Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

WET-NZ Multi-Mode Wave Energy Converter Advancement Project  

SciTech Connect

The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: ?Wave Tank Testing to Characterize Hydrodynamic Characteristics; ? Open-Sea Testing of a New 1:2 Scale Experimental Model; ? Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status; ? Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

Kopf, Steven

2013-10-15T23:59:59.000Z

2

Multi-Mode Transportable Battery Energy System for Salt River Project: Volume 1: Design and Installation  

Science Conference Proceedings (OSTI)

Energy storage technologies are likely to find new roles in a restructured electric utility environment. This project designed and deployed a commercial prototype of an innovative multi-mode transportable battery system capable of a broad functional role in the new business environment.

1999-06-29T23:59:59.000Z

3

Energy efficient data retrieval for networked multi-mode wireless sensors  

E-Print Network (OSTI)

This paper develops a mixed-integer programming model to maximize the total data retrieved via a wireless sensor networks, subject to the practical network and individual multi-mode sensor constraints. The model is different from existing ones in that it accounts for the buffer usage over time and the energy spikes incurred due to transitions between the operational modes. Heuristic procedures are developed for solving the NP-Hard problem. Simulation results exhibit that good performance can be achieved when the routing and MAC decisions are made based on individual sensors’ buffer content and residual energy.

Cory C. Cress

2004-01-01T23:59:59.000Z

4

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

5

EFFICIENT VIBRATION ENERGY HARVESTER WITH MULTI-MODE DYNAMIC MAGNIFIER Wanlu Zhou, Gopinath Reddy Penamalli, and Lei Zuo *  

E-Print Network (OSTI)

MECHANICAL AND AEROSPACE ENGINEERING COLLOQUIUM SERIES "Energy Harvesting from Ambient Vibrations, which dictates the cut-in conditions for energy harvesting. In order to estimate the electrical output of the energy harvester, the amplitude and frequency of the flutter limit cycle is also investigated. Wind

Zuo, Lei

6

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

7

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

8

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

9

Wave Energy  

E-Print Network (OSTI)

Promoting the sustainable supply and use of energy for the greatest benefit of all. Publication details The compilation of the Survey of Energy Resources 2001 is the work of the editors and, while all reasonable endeavours have been used to ensure the accuracy of the data, neither the editors nor the World Energy Council can accept responsibility for any errors.

The World; Energy Council; Wb Lt; K. Yokobori (japan; A. W. Clarke (united Kingdom; J. A. Trinnaman (united Kingdom; Nuclear Energy; N. Alazard-toux; B. Bensaďd; W. Youngquist

2001-01-01T23:59:59.000Z

10

Multi-mode ultrasonic welding control and optimization  

DOE Patents (OSTI)

A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

Tang, Jason C.H.; Cai, Wayne W

2013-05-28T23:59:59.000Z

11

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

12

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

13

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

14

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

niche markets. Once built, they have low operation and maintenance costs because their fuel-seawater-is free. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov...

15

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

16

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

17

Optimal scheduling for constant-rate multi-mode systems  

Science Conference Proceedings (OSTI)

Constant-rate multi-mode systems are hybrid systems that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. The schedulability problem for such ... Keywords: cyber-physical systems, green scheduling, hybrid automata, peak minimization, switched systems

Rajeev Alur; Ashutosh Trivedi; Dominik Wojtczak

2012-04-01T23:59:59.000Z

18

Optimal control for linear-rate multi-mode systems  

Science Conference Proceedings (OSTI)

Linear-Rate Multi-Mode Systems is a model that can be seen both as a subclass of switched linear systems with imposed global safety constraints and as hybrid automata with no guards on transitions. We study the existence and design of a controller for ...

Dominik Wojtczak

2013-08-01T23:59:59.000Z

19

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

20

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

22

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

23

Multi mode nano scale Raman echo quantum memory  

E-Print Network (OSTI)

Low loss magnetic surface plasmon polariton (SPP) modes characterized by enhanced electrical field component and subwavelength confinement on the dielectric and negative-index metamaterial interface are presented. We demonstrate a possibility of storage and perfect retrieval of the low loss magnetic SPP fields by using a photon echo quantum memory on Raman atomic transition. We describe specific properties of the proposed technique which opens a possibility for efficient nano scale multi-mode quantum memory.

S. A. Moiseev; E. S. Moiseev

2010-01-31T23:59:59.000Z

24

An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem  

Science Conference Proceedings (OSTI)

In this paper, an effective shuffled frog-leaping algorithm (SFLA) is proposed for solving the multi-mode resource-constrained project scheduling problem (MRCPSP). In the SFLA, the virtual frogs are encoded as the extended multi-mode activity list (EMAL) ... Keywords: Combined local search, Multi-mode forward-backward improvement, Multi-mode permutation based local search, Multi-mode resource-constrained project scheduling, Multi-mode serial schedule generation scheme, Shuffled frog-leaping algorithm

Ling Wang; Chen Fang

2011-10-01T23:59:59.000Z

25

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

26

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

27

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

28

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

29

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

30

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

31

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

32

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

33

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

California Wave Energy Partners LLC Jump to: navigation, search Name California Wave Energy Partners LLC Address 1590 Reed Road Place Pennington Zip 8534 Sector Marine and...

34

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

35

Real-time multi-mode neutron multiplicity counter  

DOE Patents (OSTI)

Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

Rowland, Mark S; Alvarez, Raymond A

2013-02-26T23:59:59.000Z

36

Mesoscale Energy Spectra of Moist Baroclinic Waves  

Science Conference Proceedings (OSTI)

The role of moist processes in the development of the mesoscale kinetic energy spectrum is investigated with numerical simulations of idealized moist baroclinic waves. Dry baroclinic waves yield upper-tropospheric kinetic energy spectra that ...

Michael L. Waite; Chris Snyder

2013-04-01T23:59:59.000Z

37

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

38

MHK Technologies/The Crestwing Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Crestwing Wave Energy Converter Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile Primary Organization Waveenergyfyn Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The connected pontoons swing around the hinge when the top of the waves passes under the floats The pontoons relative motion is converted into usable energy through a linear PTO system The pontoons are pushed upwards from the below passing wave and again dragged down by the same passing wave Complex hydrodynamic conditions occur under the pontoons when the wave formation pushes the unit up and down simultaneously The energy from waves can be divided into fifty percent potential energy and fifty percent kinetic energy Crestwing absorbs both the potential energy as the kinetic energy which is the back ground for the high efficiency

39

Multi-mode two-dimensional infrared spectroscopy of peptides and proteins  

E-Print Network (OSTI)

In this thesis, a methodology for understanding structural stability of proteins through multi-mode two-dimensional infrared (2D IR) spectroscopy is developed. The experimental framework for generation of broadband infrared ...

DeFlores, Lauren P

2008-01-01T23:59:59.000Z

40

Energy Transmission by Barotropic Rossby Waves Revisited  

Science Conference Proceedings (OSTI)

This article presents a semianalytic method to investigate the properties of energy transmission across bottom topography by barotropic Rossby waves. The method is first used to revisit the analytical estimates derived from wave-matching ...

R. P. Matano; E. D. Palma

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Millimeter Wave Sensors for Clean Energy  

Science Conference Proceedings (OSTI)

Millimeter wave sensor data on refractory used for clean coal gasification will also be presented. Future applications in the area of clean energy will be ...

42

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network (OSTI)

in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature is that of wave energy. The research is multifaceted and includes research on the efficiency of wave energy

Fox-Kemper, Baylor

43

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network (OSTI)

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

44

A multi-mode resource-constrained scheduling problem in the context of port operations  

Science Conference Proceedings (OSTI)

We discuss a problem of attending ships within agreed time limits at a port under the condition of the first come first served order. In addition, we indicate the use of the developed tool to support decisions at a strategic level with the objective ... Keywords: Attending ships, Differential evolution algorithm, Layday period, Local search, Multi-mode resource-constrained scheduling, Port operations

Luciano Lessa Lorenzoni; Hannu Ahonen; Arlindo Gomes de Alvarenga

2006-05-01T23:59:59.000Z

45

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying Garrett–Munk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. D’Asaro

1997-09-01T23:59:59.000Z

46

Energy Dispersion in African Easterly Waves  

Science Conference Proceedings (OSTI)

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the ...

Michael Diaz; Anantha Aiyyer

2013-01-01T23:59:59.000Z

47

Power consumption optimization in multi-mode mobile relay  

E-Print Network (OSTI)

on the energy generation system (some studies have raised the power consumption of telecommunication significantly reduce power consumption when either the traffic load is below 0.4 or when short reach of power consumption- of an eventual migration from static to dynamic architecture rather than

Paris-Sud XI, Université de

48

Can dark energy be gravitational waves?  

E-Print Network (OSTI)

The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons) of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

Biermann, Peter L

2013-01-01T23:59:59.000Z

49

MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy  

Open Energy Info (EERE)

Tunneled Wave Energy Converter TWEC Tunneled Wave Energy Converter TWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunneled Wave Energy Converter TWEC.jpg Technology Profile Primary Organization SeWave Ltd Project(s) where this technology is utilized *MHK Projects/TWEC Project Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tunneled Wave Energy Converter TWEC utilizes the OWC principle through its use of a proposed bored out tunnel within a cliff side of the Faroe Islands Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

50

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

WEGA wave energy gravitational absorber WEGA wave energy gravitational absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEGA wave energy gravitational absorber.jpg Technology Profile Primary Organization Sea for Life Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WEGA device is an articulated suspended body semi submerged attached to a mount structure that oscillates in an elliptical orbit with the passage of the waves The movement of the body drives an hydraulic cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount structure through a rotary head which allows it to adapt to the direction wave propagation Multiple devices can be placed on a single mount structure according to the size and place of the structure

51

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

52

Internal Wave–Wave Interactions. Part II: Spectral Energy Transfer and Turbulence Production  

Science Conference Proceedings (OSTI)

The spectral transfer of internal wave energy toward high vertical wavenumber kz and turbulence production ? is examined by ray tracing small-scale test waves in a canonical Garrett and Munk background wave field. Unlike previous ray-tracing ...

Haili Sun; Eric Kunze

1999-11-01T23:59:59.000Z

53

Soft Capacitors for Wave Energy Harvesting  

E-Print Network (OSTI)

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jřrgen Jřrgensen; Guggi Kofod

2011-04-21T23:59:59.000Z

54

Wind Energy Input to the Surface Waves  

Science Conference Proceedings (OSTI)

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface ...

Wei Wang; Rui Xin Huang

2004-05-01T23:59:59.000Z

55

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

56

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

57

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

58

On the Energy Input from Wind to Surface Waves  

Science Conference Proceedings (OSTI)

A basic model relating the energy dissipation in the ocean mixed layer to the energy input into the surface wave field is combined with recent measurements of turbulent kinetic energy dissipation to determine the average phase speed of the waves ...

J. R. Gemmrich; T. D. Mudge; V. D. Polonichko

1994-11-01T23:59:59.000Z

59

MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Converter Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCEANTEC Wave Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description OCEANTEC Marine Energy Company Ltd owned by Iberdrola and TECNALIA is developing a sensor for wave energy technology type Spanish attenuator Floating body oscillates due to wave excitation in its main DOF pitch Mooring system allows the body to weathervane so that it is faced to the predominant wave propagation direction Main advantage capture system completely encapsulated free of contact with sea water A flywheel continuously spins under the action of an electric motor Z The pitching motion of the WEC caused by wave action is transformed into an alternating precession in the longitudinal hull axis X A coupling device transforms this precession into an unidirectional rotation of higher frequency that is used to feed a conventional electric generator

60

Energy Dissipation of Unsteady Wave Breaking on Currents  

Science Conference Proceedings (OSTI)

Energy dissipation for unsteady deep-water breaking in wave groups on following and opposing currents, including partial wave-blocking conditions, was investigated by detailed laboratory measurements. A range of focusing wave conditions, ...

Aifeng Yao; Chin H. Wu

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Kinetic Energy Transfer between Internal Gravity Waves and Turbulence  

Science Conference Proceedings (OSTI)

We describe a reliable method for distinguishing the mean, wave and turbulence fields when internal waves with changing amplitude perturb the turbulent boundary layer. By integrating the component wave and turbulence kinetic energy budgets ...

J. J. Finnigan

1988-02-01T23:59:59.000Z

62

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

63

List of Wave Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Incentives Wave Energy Incentives Jump to: navigation, search The following contains the list of 652 Wave Energy Incentives. CSV (rows 1-500) CSV (rows 501-652) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government

64

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

65

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

66

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

67

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

68

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Conference Proceedings (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes u?p? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

69

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

70

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

71

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

WaveStar WaveStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK Projects/Wave Star Energy 1 10 Scale Model Test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Star machine does not form a barrier against the waves - with a view to harnessing all their energy - but instead cuts in at right angles to the direction of the wave. In this way, the waves run through the length of the machine and the energy is utilized in a continuous process, which produces a smooth output. On each side of the oblong Wave Star machine, there are a number of hemisphere-shaped floats, which are half submerged in the water. When a wave rolls in, the floats are pressed up - one after the other - until the wave subsides. Each float is positioned at the end of an arm and pumps energy by the vertical movement of the waves up and down. Every time a float is raised or lowered, a piston presses oil into the machine's common transmission system. The pressure drives a hydraulic motor, which drives a generator, which produces electricity. As the machine is several wave lengths long, the floats will work continuously to harness the energy and produce a smooth output.

72

EERE News: Energy Department Invests $16 Million to Develop Wave...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Invests 16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 Image of machinery to generate energy using tides. As part of the Obama Administration's...

73

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

74

Energy Conservation in Coastal-Trapped Wave Calculations  

Science Conference Proceedings (OSTI)

A consideration of energy conservation for coastal-trapped waves shows that, for a slowly varying medium, the normalization of the wave modes is not arbitrary. Errors related to incorrect normalization are demonstrated for a simple analytic ...

K. H. Brink

1989-07-01T23:59:59.000Z

75

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

76

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

77

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

78

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

79

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

80

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Available Technologies: Green Wave: Energy-Efficient HPC ...  

A Berkeley Lab team led by John Shalf and David Donofrio developed Green Wave, a energy-efficient computing platform that can perform critical Reverse Time Migration ...

82

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

83

Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment.  

E-Print Network (OSTI)

??This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the… (more)

Roshwalb, Andrew Zvi

2011-01-01T23:59:59.000Z

84

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

85

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

86

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

87

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

88

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Coastal Wave Energy Coastal Wave Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5146,"lon":-123.913,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

89

Enhancement of particle-wave energy exchange by resonance sweeping  

SciTech Connect

It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

Berk, H.L.; Breizman, B.N.

1995-10-01T23:59:59.000Z

90

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

91

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

92

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

93

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; José Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

94

MHK Technologies/C Wave | Open Energy Information  

Open Energy Info (EERE)

Wave Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The C Wave device uses two neutrally buoyant walls approximately half a wave length apart so that while one is moving forward the other is moving back The device works at a broad bandwidth around this half wavelength spacing However to improve annualized energy yield still further a third wall at an unequal spacing can be added in order to extract energy from different wavelengths Technology Dimensions

95

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

96

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

97

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

98

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

99

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

100

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

Trust OWET Trust OWET Jump to: navigation, search Name Oregon Wave Energy Trust (OWET) Place Portland, Oregon Zip 97207 Product String representation "The Oregon Wave ... rgy generation." is too long. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Technologies/WavePlane | Open Energy Information  

Open Energy Info (EERE)

WavePlane WavePlane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WavePlane.jpg Technology Profile Primary Organization WavePlane A S Project(s) where this technology is utilized *MHK Projects/WavePlane Prototype 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the waterline the device is fitted with an artificial beach, which is designed to improve the capture of wave energy. The WavePlane is symmetrical in its construction. Each side captures the water from the waves of various heights. The device splits the oncoming waves with a series of intakes, known as lamellas, which guide the captured water into a 'flywheel tube.' The fast moving vortex that is formed then forces the water across two turbines, which are located at the ends of the two 'V-shaped legs'. Finally the water is discharged back into the ocean.

102

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

103

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

Direction Direction Jump to: navigation, search Property Name Wave Direction Property Type String Pages using the property "Wave Direction" Showing 25 pages using this property. (previous 25) (next 25) A Alden Small Flume + Uni-Directional + Alden Wave Basin + Both + C Carderock Maneuvering & Seakeeping Basin + Both + Carderock Tow Tank 2 + Uni-Directional + Carderock Tow Tank 3 + Uni-Directional + Chase Tow Tank + Uni-Directional + Coastal Harbors Modeling Facility + Uni-Directional + Coastal Inlet Model Facility + Uni-Directional + Coastal Structures Modeling Complex + Both + D Davidson Laboratory Tow Tank + Uni-Directional + DeFrees Large Wave Basin + Uni-Directional + DeFrees Small Wave Basin + Uni-Directional + H Haynes Wave Basin + Both +

104

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

105

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

106

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

107

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

108

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

109

Energy of tsunami waves generated by bottom motion  

E-Print Network (OSTI)

generation models. Theoretical and Computational Fluid Dynamics, 21:245­269, 2007. Z. Kowalik, W. Knight, TEnergy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full

Paris-Sud XI, Université de

110

Momentum and Energy Transfer in Wind Generation of Waves  

Science Conference Proceedings (OSTI)

Complete expressions for wind momentum and energy transfer to wind-generated waves are derived based on a boundary-layer integral method. The airflow and wave measurements as made by Wu et al. (1977, 1979) are used to provide a first-order ...

Chin-Tsau Hsu; Hong-Ye Wu; En-Yun Hsu; Robert L. Street

1982-09-01T23:59:59.000Z

111

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

112

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

113

MHK Technologies/Wave Roller | Open Energy Information  

Open Energy Info (EERE)

Roller Roller < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Roller.jpg Technology Profile Primary Organization AW Energy Project(s) where this technology is utilized *MHK Projects/Peniche Portugal *MHK Projects/AW Energy EMEC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A WaveRoller device is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate, and the kinetic energy produced is collected by a piston pump. This energy can be converted to electricity by a closed hydraulic system in combination with a hydraulic motor/generator system. Upgrade to No3 is more powerful hyraulic componets.

114

MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | P a g e MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY TEST PROJECT ENVIRONMENTAL ASSESSMENT AUGUST 15, 2012 PREPARED TO ACCOMPANY DOEEA 1917 U.S....

115

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Conference Proceedings (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

116

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

117

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

118

Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

The dissipation of kinetic energy at the surface of natural water bodies has important consequences for many Physical and biochemical processes including wave dynamics, gas transfer, mixing of nutrients and pollutants, and photosynthetic ...

E.A. Terray; M.A. Donelan; Y.C. Agrawal; W.M. Drennan; K.K. Kahma; A.J. Williams; P.A. Hwang; S.A. Kitaigorodskii

1996-05-01T23:59:59.000Z

119

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

120

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

122

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

123

Energy storage and generation from thermopower waves  

E-Print Network (OSTI)

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

124

Energy Transport by Nonlinear Internal Waves  

Science Conference Proceedings (OSTI)

Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture ...

J. N. Moum; J. M. Klymak; J. D. Nash; A. Perlin; W. D. Smyth

2007-07-01T23:59:59.000Z

125

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

Absorbing Wave Energy Converter MAWEC Absorbing Wave Energy Converter MAWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Absorbing Wave Energy Converter MAWEC.jpg Technology Profile Primary Organization Leancon Wave Energy Project(s) where this technology is utilized *MHK Projects/Leancon Real Sea Test Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description MAWEC is an OWC wave energy converter that works differently from other OWCs in that it concurrently utilizes pressure and suck. This gives the wanted effect that the vertical force on the WEC is zero when the WEC stretches over more than one wave length. The device is V-shaped and oriented perpendicular to wave direction. The device consists of a number of vertical air tubes, and when a wave passes, air is pushed into a pressure channel that sucks air out of the suck channel. During one wave period each tube (120 in total) goes through a sequence where air is first pushed into a pressure channel when the wave is rising and is later sucked from the pressure channel when the wave is falling. In this situation there is constant pressure in the pressure channel and the air flow through the turbines is constant.

126

CX-005540: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

540: Categorical Exclusion Determination 540: Categorical Exclusion Determination CX-005540: Categorical Exclusion Determination Wave Energy Technology-New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9, B3.6 Date: 03/30/2011 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Northwest Energy Innovations, in Portland, Oregon, is proposing to use federal funding to verify the ocean wavelength functionality of Wave Energy Technology-New Zealand device through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/4 scale (1:4) experimental device. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005540.pdf More Documents & Publications CX-009134: Categorical Exclusion Determination CX-010213: Categorical Exclusion Determination

127

MHK Technologies/Archimedes Wave Swing | Open Energy Information  

Open Energy Info (EERE)

Archimedes Wave Swing Archimedes Wave Swing < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Archimedes Wave Swing.jpg Technology Profile Primary Organization AWS Ocean Energy formerly Oceanergia Project(s) where this technology is utilized *MHK Projects/AWS II *MHK Projects/Portugal Pre Commercial Pilot Project Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The AWS wave energy converter is a cylindrical chamber moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement being converted into electricity. As a wave crest approaches, the water pressure on the top of the cylinder increases, and the upper part or 'floater' compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

128

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

129

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

130

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

131

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

132

Wave Dragon ApS | Open Energy Information  

Open Energy Info (EERE)

Dragon ApS Dragon ApS Jump to: navigation, search Name Wave Dragon ApS Place Copenhagen, Denmark Zip DK-2200 Country Albania Product Wave energy converter development company. Has patented the Wave Dragon, an offshore floating slack moored wave energy converter. Coordinates 55.6760968°, 12.5683371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6760968,"lon":12.5683371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

134

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engström; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

135

MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Device IWAVE Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary Organization Nualgi Nanobiotech Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description It is a floating device tethered with chains to piles driven to ocean bottom The wave action raises the heavy partially buoyant piston that drives the overhead crankshaft by half turn The receding wave drops the piston completing the balance half turn One revolution is obtained for every wave Using gear box and generator the current is produced continuously

136

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Wave Ventures Clean Wave Ventures Place Indianapolis, Indiana Zip 46204 Product Midwest-based venture capital firm specializing in high growth Clean Technology investments Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2011 30, 2011 CX-005540: Categorical Exclusion Determination Wave Energy Technology-New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9, B3.6 Date: 03/30/2011 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 30, 2011 CX-005524: Categorical Exclusion Determination Massachusetts Institute of Technology Clean Energy Prize CX(s) Applied: A9 Date: 03/30/2011 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2011 CX-005480: Categorical Exclusion Determination Rhode Island Non-Utility Scale Renewable Energy Program CX(s) Applied: A9, B5.1 Date: 03/29/2011 Location(s): Warwick, Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy

138

Local full-wave energy in nonuniform plasmas  

SciTech Connect

The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetics analysis. This work presents an extension to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are best answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character (one operates linearly on electric field for the plasma current, the other operates quadratically for the energy), it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern and lively discussion over the questions of local energy for rf-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the rf-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities, thereby demonstrating energy conservation to all orders in Larmor radius. 25 refs.

Smithe, D.N.

1988-10-01T23:59:59.000Z

139

Energy Transfer from High-Shear, Low-Frequency Internal Waves to High-Frequency Waves near Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those ...

Oliver M. Sun; Robert Pinkel

2012-09-01T23:59:59.000Z

140

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

142

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network (OSTI)

Commission EMEC European Marine Energy Test Centre EPRI Electric Power Research Institute FERC Federal Energy penetration at times while maintaining voltage stability of the grid [1]. Autonomous grids with wind, penetration was allowed to reach 60% and showed no adverse effects on system stability. This level

143

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

BlueWave Capital LLC BlueWave Capital LLC Jump to: navigation, search Name BlueWave Capital LLC Place Boston, Massachusetts Sector Renewable Energy Product Knowledge-based investment firm focused on early- and expansion-stage environmental and renewable energy-related operating companies. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Comments on “Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

It is noted that the results of recent experiments on the enhancement of turbulent kinetic energy (TKE) dissipation below surface waves can be stated as follows. TKE dissipation is enhanced by a factor 15Hws/z at depths 0.5Hws < z < 20Hws with ...

Gerrit Burgers

1997-10-01T23:59:59.000Z

145

Spectral Energy Balance of Breaking Waves within the Surf Zone  

Science Conference Proceedings (OSTI)

The spectral energy balance of ocean surface waves breaking on a natural beach is examined with field observations from a cross-shore array of pressure sensors deployed between the shoreline and the outer edge of the surf zone near Duck, North ...

T. H. C. Herbers; N. R. Russnogle; Steve Elgar

2000-11-01T23:59:59.000Z

146

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

147

An alternative method for calculating the energy of gravitational waves  

E-Print Network (OSTI)

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

148

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

149

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

150

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

151

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

152

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4001 - 14010 of 29,416 results. 4001 - 14010 of 29,416 results. Download CX-009134: Categorical Exclusion Determination Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9, B3.6 Date: 08/20/2012 Location(s): Oregon Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009134-categorical-exclusion-determination Download Project Management Plans The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. http://energy.gov/em/downloads/project-management-plans Download Notice of inquiry and request for Information- Study of the potential benefits of distributed generation: Federal Register Notice

153

Air–Ice–Ocean Momentum Exchange. Part 1:Energy Transfer between Waves and Ice Floes  

Science Conference Proceedings (OSTI)

The energy exchange between ocean surface waves and ice floes in the marginal ice zone (MIZ) involves the scattering and attenuation of wave energy and the excitation of oscillation modes of the ice floes, as open ocean waves propagate into the ...

W. Perrie; Y. Hu

1996-09-01T23:59:59.000Z

154

Optimal Multi-Modes Switching with the Switching Cost not necessarily Positive  

E-Print Network (OSTI)

In this paper, we study the $m$-states optimal switching problem in finite horizon, when the switching cost functions are arbitrary and can be positive or negative. This has an economic incentive in terms of central evaluation in cases where such organizations or state grants or financial assistance to power plants that promotes green energy in their production activity or what uses less polluting modes in their production. We show existence for optimal strategy via a verification theorem then we show existence and uniqueness of the value processes by using an approximation scheme. In the markovian framework we show that the value processes can be characterized in terms of deterministic continuous functions of the state of the process. Those latter functions are the unique viscosity solutions for a system of $m$ variational partial differential inequalities with inter-connected obstacles.

Asri, Brahim El

2012-01-01T23:59:59.000Z

155

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound August 6, 2010 - 11:27am Addthis The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Lindsay Gsell Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. After the successful control tests, the company will move testing to open water in Puget Sound this fall. Columbia will test the intermediate 1:7

156

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

157

Calculating Energy Flux in Internal Solitary Waves with an Application to Reflectance  

Science Conference Proceedings (OSTI)

The energetics of internal solitary waves (ISWs) in continuous, quasi-two-layer stratifications are explored using fully nonlinear, nonhydrostatic numerical simulations. The kinetic energy of an internal solitary wave is always greater than the ...

Kevin G. Lamb; Van T. Nguyen

2009-03-01T23:59:59.000Z

158

Energy Flux and Generation of Diurnal Shelf Waves along Vancouver Island  

Science Conference Proceedings (OSTI)

Recent observations along the west coast of Vancouver Island reveal among diurnal-period currents due to a tidally driven continental shelf wave superimposed upon a Kelvin wave. The energy flux of this system is investigated here. It is shown ...

William R. Crawford

1984-10-01T23:59:59.000Z

159

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Height(m) at Wave Period(s) Wave Height(m) at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave Period(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 10.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 0.0 + Alden Wave Basin + 1.0 + C Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 + Coastal Inlet Model Facility + 2.3 + D Davidson Laboratory Tow Tank + 4.0 + DeFrees Large Wave Basin + 3.0 + DeFrees Small Wave Basin + 3.0 +

160

Ocean Wave Energy-Driven Desalination Systems for Off-grid Coastal Communities in Developing Countries  

Science Conference Proceedings (OSTI)

Resolute Marine Energy, Inc. (RME) is based in Boston, MA and is developing ocean wave energy converters (WECs) to benefit remote off-grid communities in developing nations. Our two WEC technologies are based on the heaving and surging motion of a buoy ... Keywords: ocean wave energy, renewable energy, desalination, water, coastal communities

Eshwan Ramudu

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

162

Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux  

Science Conference Proceedings (OSTI)

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With ...

Matthew H. Alford; Zhongxiang Zhao

2007-07-01T23:59:59.000Z

163

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed BuoysĂ?Â?Ă?Â?Ă?Â?Ă?Âť that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

164

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

165

PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES  

Science Conference Proceedings (OSTI)

We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

Reames, Donald V., E-mail: dvreames@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

166

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

167

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

168

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

169

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2011 30, 2011 CX-005540: Categorical Exclusion Determination Wave Energy Technology-New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9, B3.6 Date: 03/30/2011 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2011 CX-005807: Categorical Exclusion Determination Radiological Evidence Examination Facility (REEF) Full Activation Scenario Training Exercise CX(s) Applied: B3.6 Date: 03/29/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office March 28, 2011 CX-005850: Categorical Exclusion Determination Tank 50 Formulation Treatability Study CX(s) Applied: B3.6 Date: 03/28/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

170

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish  

E-Print Network (OSTI)

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

171

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network (OSTI)

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

172

Launching the Next Wave of Clean Fossil Energy Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory. The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced

173

On the Steady-State Energy Balance of Short Gravity Wave Systems  

Science Conference Proceedings (OSTI)

Steady-state energy balances of short gravity wave systems generated in a wave tank with and without airflow have been measured and compared with the predictions of perturbation theory. Wind-wave spectra were found to fit a JONSWAP form to a good ...

William J. Plant

1980-09-01T23:59:59.000Z

174

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

175

Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking  

Science Conference Proceedings (OSTI)

This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, ...

Ian R. Young; Alexander V. Babanin

2006-03-01T23:59:59.000Z

176

MHK Technologies/WaveBlanket PolymerMembrane | Open Energy Information  

Open Energy Info (EERE)

WaveBlanket PolymerMembrane WaveBlanket PolymerMembrane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveBlanket PolymerMembrane.jpg Technology Profile Primary Organization Wind Waves and Sun Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description WaveBlanket could be called the accordion of the sea Poetically speaking It is simply a bellows played upon by the swells of the ocean WaveBlanket is a flexible polymer membrane which uses air pressure rather than steel to achieve its lateral strength and as a result produces about 1000 times more energy per unit of mass than rigid green energy designs

177

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Maximum Wave Height(m) Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.2 + 10-ft Wave Flume Facility + 0.5 + 11-ft Wave Flume Facility + 0.4 + 2 2-ft Flume Facility + 0.6 + 3 3-ft Wave Flume Facility + 0.2 + 5 5-ft Wave Flume Facility + 0.5 + 6 6-ft Wave Flume Facility + 0.4 + A Alden Large Flume + 0.0 + Alden Small Flume + 0.2 + Alden Wave Basin + 0.3 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.6 + Carderock Tow Tank 2 + 0.6 + Carderock Tow Tank 3 + 0.6 +

178

Wave-Energy Company Looks to Test Prototypes in Maine Waters | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute Marine Energy - a Boston-based, wave-energy technology company - hopes to test ocean wave energy conversion prototypes in Maine sometime in the summer of 2011. The company has already completed two of the three testing stages, the first using computer simulation and the second with reduced-scale prototypes in a controlled environment. Now, the company is ready to take the technology offshore to begin ocean testing. Its eyes are set on the waters of its Northern neighbor, Maine. Maine is an ideal location for Resolute Marine Energy to conduct testing for a few reasons, said CEO and President Bill Staby. Working in Maine

179

A New Perspective on the Excitation of Low-Tropospheric Mixed Rossby–Gravity Waves in Association with Energy Dispersion  

Science Conference Proceedings (OSTI)

This study investigates the synoptic-scale equatorial response to Rossby wave energy dispersion associated with off-equatorial wave activity sources and proposes a new mechanism for triggering low-level mixed Rossby–gravity (MRG) waves. A case ...

Guanghua Chen; Chi-Yung Tam

2012-04-01T23:59:59.000Z

180

Direct Drive Wave Energy Buoy – Intermediate scale experiment  

SciTech Connect

Columbia Power Technologies deployed a scaled prototype wave energy converter (WEC) in the Puget Sound in February 2011. Other than a brief period (10 days) in which the WEC was removed for repair, it was in the water from Feb. 15, 2011 until Mar. 21, 2012. The SeaRay, as this WEC is known, consists of three rigid bodies which are constrained to move in a total of eight degrees of freedom (DOF). The SeaRay is kept on station with a spread, three-point mooring system. This prototype WEC is heavily instrumented, including but not limited to torque transducers and encoders reporting generator torque applied to and relative pitch of the floats, an inertial measurement unit (IMU) reporting translational acceleration and rotational position of the spar/nacelle, a GPS sensor reporting position, load cells reporting mooring loads at the WEC connection points and a number of strain gauges embedded in the fiberglass reinforced plastic (FRP) hull. Additionally, wave and current data are collected using an Acoustic Wave And Current Profiler (AWAC), allowing performance and design data to be correlated to environmental input conditions. This data – quality controlled, processed and analyzed – is used to characterize the metocean conditions (i.e. sea states). The WEC response will be correlated to the metocean conditions. These results will primarily be used to validate numerical models. The validated numerical models will be used optimize the commercial scale WEC and inform the design process. This document details the SeaRay experiment, including the quality control, processing and subsequent analysis of the data. Furthermore, the methodology and the results of numerical model validation will be described.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

182

u.s. DEPARThIl!NT OF ENERGY EERE PROJECT MANAG EMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARThIl!NT OF ENERGY DEPARThIl!NT OF ENERGY EERE PROJECT MANAG EMENT CENTER NEPA DETERMINATION RECIPIENT: Northwest Energy Innovations Page 1 of3 STATE: OR PROJECT TITLE: WAVE ENERGY TECHNOLOGY-NEW ZEALAND MULTI-MODE WAVE ENERGY CONVERTER ADVANCEMENT PROJECT Funding Opportunity Announcement Number Procurement Instr ument Number NEPA Control Number elD Number DE-FOA -OOOO293 DE-EEOOO3642 GFO-OO03642-OO2 G03642 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made the rollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: Rational for determination: EA Category: DOE/EA 1917 and DOE Mitigated FONSI signed 8-15-2012 This determination is being made for tasks 2.12 -

183

Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models  

Science Conference Proceedings (OSTI)

Four different parameterizations of the nonlinear energy transfer Snl in a surface wave spectrum are in investigated. Two parameterizations are based on a relatively small number of parameters and are useful primarily for application in ...

S. Hasselmann; K. Hasselmann; J. H. Allender; T. P. Barnett

1985-11-01T23:59:59.000Z

184

MHK Technologies/The WaveCatcher System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The WaveCatcher System.png Technology Profile Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential energy reservoir then that energy is transformed into mechanical kinetic energy in such a way that it is output in a constant output 60 hertz in other words it takes the large pulsed energy of a wave captures the wave and transforms the wave into a constant energy output Technology Dimensions Device Testing Date Submitted 30:33.7 << Return to the MHK database homepage

185

Optimal numerical realization of the energy balance equation for wind wave models  

Science Conference Proceedings (OSTI)

The optimal numerical realization of the energy balance equation in wind wave models is proposed. The scheme is separated into two parts: the numerical source term integration and the energy propagation numerical realization. The first one is based on ...

Igor V. Lavrenov

2003-06-01T23:59:59.000Z

186

On the Potential Energy of Baroclinic Rossby Waves in the North Pacific  

Science Conference Proceedings (OSTI)

Estimates of baroclinic Rossby wave potential energy spectra for various parts of the North Pacific were calculated from published material containing information about this energy in many different formats, definitions and units. The ...

Lorenz Magaard

1983-01-01T23:59:59.000Z

187

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

188

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

189

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

190

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

Wave Length(m) Wave Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this property. A Alden Small Flume + Variable + Alden Wave Basin + 1.8 + C Carderock Maneuvering & Seakeeping Basin + 12.2 + Carderock Tow Tank 2 + 12.2 + Carderock Tow Tank 3 + 12.2 + D Davidson Laboratory Tow Tank + 15.2 + DeFrees Large Wave Basin + 64 + DeFrees Small Wave Basin + 30 + H Haynes Wave Basin + 10.7 + L Lakefront Tow Tank + 22 + M MIT Tow Tank + 4.6 + O OTRC Wave Basin + 25 + Ohmsett Tow Tank + 18 + R Richmond Field Station Tow Tank + 2 + S SAFL Channel + 6.6 + Sandia Lake Facility + 4.57 + Sheets Wave Basin + 10 + Ship Towing Tank + 6 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Maximum_Wave_Length(m)&oldid=597351

191

5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

5-ft Wave Flume Facility 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 1.5 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

192

University of Iowa Wave Basin | Open Energy Information  

Open Energy Info (EERE)

University of Iowa Wave Basin University of Iowa Wave Basin Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Wave Basin Length(m) 40.0 Beam(m) 20.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mappingv Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable for regular or irregular waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Trusses overlaid with lattice and matting Channel/Tunnel/Flume

193

1.5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

-ft Wave Flume Facility -ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.5 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

194

11-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 77.4 Beam(m) 3.4 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Control and Data Acquisition Description Automated data acquisition and control system Cameras None

195

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

196

3-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

3-ft Wave Flume Facility 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.9 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

197

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 10-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 3.0 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

198

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

Wave Flume Facility Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 6-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 105.2 Beam(m) 1.8 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

199

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network (OSTI)

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet NIKOLAOS A. BAKAS AND BRIAN F. FARRELL Harvard University Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality

Farrell, Brian F.

200

MHK Projects/Douglas County Wave Energy Project | Open Energy Information  

Open Energy Info (EERE)

Douglas County Wave Energy Project Douglas County Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6825,"lon":-124.187,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Projects/Perth Wave Energy Project PWEP | Open Energy Information  

Open Energy Info (EERE)

Perth Wave Energy Project PWEP Perth Wave Energy Project PWEP < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

202

MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Centreville OPT Wave Energy Park Centreville OPT Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5761,"lon":-124.264,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

203

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

204

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

205

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network (OSTI)

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

206

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

207

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

Desalination < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Power Desalination.gif Technology Profile Primary Organization Delbuoy...

208

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

209

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

210

NREL GIS Data: Wave Energy Assessment for the United States and Puerto Rico  

Open Energy Info (EERE)

Wave Energy Assessment for the United States and Puerto Rico Wave Energy Assessment for the United States and Puerto Rico Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Geographic Range US coastline, including AK, HI and Puerto Rico, out to 50 nautical miles. Grid Properties Grids are derived from WaveWatch III grids. Near the coast of the lower 48 and HI, grids are squares, 4 minutes by 4 minutes (15 per degree). For the Alaska grids AK and BS, the grid is 4 minutes of latitude by 8 minutes of longitude (15 per deg by 7.5 per deg).

211

MHK Technologies/Under Bottom Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Under Bottom Wave Generator Under Bottom Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Under Bottom Wave Generator.jpg Technology Profile Primary Organization Glen Edward Cook Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Water will flow up into the pipe from the down stroke and out of the pipe back into the ocean on the up stroke Waves rolling by will push water into the pipe This will mock the ocean swell A propellar is mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator

212

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

hyWave hyWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyWave.png Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/Mutriku *MHK Projects/Wavegen Technology Resource Click here Wave Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The hyWave device rests directly on the seabed and is designed to operate in the near-shore environment in a nominal mean water depth of 15m. Optimum performance will be achieved when driven by a long ocean swell. The pneumatic power of the oscillating water column (OWC) is converted to electricity by a Wells generator and specially designed induction generators.

213

Energy Flux from Traveling Hurricanes to the Oceanic Internal Wave Field  

Science Conference Proceedings (OSTI)

The generation of long interval waves by traveling hurricanes on an f plane is studied within the context of linear theory. The emphasis of the present work is on the interval wave power, that is, the fraction of the energy input from the ...

Johan Nilsson

1995-04-01T23:59:59.000Z

214

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

215

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

WaveMaster WaveMaster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveMaster.jpg Technology Profile Primary Organization Ocean Wavemaster Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The WaveMaster device consists of two pressure chambers connected via a number of turbines The device is located under the waters surface so that it is covered at all times The upper surface of each chamber is an active surface covered with one way valves that control the flow of water through the device The valves on the high pressure chamber allow water to flow into the chamber provided the external pressure is higher than the internal pressure in the chamber This situation typically occurs under wave crests If the external pressure is less than the internal pressure the valves remain closed and water does not flow in Similarly the valves on the low pressure chamber will only allow water to flow out of the chamber if the internal pressure is higher than the external pressure This situation typically occurs under wave troughs If the internal pressure is less than the external pressure the valves remain closed and there is no flow of water

216

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

217

Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures  

E-Print Network (OSTI)

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

Gregor Tanner

2008-03-12T23:59:59.000Z

218

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

219

Effective gravitational wave stress-energy tensor in alternative theories of gravity  

E-Print Network (OSTI)

The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by ...

Stein, Leo Chaim

220

Enhanced Energy Dissipation by Parasitic Capillaries on Short Gravity–Capillary Waves  

Science Conference Proceedings (OSTI)

The increased energy dissipation caused by the formation of parasitic capillary wavelets on moderately short, steep gravity–capillary waves is studied numerically. This study focuses on understanding the mechanism leading to dissipation ...

Wu-ting Tsai; Li-ping Hung

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Deposition and Turbulent Dissipation Owing to Gravity Waves in the Mesosphere  

Science Conference Proceedings (OSTI)

An attempt is made to define the thermodynamics of internal gravity waves breaking in the middle atmosphere on the basis of the energy conservation law for finite fluid volumes. Consistent with established turbulence theory, this method ...

Erich Becker; Gerhard Schmitz

2002-01-01T23:59:59.000Z

222

Observations of the Directional Distribution of Ocean-Wave Energy in Fetch-Limited Conditions  

Science Conference Proceedings (OSTI)

Directional energy distributions of wind-generated waves were observed with a relatively high directional resolution in fairly homogeneous and stationary wind fields in fetch-limited conditions using stereophotography of the sea surface. In a ...

L. H. Holthuijsen

1983-02-01T23:59:59.000Z

223

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

224

Observation of Wave Energy Evolution in Coastal Areas Using HF Radar  

Science Conference Proceedings (OSTI)

The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant ...

Rafael J. Ramos; Hans C. Graber; Brian K. Haus

2009-09-01T23:59:59.000Z

225

Back to the Future - Waves of Rising Energy Use in Data Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3122 In the last 20 years we have observed three waves of concern about energy consumption of Data Centers and of activities for more efficient solutions: 1985-1995, fast...

226

On the Calculation of Available Potential Energy in Internal Wave Fields  

Science Conference Proceedings (OSTI)

A comparison of three common formulations for calculating the available potential energy (APE) in internal wave fields is presented. The formulations are the perturbation APE (APE1), the exact local APE (APE2), and its approximation for linear ...

Dujuan Kang; Oliver Fringer

2010-11-01T23:59:59.000Z

227

Hydrodynamic Optimisation of point wave-energy converter using laboratory experiments.  

E-Print Network (OSTI)

??Investment in renewable energy technology, such as wave power, is increasingly seen as a beneficial and economically-viable alternative to existing fossil-based power plants. New Zealand… (more)

Kelly, Scott John

228

Novel millimeter wave sensor concepts for energy, environment, and national security  

E-Print Network (OSTI)

Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

Sundaram, S. K.

229

The Energy Source for the Coastal-Trapped Waves in the Australian Coastal Experiment Region  

Science Conference Proceedings (OSTI)

The sea level on the southern Australian coast is examined for the source of the coastal-trapped wave energy observed during the Australian Coastal Experiment. Sea level, adjusted for atmospheric pressure, and atmospheric pressure are observed to ...

John A. Church; Howard J. Freeland

1987-03-01T23:59:59.000Z

230

Localized energy estimates for wave equations on high dimensional Schwarzschild space-times  

E-Print Network (OSTI)

The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the $(1+3)$-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price's law. In this article, we explore similar localized energy estimates for wave equations on $(1+n)$-dimensional hyperspherical Schwarzschild space-times.

Laul, Parul

2010-01-01T23:59:59.000Z

231

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

232

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

233

On Energy Flux and Group Velocity of Waves in Baroclinic Flows  

Science Conference Proceedings (OSTI)

A modified energy flux is defined by adding a nondivergent term that involves ? to the traditional energy flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of Rossby waves on a ? plane with ...

Edmund K. M. Chang; Isidoro Orlanski

1994-12-01T23:59:59.000Z

234

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

235

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network (OSTI)

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

236

The Treatment of Discontinuities in Computing the Nonlinear Energy Transfer for Finite-Depth Gravity Wave Spectra  

Science Conference Proceedings (OSTI)

The calculation of nonlinear energy transfer between interacting waves is one of the most computationally demanding tasks in understanding the dynamics of the growth and transformation of wind-generated surface waves. For shallow water in ...

Richard M. Gorman

2003-01-01T23:59:59.000Z

237

An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime  

Science Conference Proceedings (OSTI)

Based on 143 deg. electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface.

Ibach, H. [Peter Gruenberg Institut PGI-3, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany); Rajeswari, J.; Schneider, C. M. [Peter Gruenberg Institut PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany)

2011-12-15T23:59:59.000Z

238

Definition: Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Long-Wave Infrared Jump to: navigation, search Dictionary.png Long-Wave Infrared Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features such as hot springs, fumaroles, and snow melt. LWIR can also be used to map the distribution of certain minerals related to hydrothermal alterations.[2] View on Wikipedia Wikipedia Definition References ↑ Katherine Young,Timothy Reber,Kermit Witherbee. 2012. Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei. In: Proceedings of the Thirty-Seventh Workshop on Geothermal

239

Abstract--Wave energy will have a key role in meeting re-newable energy targets en route to a low carbon economy. How-  

E-Print Network (OSTI)

speed, a 5% change in wind speed would produce approximately a 25% change in wave power. As such). Fig. 1. Linking climate change and wave energy In a manner similar to wind turbines, wave energy in spreadsheet form. For each 0.25 m/s increment in wind speed (over the range 0 to 30 m/s), the probability

Harrison, Gareth

240

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/  

E-Print Network (OSTI)

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget working my way through a preprint of a paper arguing that dark energy is not what many scientists think

Temple, Blake

242

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy  

E-Print Network (OSTI)

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

Temple, Blake

243

Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies  

SciTech Connect

A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

Dubovichenko, S. B., E-mail: dubovichenko@mail.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

2012-03-15T23:59:59.000Z

244

Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint  

DOE Green Energy (OSTI)

During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

Li, Y.; Yu, Y. H.

2012-05-01T23:59:59.000Z

245

Energy Levels and Wave Functions of Vector Bosons in Homogeneous Magnetic Field  

E-Print Network (OSTI)

We aimed to obtain the energy levels of spin-1 particles moving in a constant magnetic field. The method used here is completely algebraic. In the process to obtain the energy levels the wave function is choosen in terms of Laguerre Polynomials.

K. Sogut; A. Havare; I. Acikgoz

2001-10-24T23:59:59.000Z

246

Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence  

Science Conference Proceedings (OSTI)

We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}heating as {integral}{sub r{sub 1}} {sup r{sub 2}} dr=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

Zhao, L. [Center for Astrophysics and Space Sciences and Department of Physics, University of California at San Diego, La Jolla, California 92093-0424 (United States); Diamond, P. H. [Center for Astrophysics and Space Sciences and Department of Physics, University of California at San Diego, La Jolla, California 92093-0424 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Gwahangno113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

2012-08-15T23:59:59.000Z

247

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Science Conference Proceedings (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and more accura...

2011-12-01T23:59:59.000Z

248

MHK Projects/Reedsport OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Reedsport OPT Wave Park Reedsport OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.22,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

249

MHK Projects/Green Wave Mendocino | Open Energy Information  

Open Energy Info (EERE)

Green Wave Mendocino Green Wave Mendocino < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325,"lon":-123.847,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

250

MHK Projects/Cornwall Wave Hub | Open Energy Information  

Open Energy Info (EERE)

Wave Hub Wave Hub < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.1853,"lon":-5.42083,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

251

MHK Projects/WavePlane Prototype 1 | Open Energy Information  

Open Energy Info (EERE)

WavePlane Prototype 1 WavePlane Prototype 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1343,"lon":8.60719,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

252

MHK Projects/WestWave | Open Energy Information  

Open Energy Info (EERE)

WestWave WestWave < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.2019,"lon":-5.43729,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

253

MHK Projects/Wave Dragon Nissum Bredning | Open Energy Information  

Open Energy Info (EERE)

Wave Dragon Nissum Bredning Wave Dragon Nissum Bredning < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6153,"lon":8.39991,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

254

MHK Projects/bioWAVE Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

bioWAVE Pilot Plant bioWAVE Pilot Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.8197,"lon":144.964,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

255

MHK Projects/Humboldt County Wave Project | Open Energy Information  

Open Energy Info (EERE)

Wave Project Wave Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7381,"lon":-123.928,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

256

MHK Projects/Brough Head Wave Farm | Open Energy Information  

Open Energy Info (EERE)

Brough Head Wave Farm Brough Head Wave Farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.081,"lon":-3.359,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

257

MHK Projects/SWave Catalina Green Wave | Open Energy Information  

Open Energy Info (EERE)

SWave Catalina Green Wave SWave Catalina Green Wave < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3103,"lon":-123.845,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

258

MHK Projects/Orcadian Wave Farm | Open Energy Information  

Open Energy Info (EERE)

Orcadian Wave Farm Orcadian Wave Farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.1766,"lon":-3.15905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

259

Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves  

Science Conference Proceedings (OSTI)

Electron energy distribution functions (EEDFs) were measured in a 50 mTorr oxygen plasma column sustained by propagating surface waves. Trace-rare-gas-optical-emission spectroscopy was used to derive EEDFs by selecting lines to extract ''electron temperature''(T{sub e}) corresponding to either lower energy electrons that excite high-lying levels through stepwise excitation via metastable states or higher energy electrons that excite emission directly from the ground state. Lower energy T{sub e}'s decreased from 8 to 5.5 eV with distance from the wave launcher, while T{sub e}{approx_equal}6 eV for higher energy electrons and T{sub e}>20 eV for a high-energy tail. Mechanisms for such EEDFs are discussed.

Stafford, L.; Margot, J.; Moisan, M. [Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Khare, R.; Donnelly, V. M. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

2009-01-12T23:59:59.000Z

260

Amber Waves of...Switchgrass? How about Sorghum? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amber Waves of...Switchgrass? How about Sorghum? Amber Waves of...Switchgrass? How about Sorghum? Amber Waves of...Switchgrass? How about Sorghum? October 28, 2011 - 5:09pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? For many counties, the expanding market for energy products made from biomass is a potential source of economic growth. Is your county one of them? As the fall harvest comes to an end in Marshall County, Kansas, farmers are already planning what crops they'll be planting next year. As they do, food might not be the only thing on their mind. According to the US Billion-Ton Update, a study sponsored by the Energy Department, by increasing production of energy crops and using more agricultural residues, including the non-food portion of plant material, this county is well

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Open Energy Info (EERE)

TECHNICAL REPORT TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

262

Observational Quantification of the Energy Dissipated by Alfv\\'en Waves in a Polar Coronal Hole: Evidence that Waves Drive the Fast Solar Wind  

E-Print Network (OSTI)

We present a measurement of the energy carried and dissipated by Alfv\\'en waves in a polar coronal hole. Alfv\\'en waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find tha...

Hahn, Michael

2013-01-01T23:59:59.000Z

263

An energy absorbing far-field boundary condition for the elastic wave equation  

SciTech Connect

The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

Petersson, N A; Sjogreen, B

2008-07-15T23:59:59.000Z

264

Deep Eddy Energy and Topographic Rossby Waves in the Gulf of Mexico  

Science Conference Proceedings (OSTI)

Observations suggest the hypothesis that deep eddy kinetic energy (EKE) in the Gulf of Mexico can be accounted for by topographic Rossby waves (TRWs). It is presumed that the TRWs are forced by Loop Current (LC) pulsation, Loop Current eddy (LCE) ...

L-Y. Oey; H-C. Lee

2002-12-01T23:59:59.000Z

265

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network (OSTI)

the Doubly- fed induction generator (DFIG). This paper deals then with a model-based predictive power control of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power was calculated using a DFIG linearized state-space model. The DFIG-based WEC power tracking performances further

Paris-Sud XI, Université de

266

The Life Cycle of a Cyclone Wave in the Southern Hemisphere. Part I: Eddy Energy Budget  

Science Conference Proceedings (OSTI)

The energetics of a Southern Hemisphere cyclone wave have been analyzed using ECMWF data and the results of a limited-area model simulation. An analysis of the energy budget for a storm that developed in the eastern Pacific on 4–6 September 1987 ...

I. Orlanski; J. Katzfey

1991-09-01T23:59:59.000Z

267

The energy spectrum of gravitational waves in a loop quantum cosmological model  

E-Print Network (OSTI)

We explore the consequences of loop quantum cosmology (inverse-volume corrections) in the spectrum of the gravitational waves using the method of the Bogoliubov coefficients. These corrections are taken into account at the background level of the theory as well as at the first order in the perturbations theory framework. We show that these corrections lead to an intense graviton production during the loop super-inflationary phase prior to the standard slow-roll era, which leave their imprints through new features on the energy spectrum of the gravitational waves as would be measured today, including a new maximum on the low frequency end of the spectrum.

Joao Morais; Mariam Bouhmadi-Lopez; Alfredo B. Henriques

2013-09-30T23:59:59.000Z

268

Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328  

DOE Green Energy (OSTI)

In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

Scott, G.

2012-06-01T23:59:59.000Z

269

Energy-Dependent $\\gamma$-Ray Burst Peak Durations and Blast-Wave Deceleration  

E-Print Network (OSTI)

Temporal analyses of the prompt gamma-ray and X-ray light curves of gamma-ray bursts reveal a tendency for the burst pulse time scales to increase with decreasing energy. For an ensemble of BATSE bursts, Fenimore et al. (1995) show that the energy dependence of burst peak durations can be represented by dependence has led to the suggestion that this effect is due to radiative processes, most notably synchrotron cooling of the non-thermal particles which produce the radiation. Here we show that a similar power-law dependence occurs, under certain assumptions, in the context of the blast-wave model and is a consequence of the deceleration of the blast-wave. This effect will obtain whether or not synchrotron cooling is important, but different degrees of cooling will cause variations in the energy dependence of the peak durations.

Chiang, J

1998-01-01T23:59:59.000Z

270

Planckian Energy Scattering, Colliding Plane Gravitational Waves and Black Hole Creation  

E-Print Network (OSTI)

In a series of papers Amati, Ciafaloni and Veneziano and 't Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this paper we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves. We clarify issues arising in the definition of transition amplitude from a quantum state containing only usual matter without black holes to a state containing black holes. Collision of two plane gravitational waves producing a space-time region which is locally isometric to an interior of black hole solution is considered. The phase of the transition amplitude from plane waves to white and black hole is calculated by using the Fabbrichesi, Pettorino, Veneziano and Vilkovisky approach. An alternative extension beyond the horizon in which the space-time again splits into two separating gravitational waves is also discussed. Such a process is interpreted as the scattering of plane gravitational waves through creation of virtual black and white holes.

I. Ya. Aref'eva; K. S. Viswanathan; I. V. Volovich

1994-12-18T23:59:59.000Z

271

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

272

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part I: Energy Dissipation, Acceleration, and Constraints  

Science Conference Proceedings (OSTI)

The spectral characteristics of atmospheric gravity wave motions are remarkably uniform in frequency and wavenumber despite widely disparate sources, filtering environments, and altitudes of observation. This permits a convenient and useful means ...

David C. Fritts; Thomas E. Vanzandt

1993-11-01T23:59:59.000Z

273

Progress in Energy and Combustion Science 34 (2008) 377416 Discrete reaction waves: Gasless combustion of solid powder mixtures  

E-Print Network (OSTI)

Progress in Energy and Combustion Science 34 (2008) 377­416 Discrete reaction waves: Gasless combustion of solid powder mixtures A.S. Mukasyana,�, A.S. Rogachevb a Department of Chemical Abstract This review considers a specific domain in combustion science, so-called discrete combustion waves

Mukasyan, Alexander

274

Shock waves in a Z-pinch and the formation of high energy density plasma  

Science Conference Proceedings (OSTI)

A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

275

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part II: Parameterization of Wave Forcing and Variability  

Science Conference Proceedings (OSTI)

The purpose of this paper is to suggest a scheme for the parameterization of gravity wave propagation and effects in the lower and middle atmosphere that is tied as closely as possible to the spectral character of the observed gravity wave field. ...

David C. Fritts; Wentong Lu

1993-11-01T23:59:59.000Z

276

Experimental Study of Energy Transfer by Inertial Waves During the Build up of Turbulence in a Rotating System  

E-Print Network (OSTI)

We study the transition from fluid at rest to turbulence in a rotating water cylinder. We show that the energy, injected at a given height, is transported by inertial wave packets through the fluid volume. These waves propagate at velocities consistent with those calculated from linearized theory, even when they possess large amplitudes. A clear "front" in the temporal evolution of the energy power spectrum is detected, defining a time scale for energy transport at the linear wave speed in the system. Nonlinear energy transfer between modes is governed by a different time scale that can be much longer than the linear one. These observations suggest that the energy distribution and statistics in rotating turbulent fields that are driven by intermittent energy sources may be different from those described by the inverse energy cascade in two-dimensional turbulence.

Kolvin, Itamar; Vardi, Yuval; Sharon, Eran

2008-01-01T23:59:59.000Z

277

Global regularity of wave maps VI. Abstract theory of minimal-energy blowup solutions  

E-Print Network (OSTI)

In the previous papers in this series, the global regularity conjecture for wave maps from two-dimensional Minkowski space $\\R^{1+2}$ to hyperbolic space $\\H^m$ was reduced to the problem of constructing a minimal-energy blowup solution which is almost periodic modulo symmetries in the event that the conjecture fails. In this paper, we show that this problem can be reduced further, to that of showing that solutions at the critical energy which are either frequency-delocalised, spatially-dispersed, or spatially-delocalised have bounded ``entropy''. These latter facts will be demonstrated in the final paper in this series.

Tao, Terence

2009-01-01T23:59:59.000Z

278

A Semigeostrophic Eady-Wave Frontal Model Incorporating Momentum Diffusion. Part II: Kinetic Energy and Enstrophy Dissipation  

Science Conference Proceedings (OSTI)

Momentum diffusion has been introduced into a semigeostrophic Eady-wave frontal model by Blumen (Part I). This model is used to determine the kinetic energy and enstrophy dissipations within a frontal zone that extends from the ground to a ...

William Blumen

1990-12-01T23:59:59.000Z

279

Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part I: Satellite Data Analyses  

Science Conference Proceedings (OSTI)

The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) ...

Tim Li; Bing Fu

2006-05-01T23:59:59.000Z

280

Energy-Dependent Gamma-Ray Burst Peak Durations and Blast-Wave Deceleration  

E-Print Network (OSTI)

Temporal analyses of the prompt gamma-ray and X-ray light curves of gamma-ray bursts reveal a tendency for the burst pulse time scales to increase with decreasing energy. For an ensemble of BATSE bursts, Fenimore et al. (1995) show that the energy dependence of burst peak durations can be represented by $\\Delta t \\propto E^{-\\gamma}$ with $\\gamma \\simeq 0.4$--0.45. This power-law dependence has led to the suggestion that this effect is due to radiative processes, most notably synchrotron cooling of the non-thermal particles which produce the radiation. Here we show that a similar power-law dependence occurs, under certain assumptions, in the context of the blast-wave model and is a consequence of the deceleration of the blast-wave. This effect will obtain whether or not synchrotron cooling is important, but different degrees of cooling will cause variations in the energy dependence of the peak durations.

James Chiang

1998-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Green's Function Retrieval from the CCF of Random Waves and Energy Conservation for an Obstacle of Arbitrary Shape: Noise Source Distribution on the Surr Green's Function Retrieval from the CCF of Random Waves  

E-Print Network (OSTI)

Waves and Energy Conservation for an Obstacle of Arbitrary Shape: Noise Source DistributionGreen's Function Retrieval from the CCF of Random Waves and Energy Conservation for an Obstacle of Arbitrary Shape: Noise Source Distribution on the Surr Green's Function Retrieval from the CCF of Random

282

Constraining dark matter late-time energy injection: decays and p-wave annihilations  

E-Print Network (OSTI)

We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z well as Lyman-alpha measurements of the matter temperature at z ~ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ~ 4 x 10^25 s for m_chi = 100 MeV. This bound becomes lower by two orders of magnitude at m_chi = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

Roberta Diamanti; Laura Lopez-Honorez; Olga Mena; Sergio Palomares-Ruiz; Aaron C. Vincent

2013-08-12T23:59:59.000Z

283

Wave Response during Hydrostatic and Geostrophic Adjustment. Part II: Potential Vorticity Conservation and Energy Partitioning  

Science Conference Proceedings (OSTI)

This second part of a two-part study of the hydrostatic and geostrophic adjustment examines the potential vorticity and energetics of the acoustic waves, buoyancy waves, Lamb waves, and steady state that are generated following the prescribed ...

Jeffrey M. Chagnon; Peter R. Bannon

2005-05-01T23:59:59.000Z

284

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2007-12-20T23:59:59.000Z

285

MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps  

Open Energy Info (EERE)

US Navy Wave Energy Technology WET Program at Marine Corps US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4164,"lon":-157.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

286

Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV  

Science Conference Proceedings (OSTI)

A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

Dubovichenko, S. B. [Fesenkov Astrophysical Institute (Kazakhstan)], E-mail: sergey@dubovichenko.net

2008-01-15T23:59:59.000Z

287

A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007  

E-Print Network (OSTI)

We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

Adrián-Martínez, S; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatŕ, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefčvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; P?v?la?, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Richardt, C; Richter, R; Rivičre, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúńiga, J; Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavagliŕ, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endr?czi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P

2012-01-01T23:59:59.000Z

288

CX-010213: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9 Date: 01/08/2013 Location(s): Hawaii, Oregon Offices(s): Golden Field Office

289

CX-009134: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9, B3.6 Date: 08/20/2012 Location(s): Oregon Offices(s): Golden Field Office

290

9/18/09 2:07 PMSPACE.com --'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 8http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html  

E-Print Network (OSTI)

9/18/09 2:07 PMSPACE.com -- 'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 8http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html What is Dark Energy? Universe Might Be Bigger and Older Than Expected In New? Register: Join Now! 'Big Wave' Theory Offers Alternative to Dark Energy By Clara Moskowitz Staff

Temple, Blake

291

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

292

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

293

Universal breaking point asymptotic for energy spectrum of Riemann waves in weakly nonlinear non-dispersive media  

E-Print Network (OSTI)

In this Letter we study the form of the energy spectrum of Riemann waves in weakly nonlinear non-dispersive media. For quadratic and cubic nonlinearity we demonstrate that the deformation of an Riemann wave over time yields an exponential energy spectrum which turns into power law asymptotic with the slope being approximately -8/3 at the last stage of evolution before breaking. We argue, that this is the universal asymptotic behaviour of Riemann waves in any nonlinear non-dispersive medium at the point of breaking. The results reported in this Letter can be used in various non-dispersive media, e.g. magneto-hydro dynamics, physical oceanography, nonlinear acoustics.

Kartashova, Elena

2013-01-01T23:59:59.000Z

294

A Theory for the Statistical Equilibrium Energy Spectrum and Heat Flux Produced by Transient Baroclinic Waves  

Science Conference Proceedings (OSTI)

Obtaining a physically based understanding of the variations with spatial scale of the amplitude and dispersive properties of midlatitude transient baroclinic waves and the heat flux associated with these waves is a central goal of dynamic ...

Brian F. Farrell; Petros J. Ioannou

1994-10-01T23:59:59.000Z

295

WAVE REFLE TOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. SAND # 2013-8893 P WAVE REFLE TOR

296

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

Science Conference Proceedings (OSTI)

Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality of the underlying linear dynamics, which plays an essential role in processing the wave activity and selecting structures that dominate wave ...

Nikolaos A. Bakas; Brian F. Farrell

2008-07-01T23:59:59.000Z

297

Effects of Wave Breaking on the Near-Surface Profiles of Velocity and Turbulent Kinetic Energy  

Science Conference Proceedings (OSTI)

A theoretical model for the near-surface velocity profile in the presence of breaking waves is presented. Momentum is accumulated by growing waves and is released upon wave breaking. In effect, such a transition is a process involving a time-...

Arne Melsom; Řyvind SĆtra

2004-02-01T23:59:59.000Z

298

The Synoptic Setting and Possible Energy Sources for Mesoscale Wave Disturbances  

Science Conference Proceedings (OSTI)

Thirteen case studies of mesoscale wave disturbances (characterized by either a singular wave of depression or wave packets with periods of 1–4 h, horizontal wavelengths of 50–500 km, and surface pressure perturbation amplitudes of 0.2–7.0 mb) ...

Louis W. Uccellini; Steven E. Koch

1987-03-01T23:59:59.000Z

299

A Kinetic Energy Climatology of Flow Regimes Associated with 500 mb Waves over North America in Winter and Spring  

Science Conference Proceedings (OSTI)

A diagnostic analysis of kinetic energy budgets for midlatitude 500 mb synoptic-scale waves in the winter–spring season is presented. The data used were standard twice-daily rawinsonde observations in 50 mb increments from the surface to 100 mb ...

Yi-Tsuei Pai Sheu; Phillip J. Smith

1981-09-01T23:59:59.000Z

300

On the Effect of Ocean Waves on the Kinetic Energy Balance and Consequences for the Inertial Dissipation Technique  

Science Conference Proceedings (OSTI)

For large wind speed (in practice >15 m s?1) observations of the surface stress by means of the inertial dissipation technique are so close to the surface that effects of growing ocean waves on the turbulent kinetic energy budget should be taken ...

Peter A. E. M. Janssen

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves  

E-Print Network (OSTI)

We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.

S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii

2009-05-11T23:59:59.000Z

302

A method for EIA scoping of wave energy converters-based on classification of the used technology  

SciTech Connect

During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

2012-01-15T23:59:59.000Z

303

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

304

Probing Nuclear Symmetry Energy and its Imprints on Properties of Nuclei, Nuclear Reactions, Neutron Stars and Gravitational Waves  

E-Print Network (OSTI)

Significant progress has been made in recent years in constraining nuclear symmetry energy at and below the saturation density of nuclear matter using data from both terrestrial nuclear experiments and astrophysical observations. However, many interesting questions remain to be studied especially at supra-saturation densities. In this lecture note, after a brief summary of the currently available constraints on nuclear symmetry energy near the saturation density we first discuss the relationship between the symmetry energy and the isopin and momentum dependence of the single-nucleon potential in isospin-asymmetric nuclear medium. We then discuss several open issues regarding effects of the tensor force induced neutron-proton short-range correlation (SRC) on nuclear symmetry energy. Finally, as an example of the impacts of nuclear symmetry energy on properties of neutron stars and gravitational waves, we illustrate effects of the high-density symmetry energy on the tidal polarizability of neutron stars in coal...

Li, Bao-An; Fattoyev, Farrukh J; Newton, William G; Xu, Chang

2012-01-01T23:59:59.000Z

305

The standing wave FEL/TBA: Realistic cavity geometry and energy extraction  

SciTech Connect

A set of parameters for standing wave free electron laser two beam accelerators (SWFEL/TBA) is evaluated for realistic cavity geometry taking into account beam-break-up and the sensitivity of output power to imperfections. Also given is a power extraction system using cavity coupled wave guides.

Kim, Jin-Soo, Henke, H.; Sessler, A.M.; Sharp, W.M.

1993-05-01T23:59:59.000Z

306

Long-Wave Infrared At Coso Geothermal Area (1968-1971) | Open Energy  

Open Energy Info (EERE)

Long-Wave Infrared At Coso Geothermal Area (1968-1971) Long-Wave Infrared At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Long-Wave Infrared At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Long-Wave Infrared Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes 8- to 14-micrometer IR imagery has value in delineating the typical arcuate structural patterns References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Long-Wave_Infrared_At_Coso_Geothermal_Area_(1968-1971)&oldid=473747"

307

Long-Wave Trapping by Oceanic Ridges  

Science Conference Proceedings (OSTI)

Long waves are affected by bottom topography and under certain conditions may be trapped along topographical contours which then act as wave guides transmitting wave energy for great distances with little loss. This study examines waves trapped ...

Richard Paul Shaw; Wayne Neu

1981-10-01T23:59:59.000Z

308

The Standing Wave FEL/TBA: Realistic Cavity Geometry and Energy Extraction  

E-Print Network (OSTI)

Energy Research, Office of High Energy and Nuclear Physics,Office of High Energy and Nuclear Physics, Division of High Energy

Kim, J.S.

2008-01-01T23:59:59.000Z

309

Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said  

SciTech Connect

A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

1989-09-26T23:59:59.000Z

310

A Survey of Recent Work on Energy Harvesting H. Erkal, F. M. Ozcelik, M. A. Antepli, B. T. Bacinoglu and E. Uysal-Biyikoglu  

E-Print Network (OSTI)

1 EFFICIENT VIBRATION ENERGY HARVESTER WITH MULTI-MODE DYNAMIC MAGNIFIER Wanlu Zhou, Gopinath Reddy Stony Brook, NY, 11794 (* lei.zuo@stonybrook.edu) ABSTRACT A novel piezoelectric energy harvester of significantly increasing the bandwidth and the energy harvested from the ambient vibration. The design comprises

Uysal-Biyikoglu, Elif

311

Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum  

E-Print Network (OSTI)

Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons rapidly increases over the wide mass range below sub-eV. Based on the experimentally measurable photon energies and the linear polarization states, we formulate the relation between the accessible mass-coupling domains and the high-intensity laser parameters, where the effects of the finite spectrum width of pulse lasers are taken into account. The expected sensitivity suggests that we have a potential to explore interactions at the Super-Planckian coupling strength in the sub-eV mass range, if the cutting-edge laser technologies are properly combined.

Kensuke Homma

2012-11-09T23:59:59.000Z

312

A Two-Scale Approximation for Efficient Representation of Nonlinear Energy Transfers in a Wind Wave Spectrum. Part II: Application to Observed Wave Spectra  

Science Conference Proceedings (OSTI)

In Part I of this series, a new method for estimating nonlinear transfer rates in wind waves, based on a two-scale approximation (TSA) to the full Boltzmann integral (FBI) for quadruplet wave–wave interactions, was presented, and this new method ...

William Perrie; Donald T. Resio

2009-10-01T23:59:59.000Z

313

Nonlinear Energy Transfer through the Spectrum of Gravity Waves for the Finite Depth Case  

Science Conference Proceedings (OSTI)

An algorithm for calculation of the nonlinear kinetic integral is described for the case of finite depth. The use of an effective approximation of the exact dispersion relationship for gravity waves in finite depth permits modification of the ...

V. G. Polnikov

1997-08-01T23:59:59.000Z

314

Gravity Wave – Fine Structure Interactions, Part 2: Energy Dissipation Evolutions, Statistics, and Implications  

Science Conference Proceedings (OSTI)

Fritts et al. (2013) employ four direct numerical simulations (DNS) to examine the dynamics and energetics of idealized gravity wave – fine structure (GW-FS) interactions. That study, and this companion paper, were motivated by the ubiquity of ...

David C. Fritts; Ling Wang

315

Spectrally Resolved Energy Dissipation Rate and Momentum Flux of Breaking Waves  

Science Conference Proceedings (OSTI)

Video observations of the ocean surface taken from aboard the Research Platform FLIP reveal the distribution of the along-crest length and propagation velocity of breaking wave crests that generate visible whitecaps. The key quantity assessed is ...

Johannes R. Gemmrich; Michael L. Banner; Chris Garrett

2008-06-01T23:59:59.000Z

316

Watching Gravitational Waves  

E-Print Network (OSTI)

In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.

Joachim Moortgat

2001-04-02T23:59:59.000Z

317

Kinetic Theory of Plasma Waves  

Science Conference Proceedings (OSTI)

Kinetic Wave Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

D. Van Eester; E. Lerche

318

Selective Excitation of Tropical Atmospheric Waves in Wave-CISK: The Effect of Vertical Wind Shear  

Science Conference Proceedings (OSTI)

The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to ...

Minghua Zhang; Marvin A. Geller

1994-02-01T23:59:59.000Z

319

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

320

ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. PART I. ANELASTIC APPROXIMATIONS  

Science Conference Proceedings (OSTI)

Typical flows in stellar interiors are much slower than the speed of sound. To follow the slow evolution of subsonic motions, various sound-proof equations are in wide use, particularly in stellar astrophysical fluid dynamics. These low-Mach number equations include the anelastic equations. Generally, these equations are valid in nearly adiabatically stratified regions like stellar convection zones, but may not be valid in the sub-adiabatic, stably stratified stellar radiative interiors. Understanding the coupling between the convection zone and the radiative interior is a problem of crucial interest and may have strong implications for solar and stellar dynamo theories as the interface between the two, called the tachocline in the Sun, plays a crucial role in many solar dynamo theories. Here, we study the properties of gravity waves in stably stratified atmospheres. In particular, we explore how gravity waves are handled in various sound-proof equations. We find that some anelastic treatments fail to conserve energy in stably stratified atmospheres, instead conserving pseudo-energies that depend on the stratification, and we demonstrate this numerically. One anelastic equation set does conserve energy in all atmospheres and we provide recommendations for converting low-Mach number anelastic codes to this set of equations.

Brown, Benjamin P.; Zweibel, Ellen G. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Vasil, Geoffrey M., E-mail: bpbrown@astro.wisc.edu [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part I: Radiation of Gravity Waves from a Shear Layer  

Science Conference Proceedings (OSTI)

In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in ...

Nikolaos A. Bakas; Petros J. Ioannou

2007-05-01T23:59:59.000Z

322

Wave-Turbulence interactions in the Upper Ocean. Part I: The Energy Balance of the Interacting Fields of Surface Wind Waves and Wind-Induced Three-Dimensional Turbulence  

Science Conference Proceedings (OSTI)

We analyze in detail the budget of total and fluctuating energy in the surface layer of the ocean. We suggest a rational scheme for separating the budget of turbulence from that of random wind-generated surface waves, and suggest in particular a ...

S. A. Kitaigorodskii; J. L. Lumley

1983-11-01T23:59:59.000Z

323

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

324

Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion.  

E-Print Network (OSTI)

??The world’s energy consumption is growing at an alarming rate and the need for renewable energy is apparent now more than ever. Estimates have shown… (more)

[No author

2007-01-01T23:59:59.000Z

325

MHK Projects/Makah Bay Offshore Wave Pilot Project | Open Energy  

Open Energy Info (EERE)

Makah Bay Offshore Wave Pilot Project Makah Bay Offshore Wave Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.3238,"lon":-124.682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

326

MHK Projects/Mendocino County WaveConnect | Open Energy Information  

Open Energy Info (EERE)

County WaveConnect County WaveConnect < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3077,"lon":-123.799,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

327

MHK Projects/Green Wave San Luis Obispo | Open Energy Information  

Open Energy Info (EERE)

Green Wave San Luis Obispo Green Wave San Luis Obispo < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3087,"lon":-123.828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

328

MHK Projects/Coos Bay OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Coos Bay OPT Wave Park Coos Bay OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3664,"lon":-124.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

329

MHK Projects/Reedsport OPT Wave Park Expanded Project | Open Energy  

Open Energy Info (EERE)

Reedsport OPT Wave Park Expanded Project Reedsport OPT Wave Park Expanded Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.24,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

330

MHK Projects/Humboldt County WaveConnect | Open Energy Information  

Open Energy Info (EERE)

Humboldt County WaveConnect Humboldt County WaveConnect < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8021,"lon":-124.164,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

331

Statistics of the Air-Sea Fluxes of Momentum and Mechanical Energy in a Coupled Wave-Atmosphere Model  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model (GCM) and a wind wave model are coupled through the wind stress. The wind stress which forces the wave model, depends in the coupled model on the stage of development of the wave field. As the waves depend ...

Susanne L. Weber

1994-06-01T23:59:59.000Z

332

Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system  

E-Print Network (OSTI)

We describe the asymptotic behavior as time goes to infinity of solutions of the 2 dimensional corotational wave map system and of solutions to the 4 dimensional, radially symmetric Yang-Mills equation, in the critical energy space, with data of energy smaller than or equal to a harmonic map of minimal energy. An alternative holds: either the data is the harmonic map and the soltuion is constant in time, or the solution scatters in infinite time.

Cote, Raphael; Merle, Frank

2007-01-01T23:59:59.000Z

333

A note on energy currents and decay for the wave equation on a Schwarzschild background  

E-Print Network (OSTI)

In recent work, we have proven uniform decay bounds for solutions of the wave equation $\\Box_g\\phi=0$ on a Schwarzschild exterior, in particular, the uniform pointwise estimate $|\\phi|\\le Cv_+^{-1}$, which holds throughout the domain of outer communications, where $v$ is an advanced Eddington-Finkelstein coordinate, $v_+=\\max\\{v,1\\}$, and $C$ is a constant depending on a Sobolev norm of initial data. A crucial estimate in the proof required a decomposition into spherical harmonics. We here give an alternative proof of this estimate not requiring such a decomposition.

Dafermos, Mihalis

2007-01-01T23:59:59.000Z

334

Effect of Nonlinearity on Atmospheric Gravity Waves  

Science Conference Proceedings (OSTI)

The weakly nonlinear limit of two-dimensional gravity waves in an incompressible, inviscid and stably stratified atmosphere is studied. The three-wave resonant interaction theory indicates an energy cascade from a vertically propagating wave (...

Mostafa M. Ibrahim

1987-02-01T23:59:59.000Z

335

TESLA-FEL 2004-03 Proposed continuous wave energy recovery operation of an XFEL*  

E-Print Network (OSTI)

CEBAF accelerator at JLab [3] are quite encouraging. This combined with continuing progress-FEL 2004-03 FIG. 1. CEBAF Energy Recovery Experiment at JLab. CEBAF - the 6 GeV recirculating of CEBAF with the Energy Recovery experiment is illustrated in Fig. 1. Beam is injected into the North

336

Interaction of Ocean Waves with a Soft Bottom  

Science Conference Proceedings (OSTI)

Soft muddy bottoms have significant effects on properties of water waves which propagate over them. The wave dispersion equation is modified and wave energy is dissipated by the coupling between the waves in water and those induced in the mud ...

S. V. Hsiao; O. H. Shemdin

1980-04-01T23:59:59.000Z

337

Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector  

Science Conference Proceedings (OSTI)

An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

2012-11-12T23:59:59.000Z

338

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

339

ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS  

Science Conference Proceedings (OSTI)

The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set.

Vasil, Geoffrey M.; Lecoanet, Daniel [Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720 (United States); Brown, Benjamin P.; Zweibel, Ellen G. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Wood, Toby S., E-mail: vasil@cita.utoronto.ca [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California, Santa Cruz, CA (United States)

2013-08-20T23:59:59.000Z

340

Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part II: Numerical Simulations  

Science Conference Proceedings (OSTI)

The cyclogenesis events associated with the tropical cyclone (TC) energy dispersion are simulated in a 3D model. A new TC with realistic dynamic and thermodynamic structures forms in the wake of a preexisting TC when a large-scale monsoon gyre or ...

Tim Li; Xuyang Ge; Bin Wang; Yongti Zhu

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy exchange between two orthogonally polarized waves by cascading of two quasi-  

E-Print Network (OSTI)

the two cross-polarized fundamental components and facilitate an energy flow between them. We demonstrate. G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd) ) nonlinear parametric optical processes is of fundamental interest for the study of parametric interactions

342

Short-Term Energy Outlook Supplement: U.S. LNG Imports - The Next Wave  

Reports and Publications (EIA)

This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system.

Information Center

2007-01-11T23:59:59.000Z

343

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network (OSTI)

Hawaii WW3 model with high-resolution winds from the Weather Research Forecast (WRF) model capture by the year 2030. Energy technologies utilizing wind and solar resources are com- mercially available and used of the weather from the far-reaching corners of the Pacific [3]. Extratropical storms near the Kuril and Aleutian

344

Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos  

E-Print Network (OSTI)

We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock salt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consis...

Chiba, Masami; Tanikawa, Takahiro; Yano, Hiroyuki; Yabuki, Fumiaki; Yasuda, Osamu; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Watanabe, Souichirou; Utsumi, Michiaki; Fujii, Masatoshi

2013-01-01T23:59:59.000Z

345

Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave  

Science Conference Proceedings (OSTI)

Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R. [Austin Plasma Laboratory, Tokyo Electron America, Inc., Austin, Texas 78741 (United States); Nozawa, T. [Tokyo Electron Limited, TEL Technology Center Sendai, 2-1 Osawa 3-chome, Izumi-ku, Sendai 981-3137 (Japan); Samukawa, S. [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-07-15T23:59:59.000Z

346

Boundary element dynamical energy analysis: a versatile method for solving two or three dimensional wave problems in the high frequency limit  

E-Print Network (OSTI)

Dynamical energy analysis was recently introduced as a new method for determining the distribution of mechanical and acoustic wave energy in complex built up structures. The technique interpolates between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. As such the applicability of the method is wide ranging and additionally includes the numerical modelling of problems in optics and more generally of linear wave problems in electromagnetics. In this work we consider a new approach to the method with enhanced versatility, enabling three-dimensional problems to be handled in a straightforward manner. The main challenge is the high dimensionality of the problem: we determine the wave energy density both as a function of the spatial coordinate and momentum (or direction) space. The momentum variables are expressed in separable (polar) coordinates facilitating the use of products of univariate basis expansions. However this is not the case for the spatial argument and so we propose to make use of automated mesh generating routines to both localise the approximation, allowing quadrature costs to be kept moderate, and give versatility in the code for different geometric configurations.

David J. Chappell; Gregor Tanner; Stefano Giani

2012-02-20T23:59:59.000Z

347

Wave Mechanics without Probability  

E-Print Network (OSTI)

The behavior of monochromatic electromagnetic waves in stationary media is shown to be ruled by a frequency dependent function, which we call Wave Potential, encoded in the structure of the Helmholtz equation. Contrary to the common belief that the very concept of "ray trajectory" is reserved to the eikonal approximation, a general and exact ray-based Hamiltonian treatment, reducing to the eikonal approximation in the absence of Wave Potential, shows that its presence induces a mutual, perpendicular ray-coupling, which is the one and only cause of any typically wave-like phenomenon, such as diffraction and interference. Recalling, then, that the time-independent Schroedinger and Klein-Gordon equations (associating stationary "matter waves" to mono-energetic particles) are themselves Helmholtz-like equations, the exact, ray-based treatment developed for classical electromagnetic waves is extended - without resorting to statistical concepts - to the exact, trajectory-based Hamiltonian dynamics of mono-energetic point-like particles, both in the non-relativistic and in the relativistic case. The trajectories turn out to be perpendicularly coupled, once more, by an exact, stationary, energy-dependent Wave Potential, coinciding in the form, but not in the physical meaning, with the statistical, time-varying, energy-independent "Quantum Potential" of Bohm's theory, which views particles, just like the standard Copenhagen interpretation, as traveling wave-packets. These results, together with the connection which is shown to exist between Wave Potential and Uncertainty Principle, suggest a novel, non-probabilistic interpretation of Wave Mechanics.

Adriano Orefice; Raffaele Giovanelli; Domenico Ditto

2013-02-18T23:59:59.000Z

348

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

349

Transient Planetary Waves Simulated by GFDL Spectral General Circulation Models. Part II: Effects of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

In order to study how transient planetary waves in the midlatitude troposphere are maintained, a space-time spectral analysis over a 1-year data set is made of a GFDL spectral general circulation model.

V. Hayashi; D. G. Golder

1983-04-01T23:59:59.000Z

350

Energy Transformation and Diabatic Processes in Developing and Nondeveloping African Easterly Waves Observed during the NAMMA Project of 2006  

Science Conference Proceedings (OSTI)

This paper provides an understanding of essential differences between developing and nondeveloping African easterly waves, which was a major goal of NAMMA, NASA’s field program in the eastern Atlantic, which functioned as an extension of the ...

Robert S. Ross; T. N. Krishnamurti; S. Pattnaik; A. Simon

2009-12-01T23:59:59.000Z

351

A Numerical Simulation of Amplification of Low-Frequency Planetary Waves and Blocking Formations by the Upscale Energy Cascade  

Science Conference Proceedings (OSTI)

In this study, nonlinear numerical simulations of amplification of low-frequency planetary waves and concurrent blocking formations were performed. The simulations are conducted by a barotropic spectral model derived from three-dimensional ...

H. L. Tanaka

1991-12-01T23:59:59.000Z

352

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

353

9/18/09 2:17 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 20http://www.freerepublic.com/focus/f-chat/2319699/posts  

E-Print Network (OSTI)

9/18/09 2:17 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 20http' Theory Offers Alternative to Dark Energy Space.com ^ | 8/18/09 | Clara Moskowitz Posted on August 19 for the accelerating expansion of the universe that does not rely on the mystifying idea of dark energy. According

Temple, Blake

354

Events - Energy Innovation Portal  

Biomass and Biofuels; Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and ...

355

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

356

Detecting a stochastic background of gravitational waves by correlating n detectors  

E-Print Network (OSTI)

We discuss the optimal detection strategy for a stochastic background of gravitational waves in the case n detectors are available. In literature so far, only two cases have been considered: 2- and n-point correlators. We generalize these analysises to m-point correlators (with mn) built out of the n detector signals, obtaining the result that the optimal choice is to combine 2-point correlators. Correlating n detectors in this optimal way will improve the (suitably defined) signal-to-noise ratio with respect to the n=2 case by a factor equal to the fourth root of n(n-1)/2. Finally we give an estimation of how this could improve the sensitivity for a network of multi-mode spherical antennas.

Orestis Malaspinas; Riccardo Sturani

2004-10-12T23:59:59.000Z

357

Simulations of Dissipative, Shore-Oblique Infragravity Waves  

Science Conference Proceedings (OSTI)

A model of forced, dissipative shore-oblique shallow water waves predicts net cross-shore infragravity wave propagation, in qualitative agreement with field observations. Forcing applied near the shore generates edge waves, whose energy is mostly ...

Stephen M. Henderson; A. J. Bowen

2003-08-01T23:59:59.000Z

358

The Dynamic Balance of Internal Waves  

Science Conference Proceedings (OSTI)

For oceanic internal waves with vertical scales larger than 1 m the evolution of the spectrum is adequately described by weak-interaction theory. Based on simple physical arguments, a model for internal-wave energy dissipation predicts ...

C. Henry McComas; Peter Müller

1981-07-01T23:59:59.000Z

359

Wave Breaking Dissipation Observed with “SWIFT” Drifters  

Science Conference Proceedings (OSTI)

Energy dissipation rates during ocean wave breaking are estimated from high-resolution profiles of turbulent velocities collected within 1 m of the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-...

Jim Thomson

2012-12-01T23:59:59.000Z

360

Gravity Waves in the Sun  

E-Print Network (OSTI)

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wave-driven Countercurrent Plasma Centrifuge  

SciTech Connect

A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

A.J. Fetterman and N.J. Fisch

2009-03-20T23:59:59.000Z

362

Uncertainties of Estimates of Inertia–Gravity Energy in the Atmosphere. Part II: Large-Scale Equatorial Waves  

Science Conference Proceedings (OSTI)

This paper analyzes the spectra and spatiotemporal features of the large-scale inertia-gravity (IG) circulations in four analysis systems in the tropics. Of special interest is the Kelvin wave (KW), which represents between 7% and 25% of the ...

N. Žagar; J. Tribbia; J. L. Anderson; K. Raeder

2009-11-01T23:59:59.000Z

363

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

364

THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

2012-09-20T23:59:59.000Z

365

Pulsed wave interconnect  

Science Conference Proceedings (OSTI)

Pulsed wave interconnect is proposed for global interconnect applications. Signals are represented by localized wavepackets that propagate along the interconnect lines at the local speed of light to trigger the receivers. Energy consumption is reduced ... Keywords: CMOS, VLSI, high-speed interconnect, nonlinear transmission line, pulse compression, soliton, wafer-scale-integration

Pingshan Wang; Gen Pei; Edwin Chih-Chuan Kan

2004-05-01T23:59:59.000Z

366

Wind effects on shoaling wave shape  

E-Print Network (OSTI)

Fig. 1) is a result of wind energy input to the wave fieldcases, indicating that wind energy is not input into freelynonlinearity) allows wind energy to be preferentially put

Feddersen, F; Veron, F

2005-01-01T23:59:59.000Z

367

Decay of a Near-Inertial Wave  

Science Conference Proceedings (OSTI)

The decay of a downward propagating near-inertial wave was observed over four days. During this short period, the energy of the near-inertial wave decreased by 70%. The shear layers produced by the wave were regions of enhanced turbulent ...

Dave Hebert; J. N. Moum

1994-11-01T23:59:59.000Z

368

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

369

Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants  

E-Print Network (OSTI)

%context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribution of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.} %method {The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate energy range allow analytical presentations of energy spectra of electrons for the entire energy region.} %results {Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymptotic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the synchrotron radiation and inverse Compton scattering.} %conclusions {The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.

V. N. Zirakashvili; F. Aharonian

2006-12-25T23:59:59.000Z

370

Standing wave compressor  

DOE Green Energy (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

371

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

372

Optimal basis set for ab-initio calculations of energy levels in tunneling structures, using the covariance matrix of the wave functions  

E-Print Network (OSTI)

The paper proposes a method to obtain the optimal basis set for solving the self consistent field (SCF) equations for large atomic systems in order to calculate the energy barriers in tunneling structures, with higher accuracy and speed. Taking into account the stochastic-like nature of the samples of all the involved wave functions for many body problems, a statistical optimization is made by considering the covariance matrix of these samples. An eigenvalues system is obtained and solved for the optimal basis set and by inspecting the rapidly decreasing eigenvalues one may seriously reduce the necessary number of vectors that insures an imposed precision. This leads to a potentially significant improvement in the speed of the SCF calculations and accuracy, as the statistical properties of a large number of wave functions in an large spatial domain may be considered. The eigenvalue problem has to be solved only few times, so that the amount of time added may be much smaller that the overall iterating SCF calculations. A simple implementation of the method is presented for a situation where the analytical solution is known, and the results are encouraging.

Sever Spanulescu

2009-12-15T23:59:59.000Z

373

SEAWOLF - Energy Innovation Portal  

Market Sheet (760 KB) Technology Marketing Summary SEAWOLF ... Offshore Wind Energy; Wave Energy Conversion Anchors and Foundations; Coastal Sediment Analysis;

374

WindWaveFloat Final Report  

DOE Green Energy (OSTI)

capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

375

Magnetic Phase Transition and Spin Wave Excitations in the ...  

Science Conference Proceedings (OSTI)

... An energy scan through the spin wave excitations ... The intensity above TC comes from paramagnetic spin ... quickly move to higher energies and out ...

2013-03-14T23:59:59.000Z

376

WindWaveFloat Final Report  

Science Conference Proceedings (OSTI)

Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

377

A Two-Scale Approximation for Efficient Representation of Nonlinear Energy Transfers in a Wind Wave Spectrum. Part I: Theoretical Development  

Science Conference Proceedings (OSTI)

A new method for estimating the transfer rates in wind wave spectra is derived and tested, based on a two-scale approximation (TSA) to the total integral for quadruplet wave–wave interactions. Comparisons of this new estimation method to the full ...

Donald T. Resio; William Perrie

2008-12-01T23:59:59.000Z

378

Oceanic Internal Waves Are Not Weak Waves  

Science Conference Proceedings (OSTI)

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from recent weak wave theoretical calculations ...

Greg Holloway

1980-06-01T23:59:59.000Z

379

A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com  

E-Print Network (OSTI)

1 A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com 1. Summary this problem. References [1] Farley F.J.M., Rainey R.C.T, & Chaplin J.R. Rubber tubes in the sea. Phil

380

Wave polarizations for a beam-like gravitational wave in quadratic curvature gravity  

E-Print Network (OSTI)

We compute analytically the tidal field and polarizations of an exact gravitational wave generated by a cylindrical beam of null matter of finite width and length in quadratic curvature gravity. We propose that this wave can represent the gravitational wave that keep up with the high energy photons produced in a gamma ray burst (GRB) source.

E. C. de Rey Neto; J. C. N. de Araujo; O. D. Aguiar

2003-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wave-driven Rotation in Supersonically Rotating Mirrors  

SciTech Connect

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

382

Thermal Gravitational Waves from Primordial Black Holes  

E-Print Network (OSTI)

Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

C. Sivaram; Kenath Arun

2010-05-19T23:59:59.000Z

383

Shock induced multi-mode damage in depleted uranium  

SciTech Connect

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

384

NISTIR 7046, A Framework for Multi-mode Authentication ...  

Science Conference Proceedings (OSTI)

... Load Handler List - script initializes the list of registered handlers ... system boot-up, the kernel module loads and enforces ... OPIE and its plug-ins are ...

2012-03-05T23:59:59.000Z

385

Recent Observations of Plasma and Alfvenic Wave Energy Injection at the Base of the Fast Solar Wind  

E-Print Network (OSTI)

We take stock of recent observations that identify the episodic plasma heating and injection of Alfvenic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1MK. Furthermore, the same spicules and their coronal counterparts ("Propagating Coronal Disturbances"; PCD) exhibit large amplitude, high speed, Alfvenic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.

McIntosh, Scott W

2012-01-01T23:59:59.000Z

386

Aqua Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

vs. Nearshore Nearshore Wave Power Wave Power EPRIE2I 13 1312006 Makah Bay Pilot Power Plant Makah Bay Pilot Power Plant Nameplate capacity: 1MW Annual energy output:...

387

Tunable surface plasmon devices - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial ...

388

An Inner-Shelf Wave Forecasting System for the U.S. Pacific Northwest  

Science Conference Proceedings (OSTI)

An operational inner-shelf wave forecasting system was implemented for the Oregon and southwest Washington coast in the U.S. Pacific Northwest (PNW). High-resolution wave forecasts are useful for navigational planning, identifying wave energy ...

Gabriel García-Medina; H. Tuba Özkan-Haller; Peter Ruggiero; Jeffrey Oskamp

2013-06-01T23:59:59.000Z

389

On the Equilibrium Spectrum of Gravity – Capillary Waves  

Science Conference Proceedings (OSTI)

The equilibrium spectra of unidirectional gravity – capillary waves are derived from the wave-action balance equation. The calculations include nonlinear triad interactions, direct energy input from the wind, and viscous dissipation. Known ...

Michael Stiassnie

1996-06-01T23:59:59.000Z

390

Observations of Wave Breaking Kinematics in Fetch-Limited Seas  

Science Conference Proceedings (OSTI)

Breaking waves play an important role in air–sea interaction, enhancing momentum flux from the atmosphere to the ocean, dissipating wave energy that is then available for turbulent mixing, injecting aerosols and sea spray into the atmosphere, and ...

Jessica M. Kleiss; W. Kendall Melville

2010-12-01T23:59:59.000Z

391

Wave Breaking Dissipation in a Young Wind Sea  

Science Conference Proceedings (OSTI)

Coupled in situ and remote sensing measurements of young, strongly-forced, wind waves are applied to assess the role of breaking in an evolving wavefield. In situ measurements of turbulent energy dissipation from wave-following “SWIFT” drifters ...

Michael Schwendeman; Jim Thomson; Johannes R. Gemmrich

392

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

393

Waves in the chromosphere: observations  

E-Print Network (OSTI)

I review the literature on observational aspects of waves in the solar chromosphere in the first part of this contribution. High-frequency waves are invoked to build elaborate cool-star chromosphere heating theories but have not been detected decisively so far, neither as magnetic modes in network elements nor as acoustic modes in below-the-canopy internetwork regions. Three-minute upward-propagating acoustic shocks are thoroughly established through numerical simulation as the cause of intermittent bright internetwork grains, but their pistoning and their role in the low-chromosphere energy budget remain in debate. Three-minute wave interaction with magnetic canopies is a newer interest, presently progressing through numerical simulation. Three-minute umbral flashes and running penumbral waves seem a similar acoustic-shock phenomenon awaiting numerical simulation. The low-frequency network Doppler modulation remains enigmatic. In the second part, I address low-frequency ultraviolet brightness variations of t...

Rutten, R J

2010-01-01T23:59:59.000Z

394

Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars  

E-Print Network (OSTI)

The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy $E_{sym}(\\rho)$ affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the $w_{II}$-mode is found to exist only for neutron stars having a compactness of $M/R\\geq 0.1078$ independent of the EOS used.

De-Hua Wen; Bao-An Li; Plamen G. Krastev

2009-02-26T23:59:59.000Z

395

Renewable Energy and Energy-Efficient Technologies Grants Program...  

Open Energy Info (EERE)

Wave Energy, Ocean Thermal, Direct-Use Geothermal Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs, Energy Efficiency...

396

Power system - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

397

SEAWOLF - Home - Energy Innovation Portal  

POTENTIAL APPLI ATIONS GPM) in test section Offshore Wind Energy Wave Energy Conversion Anchors and Foundations Coastal Sediment Analysis

398

Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set  

Science Conference Proceedings (OSTI)

In this paper, an extension of the S22 data set of Jurecka et al. (Jure?ka, P.; Šponer, J.; ?erný, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani, T.; Hohenstein, E. G.; Sherrill, C. D. J. Chem. Phys. 2008, 128, 124111), MP2C (dispersion-corrected MP2, according to Hesselmann, A. J. Chem. Phys. 2008, 128, 144112), and MP2.5 (scaled MP3, according to Pito?ák, M.; Neogrády, P.; ?erný, J.; Grimme, S.; Hobza, P. ChemPhysChem 2009, 10, 282.). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.

Grafova, Lucie; Pitonak, Michal; Rezac, Jan; Hobza, Pavel

2010-08-10T23:59:59.000Z

399

Wave–Wave Interaction of Unstable Baroclinic Waves  

Science Conference Proceedings (OSTI)

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave–wave interaction in the ...

Joseph Pedlosky; Lorenzo M. Polvani

1987-02-01T23:59:59.000Z

400

A Quasi-linear Eddy-Viscosity Model for the Flux of Energy and Momentum to Wind Waves Using Conservation-Law Equations in a Curvilinear Coordinate System  

Science Conference Proceedings (OSTI)

The airflow above ocean waves is calculated using a quasi-linear model—one in which the effect of the waves on the mean flow is taken into account. The model uses curvilinear coordinates, in which one coordinate surface coincides with the ...

Alastair D. Jenkins

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The influence of waves . . .  

E-Print Network (OSTI)

With the growing interest in offshore wind resources, it has become increasingly important to establish and refine models for the interaction between wind and waves in order to obtain accurate models for the sea surface roughness. The simple Charnock relation that has been applied for open sea conditions does not work well in the shallow water near-coastal areas that are important for offshore wind energy. A model for the surface roughness of the sea has been developed based on this concept, using an expression for the Charnock constant as a function of wave age [1], and then relating the wave `age' to the distance to the nearest upwind coastline. The data used in developing these models originated partly from analysis of data from the Vindeby site, partly from previously published results. The scatter in the data material was considerable and consequently there is a need to test these models further by analysing data from sites exhibiting varying distances to the coast. Results from such analysis of recent data are presented for sites with distances to the coast varying from 10km to several hundreds of km. The model shows a good agreement also with this data.

Bernhard Lange; Jřrgen Hřjstrup

1999-01-01T23:59:59.000Z

402

Tidal Energy  

Office of Scientific and Technical Information (OSTI)

into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations...

403

Gravity Waves, Dynamical Resistance, and Forcing Efficiency  

Science Conference Proceedings (OSTI)

The effect of the dynamical response associated with high-frequency gravity waves on the total energy generated by imposed heating is examined in a 2D linear compressible model. The work performed by waves against a sustained forcing is defined ...

Jeffrey M. Chagnon

2010-06-01T23:59:59.000Z

404

Retail beamed power using millimeter waves: Survey  

Science Conference Proceedings (OSTI)

Retail delivery of electric power through millimeter waves is relevant in developing areas where the market for communication devices outpaces the power grid infrastructure. It is also a critical component of an evolutionary path towards terrestrial ... Keywords: Micro renewable energy systems, millimeter wave, power beaming, rural India power, space power grid, systems

Narayanan Komerath; Aravinda Kar

2012-08-01T23:59:59.000Z

405

A Thunderstorm Bow Wave  

Science Conference Proceedings (OSTI)

The thunderstorm solitary gust or bow wave, observed by Doviak and Ge, is examined from the viewpoint of boundary layer wave theory. It is concluded that all its well defined characteristics are consistently modeled as a bow wave of ducted ...

G. Chimonas; Carmen J. Nappo

1987-02-01T23:59:59.000Z

406

The Sandia Wave Reflector  

The Sandia wave reflector is a magnetic conductor for wireless transmissions near 433 MHz. The device reflects perpendicular electromagnetic waves in-phase and suppresses surface waves resulting in improved gain performance and effective operation ...

407

Geostrophic Shock Waves  

Science Conference Proceedings (OSTI)

Organized depth discontinuities involving a balance between steepening and dissipation are usually referred to as shock waves. An analytical “educed gravity” model is used to examine a special kind of shock wave. The wave under study is a depth ...

Doron Nof

1986-05-01T23:59:59.000Z

408

The Transparency of Ocean Barriers to Rossby Waves: The Rossby Slit Problem  

Science Conference Proceedings (OSTI)

The transmission of barotropic Rossby wave energy through a meridional barrier pierced only by narrow gaps is studied with a quasigeostrophic model. The incident Rossby wave has the form of either a plane wave or a localized beam of wave energy. ...

Joseph Pedlosky

2001-02-01T23:59:59.000Z

409

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave  

Open Energy Info (EERE)

Wind and Wave Renewable Mobile Wind and Wave Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform.jpg Technology Profile Primary Organization Darrel Dammen Technology Resource Click here Wave Technology Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like large ships floating Oil rigs or boats the levers going up and down creates a torque at the pivot point by the vessel being raised and lowered this works on all size levers making it possible to collect energy from all size Waves with enough levers with in reasonable size and numbers the force can be used hydraulically mechanically or to compress air to power generators Ten tons going up and down is a lot of force when connected to a 100 so connecting to 100 tons then to 50 tons then to 25 tons then to 10 tons to 5 tons to 2 tons continuing down in size and multiplying the levers from the less affected floating object or stationary object will mean We collect energy from 1 foot to 100 foot waves and swells This Wind and Wave with 120 oarsmen showing buoyant vessels are the oarsman in this picture with hund

410

Turbulence Closure, Steady State, and Collapse into Waves  

Science Conference Proceedings (OSTI)

A new simple two-equation turbulence closure is constructed by hypothesizing that there is an extra energy sink in the turbulent kinetic energy (k) equation representing the transfer of energy from k to internal waves and other nonturbulent ...

Helmut Baumert; Hartmut Peters

2004-02-01T23:59:59.000Z

411

Shock Waves in Weakly Compressed Granular Media  

E-Print Network (OSTI)

We experimentally probe nonlinear wave propagation in weakly compressed granular media, and observe a crossover from quasi-linear sound waves at low impact, to shock waves at high impact. We show that this crossover grows with the confining pressure $P_0$, whereas the shock wave speed is independent of $P_0$ --- two hallmarks of granular shocks predicted recently. The shocks exhibit powerlaw attenuation, which we model with a logarithmic law implying that local dissipation is weak. We show that elastic and potential energy balance in the leading part of the shocks.

Siet van den Wildenberg; Rogier van Loo; Martin van Hecke

2013-04-23T23:59:59.000Z

412

Wind Waves in the Coupled Climate System  

Science Conference Proceedings (OSTI)

The role waves play in modulating interactions between oceans and atmosphere is emphasized. All exchanges (e.g., momentum, energy, heat, mass, radiation fluxes) are influenced by the geometrical and physical characteristics of the ocean surface, which ...

L. Cavaleri; B. Fox-Kemper; M. Hemer

2012-11-01T23:59:59.000Z

413

Strong Turbulence in the Wave Crest Region  

Science Conference Proceedings (OSTI)

High-resolution vertical velocity profiles in the surface layer of a lake reveal the turbulence structure beneath strongly forced waves. Dissipation rates of turbulence kinetic energy are estimated based on centered second-order structure ...

Johannes Gemmrich

2010-03-01T23:59:59.000Z

414

Stable operating regime for traveling wave devices  

DOE Patents (OSTI)

Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

Carlsten, Bruce E. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

415

Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral  

Science Conference Proceedings (OSTI)

A more efficient method of computing the nonlinear transfer in a surface wave spectrum is developed which is symmetrical with respect to all wavenumbers of the resonant interaction quadruplets. This enables a large number of computations to be ...

S. Hasselmann; K. Hasselmann

1985-11-01T23:59:59.000Z

416

Measurements of the Effects of Gravity Waves in the Middle Atmosphere Using Parametric Models of Density Fluctuations. Part II: Energy Dissipation and Eddy Diffusion  

Science Conference Proceedings (OSTI)

Part I of this series demonstrated the advantages of parametric models in estimating the gravity wave spectrum from density fluctuation measurements using a large power-aperture-product Rayleigh-scatter lidar. The spectra calculated using the ...

R. J. Sica

1999-05-01T23:59:59.000Z

417

Trajectory eigenmodes of an orbiting wave source  

E-Print Network (OSTI)

Resonances usually result from wave superpositions in cavities where they are due to the wave spatio-temporal folding imposed by the boundaries. These energy accumulations are the signature of the cavity eigenmodes. Here we study a situation in which wave superposition results from the motion of a source emitting sustained overlapping waves. It is found that resonances can be produced in an unbounded space, the boundary conditions being now defined by the trajectory. When periodic trajectories are investigated, it is found that for a discrete subset of orbits, resonant wave modes are excited. Trajectory eigenmodes thus emerge. These modes have three attributes. Their associated resonant wave fields are the Fourier transform of the source's trajectory. They are non-radiative and they satisfy the perimeter Bohr-Sommerfeld quantization rule.

Emmanuel Fort; Yves Couder

2013-07-23T23:59:59.000Z

418

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... Solar, Tide and Wave Electricity Net Generation (Billion Kilowatthours) ... Puerto Rico 0 0 0 0 NA ...

419

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... Solar, Tide and Wave Electricity Net Generation (Billion Kilowatthours) ... Puerto Rico 0 0 0 0 0 ...

420

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Study of the Energetics of African Easterly Waves Using a Regional Climate Model  

Science Conference Proceedings (OSTI)

The evolution and spatial distribution of the energetics of African waves are studied. Complete eddy energy equations for an open system are derived for the computation of energy transformations during wave generation and dissipation. It is found ...

Jen-Shan Hsieh; Kerry H. Cook

2007-02-01T23:59:59.000Z

422

Fundamental Guided Wave Metrology  

Science Conference Proceedings (OSTI)

Fundamental Guided Wave Metrology. Summary: ... The program is focused on fundamental measurement research for microwave parameters. ...

2010-10-05T23:59:59.000Z

423

Protective, Modular Wave Power Generation System  

Science Conference Proceedings (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

424

Wave Energy Dissipation by Whitecaps  

Science Conference Proceedings (OSTI)

With video equipment and image processing software the authors have measured the whitecap coverage of the sea surface near the Dutch coast. Reality proved the initial idea about the simplicity of this way of whitecap measurement to be overly ...

G. Kraan; W. A. Oost; P. A. E. M. Janssen

1996-02-01T23:59:59.000Z

425

Energy Dissipation by Breaking Waves  

Science Conference Proceedings (OSTI)

Recent field measurements by Agrawal et al. have provided evidence of a shallow surface mixed layer in which the rate of dissipation due to turbulence is one to two orders of magnitude greater than that in a comparable turbulent boundary layer ...

W. Kendall Melville

1994-10-01T23:59:59.000Z

426

Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part I: Measurements and Calibrations  

Science Conference Proceedings (OSTI)

An experimental study of wind energy and momentum input into finite-depth wind waves was undertaken at Lake George, New South Wales, Australia. To measure microscale oscillations of induced pressure above surface waves, a high-precision wave-...

Mark A. Donelan; Alexander V. Babanin; Ian R. Young; Michael L. Banner; Cyril McCormick

2005-07-01T23:59:59.000Z

427

Renewable Energy and Energy Efficiency Portfolio Standard (North...  

Open Energy Info (EERE)

Water Heat, Tidal Energy, Wave Energy, Wind, Natural Gas, Unspecified technologies, Electricity Demand Reduction* Active Incentive Yes Implementing Sector StateTerritory Energy...

428

Thermoelectric power source utilizing ambient energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

429

Torque shudder protection device and method - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

430

Full Size Image - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

431

Full Size Image - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

432

Observations of ubiquitous compressive waves in the Sun's chromosphere  

E-Print Network (OSTI)

The details of the mechanism(s) responsible for the observed heating and dynamics of the solar atmosphere still remain a mystery. Magnetohydrodynamic (MHD) waves are thought to play a vital role in this process. Although it has been shown that incompressible waves are ubiquitous in off-limb solar atmospheric observations their energy cannot be readily dissipated. We provide here, for the first time, on-disk observation and identification of concurrent MHD wave modes, both compressible and incompressible, in the solar chromosphere. The observed ubiquity and estimated energy flux associated with the detected MHD waves suggest the chromosphere is a vast reservoir of wave energy with the potential to meet chromospheric and coronal heating requirements. We are also able to propose an upper bound on the flux of the observed wave energy that is able to reach the corona based on observational constraints, which has important implications for the suggested mechanism(s) for quiescent coronal heating.

Morton, R J; Jess, D B; Kuridze, D; Ruderman, M S; Mathioudakis, M; Erdelyi, R

2013-01-01T23:59:59.000Z

433

Net Metering (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Aggregate Capacity...

434

Renewables Portfolio Standard (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Wave Energy, Wind, Natural Gas, Low E Renewables Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs, Renewable Energy...

435

MHD Wave Propagation in the Neighbourhood of Two Null Points  

E-Print Network (OSTI)

The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.

J. A. McLaughlin; A. W. Hood

2007-12-11T23:59:59.000Z

436

Energy Information Administration  

U.S. Energy Information Administration (EIA)

New hydrokinetic energy technologies that generate electricity by harnessing the energy from ocean waves, tides, and river currents are advancing toward commercial ...

437

Gravity Waves from Thunderstorms  

Science Conference Proceedings (OSTI)

Gravity waves generated by severe thunderstorms in the eastern Ohio-Pennsylvania area were recorded by an array of microbarovariographs at Palisades, New York and by standard microbarographs across northeastern United States. The waves were ...

Nambath K. Balachandran

1980-06-01T23:59:59.000Z

438

Ducted kinetic Alfven waves in plasma with steep density gradients  

SciTech Connect

Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

2011-11-15T23:59:59.000Z

439

Nonlinear fan instability of electromagnetic waves  

Science Conference Proceedings (OSTI)

This paper studies the linear and nonlinear stages of the fan instability, considering electromagnetic waves of the whistler frequency range interacting resonantly with energetic electron fluxes in magnetized plasmas. The main attention is paid to determine the wave-particle interaction processes that can lead to the excitation of intense electromagnetic waves by nonequilibrium particle distributions involving suprathermal tails, and to explain under what conditions and through what mechanisms they can occur, develop, and saturate. This paper presents and discusses two main processes: (i) the linear fan instability and (ii) the nonlinear process of dynamical resonance merging, which can significantly amplify the energy carried by linearly destabilized waves after they saturate due to particle trapping. This study consists of (i) determining analytically and numerically, for parameters typical of space and laboratory plasmas, the linear growth rates of whistlers excited by suprathermal particle fluxes through the fan instability, as well as the corresponding thresholds and the physical conditions at which the instability can appear, (ii) building a theoretical self-consistent 3D model and a related numerical code for describing the nonlinear evolution of the wave-particle system, and (iii) performing numerical simulations to reveal and characterize the nonlinear amplification process at work, its conditions of development, and its consequences, notably in terms of electromagnetic wave radiation. The simulations show that when the waves have reached sufficient energy levels owing to the linear fan instability, they saturate by trapping particles and due to the complex dynamics of these particles in the electromagnetic fields, the resonant velocities' domains of the waves overlap and merge, meanwhile a strong increase of the wave energy occurs.

Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France) and University Paris Sud, 91405 Orsay Cedex (France); Volokitin, A. [Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str., Moscow (Russian Federation)

2010-10-15T23:59:59.000Z

440

On single nucleon wave functions in nuclei  

Science Conference Proceedings (OSTI)

The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.

Talmi, Igal [Weizamnn Institute of Science, Rehovot 76100 (Israel)

2011-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data...

442

Unimodal wave trains and solitons in convex FPU chains  

E-Print Network (OSTI)

We consider atomic chains with nearest neighbour interactions and study periodic and homoclinic travelling waves which are called wave trains and solitons, respectively. Our main result is a new existence proof which relies on the constrained maximisation of the potential energy and exploits the invariance properties of an improvement operator. The approach is restricted to convex interaction potentials but refines the standard results as it provides the existence of travelling waves with unimodal and even profile functions. Moreover, we discuss the numerical approximation and complete localization of wave trains, and show that wave trains converge to solitons when the periodicity length tends to infinity.

Michael Herrmann

2009-01-23T23:59:59.000Z

443

How Does the Vertical Profile of Baroclinicity Affect the Wave Instability?  

Science Conference Proceedings (OSTI)

The growth rate of baroclinic instability waves is generalized in terms of wave–mean flow interactions, with an emphasis on the influence of the vertical profile of baroclinicity. The wave energy is converted from the zonal mean kinetic energy and ...

Toshiki Iwasaki; Chihiro Kodama

2011-04-01T23:59:59.000Z

444

Under consideration for publication in J. Fluid Mech. 1 Propagating and evanescent internal waves  

E-Print Network (OSTI)

. Introduction In a stratified fluid, an internal wave transports momentum and energy as the prop- agating and reflection of internal wave beams. Phys. Fluids 22, 106601. Ham, F. & Iaccarino, G. 2004 Energy conservation. & Swinney, H. L. 2011 Harmonic generation by reflecting internal waves. Phys. Fluids 23, 026601. Slinn, D. N

Texas at Austin. University of

445

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

446

Millimeter-wave active probe  

DOE Patents (OSTI)

A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

1991-01-01T23:59:59.000Z

447

Local Dynamics of Synoptic Waves in the Martian Atmosphere  

E-Print Network (OSTI)

The sources and sinks of energy for transient waves in the Martian atmosphere are investigated, applying diagnostic techniques developed for the analysis of terrestrial baroclinic waves to output from a Mars General Circulation Model. These diagnostic techniques include the vertically averaged eddy kinetic energy and regression analysis. The results suggest that the primary source of the kinetic energy of the waves is baroclinic energy conversion in localized regions. It is also shown that there exist preferred regions of baroclinic energy conversion. In addition, it is shown that downstream baroclinic development plays an important role in the evolution of the waves and in the baroclinic energy conversion process. This is the first time that evidence for downstream baroclinic development has been found for an atmosphere other than the terrestrial one.

Kavulich, Michael J., Jr.

2011-08-01T23:59:59.000Z

448

Validation of the Theoretical Spectrum of Baroclinic Inertia–Gravity Waves  

Science Conference Proceedings (OSTI)

Assuming nonlinear dynamics of baroclinic inertia–gravity (BIG) waves to be dominated by resonant four-wave interactions, recent studies yielded simple analytical expressions for the energy spectra. The only parameter remaining unknown is a ...

Roman E. Glazman; Yury N. Golubev

2004-07-01T23:59:59.000Z

449

A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves  

Science Conference Proceedings (OSTI)

An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the ...

Dirk Olbers; Carsten Eden

2013-08-01T23:59:59.000Z

450

Resonant Interactions between Shelf Waves, with Applications to the Oregon Shelf  

Science Conference Proceedings (OSTI)

From the inviscid, unforced, barotropic long-wave equations for a rotating system, it is shown that resonant interactions between three continental shelf waves can occur. Evolution equations governing the amplitude and the energy of individual ...

William W. Hsieh; Lawrence A. Mysak

1980-11-01T23:59:59.000Z

451

Experimental investigation of small-scale breaking waves : flow visualization across the air-water interface  

E-Print Network (OSTI)

The dynamics of breaking waves significantly affect air-sea fluxes of heat, momentum, mass and energy across the ocean interface. Breaking waves also contribute considerable loading to offshore and coastal structures, and ...

McDonald, Angus Kai

2005-01-01T23:59:59.000Z

452

Single ion conductor cross-linked polymeric networks - Energy ...  

Building Energy Efficiency; Electricity Transmission; ... Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ...

453

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

454

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

455

Orientation Waves in a Director Field With Rotational Inertia  

E-Print Network (OSTI)

We study the propagation of orientation waves in a director field with rotational inertia and potential energy given by the Oseen-Frank energy functional from the continuum theory of nematic liquid crystals. There are two types of waves, which we call splay and twist waves. Weakly nonlinear splay waves are described by the quadratically nonlinear Hunter-Saxton equation. Here, we show that weakly nonlinear twist waves are described by a new cubically nonlinear, completely integrable asymptotic equation. This equation provides a surprising representation of the Hunter-Saxton equation as an advection equation. There is an analogous representation of the Camassa-Holm equation. We use the asymptotic equation to analyze a one-dimensional initial value problem for the director-field equations with twist-wave initial data.

Giuseppe Ali; John K. Hunter

2006-09-07T23:59:59.000Z

456

wave power density | OpenEI  

Open Energy Info (EERE)

power density power density Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (2 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

457

WAVE REFLE TOR  

electromagnetic wave travels through the rods along their axes it receives a 1/4 period of phase delay be- ... delay, creating positive interference that effectively

458

Trimodal steady water waves  

E-Print Network (OSTI)

We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

Mats Ehrnström; Erik Wahlén

2013-10-31T23:59:59.000Z

459

RFI Comments - Wave Systems  

Science Conference Proceedings (OSTI)

... These attacks, such as those planted by rootkits ... PwC leveraged the power of TPMs to ... Wave EMBASSY® Remote Administration Server (ERAS) has ...

2013-04-09T23:59:59.000Z

460

Collapse of Alfven waves  

SciTech Connect

The growth rates are calculated for the collapse of Alfven waves in a low-..beta.. plasma. The relationship to rf heating is discussed.(AIP)

Erokhin, N.S.; Moiseev, S.S.; Mukhin, V.V.

1977-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Environmental Assessment (Nova Scotia, Canada) | Open Energy...  

Open Energy Info (EERE)

Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Tidal Energy, Wave Energy, Wind energy Active Policy Yes...

462

Connecticut/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince The EXP Job Creation Incentive Program provides loans towards expenditures related to training,...

463

Virginia/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Wave Energy Wind energy StateProvince The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that...

464

Ferrimagnetic Spin Wave Resonance and Superconductivity in Carbon Nanotubes  

E-Print Network (OSTI)

The phenomenon of ferrimagnetic spin wave resonance [uncompensated antiferromagnetic spin wave resonance] has been detected for the first time. It has been observed in carbon nanotubes, produced by high energy ion beam modification of diamond single crystals in $\\ $ direction. Peculiarities of spin wave resonance observed allow to insist on the formation in given nanotubes of $s^+$ superconductivity at room temperature, coexisting with uncompensated antiferromagnetic ordering.

Dmitri Yerchuck; Yauhen Yerchak; Vyacheslav Stelmakh; Alla Dovlatova; Andrey Alexandrov

2013-05-14T23:59:59.000Z

465

Marin Clean Energy - Feed-In Tariff (California) | Open Energy...  

Open Energy Info (EERE)

Landfill Gas, Municipal Solid Waste, Ocean Thermal, Photovoltaics, Small Hydroelectric, Solar Thermal Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing...

466

Single ion conductor cross-linked polymeric networks - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

467

INORGANIC SALT HEAT TRANSFER FLUID - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

468

COMBINED FUEL AND AIR STAGED POWER GENERATION SYSTEM - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

469

Numerical simulation of three-dimensional breaking waves on a gravel slope using a two-phase flow Navier-Stokes model  

Science Conference Proceedings (OSTI)

Wave breaking is mainly a three-dimensional flow problem characterized by wave energy dissipation due to turbulence. The understanding of the wave breaking mechanism on a beach is essential in studying coastal processes. The complexity of the wave-induced ... Keywords: CFD, Porous medium, Two phase, VOF, Wave breaking

P. Higuera; M. Del Jesus; J. L. Lara; I. J. Losada; Y. Guanche; G. Barajas

2013-07-01T23:59:59.000Z

470

Feed-in Tariff (Hawaii) | Open Energy Information  

Open Energy Info (EERE)

Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Rates for Tier...

471

Cosmological Coincidence and Dark Mass Problems in Einstein Universe and Friedman Dust Universe with Einstein's Lambda Quantum Cosmology Dark Energy Schroedinger Wave Motion  

E-Print Network (OSTI)

In this paper, it is shown that the cosmological model that was introduced in a sequence of three earlier papers under the title, A Dust Universe Solution to the Dark Energy Problem can be used to analyse and solve the Cosmological Coincidence Problem. The generic coincidence problem that appears in the original Einstein universe model is shown to arise from a misunderstanding about the magnitude of dark energy density and the epoch time governing the appearance of the integer relation between dark energy and normal energy density. The solution to the generic case then clearly points to the source of the time coincidence integer problem in the Friedman dust universe model. It is then possible to eliminate this coincidence by removing a degeneracy between different measurement epoch times. In this paper's first appendix, a fundamental time dependent relation between dark mass and dark energy is derived with suggestions how this relation could explain cosmological voids and the clumping of dark mass to become visible matter. In this paper's second appendix, it is shown that that dark energy is a conserved with time substance that is everywhere and for all time permeable to the dark mass and visible mass of which the contracting or expanding universe is composed. The last two appendices involve detailed studies of cosmology, quantum dark energy related issues. There are more detailed abstracts given with all four appendices.

James G. Gilson

2007-05-20T23:59:59.000Z

472

Resonantly Forced Rossby Waves  

Science Conference Proceedings (OSTI)

A shallow, rotating layer of fluid that supports Rossby waves is subjected to turbulent friction through an Ekman layer at the bottom and is driven by a wave that exerts a shear stress on the upper boundary and for which the phase approximate ...

John Miles

1985-04-01T23:59:59.000Z

473

The Response of Wave Directions to Changing Wind Directions  

Science Conference Proceedings (OSTI)

From the premise that the net growth of wave energy induced by wind is centered around the wind direction, a relaxation model for the response of the main wave direction to changes in the wind direction for young sea states is derived. The time ...

L. H. Holthuijsen; A. J. Kuik; E. Mosselman

1987-07-01T23:59:59.000Z

474

Inclusion of electron correlation for the target wave function in low- to intermediate-energy e-N/sub 2/ scattering  

Science Conference Proceedings (OSTI)

In a recent calculation an exact exchange method was developed for use in the partial-differential-equation approach to electron-molecule scattering, and was applied to e-N/sub 2/ scattering in the fixed-nuclei approximation with an adiabatic polarization potential at low energies (0-10 eV). Integrated elastic cross sections were calculated and found to be lower than experiment at energies both below and above the Pi sub g resonance. It was speculated at that time that improved experimental agreement could be obtained if a correlated target representation were used in place of the uncorrelated one. This paper implements this suggestion and demonstrates the improved agreement. These calculations are also extended to higher energies (0-30 eV) so as to include the Sigma sub u resonance. Some discrepancies among the experiments and between experiment and the various calculations at very low energy (<1eV) are noted.

Weatherford, C.A.; Brown, F.B.; Temkin, A.

1987-06-01T23:59:59.000Z

475

The Atmospheric Boundary Layer during Swell: A Field Study and Interpretation of the Turbulent Kinetic Energy Budget for High Wave Ages  

Science Conference Proceedings (OSTI)

Analysis of the turbulent kinetic energy (TKE) budget for five slightly unstable cases with swell has been performed based on measurements of mechanical production, buoyancy production, turbulent transport, and dissipation at five levels over the ...

U. Högström; A. Smedman; E. Sahleé; W. M. Drennan; K. K. Kahma; H. Pettersson; F. Zhang

2009-09-01T23:59:59.000Z

476

Reflection and Transmission of Equatorial Rossby Waves  

Science Conference Proceedings (OSTI)

The interaction of equatorial Rossby waves with a western boundary perforated with one or more narrow gaps is investigated using a shallow-water numerical model and supporting theory. It is found that very little of the incident energy flux is ...

Michael A. Spall; Joseph Pedlosky

2005-03-01T23:59:59.000Z

477

Experimental studies of lower hybrid wave propagation  

SciTech Connect

Experimental measurements of the dispersion and damping of externally excited lower hybrid waves are presented. A multiple-ring slow-wave antenna, having 2$pi$/k/sub z/ = 23 cm, is used to excite these waves in the Princeton L3 or L4 linear devices (B = 0.5 -- 2.8 kG uniform to +- 1 percent for 1.6 m, n approximately 10$sup 10$, T/sub e/ approximately 3-5 eV, T/sub i/ less than or equal to 0.1 eV, He gas, plasma diameter approximately 10 cm). The waves are localized in a spatial wave packet that propagates into the plasma along a conical trajectory which makes a small angle with respect to the confining magnetic field. Measurements of the dependence of wavelength on frequency are in good agreement with the cold plasma dispersion relation. Measured values of the wave damping are in good agreement with Landau damping by the combination of the main body of the electron distribution and a approximately 30 percent high energy (T/sub e/ approximately 15-30 eV) electron tail. (auth)

Bellan, P.; Porkolab, M.

1976-01-01T23:59:59.000Z

478

Nonlinear, stationary electrostatic ion cyclotron waves: Exact solutions for solitons, periodic waves, and wedge shaped waveforms  

Science Conference Proceedings (OSTI)

The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The existence of two fundamental constants of motion; namely, momentum flux density parallel to the background magnetic field and energy density, facilitates the reduction of the wave structure equation to a first order differential equation. For subsonic waves propagating sufficiently obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic expressions for the amplitude of the soliton show that it increases with decreasing wave Mach number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case, periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the 'initial' point. A critical 'driver' field exists that gives rise to a soliton-like structure which corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be constructed. The aforementioned asymmetry in the waveform arises from the flow being driven towards the local sonic point in the compressive phase and away from it in the rarefactive phase. As the initial driver field approaches the critical value, the end point of the compressive phase becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the compressive and rarefactive portions of the periodic waves are illustrated through new analytic expressions that follow from the equilibrium points of a wave structure equation which includes a driver field. These expressions are illustrated with figures that illuminate the nature of the solitons. The presently described wedge-shaped waveforms also occur in water waves, for similar 'transonic' reasons, when a Coriolis force is included.

McKenzie, J. F. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa); School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Doyle, T. B. [Materials Research Division, iThemba LABS, P.O.Box 722, Somerset West, 7129, South Africa and School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Rajah, S. S. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa)

2012-11-15T23:59:59.000Z

479

Evaluation of a Wind-Wave System for Ensemble Tropical Cyclone Wave Forecasting. Part II: Waves  

Science Conference Proceedings (OSTI)

A wind-wave forecast system, designed with the intention of generating unbiased ensemble wave forecasts for extreme wind events, is assessed. Wave hindcasts for 12 tropical cyclones (TCs) are forced using a wind analysis produced from a ...

Steven M. Lazarus; Samuel T. Wilson; Michael E. Splitt; Gary A. Zarillo

2013-04-01T23:59:59.000Z

480

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Technologies Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar...

Note: This page contains sample records for the topic "multi-mode wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Finestructure of Wind Waves Analyzed with Wavelet Transform  

Science Conference Proceedings (OSTI)

One central problem in the study of wind-generated gravity waves is the energy balancing process in the equilibrium spectral subrange. In considering the predicted equilibrium spectral forms from physical models proposed by Kitaigorodskii, other ...

Zheng Shen; Wei Wang; Liming Mei

1994-05-01T23:59:59.000Z

482

Meridional Localization of Planetary Waves in Stochastic Zonal Flows  

Science Conference Proceedings (OSTI)

The effect of stochastic fluctuations in the zonal-mean velocity field on the energy dispersion of planetary stationary waves is considered, using the nondivergent, barotropic vorticity equation. It is found that for small noise levels, the ...

Adam Hugh Monahan; Lionel Pandolfo

2001-04-01T23:59:59.000Z

483

Spectra of Baroclinic Inertia-Gravity Wave Turbulence  

Science Conference Proceedings (OSTI)

Baroclinic inertia–gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water ...

Roman E. Glazman

1996-07-01T23:59:59.000Z

48