment unit started on time and performed as expected. The performance is the result of many key elements: AREVA expertise in radioactive effluents decontamination, Veolia know-how in water treatment equipments in crisis environment, and of course AREVA and Veolia teams' creativity. The project success is also due to AREVA and Veolia teams' reactivity and high level of commitment with engineering teams working 24/7 in Japan, France and Germany. AREVA and Veolia deep knowledge of the Japanese industry ensured that the multi-cultural exchanges were not an issue. Finally the excellent overall project management and execution by TEPCO and other Japanese stakeholders was very efficient. The emergency water treatment was a key step of the roadmap towards restoration from the accident at Fukushima Dai-Ichi that TEPCO designed and keeps executing with success. (authors)

Gay, Arnaud; Gillet, Philippe; Ytournel, Bertrand; Varet, Thierry; David, Laurent; Prevost, Thierry; Redonnet, Carol; Piot, Gregoire; Jouaville, Stephane; Pagis, Georges [AREVA NC (France)

2012-07-01T23:59:59.000Z

379

Fracture characterization and fluid flow simulation with geomechanical constraints for a CO2–EOR and sequestration project Teapot Dome Oil Field, Wyoming, USA  

Science Journals Connector (OSTI)

Mature oil and gas reservoirs are attractive targets for geological sequestration of CO2 because of their potential storage capacities and the possible cost offsets from enhanced oil recovery (EOR). In this work, we analyze the fracture system of the Tensleep Formation to develop a geomechanically-constrained 3D reservoir fluid flow simulation at Teapot Dome Oil Field, WY, USA. Teapot Dome is the site of a proposed CO2-EOR and sequestration pilot project. The objective of this work is to model the migration of the injected CO2 in the fracture reservoir, as well as to obtain limits on the rates and volumes of CO2 that can be injected, without compromising seal integrity. Furthermore we want to establish the framework to design injection experiments that will provide insight into the fracture network of the reservoir, in particular of fracture permeability and connectivity. Teapot Dome is an elongated asymmetrical, basement-cored anticline with a north-northeast axis. The Tensleep Fm. in this area is highly fractured, and consists of an intercalation of eolian-dune sandstones and inter-dune deposits. The dune sandstones are permeable and porous intervals with different levels of cementation that affects their porosity, permeability, and fracture intensity. The inter-dune deposits consist of thin sabkha carbonates, minor evaporates, and thin but widespread extensive beds of very low-permeability dolomicrites. The average permeability is 30 mD, ranging from 10–100 mD. The average reservoir thickness is 50 ft. The caprock for the Tensleep Fm. consists of the Opeche Shale member, and the anhydrite of the Minnekhata member. The reservoir has strong aquifer drive. In the area under study, the Tensleep Fm. has its structural crest at 1675 m. It presents a 2-way closure trap against a NE-SW fault to the north and possibly the main thrust to the west. The CO2-EOR and sequestration project will consist of the injection of 1 million cubic feet of supercritical CO2 for six weeks. A previous geomechanical analysis suggested that the trapping faults do not appear to be at risk of reactivation and it was estimated that caprock integrity is not a risk by the buoyancy pressure of the maximum CO2 column height that the formation can hold. However, in the present study we established the presence of critically stressed minor faults and fractures in the reservoir and caprock, which if reactivated, could not only enhance the permeability of the reservoir, but potentially compromise the top seal capacity. The results of the preliminary fluid flow simulations indicate that the injected CO2 will rapidly rise to the top layers, above the main producing interval, and will accumulate in the fractures, where almost none will get into the matrix.

Laura Chiaramonte; Mark Zoback; Julio Friedmann; Vicki Stamp; Chris Zahm

2011-01-01T23:59:59.000Z

380

A real two-phase submarine debris flow and tsunami  

SciTech Connect

The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.

Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

2012-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions  

E-Print Network (OSTI)

for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...

Ali, Muhammad

2014-04-22T23:59:59.000Z

382

Fundamentals of Engineering (FE) Exam Fluid Mechanics Review  

E-Print Network (OSTI)

one unit area layer of a substance over another ďż˝ Viscosity (ďż˝): measure of a fluid's resistance Energy, Friction Loss, and Pipe Flow Momentum and Drag #12;Pressure ďż˝ Gage pressure: measured relative Engineering March 22, 2013 #12;Morning (Fluid Mechanics) A. Flow measurement B. Fluid properties C. Fluid

Provancher, William

383

COMPUTATIONAL FLUID DYNAMICS INCOMPRESSIBLE FLOW  

E-Print Network (OSTI)

to numerically solve the Euler equations in order to predict effects of bomb blast waves following WW II­71, and was published the following year [1]. Computing power at that time was still grossly inadequate for what we.S., in Europe (especially France, Great Britain and Sweden) and in the (former) Soviet Union. Today

McDonough, James M.

384

Basic fluid system trainer  

DOE Patents (OSTI)

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

385

Multiple source/multiple target fluid transfer apparatus  

DOE Patents (OSTI)

A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

Turner, T.D.

1997-08-26T23:59:59.000Z

386

Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application  

Science Journals Connector (OSTI)

This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat

Yinping Zhang; Xianxu Hu; Qing Hao; Xin Wang

2003-04-01T23:59:59.000Z

387

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced With Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions. 2. A Model Problem**  

Science Journals Connector (OSTI)

Particular calculations of temperature fields in cylindrical shells spirally reinforced with pipes in which a heattransfer fluid moves are carried out. The effect of reinforcement parameters, the speed of the ...

A. P. Yankovskii

2014-05-01T23:59:59.000Z

388

Fluid Volumes: The Program “FLUIDS  

Science Journals Connector (OSTI)

This chapter describes the program FLUIDS. The mathematical model underlying this program contains over 200 variables and describes control mechanisms of body fluid volumes and electrolytes as well as respirat...

Fredericus B. M. Min

1993-01-01T23:59:59.000Z

389

Definition: Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the volume of fluids...

390

Two-dimensional computational fluid dynamics and conduction simulations of heat transfer in window frames with internal cavities - Part 1: Cavities only  

E-Print Network (OSTI)

1980. Numerical heat transfer and fluid flow. Washington,of heat transfer by natural convection across vertical fluidFluid Dynamics and Conduction Simulations of Heat Transfer

Gustavsen, Arild; Kohler, Christian; Arasteh, Dariush; Curcija, Dragan

2003-01-01T23:59:59.000Z

391

Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle  

SciTech Connect

Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

Hosni, Mohammad H.

2014-03-30T23:59:59.000Z

392

Studies of complexity in fluid systems  

SciTech Connect

This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

Nagel, Sidney R.

2000-06-12T23:59:59.000Z

393

Introduction Fluid/Jeans  

E-Print Network (OSTI)

Introduction Fluid/DMSC Fluid/Jeans Comments Fluid/Kinetic Hybrid Modeling of the Thermosphere;Introduction Fluid/DMSC Fluid/Jeans Comments Outline 1 Fluid/DMSC 2 Fluid/Jeans 3 Comments Justin Erwin Fluid/Kinetic Hybrid Modeling of the Thermosphere of Pluto #12;Introduction Fluid/DMSC Fluid/Jeans Comments Motivation

Johnson, Robert E.

394

Compressor bleed cooling fluid feed system  

DOE Patents (OSTI)

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

395

FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER  

E-Print Network (OSTI)

FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER AERSP-560 Department : Aerospace element techniques to especially fluid flow and heat transfer problems. A student who successfully method and write full sized application codes for analyzing fluid flow and heat transfer problems

Camci, Cengiz

396

Heat transfer during the flow of an incompressible fluid in a circular tube, allowing for axial heat flow, with boundary conditions of the first and second kind at the tube surface  

Science Journals Connector (OSTI)

An examination is made of heat transfer in a hydraulically stabilized laminar stream and in a two-layer dynamic flow model.

V. V. Shapovalov

1966-09-01T23:59:59.000Z

397

Finite difference analysis of mass transfer effects on flow past an impulsively started infinite vertical plate in dissipative fluid and constant heat flux  

Science Journals Connector (OSTI)

A finite-difference solution to the flow past an impulsively started infinite vertical plate is derived by assuming 1) presence of species concentration like water vapour, CO2 etc. and 2) constant heat flux at th...

J. N. Das; S. N. Ray; Prof. Dr. V. M. Soundalgekar

1995-02-01T23:59:59.000Z

398

Catalytic Micropumps: Microscopic Convective Fluid Flow and Pattern Timothy R. Kline, Walter F. Paxton, Yang Wang, Darrell Velegol,*, Thomas E. Mallouk,* and  

E-Print Network (OSTI)

or concentration gradients.4 Heterogeneous catalysis offers a new and potentially powerful alternative. Energy from and rings; 1.8 µm diameter car- boxylated polystyrene spheres were used as tracers to follow the flow

399

PHYSICAL REVIE% A VOLUME 34, NUMBER 1 JULY 1986 Flow patterns and nonlinear behavior of traveling waves in a convective binary fluid  

E-Print Network (OSTI)

propagating ~aves in ethanol-water mixtures heated from below. The experimental results reveal the main in the flow ("line scan" and "contour" ) in a room- temperature experiment, using ethanol-water mixtures

Moses, Elisha

400

Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities in unstable dynamical systems with applications to two-dimensional fluid flows  

Science Journals Connector (OSTI)

...Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities...relate its nonlinear dimensionality to energy exchanges between dynamical components...the attractor with the circulation of energy: (i) from the mean flow to the unstable...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light  

E-Print Network (OSTI)

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

Paris-Sud XI, Université de

402

Euler's fluid equations: Optimal Control vs Optimization  

E-Print Network (OSTI)

An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

Darryl D. Holm

2009-09-28T23:59:59.000Z

403

ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2  

E-Print Network (OSTI)

Feedback between Fluid Flow and Heat Transfer, Geophys. Res.Pruess, K. On CO2 Fluid Flow and Heat Transfer Behavior inof multiphase fluid flow and heat transfer. CO 2 rising

Pruess, K.

2011-01-01T23:59:59.000Z

404

Fluid inflation  

SciTech Connect

In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

Chen, X. [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Firouzjahi, H. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, M.H. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, M., E-mail: x.chen@damtp.cam.ac.uk, E-mail: firouz@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2013-09-01T23:59:59.000Z

405

Bypass Flow Study  

SciTech Connect

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

406

Mechanotransduction of fluid stresses governs 3D cell migration  

E-Print Network (OSTI)

Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ?3 µm/s has been shown to induce cell migration in the ...

Polacheck, William J.

407

Separation of Phenylurea Herbicides by Packed Column Supercritical Fluid Chromatography  

Science Journals Connector (OSTI)

......effects of pressure, mobile phase composition, temperature, and flow rate were...and R. Moulder. Trace analysis of agrochemicals by supercritical fluid chromatography...vented injection in the analysis of agrochemicals by capillary supercritical fluid chromatography......

Terry A. Berger

1994-01-01T23:59:59.000Z

408

Multiphase Flow in Geometrically Simple Fracture Intersections  

SciTech Connect

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to Study gravity-driven flow in geometrically simple fracture intersections. simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-filin flow oil smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

Hakan Basagaoglu; Paul Meakin; Sauro Succi; Timothy R. Ginn

2006-03-01T23:59:59.000Z

409

Multiphase flow in geometrically simple fracture intersection  

SciTech Connect

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phse flow through intersecting fractures, and thin-film flow on smooth and undulating solid surfaces. Qualititative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

H. Basagaoglu; P. Meakin; M. Mathew

2006-03-01T23:59:59.000Z

410

40th Fluid Dynamics Conference and Exhibit, 28 Jun -1 Jul 2010, Chicago, Illinois Transition of hypersonic flow past flat plate with  

E-Print Network (OSTI)

of hypersonic flow past flat plate with roughness elements Prahladh S Iyer , Suman Muppidi and Krishnan Mahesh and Astronautics #12;I. Introduction Studying laminar-turbulent transition in supersonic and hypersonic boundary-turbulent transition.2 Schneider3 gives a comprehensive review of the effects of roughness on hypersonic boundary layer

Mahesh, Krishnan

411

Heat and mass transfer of a viscous heat generating fluid with Hall currents  

Science Journals Connector (OSTI)

A study of natural convection in hydrodynamic flows of a viscous heat generating fluid in the presence of Hall currents and ... out. The governing equations for the magnetohydrodynamic fluid flow and heat transfer

P. C. Ram; S. S. Singh; R. K. Jain

412

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

413

Computational fluid dynamic applications  

SciTech Connect

The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

2000-04-03T23:59:59.000Z

414

Convective heat transfer in the nonstationary motion of a Maxwellian fluid between parallel planes  

Science Journals Connector (OSTI)

The convective heat-transfer problem is investigated for a Maxwellian fluid in generalized Couette flow in the case...

Z. P. Shul'man; É. A. Zal'tsgendler

1970-06-01T23:59:59.000Z

415

Reply to “Comment on ‘Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method”’  

Science Journals Connector (OSTI)

In this reply to the Comment by Li-Shi Luo, we discuss the results of the lattice Bhatnagar-Gross-Krook (LBGK) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn?1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that, with the use of the LBGK model in the thermal lattice Boltzmann method for Kn?0.8, some approximations appear in the negative pressure deviation from the linear distribution along the channel. But for Kn<0.8, the velocity and temperature profiles, compressibility effects, Knudsen layer capturing, and Knudsen paradox phenomenon can be predicted by the LBGK model. We also reject Li-Shi Luo’s claim about the nonconvergence of our numerical scheme by presenting a velocity profile across the channel corresponding to three different high-resolution meshes.

J. Ghazanfarian and A. Abbassi

2011-10-25T23:59:59.000Z

416

Comment on “Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method”  

Science Journals Connector (OSTI)

In this Comment we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook (BGK) model “is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn=1 in the transitional regime” made in a recent paper [Ghazanfarian and Abbassi, Phys. Rev. E 82, 026307 (2010)]. In particular, we demonstrate that the so-called “Knudsen effects” described are merely numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the erroneous results for the pressure-driven flow in a microchannel imply the false and unphysical condition that 6?Kn

Li-Shi Luo

2011-10-25T23:59:59.000Z

417

Fluid Inclusion Analysis At International Geothermal Area Mexico...  

Open Energy Info (EERE)

geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with...

418

Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals  

SciTech Connect

In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

2012-04-01T23:59:59.000Z

419

Oscillating fluid power generator  

SciTech Connect

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

420

Effects of interstitial flow on tumor cell migration  

E-Print Network (OSTI)

Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial ...

Polacheck, William J. (William Joseph)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Performance of a pressure-based unstructured code and a multi-block structured code for heat transfer and fluid flow  

Science Journals Connector (OSTI)

This paper reports a multi-block unstructured method for incompressible flows and the performance comparison with a multi-block structured method. The unstructured collocated grid is composed of arbitrary cell shapes. Pressure and velocity are stored at cell centres; Rhie and Chow interpolation is used to prevent checker boarding. The SIMPLE algorithm is used for pressureâ??velocity coupling. The code is calibrated with benchmark cases using hexahedral and prism meshes, and is shown to perform very well for all cases considered. In addition, the performances of the structured and unstructured codes are compared.

Rongguang Jia; Bengt Sunden

2005-01-01T23:59:59.000Z

422

A New Continuous Solid-fluid Contacting Technique  

Science Journals Connector (OSTI)

... solid and fluid flow rates is achieved by direct control of external flows to the contactor, and does not require a fine hydrostatic balance or close tolerances in construction of ...

F. L. D. CLOETE; M. STREAT

1963-12-21T23:59:59.000Z

423

SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS  

SciTech Connect

A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

Caughey, David

2010-10-08T23:59:59.000Z

424

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

development of fluid flow and heat transfer models at otherTOUGH2 code [22]. Fluid flow and heat-transfer processes inand heat transfer through fractured rock is based on the DKM method. This approach considers global fluid and

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

425

Fluid injection and production apparatus and method  

SciTech Connect

This patent describes an apparatus for transporting fluid. It comprises: a first generally tubular assembly having a first end and a second end, the first assembly having at least one aperture therethrough; a second generally tubular assembly having a first end and a second end and being positioned within the first tubular assembly; a first means for selectively permitting fluid flow between the exterior and the interior of the second assembly; a third generally tubular assembly having a first end and a second end; and a second means for selectively permitting fluid flow between the exterior and the interior of the third assembly.

Deines, T.A.; Ellwood, D.E.

1992-07-28T23:59:59.000Z

426

A Workshop to Identify Research Needs and Impacts in Predictive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

which includes fuel manifolds and internal injector flow, 2. The multi-phase fuel-air mixing in the combustion chamber of the engine, and 3. The heat transfer and fluid...

427

Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials  

E-Print Network (OSTI)

integral methods in two dimensions to multi­component fluid flows and multi­phase problems in materials, and more recently to multi­phase problems in materials science. By multi­fluid or multi­phase we mean systems where the constituitive properties of the fluid or material change abruptly at a dividing

428

Modelling suspended sediment in environmental turbulent fluids  

E-Print Network (OSTI)

Modelling sediment transport in environmental turbulent fluids is a challenge. This article develops a sound model of the lateral transport of suspended sediment in environmental fluid flows such as floods and tsunamis. The model is systematically derived from a 3D turbulence model based on the Smagorinski large eddy closure. Embedding the physical dynamics into a family of problems and analysing linear dynamics of the system, centre manifold theory indicates the existence of slow manifold parametrised by macroscale variables. Computer algebra then constructs the slow manifold in terms of fluid depth, depth-averaged lateral velocities, and suspended sediment concentration. The model includes the effects of sediment erosion, advection, dispersion, and also the interactions between the sediment and turbulent fluid flow. Vertical distributions of the velocity and concentration in steady flow agree with the established experimental data. Numerical simulations of the suspended sediment under large waves show that ...

Cao, Meng

2014-01-01T23:59:59.000Z

429

University of East Anglia technology offering Fluid mechanics  

E-Print Network (OSTI)

· Financial indemnity e.g.· marine insurance Renewable energy, oil and· gas e.g. determining mass flow rate and free surface flows:· effects of surface tension on fluid flows; flow past obstacles; spiralling liquid toppled structure in Shetlands Colossal waves collapsed a stainless steel support structure for a solar

Matthews, Adrian

430

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network (OSTI)

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

431

Brine flow in heated geologic salt.  

SciTech Connect

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

432

Isotropic singularities in shear-free perfect fluid cosmologies  

E-Print Network (OSTI)

We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.

Geoffery Ericksson; Susan M. Scott

2001-08-02T23:59:59.000Z

433

Pressure balanced drag turbine mass flow meter  

DOE Patents (OSTI)

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, M.W.; Cole, J.H.

1980-04-23T23:59:59.000Z

434

Pressure balanced drag turbine mass flow meter  

DOE Patents (OSTI)

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, Michael W. (Gilbert, AR); Cole, Jack H. (Fayetteville, AR)

1982-01-01T23:59:59.000Z

435

Simulations of long column flow experiments related to geologic carbon sequestration: Effects of outer wall boundary condition on upward flow and formation of liquid CO2  

E-Print Network (OSTI)

did not occur. Rock-fluid heat transfer is minimized by thePruess K. On CO 2 fluid flow and heat transfer behavior inthe fluid could cool into the single digits if heat transfer

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

436

HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID  

E-Print Network (OSTI)

HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID GREGORY M. LEWIS AND WILLIAM F. LANGFORD Abstract. A mathematical model of convection of a Boussinesq fluid, flow transitions, Boussinesq fluid, flow in a rotating spherical shell, numerical computation, large

Lewis, Greg

437

Determination of several variables affecting laboratory measurements of cross-linked fracture fluids  

E-Print Network (OSTI)

SHEAR RATE o) PSEUDOPLASTIC NEWTONIAN SHEAR RATE b) Figure 3 ? Fluid Flow Behavior shear rate. These fluids are also called shear-thinning fluids. The power law (Ostwald-dewaele) model is the most popular model used to describe the flow behavior...

Wilson, Matilda Jane

1982-01-01T23:59:59.000Z

438

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

the formation i V Coupling of Fluid Plow and Heat Transferof years. In general fluid flow, heat transfer, rock defor­The fluid flow eq'iation and the heat transfer equation are

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

439

Suggested Courses for ME Students Interested in Thermal/Fluids Sciences: Required courses  

E-Print Network (OSTI)

­ Intro Thermal Fluids Engineering (2 credits) Basics of thermodynamics, fluid mechanics, and heat and engineering concepts introduced in thermodynamics, fluid mechanics, and heat transfer with applications) Course designed to build upon and broaden a basic traditional engineering knowledge of fluid flows

Virginia Tech

440

Fluid Inclusion Gas Analysis  

SciTech Connect

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Viscosity of a one-component polarizable fluid  

Science Journals Connector (OSTI)

The viscosity of a one-component polarizable fluid in an electric field is studied by computer simulations. The fluid viscosity increases with the field through three stages. In a weak field, the fluid remains Newtonian, although its viscosity increases. At this stage, while drifting in the flow direction, particles diffuse in the direction perpendicular to the flow. In an intermediate electric field, the fluid has tilted and broken chains moving with the flow and the fluid becomes non-Newtonian. The viscosity ? and the shear rate ?? have the relationship ?=?0e-???, where ? is the relaxation time and ?0 is exponentially proportional to the dipolar interaction energy and the volume fraction. In a strong electric field, the fluid contains condensed chains that provide yield stress and hysteresis.

J. M. Sun and R. Tao

1995-07-01T23:59:59.000Z

442

Focused fluid flow in passive continental margins  

Science Journals Connector (OSTI)

...breeding grounds for some fish populations. To facilitate...processes. Apart from seismic and monitoring experiments...processes is four-dimensional seismic acquisition, a technique in which three-dimensional seismic data are acquired several...

2005-01-01T23:59:59.000Z

443

The Flow of Cohesionless Grains in Fluids  

Science Journals Connector (OSTI)

...magnitude of a certain 'bed load' of grains in transit...tangential stress. The bed load is independent both of...any additional suspended load and of the degree of dispersion...found with experimental data both for wind-blown...the square or the first power of the rate of shear...

1956-01-01T23:59:59.000Z

444

Resistance of louvers to fluid flow  

E-Print Network (OSTI)

, 994 0 ~ 986 0 e994 0 ~ 994 4522 29 88 2539 1V86 824 2979 2510 1507 996 846 595 275 993 837 32~780 21~697 18' 436 12, 985 5, 998 16 ' 030 13 ' 526 0. 602 0, 262 0. 197 0. 100 0. 023 0 ~ 284 0 ~ 211 2. 290 2. 279 2. 374 2. 434...

Bevier, Charles Wayland

2012-06-07T23:59:59.000Z

445

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

446

SHORT-TUBE SUBCRITICAL FLOW Enerag Division  

E-Print Network (OSTI)

#12;SHORT-TUBE SUBCRITICAL FLOW Y. C. Mei Enerag Division Oak Ridge National Laboratory Oak Ridge-tube subcritical flow. For short tubes used as refrigerant expansion devices, the orifice model is found inadequate-TUBE SUBCRITICAL FLOW INTRODUCTION Much theoretical and experimental work regarding short tube fluid flow has

Oak Ridge National Laboratory

447

Heat transfer effectiveness of three-fluid separated heat pipe exchanger  

Science Journals Connector (OSTI)

A heat transfer model for three-fluid separated heat pipe exchanger was analyzed, and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter- ... It w...

Chengming Shi; Yang Wang; Ying Yang; Quan Liao

2011-02-01T23:59:59.000Z

448

A New Analytical Method to Quantify Residual Fluid Cleanup in Hydraulic Fractures  

E-Print Network (OSTI)

A number of factors contribute to reduce the production benefits from hydraulic fracturing, including inefficient fluid design, poor proppant selection and or, the inability of fracture fluid to degrade and flow back after treatment. Undegraded...

Zarrin, Tahira

2014-04-17T23:59:59.000Z

449

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

450

Pumping viscoelastic two-fluid media  

E-Print Network (OSTI)

Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

Hirofumi Wada

2010-04-08T23:59:59.000Z

451

2005 Pearson Education South Asia Pte Ltd Applied Fluid Mechanics  

E-Print Network (OSTI)

, and compressors. · Describe propeller fans, duct fans, and centrifugal fans. · Describe blowers and compressors Education South Asia Pte Ltd Applied Fluid Mechanics 17.Drag and Lift 18.Fans, Blowers, Compressors and the Flow of Gases 19.Flow of Air in Ducts 18. Fan, Blowers, Compressors and the Flow of Gases ©2005 Pearson

Leu, Tzong-Shyng "Jeremy"

452

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network (OSTI)

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

453

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

454

Methods of conveying fluids and methods of sublimating solid particles  

DOE Patents (OSTI)

A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

Turner, Terry D; Wilding, Bruce M

2013-10-01T23:59:59.000Z

455

Lattice Versus Lennard-Jones Models with a Net Particle Flow  

E-Print Network (OSTI)

. Such phenomenol- ogy occurs in flowing fluids [3], and during phase separation in colloidal [4], granular [5, 6

Garrido, Pedro L.

456

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

457

The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems  

Science Journals Connector (OSTI)

We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight ... Keywords: Coupled flow and heat flow, Fractured media, Multicomponent flow, Numerical simulation, Real gas mixture, Shale gas

George J. Moridis, Craig M. Freeman

2014-04-01T23:59:59.000Z

458

Lattice Boltzmann models for non-Newtonian flows  

Science Journals Connector (OSTI)

......Issue: Modelling the mesoscale Lattice Boltzmann models for non-Newtonian flows...road, Chester CH1 4BJ, UK The lattice Boltzmann method has been established...the case of inelastic fluids. lattice Boltzmann methods|non-Newtonian fluids......

T. N. Phillips; G. W. Roberts

2011-10-01T23:59:59.000Z

459

Microscale fluid transport using optically controlled marangoni effect  

DOE Patents (OSTI)

Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

Thundat, Thomas G (Knoxville, TN); Passian, Ali (Knoxville, TN); Farahi, Rubye H (Oak Ridge, TN)

2011-05-10T23:59:59.000Z

460

Linear steady flows in a two-dimensional Boussinesq  

E-Print Network (OSTI)

Linear steady flows in a two-dimensional Boussinesq fluid driven by thermal forcing P.A.J. van Melick De Bilt | 2010 | Stageverslag #12;#12;Linear steady flows in a two-dimensional Boussinesq fluid-rotating, small-amplitude and Boussinesq flow. A step-by-step approach has been used towards a smooth localized

Stoffelen, Ad

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Computation of fluid circulation in a cryogenic storage tank and heat transfer analysis during jet impingement.  

E-Print Network (OSTI)

??The study presents a systematic single and two-phase analysis of fluid flow and heat transfer in a liquid hydrogen storage vessel for both earth and… (more)

Mukka, Santosh Kumar

2005-01-01T23:59:59.000Z

462

DEVELOPING ENABLING TECHNOLOGIES FOR LAB-ON-A-CHIP APPLICATIONS BY EXPLOITING MICROSCALE FLUID PHENOMENA.  

E-Print Network (OSTI)

??In the past decade, microfluidics - the manipulation of fluid flow in micrometer-sized channels has emerged as a distinctive new discipline. The development of microfluidics… (more)

Mao, Xiaole

2010-01-01T23:59:59.000Z

463

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

Franke, Rudiger

2010-01-01T23:59:59.000Z

464

The effect of lymphatic fluid protein concentration on lymphatic resistance  

E-Print Network (OSTI)

were manipulated by altering the height of the outflow port. Two fluids - lactated Ringers solution and 6% albumin in lactated Ringers solution - were introduced alternately into the vessels. Flow through the vessel was determined for several pressure...

Walker, Ellen Marie

2013-02-22T23:59:59.000Z

465

Classification of Two-Phase Flow Patterns by Ultrasonic Sensing  

E-Print Network (OSTI)

in addition to several other factors such as the bulk flow rate, fluid properties, and flow boundary conditions [1]. Characterization of flow patterns and identification of the associ- ated flow regimes instrumentation, both for void fraction identification and flow pattern classification. High-speed photog- raphy

Ray, Asok

466

A GENERALIZED ALGEBRAIC RELATION FOR PREDICTING DEVELOPING CURVED CHANNEL FLOW WITH A k-t MODEL OF TURBULENCE  

E-Print Network (OSTI)

S. V. , "Numerical Heat Transfer and Fluid Flow," HemisphereCurvature on Heat Transfer to Incompressible Fluids," Trans.Heat Transfer in a Turbulent Boundary Layer," Journal of Fluid

Humphrey, Joseph A.C.

2014-01-01T23:59:59.000Z

467

Environmentally safe fluid extractor  

DOE Patents (OSTI)

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

468

HEAT TRANSFER FLUIDS  

E-Print Network (OSTI)

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

469

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

470

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

471

Tracing Geothermal Fluids  

SciTech Connect

Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

Michael C. Adams; Greg Nash

2004-03-01T23:59:59.000Z

472

Method for controlling clathrate hydrates in fluid systems  

DOE Patents (OSTI)

Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

Sloan, Jr., Earle D. (Golden, CO)

1995-01-01T23:59:59.000Z

473

The mathematical structure of multiphase thermal models of flow in porous media  

E-Print Network (OSTI)

The mathematical structure of multiphase thermal models of flow in porous media By Daniel E.A. van with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow typical flow behaviour that occurs during fluid injection into a reservoir. Keywords: porous media flow

474

Design rules for pumping and metering of highly viscous fluids in microfluidics  

E-Print Network (OSTI)

Design rules for pumping and metering of highly viscous fluids in microfluidics Sarah L. Perry.1039/c0lc00035c The use of fluids that are significantly more viscous than water in microfluidics has a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly

Kenis, Paul J. A.

475

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications of Immersed Boundary Methods  

E-Print Network (OSTI)

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications-00983110,version1-25Apr2014 Author manuscript, published in "ASME Fluids Engineering Summer Meeting METHOD FOR SOLID-POROUS-FLUID MEDIA WITH APPLICATION TO PASSIVE FLOW CONTROL Chlo´e Mimeau Univ. Grenoble

Paris-Sud XI, Université de

476

Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Fluid Inclusion Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful

477

Instabilities in two-fluid magnetized media with inter-component drift  

Science Journals Connector (OSTI)

......mode resonances in two-fluid MHD flows in three dimensions, by comparing the geometry of phase diagrams for the magnetosound modes of...almost universal feature of MHD flows with drift velocities...filamentation process in two fluid MHD turbulence which may be related......

P. V. Tytarenko; R. J. R. Williams; S. A. E. G. Falle

2002-11-21T23:59:59.000Z

478

Theoretical uncertainty of orifice flow measurement  

SciTech Connect

Orifice meters are the most common meters used for fluid flow measurement, especially for measuring hydrocarbons. Meters are rugged, mechanically simple, and well suited for field use under extreme weather conditions. Because of their long history of use and dominance in the fluid flow measurement, their designs, installation requirements, and equations for flow rate calculation have been standardized by different organizations in the United States and internationally. These standards provide the guideline for the users to achieve accurate flow measurement. and minimize measurement uncertainty. This paper discusses different factors that contribute to the measurement inaccuracy and provide an awareness to minimize or eliminate these errors. Many factors which influence the overall measurement uncertainty are associated with the orifice meter application. Major contributors to measurement uncertainty include the predictability of flow profile, fluid properties at flowing condition, precision of empirical equation for discharge coefficient, manufacturing tolerances in meter components, and the uncertainty associated with secondary devices monitoring the static line pressure, differential pressure across the orifice plate, flowing temperature, etc. Major factors contributing to the measurement uncertainty for a thin, concentric, square-edged orifice flowmeter are as follows: (a) Tolerances in prediction of coefficient of discharge, (b) Predictability in defining the physical properties of the flowing fluid, (c) Fluid flow condition, (d) Construction tolerances in meter components, (e) Uncertainty of secondary devices/instrumentation, and (f) Data reduction and computation. Different factors under each of the above areas are discussed with precautionary measures and installation procedures to minimize or eliminate measurement uncertainty.

Husain, Z.D. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

479

Overall Efficiency Abstract-Computational fluid dynamics (C  

E-Print Network (OSTI)

to characterize the ef turbines. Efficiency is taken as the ratio of powe useful electricity) to total power lostOverall Efficiency Dept. of Abstract-Computational fluid dynamics (C have been completed from the u flow energy. Many tidal turbine developers ducted designs which accelerate the flow thro

Pedersen, Tom

480

Thaw flow control for liquid heat transport systems  

DOE Patents (OSTI)

In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

Kirpich, Aaron S. (Broomall, PA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-phase fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Numerical studies for flow and heat transfer of the Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the chebyshev finite difference method  

Science Journals Connector (OSTI)

An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a ... horizontal stretching surface in the presence of internal heat generation....

M. M. Khader; A. M. Megahed

2013-05-01T23:59:59.000Z

482

Introduction to finite-difference methods for numerical fluid dynamics  

SciTech Connect

This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.

Scannapieco, E.; Harlow, F.H.

1995-09-01T23:59:59.000Z

483

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010)  

E-Print Network (OSTI)

based on anisotropic mesh adaptation for solving two-fluid flows Thi Thu Cuc Bui1,,, P. Frey1,2 and B of the computational domain in the vicinity of the interface for better accuracy. Copyright 2010 John Wiley & Sons, Ltd@ann.jussieu.fr Contract/grant sponsor: French Centre National de la Recherche Scientifique Copyright 2010 John Wiley

Frey, Pascal

484

DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS  

SciTech Connect

In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

X. Wang; X. Sun; H. Zhao

2011-09-01T23:59:59.000Z

485

Anisotropic Flow from RHIC to the LHC  

E-Print Network (OSTI)

Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost ideal fluid properties of the produced strongly coupled Quark Gluon Plasma. This write-up discusses some key RHIC anisotropic flow measurements and for anisotropic flow at the LHC some predictions.

Raimond Snellings

2006-10-05T23:59:59.000Z

486

Thermodynamics and Fluids  

Science Journals Connector (OSTI)

... AN important section of the work of modern chemical engineers lies in the application of thermodynamics to problems of fluid systems. This volume, the fourth in the series, is ... properties of physical systems and to the transport properties of fluids. The first section on thermodynamics has been written by Dr. R. Strickland Constable of the Chemical Engineering Department at ...

J. M. COULSON

1958-09-27T23:59:59.000Z

487

Petascale Adaptive Computational Fluid Dynamics | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Petascale Adaptive Computational Fluid Dynamics Petascale Adaptive Computational Fluid Dynamics PI Name: Kenneth Jansen PI Email: jansen@rpi.edu Institution: Rensselaer Polytechnic Institute The specific aim of this request for resources is to examine scalability and robustness of our code on BG/P. We have confirmed that, during the flow solve phase, our CFD flow solver does exhibit perfect strong scaling to the full 32k cores on our local machine (CCNI-BG/L at RPI) but this will be our first access to BG/P. We are also eager to study the performance of the adaptive phase of our code. Some aspects have scaled well on BG/L (e.g., refinement has produced adaptive meshes that take a 17 million element mesh and perform local adaptivity on 16k cores to match a requested size field to produce a mesh exceeding 1 billion elements) but other aspects (e.g.,

488

Development of an analytical model for organic-fluid fouling  

SciTech Connect

The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

Panchal, C.B.; Watkinson, A.P.

1994-10-01T23:59:59.000Z

489

Lattice Boltzmann Simulation of Nonideal Fluids  

Science Journals Connector (OSTI)

A lattice Boltzmann scheme able to model the hydrodynamics of phase separation and two-phase flow is described. Thermodynamic consistency is ensured by introducing a nonideal pressure tensor directly into the collision operator. We also show how an external chemical potential can be used to supplement standard boundary conditions in order to investigate the effect of wetting on phase separation and fluid flow in confined geometries. The approach has the additional advantage of reducing many of the unphysical discetrization problems common to previous lattice Boltzmann methods.

Michael R. Swift; W. R. Osborn; J. M. Yeomans

1995-07-31T23:59:59.000Z

490

Lattice Boltzmann model of immiscible fluids  

Science Journals Connector (OSTI)

We introduce a lattice Boltzmann model for simulating immiscible binary fluids in two dimensions. The model, based on the Boltzmann equation of lattice-gas hydrodynamics, incorporates features of a previously introduced discrete immiscible lattice-gas model. A theoretical value of the surface-tension coefficient is derived and found to be in excellent agreement with values obtained from simulations. The model serves as a numerical method for the simulation of immiscible two-phase flow; a preliminary application illustrates a simulation of flow in a two-dimensional microscopic model of a porous medium. Extension of the model to three dimensions appears straightforward.

Andrew K. Gunstensen; Daniel H. Rothman; Stéphane Zaleski; Gianluigi Zanetti

1991-04-15T23:59:59.000Z

491

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Determine if fluid inclusion stratigraphy is applicable to geothermal Notes Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids.Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Analyses from

492

Fluid&ParticulateSystems 424514/2010  

E-Print Network (OSTI)

at the wall (exception: steam produced at hot tube wall!) Important is the slip velocity, liquid vs. gas hold at the bottom of the pipe RoNz 7 Gas Liquid 2 liquid water water liquid gasliquid airwater water-phase (G/L) flows Air-water, 2.5 cm diameter horizontal pipe RoNz 8 U is superficial velocity #12;Fluid

Zevenhoven, Ron

493

FLUID TRANSIENTS IN A PIPELINE WITH ONE END OPEN  

SciTech Connect

Water hammer during multi-phase flow is rather complex, but in some cases an upper limit to the pressure surge magnitude during water hammer can be estimated. In the case considered here, a two mile long pipeline with a single high point was permitted to partially drain. Due to gravitational effects, air bubbles up through the pipe line to its highest point, but the time required for air to reach the top of the pipe is rather long. Consequently, some transients caused by valve operations are affected by air entrapment and some are not. The intent of this research was to investigate the complex interactions between air, water vapor, and liquid during water hammer in a long pipe with one end of the pipe open to atmospheric conditions. To understand the system dynamics, experimental data was obtained from a long pipeline with an open end and also from a short, transparent tube. Transient calculations were performed for valve closures and pump operations as applicable. The limitations of available calculation techniques were considered in detail.

Leishear, R

2008-06-09T23:59:59.000Z

494

Determining circulating fluid temperature in drilling, workover, and well-control operations  

SciTech Connect

Estimation of fluid temperature in both flow conduits (drillpipe or tubing and the annulus) is required to ascertain the fluid density and viscosity and, in turn, to calculate the pressure drop or the maximum allowable pumping rate for a number of operations. These operations include drilling, workover, and well control. The fluid temperature estimation becomes critical for high-temperature or geothermal reservoirs where significant heat exchange occurs or when fluid properties are temperature sensitive, such as for a non-Newtonian fluid. In this work, the authors present an analytical model for the flowing fluid temperature in the drillpipe/tubing and in the annulus as a function of well depth and circulation time. The model is based on an energy balance between the formation and the fluid in the drillpipe.tubing and annulus. Steady-state heat transfer is assumed in the wellbore while transient heat transfer takes place in the formation. solutions are obtained for two possible scenarios: (1) the fluid flows down the annulus and up the drillpipe/tubing, and (2) the fluid flows down the tubing and up the annulus. The analytic model developed is cast in a set of simple algebraic equations for rapid implementation. The authors also show that the maximum temperature occurs not at the well bottom, but at some distance higher from the bottom for flow up the annulus.

Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait); Hasan, A.R.; Ameen, M.M. [Univ. of North Dakota, Grand Forks, ND (United States); Kouba, G.E.

1996-06-01T23:59:59.000Z

495

Fluid sampling tool  

DOE Patents (OSTI)

A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

1999-05-25T23:59:59.000Z

496

System for concentrating and analyzing particles suspended in a fluid  

DOE Patents (OSTI)

Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

Fiechtner, Gregory J. (Bethesda, MD); Cummings, Eric B. (Livermore, CA); Singh, Anup K. (Danville, CA)

2011-04-26T23:59:59.000Z

497

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1985-05-14T23:59:59.000Z

498

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1982-08-31T23:59:59.000Z

499

Apparatus for unloading pressurized fluid  

DOE Patents (OSTI)

An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

Rehberger, K.M.

1994-01-04T23:59:59.000Z

500

Cotton flow  

E-Print Network (OSTI)

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z