Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A new approach to select multi-lateral well candidates using a fuzzy-logic based computer model  

E-Print Network (OSTI)

Multi-Lateral technology is defined as the drilling and completion of more than one wellbore from a single "mother" hole. The benefits of having multiple boreholes in a single well include increased flow rates, increased reserves, lower production...

Colmenares Diaz, Luis Carlos

2012-06-07T23:59:59.000Z

2

Single-Molecule Circuits with Well-Defined Molecular Conductance  

E-Print Network (OSTI)

Single-Molecule Circuits with Well-Defined Molecular Conductance Latha Venkataraman,*,,| Jennifer E conductance measurements of single molecules. For an alkane diamine series with 2-8 carbon atoms leads to well-defined conductance measurements of a single molecule junction in a statistical study

Hone, James

3

Qualities That Define a Well-Designed Product  

E-Print Network (OSTI)

Research Texas A&M University in partial fulfillment of the requirements for designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by: Research Advisor: Rodney Hill Director for Honors and Undergraduate Research: Sumana Datta April... 2011 Major: Environmental Design ABSTRACT Qualities that Define a Well-Designed Product. (April 2011) Marjorie Manning Pirics Department of Architecture Texas A&M University Research Advisor: Professor Rodney Hill Department...

Pirics, Marjorie

2011-08-08T23:59:59.000Z

4

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts This presentation...

5

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Yanbing Guo, Zheng Ren, and Pu-Xian Gao Department of Chemical, Materials and Biomolecular...

6

Correlation of Theory and Function in Well-Defined Bimetallic Electrocatalysts - Final Report  

SciTech Connect

The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.

Crooks, Richard M.

2014-06-05T23:59:59.000Z

7

Digital Deposition of Ultrathin Pd Films on Well-Defined Pt(111) Electrodes via Surface-Limited Redox Replacement Reaction: An Electron Spectroscopy-Electrochemistry Study  

E-Print Network (OSTI)

In this study, ultrathin (submonolayer to eight-monolayer) Pd films were deposited one layer at a time on well-defined Pt(111) surfaces via a process known as surface-limited redox replacement reaction (SLR^3). In this digital-deposition method, one...

Hossain, Mohammad

2010-12-04T23:59:59.000Z

8

Sum rules for spin-$1/2$ quantum gases in well-defined-spin states: spin-independent interactions and spin-dependent external fields  

E-Print Network (OSTI)

Many-body eigenstates of spin-$1/2$ particles with defined total spins contain spin and spatial wavefunctions belonging to multidimensional irreducible representations of the symmetric group, unless the total spin has the maximal allowed value. Matrix elements in the basis of such eigenstates are analyzed for spin-dependent interactions with external fields and spin-independent ones between the particles. Analytical expressions are obtained for sums of the matrix elements and sums of their squared modules. The sum rules are applied to perturbative analysis of energy spectra.

Yurovsky, Vladimir A

2015-01-01T23:59:59.000Z

9

Opportunity, risk, and success recognizing, addressing, and balancing multiple factors crucial to the success of a project management system deployed to support multi-lateral decommissioning programs  

SciTech Connect

This paper addresses the factors involved in effectively implementing a world-class program/project management information system funded by multiple nations. Along with many other benefits, investing in and utilizing such systems improves delivery and drive accountability for major expenditures. However, there are an equally large number of impediments to developing and using such systems. To be successful, the process requires a dynamic combining of elements and strategic sequencing of initiatives. While program/project-management systems involve information technologies, software and hardware, they represent only one element of the overall system.. Technology, process, people and knowledge must all be integrated and working in concert with one another to assure a fully capable system. Major system implementations occur infrequently, and frequently miss established targets in relatively small organizations (with the risk increasing with greater complexity). The European Bank of Reconstruction (EBRD) is midway through just such an implementation. The EBRD is using funds from numerous donor countries to sponsor development of an overarching program management system. The system will provide the Russian Federation with the tools to effectively manage prioritizing, planning, and physically decommissioning assets{sub i}n northwest Russia to mitigate risks associated the Soviet era nuclear submarine program. Project-management delivery using world-class techniques supported by aligned systems has been proven to increase the probability of delivering on-time and on-budget, assuring those funding such programs optimum value for money. However, systems deployed to manage multi-laterally funded projects must be developed with appropriate levels of consideration given to unique aspects such as: accommodation of existing project management methods, consideration for differences is management structures and organizational behaviors, incorporation of unique strengths, and subtle adjustment to compensate weaknesses. This paper addresses the architecture and sequencing of implementation. (authors)

Funk, Greg; Longsworth, Paul [Fluor Cumbria, Unit 8, Galemire Court, Westlakes Science Park, Moor Row, CA24 3HY (United Kingdom)

2007-07-01T23:59:59.000Z

10

FOSTERING MULTI-LATERAL COOPERATION BETWEEN THE GOVERNMENTS OF DOMINICAN REPUBLIC, COLOMBIA, AND THE UNITED STATES TO ENHANCE THE PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES  

SciTech Connect

The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide from sabotage, theft or diversion. The GTRI has worked successfully with foreign countries to remove and protect nuclear and radioactive materials including high-activity sources used in medical, commercial, and research applications. There are many barriers to successful bilateral cooperation that must be overcome including language, preconceived perceptions, long distances, and different views on the threat and protection requirements. Successful cooperation is often based on relationships and building trusting relationships takes time. In the case of Dominican Republic, the GTRI first received contact in 2008 from the Government of Dominican Republic. They requested cooperation that was similar to the tri-partite cooperation between Colombia, Mexico and the United States. Throughout the region it was widely known that the GTRI’s cooperation with the Government of Colombia was a resounding success resulting in the securing of forty sites; the consolidation of numerous disused/orphan sources at a secure national storage facility; and, the development of a comprehensive approach to security including, inter alia, training and sustainability. The Government of Colombia also showcased this comprehensive approach to thirteen Central American and Caribbean countries at a GTRI regional security conference held in Panama in October 2004. In 2007, Colombia was an integral component of GTRI multi-lateral cooperation initiation in Mexico. As a result, twenty two of Mexico’s largest radioactive sites have been upgraded in the past eighteen months. These two endeavors served as catalysts for cooperation opportunities in the Dominican Republic. Representatives from the Colombian government were aware of GTRI’s interest in initiating cooperation with the Government of Dominican Republic and to facilitate this cooperation, they traveled to the Dominican Republic and provided briefings and presentations which demonstrated its successful cooperation with the GTRI. Shortly after that visit, the Government of Dominican Republic agreed to move forward and requested that the cooperative efforts in Dominican Republic be performed in a tripartite manner, leveraging the skills, experience, and resources of the Colombians, and the financial and technical support of the United States. As a result, two of Dominican Republic’s largest radioactive sites had security upgrades in place within 90 days of the cooperation visit in December 2008.

Butler, Nicholas; McCaw, Erica E.; Wright, Kyle A.; Medina, Maximo

2009-10-06T23:59:59.000Z

11

OhSU is moving into a new era. Our work will be defined by health reform and the decline in public resources, and we will be challenged in profound ways. Yet we are well  

E-Print Network (OSTI)

health care reform and reduced public funding. OHSU laid the groundwork for success in 2007 by adoptingthe next five years OhSU is moving into a new era. Our work will be defined by health reform, and sustainability and green building practices. OHSU has been vocal and active in the health reform conversation

Chapman, Michael S.

12

Surface monolayers of well-defined amphiphilic block copolymer composed of poly(acrylic acid) or poly(oxyethylene) and poly(styrene). Interpolymer complexation at the air-water interface  

SciTech Connect

Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.

Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki (Doshisha Univ., Kyoto (Japan))

1990-01-01T23:59:59.000Z

13

On free convection heat transfer with well defined boundary conditions  

SciTech Connect

The scaling of free convection heat transfer is investigated. The non-dimensional groups for Boussinesq and fully compressible variable property free convection, driven by isothermal surfaces, are derived using a previously published novel method of dimensional analysis. Both flows are described by a different set of groups. The applicability of each flow description is experimentally investigated for the case of the isothermal horizontal cylinder in an air-filled isothermal enclosure. The approach taken to the boundary conditions differs from that of previous investigations. Here, it is argued that the best definition of the boundary conditions is achieved for heat exchange between the cylinder and the enclosure rather than the cylinder and an arbitrarily chosen fluid region. The enclosure temperature is shown both analytically and experimentally to affect the Nusselt number. The previously published view that the Boussinesq approximation has only a limited range of application is confirmed, and the groups derived for variable property compressible free convection are demonstrated to be correct experimentally. A new correlation for horizontal cylinder Nusselt number prediction is presented.

Davies, M.R.D.; Newport, D.T.; Dalton, T.M.

1999-07-01T23:59:59.000Z

14

Well Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

15

Flu Terms Defined  

NLE Websites -- All DOE Office Websites (Extended Search)

Flu Terms Defined Flu Terms Defined H1N1 Influenza is a respiratory disease of pigs caused by type A influenza viruses that causes regular outbreaks in pigs. People do not normally get H1N1 flu, but human infections can and do happen. H1N1 flu viruses have been reported to spread from person-to-person, but in the past, this transmission was limited and not sustained beyond three people. Avian flu (AI) is caused by influenza viruses that occur naturally among wild birds. Low pathogenic AI is common in birds and causes few problems. Highly pathogenic H5N1 is deadly to domestic fowl, can be transmitted from birds to humans, and is deadly to humans. There is virtually no human immunity and human vaccine availability is very limited. Pandemic flu is virulent human flu that causes a global outbreak, or pandemic, of serious illness. Because there is little natural immunity, the disease can spread easily from person to person. Currently, there is no pandemic flu.

16

Hanford wells  

SciTech Connect

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

17

System Assessment Standards: Defining the Market for Assessment Services  

E-Print Network (OSTI)

Standards will offer industrial facilities seeking certification a well-defined path toward improved energy intensity. System Assessment Standards will help define the market for both users and providers of industrial system assessment services. Use...

McKane, A. T.; Sheaffer, P. E.

2008-01-01T23:59:59.000Z

18

Assessment endpoints: Defining the question  

SciTech Connect

The EPA Framework for Ecological Risk Assessments incorporated two significant improvements in the ecological risk assessment (EcoRA) process. First, the guidance emphasized the importance of defining the problems to be addressed (The Problem Formulation Phase). Secondly, the guidance explicitly calls for dialogue between risk managers and risk assessors. Implementing these elements has proven difficult and sometimes contentious. Risk assessors know how to do many things very well-including literature reviews, toxicity screens, deterministic exposure models, calculations of exposure:effects quotients, etc. However, these efforts often fall short of what risk managers need to make decisions. Moreover, there is a high likelihood that such risk assessment information fails to address the concerns of stakeholders. It is the authors` position that the risk assessors by themselves will seldom be able to produce meaningful assessments because they will usually fail to anticipate the needs of risk managers and the expectations of stakeholders. To become a meaningful part of the social decision process, the EcoRA process (especially the critical Problem Formulation Phase) must be opened to a larger group of participants that includes assessors, managers, and stakeholder representatives. Formal methods in conflict resolution and consensus building among diverse interest groups are available. The authors will describe the need to develop guidelines for the application of these tools to reach agreement on assessment endpoints, Early agreement on the focus of work improves the chances for effective communication of risk and understanding of the basis for environmental management decisions.

Fairbrother, A.; Kapustka, L.A.; Williams, B.A.; Bennett, R.S. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States)

1995-12-31T23:59:59.000Z

19

Some Remarks on Definability of Process Graphs  

E-Print Network (OSTI)

them in the context of the well- known process algebras BPA and BPP. For a process graph G, the density going from s to infinity" exist in G. For BPA-graphs we discuss some tentative findings about-definability results, stating that certain process graphs are not BPA-graphs, and stronger, not even BPA

Klop, Jan Willem

20

Defining Electron Backscatter Diffraction Resolution  

SciTech Connect

Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a TexSEM Laboratories OIM system was used. The pattern capturing hardware consisted of both a 512 by 512 pixel SIT CCD camera and a 1300 by 1030 pixel Peltier cooled CCD camera. Automated scans of various sizes, each consisting of 2500 points, were performed on a commercial-grade single crystal silicon wafer used for angular resolution measurements. To adequately quantify angular resolution for all possible EBSD applications we define two angular values. The first is {omega}{sub center}, the mean of the misorientation angle distribution between all scan points and the scan point coincident to the calibration source (typically the scan center). The {omega}{sub center} value is used to describe the overall system resolution, as it effectively quantifies the deviation of all orientations in the scan relative to the diffraction pattern least affected by distortions. The second is {omega}{sub max}, the largest misorientation angle possible between any pair of points in the dataset, and describes the worst possible case. Fig. 1 shows the effects of scan size and captured pattern resolution (bin size) on both angular values, illustrating that smaller scan and bin sizes have the effect of increasing angular resolution. However, it can be observed that the benefits of utilizing smaller bin sizes (and consequently slower data collection) diminish with scan size. Fig. 2 shows the effect of the number of pixels used in the Hough transform (defined as the ratio of pixels used to maximum possible pixels) on the angular values. It can be seen that the best angular resolutions are achieved at a pixel ratio of 0.80, again illustrating that the use of higher resolutions is not always beneficial. As evidenced by the results, the use of {omega}{sub center} and {omega}{sub max} not only permits the characterization of the angular resolution of an EBSD system, but they allow for a more efficient utilization of the system by identifying appropriate settings depending on the desired angular resolution [6].

El-Dasher, B S; Rollett, A D

2005-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

STI Defined | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

STI Defined STI Defined Print page Print page Email page Email page Information products deemed by the originator to be useful beyond the originating site (i.e., intended to be published or disseminated), in any format or medium, which contain findings and technological innovations resulting from research and development (R&D) efforts and scientific and technological work of scientists, researchers, and engineers, whether Federal employee, contractor, or financial assistance recipient. STI also conveys the results of demonstration and commercial application activities as well as experiments, observations, simulations, studies, and analyses. Scientific findings are communicated through various media - e.g., textual, multimedia, audiovisual, and digital - and are produced in a range

22

JORDAN SUPERALGEBRAS DEFINED BY BRACKETS  

E-Print Network (OSTI)

JORDAN SUPERALGEBRAS DEFINED BY BRACKETS Consuelo Mart'inez* Ivan Shestakovy Efim Zelmanovz Abstract Jordan. In particular, all Jordan* * super- algebras of brackets are i-special. The speciality

23

Animal innovation defined and operationalized  

E-Print Network (OSTI)

, improvisation, innovation, invention, operational definition, social learning 1. Introduction The studyAnimal innovation defined and operationalized Grant Ramsey Department of Philosophy, University://www.aim.unizh.ch/Members/vanschaik.html Abstract: Innovation is a key component of most definitions of culture and intelligence. Additionally

Indiana University

24

Scientists Help Define the Healthy Human Microbiome  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Help Define the Healthy Human Microbiome Scientists Help Define the Healthy Human Microbiome Computing, bioinformatics, and microbial ecology resources play key role in...

25

Decontaminating Flooded Wells  

E-Print Network (OSTI)

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

26

Complex Nanoscopic Objects from Well-defined Polymers that Contain Functional Units  

E-Print Network (OSTI)

Poly(ethylene glycol) PET Positron emission tomography PLA Poly(lactide) PMANb Methacrylate-functionalized poly(norbornene) PMDETA N,N,N',N",N"-pentamethyldiethylenetriamine PMMA Poly(methyl methacrylate) PNB Poly(norbornene) PNbMA Norbornene........................................................................................................................ 24 2.4 Regio-functionalized diblock copolymers 3 and 4 prepared by atom transfer radical block copolymerizations of 1 from PMMA macroinitiator or ATRP of MMA from macroinitiator 2. ............................. 26 2.5 Overlaid GPC profiles...

Li, Ang 1982-

2012-08-29T23:59:59.000Z

27

A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst  

E-Print Network (OSTI)

olefin metathesis catalyst. Bouchra Rhers, a Alain Salameh,active propene metathesis catalyst, which can achieve 16000W-based olefin metathesis catalyst through the reaction of [

2006-01-01T23:59:59.000Z

28

Chemisorption of Aromatic Compounds on Well-Defined Palladium Surfaces: Studies by Electron Spectroscopy and Electrochemistry  

E-Print Network (OSTI)

and thiol group. At high concentrations, it chemisorbs only through the thiol group. (b) There is extensive intermolecular attraction between the co-adsorbed thiolated quinone and thiolated hydroquinone molecules. The interaction occurs through the Pd...

Li, Ding

2010-10-12T23:59:59.000Z

29

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts  

Energy.gov (U.S. Department of Energy (DOE))

This presentation demonstrates how nano-array catalysts have excellent robustness, use ultra-low amounts of PGM, and can be tuned for optimum performance.

30

Well control procedures for extended reach wells  

E-Print Network (OSTI)

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

31

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

32

Pressure analysis for horizontal wells  

SciTech Connect

This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

1988-12-01T23:59:59.000Z

33

Plugging Abandoned Water Wells  

E-Print Network (OSTI)

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

34

Software-Defined Networking Based Capacity Sharing in Hybrid Networks  

E-Print Network (OSTI)

Software-Defined Networking Based Capacity Sharing in Hybrid Networks Mateus A. S. Santos and Bruno proposes a novel approach to capacity sharing in hybrid networked environments, i.e., environments that consist of infrastructure-based as well as infrastructure- less networks. The proposed framework is based

Turletti, Thierry

35

Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics,  

E-Print Network (OSTI)

Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises EXECUTIVE SUMMARY H. BRADLEY SHAFFER, NANCY N. FITZSIMMONS, ARTHUR GEORGES of evolutionary, conservation, and population biology. Turtles are particularly well suited to benefit from

Grether, Gregory

36

Horizontal well IPR calculations  

SciTech Connect

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

37

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

38

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

39

JORDAN SUPERALGEBRAS DEFINED BY Consuelo Martinez  

E-Print Network (OSTI)

JORDAN SUPERALGEBRAS DEFINED BY BRACKETS Consuelo Mart´inez Ivan Shestakov Efim Zelmanov Abstract Jordan superalgebras defined by brackets on associative commutative su- peralgebras are studied. In particular, all Jordan super- algebras of brackets are i-special. The speciality of these superalgebras

40

Template:Define | Open Energy Information  

Open Energy Info (EERE)

Define Define Jump to: navigation, search This is the Define template. It is designed for use by Defined Terms. To define a term, please use this form. Parameters Definition - OpenEI's definition of the term. This should be unique. (required) Aliases - Synonyms of the term, or phrases which have the same meaning. (comma delimeted) Related - Related terms, or concepts of similar interest. (comma delimited list of pages) Wikipedia_def - The URL of Wikipedia's definition of the term, if one exists. (url) References - Links to external articles or datasources consulted when crafting the OpenEI definition. (comma delimited) Usage It should be invoked using the corresponding form. + Add a definition Example For an example of this template in use, please see one of the existing

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

42

Well drilling apparatus  

SciTech Connect

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

43

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

44

Bilayer graphene quantum dot defined by topgates  

SciTech Connect

We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

2014-06-21T23:59:59.000Z

45

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

46

Phenomenal well-being  

E-Print Network (OSTI)

rated against the experience of the individualÂ?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

47

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

48

Shock Chlorination of Wells  

E-Print Network (OSTI)

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

49

Model Quality Control Matrix Tools for Defining Commissioning Process  

E-Print Network (OSTI)

by overriding, deleting and/or adding. ?It is used to define most of the necessary procedures required for commissioning authority as well as commissioning-related parties during the building production stage and operation stage. ?MQC tool is a control tool...Cell ContentsS p ecificationS p ecification2URLMAILOther Files??????????????1???2?????????????????????????????????????????????http://www.hptcj.or.jp/chikun etu/tools/index.html ??????????????????????????????????? ?? ?????????????????????????????????????????http://www.hptcj.or...

Nakahara, N.; Onojima, H.; Kamitani, K.

2004-01-01T23:59:59.000Z

50

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

51

Method of gravel packing a subterranean well  

SciTech Connect

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

52

Better Buildings Neighborhood Program: Step 2: Define Finance Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Define 2: Define Finance Program Objectives to someone by E-mail Share Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on Facebook Tweet about Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on Twitter Bookmark Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on Google Bookmark Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on Delicious Rank Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on Digg Find More places to share Better Buildings Neighborhood Program: Step 2: Define Finance Program Objectives on AddThis.com... Getting Started Driving Demand Financing Assess the Market Define Finance Program Objectives

53

Slim wells for exploration purposes in Mexico  

SciTech Connect

To invest in the construction of wells with definitive designs considerably increases the cost of a geothermal electric project in its analysis and definition stage. The Federal Commission for Electricity (Comision Federal de Electricidad, CFE) has concentrated on the task to design wells which casing and cementing programs would provide the minimum installation necessary to reach the structural objective, to confirm the existence of geothermal reservoirs susceptible to commercial exploitation, to check prior geological studies, to define the stratigraphic column and to obtain measurements of pressure, temperature and permeability. Problems of brittle, hydratable and permeable formations with severe circulation losses, must be considered within the design and drilling programs of the wells. This work explains the slim wells designs used in the exploration of three geothermal zones in Mexico: Las Derrumbadas and Acoculco in the State of Puebla and Los Negritos in the State of Michoacan.

Vaca Serrano, J.M.E.; Soto Alvarez, M.

1996-12-31T23:59:59.000Z

54

DEFINING THE EFFECTIVENESS OF UV LAMPS  

Office of Scientific and Technical Information (OSTI)

ARTI-21CR/610-40030-01 ARTI-21CR/610-40030-01 DEFINING THE EFFECTIVENESS OF UV LAMPS INSTALLED IN CIRCULATING AIR DUCTWORK Final Report Date Published - November 2002 Douglas VanOsdell and Karin Foarde RTI P.O. Box 12194 Research Triangle Park, NC 27709-2194 Prepared for the AIR-CONDITIONING AND REFRIGERATION TECHNOLOGY INSTITUTE 4100 N. Fairfax Drive, Suite 200, Arlington, Virginia 22203 Distribution A - Approved for public release; further dissemination unlimited. DISCLAIMER This report was prepared as an account of work sponsored by the Air-Conditioning and Refrigeration Technology Institute (ARTI) under its "HVAC&R Research for the 21 st Century" (21-CR) program. Neither ARTI, the financial supporters of the 21-CR program, or any agency

55

Geothermal well log interpretation state of the art. Final report  

SciTech Connect

An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1980-01-01T23:59:59.000Z

56

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

57

Large Polyoxotitanate Clusters: Well-Defined Models for Pure-Phase TiO2 Structures and Surfaces  

Science Journals Connector (OSTI)

Figure 2. Experimental XRD powder patterns of commercially available TiO2 (Degussa P25, red line) and powder obtained from reactions at 160 °C (blue line) overlaid with calculated powder pattern for anatase (green line) using Mercury (fwhm = 0.7°). ...

Jason B. Benedict; Renata Freindorf; Elzbieta Trzop; Jeffrey Cogswell; Philip Coppens

2010-09-13T23:59:59.000Z

58

Well-Defined Nanoparticles Formed by Hydrophobic Assembly of a Short and Polydisperse Random Terpolymer, Amphipol A8-35  

E-Print Network (OSTI)

by modification of a short-chain parent polymer (poly(acrylic acid); PAA) with octyl- and isopropylamine, to yield`res et des Milieux Disperse´s, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France, Large Scale

59

UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. II: Co on Pd(111)  

Science Journals Connector (OSTI)

Tailoring the magnetic properties of Co–Pd superlattices requires a clear understanding of the growth mechanism for this bimetallic system. Early studies utilizing low-energy ion scattering spectroscopy and X-...

Jack H. Baricuatro; Manuel P. Soriaga

2010-05-01T23:59:59.000Z

60

UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. III: Bi on Pd(111)  

Science Journals Connector (OSTI)

Experiments were performed using an ultrahigh-vacuum electrochemistry (UHV-EC) apparatus that features gate-valve-isolable...

Jack H. Baricuatro; Manuel P. Soriaga

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. I: Pd on Pt(111)  

Science Journals Connector (OSTI)

Tandem ultrahigh vacuum-electrochemistry (UHV-EC) experiments were performed using a stainless ... displacement of the single-crystal electrode inside the UHV-EC assembly. A custom-built electrochemical cell...

Jack H. Baricuatro; Mohammad A. Hossain; Yeon-Su Park…

2010-05-01T23:59:59.000Z

62

Fundamentals of pragmatics As is well known, pragmatics, whose arrival Morris --who defined it as the study of  

E-Print Network (OSTI)

transmission of information, consisted in placing it in the analysis and interpretation of action. This opened communication on a set of maxims of conversation underlying a principle of cooperation, considered as the pillar principles, but not all of them. Roughly speaking, Relevance theory adopts (though it reformulates

Institut des Sciences Cognitives, CNRS

63

EIA - International Energy Outlook 2008-Defining the Limits of Oil  

Gasoline and Diesel Fuel Update (EIA)

Defining the Limits of Oil Production Defining the Limits of Oil Production Preparing mid-term projections of oil production requires an assessment of the availability of resources to meet production requirements, particularly for the later years of the 2005-2030 projection period in IEO2008. The IEO2008 oil production projections were limited by three factors: the estimated quantity of petroleum in place before production begins (“petroleum-initially-in-place” or IIP), the percentage of IIP extracted over the life of a field (ultimate recovery factor), and the amount of oil that can be produced from a field in a single year as a function of its remaining reserves. Total IIP resources are the quantities of petroleum—both conventional and unconventional—estimated to exist originally in naturally occurring accumulations.a IIP resources are those quantities of petroleum which are estimated, on a given date, to be contained in known accumulations, plus those quantities already produced, as well as those estimated quantities in accumulations yet to be discovered. The estimate of IIP resources includes both recoverable and unrecoverable resources.

64

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

65

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

66

Health And Wellness Department Of Health And Wellness  

E-Print Network (OSTI)

Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

McConnell, Terry

67

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

68

Software-defined Radio based Wireless Tomography: Experimental Demonstration and  

E-Print Network (OSTI)

1 Software-defined Radio based Wireless Tomography: Experimental Demonstration and Verification presents an experimental demonstration of Software-Defined Radio (SDR) based wireless tomography us- ing follows our vision and previous theoretical study of wireless tomography which combines wireless

Qiu, Robert Caiming

69

Well Monitoring Systems for EGS  

Energy.gov (U.S. Department of Energy (DOE))

Well Monitoring Systems for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

70

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

71

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

72

Wellness Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

73

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

74

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

75

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

76

Well Monitoring System for EGS  

Energy.gov (U.S. Department of Energy (DOE))

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

77

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

78

System Assessment Standards: Defining the Market for Industrial Energy Assessments  

SciTech Connect

Improved efficiency of industrial systems (e.g., compressed air or steam) contributes to a manufacturing facility?s bottom line, improves reliability, and better utilizes assets. Despite these advantages, many industrial facilities continue to have unrealized system optimization potential. A barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services, creating problems for both service providers in establishing market value for their services and for consumers in determining the relative quality of these system assessment services. On August 19, 2008, the American Society of Mechanical Engineers (ASME) issued four new draft Standards for trial use that are designed to raise the bar and define the market for these services. These draft Standards set the requirements for conducting an energy assessment at an industrial facility for four different system types: compressed air, process heating, pumping, and steam. The Standards address topics such as organizing and conducting assessments; analyzing the data collected; and reporting and documentation. This paper addresses both the issues and challenges in developing the Standards and the accompanying Guidance Documents, as well as the result of field testing by industrial facilities, consultants, and utilities during the trial use period that ended in January, 2009. These Standards will be revised and released by ASME for public review, and subsequently submitted for approval as American National Standards for publication in late 2009. Plans for a related activity to establish a professional-level program to certify practitioners in the area of system assessments, opportunities to integrate the ASME Standards with related work on industrial energy efficiency, as well as plans to expand the system assessment Standard portfolio are also discussed.

Sheaffer, Paul; McKane, Aimee; Tutterow, Vestal; Crane, Ryan

2009-08-01T23:59:59.000Z

79

Natural Gas Prices: Well Above Recent Averages  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The recent surge in spot prices at the Henry Hub are well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 standard deviations). Past price surges have been of short duration. The possibility of a downward price adjustment before the end of next winter is a source of considerable risk for storage operators who acquire gas at recent elevated prices. Storage levels in the Lower 48 States were 7.5 percent below the 5-year average (1995-1999) by mid-August (August 11), although the differential is only 6.4 percent in the East, which depends most heavily on storage to meet peak demand. Low storage levels are attributable, at least in part, to poor price incentives: high current prices combined with only small price

80

Defining Active Catalyst Structure and Reaction Pathways from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Catalyst Structure and Reaction Pathways from ab Initio Molecular Dynamics and Operando XAFS: Dehydrogenation of Defining Active Catalyst Structure and Reaction Pathways...

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Defining a sustainable aesthetic: a new paradigm for architecture.  

E-Print Network (OSTI)

??This thesis explores the process of defining an aesthetic philosophy of sustainable architecture. An argument is made for the justification of the need for a… (more)

Douglass, David Barrett

2008-01-01T23:59:59.000Z

82

1982 geothermal well drilling summary  

SciTech Connect

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

83

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

84

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

85

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

86

Role of borehole geophysics in defining the physical characteristics of the  

Open Energy Info (EERE)

Role of borehole geophysics in defining the physical characteristics of the Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Numerous geophysical logs have been made in three deep wells and in several intermediate depth core holes in the Raft River geothermal reservoir, Idaho. Laboratory analyses of cores from the intermediate depth holes were used to provide a qualitative and quantitative basis for a detailed interpretation of logs from the shallow part of the reservoir. A less detailed interpretation of logs from the deeper part of the reservoir

87

A new well surveying tool  

E-Print Network (OSTI)

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

88

Health Education & Wellness - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

89

Category:Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells Add.png Add a new Production Wells Technique Pages in category...

90

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

91

System for stabbing well casing  

SciTech Connect

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

92

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

93

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

94

A major lithospheric boundary in eastern California defined by isotope  

Open Energy Info (EERE)

major lithospheric boundary in eastern California defined by isotope major lithospheric boundary in eastern California defined by isotope ratios in Cenozoic basalts from the Coso Range and surrounding areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A major lithospheric boundary in eastern California defined by isotope ratios in Cenozoic basalts from the Coso Range and surrounding areas Details Activities (1) Areas (1) Regions (0) Abstract: Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Tectonic and geochemical interpretation of this boundary is difficult, however, because there are so many potential

95

Executive Orders Defining Tribal Relationships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Executive Orders Defining Tribal Relationships Executive Orders Defining Tribal Relationships Executive Orders Defining Tribal Relationships Executive Order 13592 Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011). Superseded EO 13021 to ensure that all American Indian students, regardless of which institution they attend, receive support from the federal government at elementary through college levels. This EO also creates an Interagency Working Group on AI/AN Education to establish educational goals across the government. Executive Order 13096 American Indian and Alaska Education (1998). Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion

96

Visualizing motion in potential wells  

Science Journals Connector (OSTI)

The concept of potential-energy diagrams is of fundamental importance in the study of quantum physics. Yet students are rarely exposed to this powerful alternative description in introductory classes and thus have difficulty comprehending its significance when they encounter it in beginning-level quantum courses. We describe a learning unit that incorporates a sequence of computer-interfaced experiments using dynamics or air-track systems. This unit is designed to make the learning of potential-energy diagrams less abstract. Students begin by constructing the harmonic or square-well potential diagrams using either the velocity data and assuming conservation of energy or the force-displacement graph for the elasticinteraction of an object constrained by springs or bouncing off springy blocks. Then they investigate the motion of a rider magnetinteracting with a configuration of field magnets and plot directly the potential-energy diagrams using a magnetic field sensor. The ease of measurement allows exploring the motion in a large variety of potential shapes in a short duration class.

Pratibha Jolly; Dean Zollman; N. Sanjay Rebello; Albena Dimitrova

1998-01-01T23:59:59.000Z

97

Cementing temperatures for deep-well production liners  

SciTech Connect

Temperature of cement is an important factor in properly cementing deep well production liners, yet current methods of determining cement temperatures do not account for all variables. In this paper a computer model predicts temperatures of cement while pumping and while waiting on cement, compares computed and measured temperatures, defines the importance of certain cementing variables on temperatures, and provides an explanation of difficulties encountered while cementing liner tops.

Wooley, G.R.; Galate, J.W.; Giussani, A.P.

1984-09-01T23:59:59.000Z

98

Well control simulation with the Macintosh II computer  

E-Print Network (OSTI)

equipment parameters are defined. When the simulation process is initiated, a series of windows representing the driller's control panel, the choke panel, and the wellbore in cross-sectional profile may be viewed. The simulation process is controlled...: EXPERIMENTS WITH BUBBLE MIGRATION VELOCITY VITA 157 174 182 LIST OF TABLES Table 1 Default Well Configuration 2 Kick Pressures from a Simulated Gas Kick 3 Kick Fluid Properties for a Simulated Oil Kick B-1 Gas Kick Fluid Properties B-2 Oil Kick...

Wallis, Gregory Tad

1991-01-01T23:59:59.000Z

99

Defining the coupling coefficient for electrodynamic transducers Shuo Chenga)  

E-Print Network (OSTI)

-density permanent magnets4 has enabled more com- pact and powerful electrodynamic transducers.5 More recentlyDefining the coupling coefficient for electrodynamic transducers Shuo Chenga) and David P. Arnold September 2013) This paper provides a simple, practical definition of the coupling coefficient

Allen, Jont

100

Video over Software Defined Networking Harold Owens II1  

E-Print Network (OSTI)

Video over Software Defined Networking Harold Owens II1 and Arjan Durresi1 Department of ComputerS) for video applications requires the network to select optimum path among multiple paths to improve for the application. Furthermore, it is an arduous task for video application developers to request service from Int

Zhou, Yaoqi

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Introduction Geohazards can be defined as "events caused by geolo-  

E-Print Network (OSTI)

. Offshore, several of the largest oil companies define reduction of geohazard-related risks in deep water". Geohazards exist both onshore and offshore. Onshore, the most important are volcanic eruptions, earthquakes, landslides and debris flows, floods and snow avalanches. Offshore, slope instability and earthquakes

102

Defining Strong Privacy for RFID and Stephen A. Weis2  

E-Print Network (OSTI)

, widespread adoption of retail RFID could raise privacy concerns for everyday consumers. Briefly, RFID systemsDefining Strong Privacy for RFID Ari Juels1 and Stephen A. Weis2 1 RSA Laboratories, Bedford, MA April 2006 Abstract. In this work, we consider privacy in Radio Frequency IDentification (RFID) systems

103

Visual Positioning of Previously Defined ROIs on Microscopic Slides  

E-Print Network (OSTI)

1 Visual Positioning of Previously Defined ROIs on Microscopic Slides Grigory Begelman, Michael slide area. Various microscopy related medical applications, such as telepathology and computer aided of interest. In this paper we present a method for image-based auto positioning on a microscope slide

Rivlin, Ehud

104

DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS,  

E-Print Network (OSTI)

DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS, AND TAXONOMY OF FRESHWATER TURTLES AND TORTOISES CAMBRIDGE, MASSACHUSETTS, 8­12 AUGUST 2005 EDITED BY H. BRADLEY SHAFFER, ARTHUR and Freshwater Turtle Specialist Group #12;Preface Genetics. Conservation. Genomics. Systematics. Ethics

Canberra, University of

105

The tractability of CSP classes defined by forbidden patterns  

E-Print Network (OSTI)

The constraint satisfaction problem (CSP) is a general problem central to computer science and artificial intelligence. Although the CSP is NP-hard in general, considerable effort has been spent on identifying tractable subclasses. The main two approaches consider structural properties (restrictions on the hypergraph of constraint scopes) and relational properties (restrictions on the language of constraint relations). Recently, some authors have considered hybrid properties that restrict the constraint hypergraph and the relations simultaneously. Our key contribution is the novel concept of a CSP pattern and classes of problems defined by forbidden patterns (which can be viewed as forbidding generic subproblems). We describe the theoretical framework which can be used to reason about classes of problems defined by forbidden patterns. We show that this framework generalises relational properties and allows us to capture known hybrid tractable classes. Although we are not close to obtaining a dichotomy concern...

Cooper, David A Cohen Martin C; Salamon, András Z

2011-01-01T23:59:59.000Z

106

Defining Human Failure Events for Petroleum Risk Analysis  

SciTech Connect

In this paper, an identification and description of barriers and human failure events (HFEs) for human reliability analysis (HRA) is performed. The barriers, called target systems, are identified from risk significant accident scenarios represented as defined situations of hazard and accident (DSHAs). This report serves as the foundation for further work to develop petroleum HFEs compatible with the SPAR-H method and intended for reuse in future HRAs.

Ronald L. Boring; Knut Øien

2014-06-01T23:59:59.000Z

107

Stratigraphic correlation of well logs using relational tree  

SciTech Connect

A heuristic waveform correlation scheme of well logs is based on a relational tree matching. Waveforms (well logs) are represented in a data structure known as a relational tree. A relational tree provides a complete description of the contextural relationships, as defined by peaks and valleys of the waveforms. The correlational scheme consists of a distance-measuring process using all possible peak attributes. First, a distance function is defined for any two nodes in terms of peak attributes. To find the best match for a given node of a given waveform, the authors measure the distance between the given node and each node from a predefined subset of the second waveform. The closest one is considered to be the matched node. The process is repeated for every node in the waveform. This quantitative correlation method has been implemented and tested with well logs from the Black Warrior basin, north Alabama. Results showed that the procedure has the capability of handling the thickening and thinning strata, as well as missing intervals.

Fang, J.H.; Tsay, F.; Lai, P.F.

1986-05-01T23:59:59.000Z

108

Geology and Geothermal Potential North of Wells, Nevada  

SciTech Connect

The geology north of Wells, Nevada is dominated by approximately 2150 m of Tertiary lacustrine siltstones and conglomerates. The sediments are cut by a high-angle, range-bounding fault and several associated step faults. Hydrothermal alteration and silicification are associated with the high-angle faults. Two ages of Quaternary sediments locally overlie the Tertiary sediments. Lithologic and well log analyses define numerous potential aquifers in the Tertiary sediments. The shallowest of these aquifers is overlain by a tuffaceous siltstone which appears to act as an aquitard for hot water moving through the aquifers. Three possible subsurface hydrologic models can be constructed to explain the spatial relationships of the thermal water near Wells. Cost-effective steps taken to expedite geothermal development in the area might include deepening of an existing domestic well in the city of Wells to at least 180 m in order to penetrate the tuffaceous siltstone aquitard, running borehole logs for all existing wells, and conducting a shallow temperature-probe survey in the Tertiary sediments north of Wells.

Jewell, Paul W.

1982-11-01T23:59:59.000Z

109

Completion report for Well Cluster ER-20-5  

SciTech Connect

The Well Cluster ER-20-5 drilling and completion project was conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS) in Nye County, Nevada. Its primary tasks include collecting geological, geophysical, hydrological, and water chemistry data from new and existing wells to define groundwater quality in addition to pathways and rates of groundwater migration. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented to obtain site-specific data about the nature and extent of migration of radionuclides that might have been produced by an underground nuclear explosion. Well Cluster ER-20-5 is the first near-field drilling project initiated at the NTS. This document presents construction data and summarizes the scientific data gathered during the drilling and well-installation phases for all three holes drilled at Well Cluster ER-20-5. Some of this information is preliminary and unprocessed, but was released so that drilling, geotechnical, well design, and completion data could be rapidly disseminated. Additional information about water levels, aquifer testing, and groundwater sampling will be reported after any of this work is performed. Any additional geologic and/or geophysical investigations conducted for this project is described in one or more analysis and interpretation reports. The lithologic and stratigraphic logs, however, are provided in final form.

NONE

1997-03-01T23:59:59.000Z

110

Health and Wellness Guide for Students Introduction  

E-Print Network (OSTI)

dimensions of health and wellness. The 7 dimensions are: Physical Wellness � Taking care of your body Wellness � Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness � Communicate with your partner if you have questions or concerns � Meet with a Health Care Provider on campus

111

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

Oil, Gas, • . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

112

Resilient Control Systems Practical Metrics Basis for Defining Mission Impact  

SciTech Connect

"Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

Craig G. Rieger

2014-08-01T23:59:59.000Z

113

Capping of Water Wells for Future Use  

E-Print Network (OSTI)

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

114

Functionalized Graphene Nanoroads for Quantum Well Device. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

115

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

116

EPA - UIC Well Classifications | Open Energy Information  

Open Energy Info (EERE)

Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

117

Defining How Botulinum Toxin Binds to the Synaptotagmin Receptor and  

NLE Websites -- All DOE Office Websites (Extended Search)

Defining How Botulinum Toxin Binds to Defining How Botulinum Toxin Binds to the Synaptotagmin Receptor and Creating Improved Therapeutics to Block Toxicity Botulinum neurotoxin (BoNT), the most potent toxin known, induces a potentially fatal paralytic condition known as "botulism". Botulism can occur when toxin-producing bacteria infect wounds (wound botulism) or the intestinal tract (infant/intestinal botulism), or following the ingestion of contaminated food in which toxin has been produced (food-borne botulism). In the USA, infant botulism represents the most common manifestation of the disease, where its prevalence has led to speculation of a link to sudden infant death syndrome. BoNTs are subdivided into seven distinct serotypes (types A through G), and an increasingly large number of subtypes continue to be identified within each serotype, highlighting the need to produce broad-spectrum therapeutics. BoNT variants are an important biochemical set of tools for understanding nerve function, and important therapeutic agents in current clinical use to provide relief to patients with a wide spectrum of neurological disorders.

118

Chapter 3 - Defining Requirements—Business, Data and Quality  

Science Journals Connector (OSTI)

Abstract Defining requirements creates the foundation of a successful business intelligence (BI) solution by documenting what will be built. The categories of requirements are: business, data and data quality, functional, regulatory and compliance, and technical. After extensive interviews with the business group, the development team uses these requirements to design, develop, and deploy BI systems. This is the most people-oriented process in BI development. It is where IT works most closely with business people and puts technology on the back burner. It can be a little tricky, because politics between groups may influence behavior, attitudes, and discussions in subtle ways. It may be a requirement to reverse engineer data shadow systems. Issues with people and politics may be out of the comfort zone of many in IT, resulting in land mines that can sink a BI project. Most BI failures are not related to technology shortcomings but rather to a failure of meeting expectations or of requirement surprises toward the end of the BI project. The result is projects that fall short of business needs, are late, and are over budget. You can justly blame poorly defined requirements for all these problems.

Rick Sherman

2015-01-01T23:59:59.000Z

119

Helicopter magnetic survey conducted to locate wells  

SciTech Connect

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

120

Better than well-being: the scope of transhumanism in the context of educational philosophy  

Science Journals Connector (OSTI)

Philosophers continue to raise the question of the nature of the good life. Educational philosophers in particular seek to define the nature of well-being in order to direct educational endeavors appropriately, and much has been said about the different ... Keywords: Augustine, education, philosophy, theology, transcendence, transhumanism, well-being

David Lewin; Anthony Edwards

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thank you for joining: 360WELLNESS  

E-Print Network (OSTI)

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

122

Track 4: Employee Health and Wellness  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

123

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

124

Re-defining the Empirical ZZ Ceti Instability Strip  

E-Print Network (OSTI)

We use the new ZZ Ceti stars (hydrogen atmosphere white dwarf variables; DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to re-define the empirical ZZ Ceti instability strip. This is the first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra acquired using the same instrument on the same telescope, and with consistent data reductions, for a statistically significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic temperatures and we find a narrow instability strip of width ~950K, from 10850--11800K. We question the purity of the DAV instability strip as we find several non-variables within. We present our best fit for the red edge and our constraint for the blue edge of the instability strip, determined using a statistical approach.

Anjum S. Mukadam; D. E. Winget; Ted von Hippel; M. H. Montgomery; S. O. Kepler; A. F. M. Costa

2004-05-28T23:59:59.000Z

125

DOE Joint Genome Institute: New Genomic Model Defines Microbes by  

NLE Websites -- All DOE Office Websites (Extended Search)

September 8, 2009 September 8, 2009 New Genomic Model Defines Microbes by Diet-Provides Tool for Tracking Environmental Change WALNUT CREEK, CA-In line with the U.S. Department of Energy (DOE) interest in characterizing the biotic factors involved in global carbon cycling, the DOE Joint Genome Institute (JGI) characterizes a diverse array of plants, microorganisms, and the communities in which they reside to inform options for reducing and stabilizing atmospheric greenhouse gases. Through a novel genomic approach detailed in the September 7 online edition and on the cover September 14 of the journal Proceedings of the National Academy of Sciences, an international team of scientists led by the University of New South Wales and the DOE JGI demonstrates how the microbial diversity of the oceans can be analyzed without necessarily

126

New well control companies stress planning, engineering  

SciTech Connect

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

127

E-Print Network 3.0 - approach defines common Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the product family optimization literature, commonality metrics are used to define the multi... defined for binary formulations (common not common), is relaxed to the continuous...

128

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

129

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

130

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

131

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

132

Development of a mini 3D cell culture system using well defined nickel grids for the investigation of cell scaffold interactions  

Science Journals Connector (OSTI)

The aim of this research was to examine the organisational behaviour of skin cells in 3D culture using simple nickel grids of varying strut spacing. These allowed an ... span and fill in open spaces in these grids

Tao Sun; Rod Smallwood; Sheila MacNeil

2009-07-01T23:59:59.000Z

133

Electrodeposition of ultrathin Pd, Co and Bi films on well-defined noble-metal electrodes: studies by ultrahigh vacuum-electrochemistry (UHV-EC)  

E-Print Network (OSTI)

The inherent interfacial properties of Pd can be dramatically altered in many ways. Alloy formation is a classical strategy of fusing together two or more metals. Alloying can be typically accomplished either by thermal treatment [6... is not unusual. A caveat to this preparative strategy is the occurrence of surface segregation upon equilibration [8]. The component with the lowest surface free-energy floats to the surface; consequently, the intended bulk composition significantly varies from...

Baricuatro, Jack Hess L

2006-10-30T23:59:59.000Z

134

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

135

RFI Well Integrity 06 JUL 1400  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

136

Well Owner's Guide To Water Supply  

E-Print Network (OSTI)

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

137

Essays on Well-Being in Japan.  

E-Print Network (OSTI)

??This dissertation is comprised of four papers on well-being in Japan and aims to examine three important measures of well-being: perceptions of job insecurity, self-reported… (more)

Kuroki, Masanori

2011-01-01T23:59:59.000Z

138

Method for the magnetization of well casing  

SciTech Connect

A well casing is magnetized by traversing an internal magnetizer along and within the well casing while periodically reversing the direction of the magnetic field of the magnetizer to create a plurality of magnetic flux leakage points along the well casing.

Hoehn, G.L. Jr.

1984-08-14T23:59:59.000Z

139

Calculator program aids well cost management  

SciTech Connect

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

140

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 11–12% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (16–20). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Defining nuclear security in the 21st century  

SciTech Connect

A conference devoted to Reducing the Risks from Radioactive and Nuclear Materials presupposes that such risks exist. Few would disagree, but what are they? While debate on the nature and severity of risks associated with nuclear energy will always remain, it is easy to define a set of risks that are almost universally acknowledged. These include: (1) Nuclear warfare between states; (2) Continued proliferation of nuclear weapons and weapons-grade nuclear materials to states and non-state actors; (3) Terrorists or non-state actor acquisition or use nuclear weapons or nuclear materials; (4) Terrorists or non-state actors attack on a nuclear facility; and (5) Loss or diversion of nuclear weapons or materials by a state to unauthorized uses. These are listed in no particular order of likelihood or potential consequence. They are also very broadly stated, each one could be broken down into a more detailed set of discrete risks or threats. The fact that there is a strong consensus on the existence of these risks is evidence that we remain in an era of nuclear insecurity. This becomes even clearer when we note that most major trends influencing the probability of these risks continue to run in a negative direction.

Doyle, James E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

142

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

143

Regulations of Wells (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations of Wells (Florida) Regulations of Wells (Florida) Regulations of Wells (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water management districts

144

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

145

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

146

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

147

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

148

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

149

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

150

Hawaii Well Construction & Pump Installation Standards Webpage...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage provides...

151

SAFETY & WELLNESS Annual Report 2012-2013  

E-Print Network (OSTI)

HEALTH, SAFETY & WELLNESS Annual Report 2012-2013 #12;HEALTH, SAFETY & WELLNESS UPDATE ON SAFETY PROGRAMS The professionals working in the Health and Safety team and Rehabilitation Services group have had a very successful year in supporting individuals to take accountability for their own safety and health

Sinnamon, Gordon J.

152

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

153

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

154

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

155

Geopressured-geothermal well activities in Louisiana  

SciTech Connect

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

156

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells |  

Open Energy Info (EERE)

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-f - Water Well NOI for Replacement or Additional Wells 19-WA-f - Water Well NOI for Replacement or Additional Wells.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.44.100 Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well in a different location than a previous well, drill an additional well at an existing location, or drill a replacement well at the same

157

Production-systems analysis for fractured wells  

SciTech Connect

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

158

Completion Report for Well ER-EC-8  

SciTech Connect

Well ER-EC-8 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 129.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 609.6 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 98.4 meters, 24 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on evaluation of composite drill cuttings collected every 3 meters, and 20 sidewall samples taken at various depths below 157.9 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. Drilling began in Tertiary-age tuff of the Thirsty Canyon Group, and penetrated tuffs of the Beatty Wash Formation, tuff of Buttonhook Wash, and the upper portion of the Ammonia Tanks Tuff. The geologic interpretation of data from this well helps define the location of the western margin of the Timber Mountain caldera complex in the southwestern Nevada volcanic field. Geologic and hydrologic data from the well will aid in development of models to predict groundwater flow and contaminant migration within and near the Nevada Test Site.

Bechtel Nevada

2004-10-01T23:59:59.000Z

159

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

160

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

162

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

163

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

164

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

165

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

166

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

167

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

168

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

169

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

170

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

171

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

172

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

173

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

174

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

175

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

176

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

177

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

178

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

179

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

180

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

182

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

183

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

184

Discussion of productivity of a horizontal well  

SciTech Connect

The authors of this paper has been using several of the analytical equations and numerical simulation to evaluate the productivity of horizontal wells that have near-wellbore damage. Through this evaluation, the author found that here are inconsistencies in the way the skin factor is introduced into the analytical equations. This discussion shows the corrections needed in various analytical equations to obtain consistency with numerical simulation. In the numerical simulation shown here, skin factor is simulated by assignment of a reduced permeability to nodes near the well. The author would appreciate any comments Babu and Odeh could make on this aspect of horizontal wells.

Gilman, J.R. (Marathon Oil Company (US))

1991-02-01T23:59:59.000Z

185

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

186

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

187

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

188

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

189

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

190

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

191

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Wellness & Additional Benefits | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at ORNL Working at ORNL Benefits Wellness and Other Incentives View Open Positions View Postdoctoral Positions Create A Profile Internal applicants please apply here View or update your current application or profile. External applicants Internal applicants Internet Explorer Browser preferred for ORNL applicants. Chrome is not currently supported. For more information about browser compatibility please refer to the FAQs. If you have difficulty using the online application system or need an accommodation to apply due to a disability, please email ORNLRecruiting@ornl.gov or phone 1-866-963-9545 Careers Home | ORNL | Careers | Working at ORNL | Wellness and Other Incentives SHARE Wellness & Additional Benefits Wellness Program Employees have many opportunities to maintain and improve their health

194

6981 well-provided recreation facility [n  

Science Journals Connector (OSTI)

recr. (Well-provisioned recreation installation and equipment);s instalación [f] de recreo intensivo (Equipamiento recreacional de gran variedad y de gran calidad);f équipement [m] de loisirs lourd (...

2010-01-01T23:59:59.000Z

195

Two-phase flow in horizontal wells  

SciTech Connect

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

196

Well Record or History | Open Energy Information  

Open Energy Info (EERE)

History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took Effect 2013...

197

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

198

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

199

Polariton dispersion of periodic quantum well structures  

Science Journals Connector (OSTI)

We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton mod...

A. V. Mintsev; L. V. Butov; C. Ell; S. Mosor…

2002-11-01T23:59:59.000Z

200

Geological well log analysis. Third ed  

SciTech Connect

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California Water Well Standards | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: California Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI...

202

Pre-execution Security Policy Assessment of Remotely Defined BPEL-Based Grid Processes  

Science Journals Connector (OSTI)

In this paper results from research on security policy enforcement for cross-domain defined business ... in BPEL are transferred to the field of Grid computing, where BPEL is used to define Grid processes. In ord...

Klaus-Peter Fischer; Udo Bleimann…

2007-01-01T23:59:59.000Z

203

Productivity and Injectivity of Horizontal Wells  

SciTech Connect

The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

1999-11-16T23:59:59.000Z

204

Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Final report  

SciTech Connect

The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.

Menzie, D.E.

1995-05-01T23:59:59.000Z

205

Project management improves well control events  

SciTech Connect

During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

1995-07-10T23:59:59.000Z

206

Snubdrilling a new well in Venezuela  

SciTech Connect

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

207

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

208

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

209

GRR/Section 4-NV-c - Monitoring Well Waiver | Open Energy Information  

Open Energy Info (EERE)

c - Monitoring Well Waiver c - Monitoring Well Waiver < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-c - Monitoring Well Waiver 04NVCMonitoringWellWaiver (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.148 Monitoring Well defined NAC 534.441 Waiver to drill monitoring well Triggers None specified Click "Edit With Form" above to add content 04NVCMonitoringWellWaiver (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the general drilling requirements for good cause shown. One common form of

210

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

212

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

213

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

214

GeoWells International | Open Energy Information  

Open Energy Info (EERE)

GeoWells International GeoWells International Jump to: navigation, search Name GeoWells International Place Nairobi, Kenya Sector Geothermal energy, Solar, Wind energy Product Kenya-based geothermal driller. The company also supplies and installs wind and solar units. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

216

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

217

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

218

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

219

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

220

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

222

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

223

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

224

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

225

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

226

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

227

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

228

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

229

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

230

Well-test data from geothermal reservoirs  

SciTech Connect

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

231

Apparatus for stringing well pipe of casing  

SciTech Connect

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

232

Apparatus for rotating and reciprocating well pipe  

SciTech Connect

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

233

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

234

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

235

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

236

Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples  

SciTech Connect

Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy?s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to li

Shine, E. P.; Poirier, M. R.

2013-10-29T23:59:59.000Z

237

Resonator-quantum well infrared photodetectors  

SciTech Connect

We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

Choi, K. K., E-mail: kwong.k.choi.civ@mail.mil; Sun, J.; Olver, K. [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)] [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A. [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2013-11-11T23:59:59.000Z

238

Economic evaluation of smart well technology  

E-Print Network (OSTI)

. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a...

Al Omair, Abdullatif A.

2007-09-17T23:59:59.000Z

239

ATHLETICS AND RECREATION Health, Wellness and Recreation  

E-Print Network (OSTI)

ATHLETICS AND RECREATION Health, Wellness and Recreation 5 July 1.00pm ­ 4.00pm Attendees: Louise and recreation for UBC. Anticipating this `work in progress' outcome from our initial discussion, the approach and recreation as it is currently structured? 2 Closer attention to level/degree of competition vs other drivers

Handy, Todd C.

240

Well performance under solutions gas drive  

SciTech Connect

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Flow tests of the Willis Hulin well  

SciTech Connect

The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

1992-02-01T23:59:59.000Z

242

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...oil and natural gas wells passing through drinking-water aquifers (1–4). In PNAS, Ingraffea et al. (5) examine one of...Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon...

Robert B. Jackson

2014-01-01T23:59:59.000Z

243

T2WELL/ECO2N  

Energy Science and Technology Software Center (OSTI)

002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water  http:..esd.lbl.gov/tough/licensing.html 

244

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

245

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

246

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

247

Single-Well And Cross-Well Seismic (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic (Majer, 2003) Single-Well And Cross-Well Seismic (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well And Cross-Well Seismic (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Single-Well And Cross-Well Seismic Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new

248

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology,  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis AMP Resources, LLC drilled one of the first operating wells, Industrial Production Well PW-2, in the spring of 2005 under geothermal project area permit #568. Notes The well was completed to a depth of 143.6 m and a peak temperature of 145°C, as indicated by static temperature surveys. Wellhead temperatures at PW-2 were 140°C at a flow rate of 157.7 liters per minute, and no

249

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network (OSTI)

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

250

Lalamilo Wells Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Lalamilo Wells Wind Farm Facility Lalamilo Wells Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hawaiian Electric Light Co. Developer Lalamilo Ventures Energy Purchaser Hawaii Electric Light Co. Location Big Island HI Coordinates 19.9875°, -155.765556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.9875,"lon":-155.765556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Lost Circulation Experience in Geothermal Wells  

SciTech Connect

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

252

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

253

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

254

Recent developments in well test analysis  

SciTech Connect

The analysis of pressure transient data in terms of model parameter values is part of the reservoir description process and must be regarded as complementary to other branches of this activity. The advantage of transient pressure data is the depth of investigation achieved by the propagating pressure disturbance. However, the problem of an interpretation`s lack of uniqueness always exists. The objective of well test analysis is to help increase the understanding of the reservoir structure so that ultimate recovery can be improved. This pressure transient analysis review summarizes the major developments that have occurred since the derivative technique was introduced in 1982. This is the first in a series that discusses recent and future developments in well test analysis.

Stewart, G. [Edinburgh Petroleum Services Ltd. (United Kingdom)]|[Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-08-01T23:59:59.000Z

255

Boise geothermal injection well: Final environmental assessment  

SciTech Connect

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

256

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

257

Gas well operation with liquid production  

SciTech Connect

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

258

Energy loss rate in disordered quantum well  

SciTech Connect

We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.

Tripathi, P.; Ashraf, S. S. Z. [Centre of Excellence in Nanomaterials, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Hasan, S. T. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002 (India); Sharma, A. C. [Physics Department, Sibli National College, Azamgarh-276128 (India)

2014-04-24T23:59:59.000Z

259

Program solves for gas well inflow performance  

SciTech Connect

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

260

Method of drilling and casing a well  

SciTech Connect

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vibration of Generalized Double Well Oscillators  

E-Print Network (OSTI)

We have applied the Melnikov criterion to examine a global homoclinic bifurcation and transition to chaos in a case of a double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having a negative square term and positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent $q > 2$. We have also used a fractional damping term with an arbitrary power $p$ applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction $p \\to 0$ to turbulent resistance phenomena $p=2$. Using perturbation methods we have found a critical forcing amplitude $\\mu_c$ above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller $p$ satisfying an exponential scaling low. The critical amplitude $\\mu_c$ as an exponential function of $p$. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude $\\mu_c$.

Grzegorz Litak; Marek Borowiec; Arkadiusz Syta

2006-10-20T23:59:59.000Z

262

Remote down-hole well telemetry  

DOE Patents (OSTI)

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

263

Predicted and actual productions of horizontal wells in heavy-oil fields  

Science Journals Connector (OSTI)

This paper discusses the comparison of predicted and actual cumulative and daily oil production. The predicted results were obtained from the use of Joshi's equation, wherein, the effects of anisotropy and eccentricity were included. The cumulative production obtained from the use of equations developed by Borisov, Giger, Renard and Dupuy resulted in errors in excess of 100%, thus, they were not considered applicable for predicting cumulative and daily flows of heavy oils in horizontal wells. The wells considered in this analysis varied from 537 to 1201 metres with corresponding well bores of 0.089 to. 0.110 m. Using Joshi's equation, the predicted cumulative oil-production was within a 20% difference for up to 12 months of production for long wells and up to 24 months for short wells. Short wells were defined as those being under 1000 m.

Peter Catania

2000-01-01T23:59:59.000Z

264

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

265

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

266

Treating paraffin deposits in producing oil wells  

SciTech Connect

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

267

Apparatus for use in rejuvenating oil wells  

SciTech Connect

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

268

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to  

Open Energy Info (EERE)

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This "geothermal central plant" concept will provide ground source loop energy as a utility to be shared by the academic and residential buildings on the soon-to-be-constructed campus.

269

Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Edmiston & Benoit, 1984) Edmiston & Benoit, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare

270

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

271

Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

Wilborn, Bill; Knapp, Kathryn [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States)] [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States); Farnham, Irene; Marutzky, Sam [Navarro-Intera (United States)] [Navarro-Intera (United States)

2013-07-01T23:59:59.000Z

272

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Wilborn, Bill [NNSA/NFO, Nevada Site Office (United States); Farnham, Irene [Navarro-Interra LLC, Las Vegas (United States); Marutzky, Sam [Navarro-Interra LLC, Las Vegas (United States); Knapp, Kathryn [NNSA/NFO, Nevada Site Office (United States)

2013-02-24T23:59:59.000Z

273

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

274

Third invitational well-testing symposium: well testing in low permeability environments  

SciTech Connect

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

275

Well testing in coalbed methane (CBM) wells: An environmental remediation case history  

SciTech Connect

In 1993, methane seepage was observed near coalbed methane wells in southwestern Colorado. Well tests were conducted to identify the source of the seeps. The well tests were complicated by two-phase flow, groundwater flow, and gas readsorption. Using the test results, production from the area was simulated. The cause of the seeps was found to be depressuring in shallow coal near the surface, and a remediation plan using water injection near the seep area was formulated.

Cox, D.P.; Young, G.B.C.; Bell, M.J.

1995-12-31T23:59:59.000Z

276

Well injection valve with retractable choke  

SciTech Connect

An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

Pringle, R.E.

1986-07-22T23:59:59.000Z

277

Productivity and Injectivity of Horizontal Wells  

SciTech Connect

A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

1997-04-29T23:59:59.000Z

278

E-Print Network 3.0 - astrophotonic spectroscopy defining Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: impedance spectroscopy technique to characterize supercapacitors. We define its metrology 7 and we present... to use two complementary methods: impedance spectroscopy...

279

Spatially indirect excitons in coupled quantum wells  

SciTech Connect

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

Lai, Chih-Wei Eddy

2004-03-01T23:59:59.000Z

280

Hydrologic Tests at Characterization Well R-14  

SciTech Connect

Well R-14 is located in Ten Site Canyon and was completed at a depth of 1316 ft below ground surface (bgs) in August 2002 within unassigned pumiceous deposits located below the Puye Formation (fanglomerate). The well was constructed with two screens positioned below the regional water table. Individual static depths measured for each isolated screen after the Westbay{trademark} transducer monitoring system was installed in mid-December 2002 were nearly identical at 1177 ft bgs, suggesting only horizontal subsurface flow at this time, location, and depth. Screen 1 straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous deposits. Screen 2 is located about 50 ft deeper than screen 1 and is only within the unassigned pumiceous deposits. Constant-rate, straddle-packer, injection tests were conducted at screen 2, including two short tests and one long test. The short tests were 1 minute each but at different injection rates. These short tests were used to select an appropriate injection rate for the long test. We analyzed both injection and recovery data from the long test using the Theis, Theis recovery, Theis residual-recovery, and specific capacity techniques. The Theis injection, Theis recovery, and specific capacity methods correct for partial screen penetration; however, the Theis residual-recovery method does not. The long test at screen 2 involved injection at a rate of 10.1 gallons per minute (gpm) for 68 minutes and recovery for the next 85 minutes. The Theis analysis for screen 2 gave the best fit to residual recovery data. These results suggest that the 158-ft thick deposits opposite screen 2 have a transmissivity (T) equal to or greater than 143 ft{sup 2}/day, and correspond to a horizontal hydraulic conductivity (K) of at least 0.9 ft/day. The specific capacity method yielded a T value equal to or greater than 177 ft{sup 2}/day, and a horizontal K of at least 1.1 ft/day. Results from the injection and recovery phases of the test at screen 2 were similar to those from the residual-recovery portion of the test, but were lower by a factor of about two. The response to injection was typical for a partially penetrating well screen in a very thick aquifer.

S. McLin; W. Stone

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PSA_Well_Completion_Report.book  

Office of Legacy Management (LM)

Restoration Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Nevada Environmental Restoration Project Well Completion Report for Corrective Action Unit 447, Project Shoal Area Churchill County, Nevada Revision No.: 0 September 2006 Approved for public release; further dissemination unlimited. DOE/NV--1166 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge

282

CNTA_Well_Installation_Report.book  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration Nuclear Security Administration Nevada Site Office Environmental Restoration Division Nevada Environmental Restoration Project Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye County, Nevada Revision No.: 0 January 2006 Approved for public release; further dissemination unlimited. DOE/NV--1102 Uncontrolled When Printed Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

283

New multilateral well architecture in heterogeneous reservoirs  

E-Print Network (OSTI)

the drilling of the main horizontal well and it is cemented together with the main horizontal section. The pressure and structural integrity of these junctions is critical requirement. This integrity does not have to be compromised by any additional... with 15 horizontal lateral model Case 1 Case 6 CMG Results Eclipse Results CMG Results K v/Kh J STBD/psi J STBD/psi J(Case6)/J(Case 1) J STBD/psi J(Case6)/J(Case1) 1 13.85 12.95 93.5% 13.06 94% 0.1 5.73 5.14 89.7% 5.37 93.7% 0.01 1.93 1...

Jia, Hongqiao

2004-09-30T23:59:59.000Z

284

Remote system for subsea wells tested  

SciTech Connect

At its experimental submarine station in the Grondin field offshore the West African state of Gabon, Societe Nationale Elf-Aquitaine has run a series of inspection, repair, and maintenance tests on two producing wells using a robot controlled from the surface. Designed for water depths beyond the range of divers, the TIM robot has a pair of manipulator arms and a rotating telescopic crane installed on a 14 by 7.6 ft carriage. Five television cameras fitted at various spots on the robot allow surface operators to direct TIM in such tasks as (1) installing a jumper pipe between a Christmas tree and the manifold, (2) connecting a jumper electric cable and hydraulic hose, (3) locally operating a safety valve, and (4) removing a guide line. During 104 hr of seabed experience, TIM outperformed divers, particularly in jobs requiring great strength.

Vielvoye, R.

1981-05-04T23:59:59.000Z

285

Kuwait poised for massive well kill effort  

SciTech Connect

This paper reports that full scale efforts to extinguish Kuwait's oil well fires are to begin. The campaign to combat history's worst oil fires, originally expected to begin in mid-March, has been hamstrung by logistical problems, including delays in equipment deliveries caused by damage to Kuwait's infrastructure. Meantime, production from a key field off Kuwait--largely unaffected by the war--is expected to resume in May, but Kuwaiti oil exports will still be hindered by damaged onshore facilities. In addition, Kuwait is lining up equipment and personnel to restore production from its heavily damaged oil fields. Elsewhere in the Persian Gulf, Saudi Arabia reports progress in combating history's worst oil spills but acknowledges a continuing threat.

Not Available

1991-04-08T23:59:59.000Z

286

Drilling of wells with top drive unit  

SciTech Connect

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

287

Catching sparks from well-forged neutralinos  

Science Journals Connector (OSTI)

In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, ?+??+?+ET. Unlike traditional electroweakino searches, which perform best when m?˜2,30?m?˜10,m?˜±?m?˜10>mZ, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut m???mZ effectively removes on shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for “well-tempered” scenarios, where the dark matter relic abundance is achieved with interelectroweakino splittings of ?20–70??GeV. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter—a spectrum we dub well forged. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with m?˜2,30?190??GeV and m?˜2,30?m?˜10?30??GeV can be uncovered after roughly 600??fb?1 of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.

Joseph Bramante; Antonio Delgado; Fatemeh Elahi; Adam Martin; Bryan Ostdiek

2014-11-11T23:59:59.000Z

288

EPA and the Army Corps' Proposed Rule to Define "Waters of the United States"  

E-Print Network (OSTI)

EPA and the Army Corps' Proposed Rule to Define "Waters of the United States" Claudia Copeland.crs.gov R43455 #12;EPA and the Army Corps' Proposed Rule to Define "Waters of the United States regulatory definition of "waters of the United States" consistent with legal rulings--especially the Supreme

Gilbes, Fernando

289

Risk measurement and management of defined benefit pension schemes: a stochastic approach  

Science Journals Connector (OSTI)

......measurement and management of defined benefit...a stochastic approach S. Haberman...of Actuarial Science and Statistics...IMA Journal of Management Mathematics...measurement and management of defined benefit...a stochastic approach S. HABERMAN...of Actuarial Science and Statistics......

S. Haberman; M. Z. Khorasanee; B. Ngwira; I. D. Wright

2003-04-01T23:59:59.000Z

290

Linear Transformations In this Chapter, we will define the notion of a linear transformation between  

E-Print Network (OSTI)

Chapter 6 Linear Transformations In this Chapter, we will define the notion of a linear transformation between two vector spaces V and W which are defined over the same field and prove the most basic transformations is equivalent to matrix theory. We will also study the geometric properties of linear

Carrell, Jim

291

The Greening of Government: A Study of How Governments Define the Green Agenda  

E-Print Network (OSTI)

The Greening of Government: A Study of How Governments Define the Green Agenda Executive Summary Institute for Electronic Government, IBM Corporation Page 2 This page is intentionally blank. In the green Corporation Page 3 Foreword What are governments doing to `green' themselves? How do they define their green

292

Flow in geothermal wells: Part III. Calculation model for self-flowing well  

SciTech Connect

The theoretical model described predicts the temperature, pressure, dynamic dryness fraction, and void fraction along the vertical channel of two-phase flow. The existing data from operating wells indicate good agreement with the model. (MHR)

Bilicki, Z.; Kestin, J.; Michaelides, E.E.

1981-06-01T23:59:59.000Z

293

Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3 D Seismic Data  

E-Print Network (OSTI)

the permeability heterogeneity of the target reservoir by integrating core, well log and 3 D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

Song, Qian

2013-04-29T23:59:59.000Z

294

Well test imaging - a new method for determination of boundaries from well test data  

SciTech Connect

A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

Slevinsky, B.A.

1997-08-01T23:59:59.000Z

295

Well completion report on installation of horizontal wells for in-situ remediation tests  

SciTech Connect

A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

1989-08-01T23:59:59.000Z

296

ARSENIC IN PRIVATE WELLS IN NH YEAR 1 FINAL REPORT  

E-Print Network (OSTI)

performed geospatial analysis of the well water arsenic estimates and survey results and produced the maps .................................................................................................. 7 Well water quality...................................................................................................... 7 Well water testing

Bucci, David J.

297

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

Area Exploration Technique Well Log Data Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells...

298

GRR/Section 20-HI-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-HI-a - Well Abandonment Process 20-HI-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-HI-a - Well Abandonment Process 20HiAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Commission on Water Resource Management Triggers None specified Click "Edit With Form" above to add content 20HiAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All wells and test borings as defined in these Standards must be properly abandoned and permanently sealed to protect the ground-water resources of

299

Development and application of a transient well index  

E-Print Network (OSTI)

transient well index and the Peaceman well index were compared to analytical solutions. A good match was observed between simulated well tests using the proposed transient well index and the corresponding analytical solutions, even on coarse grids (e...

Yildiz, Tabiat Tan

2012-06-07T23:59:59.000Z

300

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network (OSTI)

or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated...

Valdes Machado, Alejandro

2013-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cement fatigue and HPHT well integrity with application to life of well prediction  

E-Print Network (OSTI)

In order to keep up with the world’s energy demands, oil and gas producing companies have taken the initiative to explore offshore reserves or drill deeper into previously existing wells. The consequence of this, however, has to deal with the high...

Ugwu, Ignatius Obinna

2009-05-15T23:59:59.000Z

302

Segmentation of complex geophysical structures with well Running title: Image segmentation with well data.  

E-Print Network (OSTI)

with well data. Authors: Christian Gout�, and Carole Le Guyader. Complete affiliation: � Universit�e de 96822-2273 , USA. chris gout@cal.berkeley.edu : INSA de Rennes 20 Avenue des Buttes de Co�esmes CS 14315 35043 Rennes, France. carole.le-guyader@insa-rennes.fr Corresponding author : Christian Gout

Boyer, Edmond

303

Colorado - C.R.S. 40-1-103 - Public Utility Defined | Open Energy...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 40-1-103 - Public Utility DefinedLegal Abstract This section provides the...

304

767JUNE 2003AMERICAN METEOROLOGICAL SOCIETY | ositive lightning discharges (flashes) are defined  

E-Print Network (OSTI)

767JUNE 2003AMERICAN METEOROLOGICAL SOCIETY | P ositive lightning discharges (flashes) are defined (flashes) that transfer to ground both positive and negative charges are termed bipolar lightning common than positive lightning. Currently available observations of bipolar lightning flashes, which can

Florida, University of

305

S98-1 Recycling Papers and Defining Plagiarism Legislative History  

E-Print Network (OSTI)

S98-1 Recycling Papers and Defining Plagiarism Legislative History: At its meeting of February 2 for the stated purpose of storing submitted work in a database and using the database solely for the intended

Gleixner, Stacy

306

Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing  

Science Journals Connector (OSTI)

The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies ... of responsiveness and reliability of SDN for remote 3D printing and control processes...

Dongkyun Kim; Joon-Min Gil

2014-12-01T23:59:59.000Z

307

E-Print Network 3.0 - aromatase gene defines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

gene defines Page: << < 1 2 3 4 5 > >> 1 ORIGINAL ARTICLE Aromatase mRNA in the Brain of Adult Green Anole Lizards: Effects of Summary: to previous work using Nissl-stained...

308

Remote control digital photography and metrology are combined to accurately define optical efficiency  

E-Print Network (OSTI)

Remote control digital photography and metrology are combined to accurately define optical, sag from the weight of the heat transfer fluid and the tube itself, or change in the structure over

309

DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Proceedings from the U.S. Department of Energy Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications held January 27-28, 2015, at the National Renewable Energy Laboratory in Golden, Colorado.

310

Energy level spectroscopy of InSb quantum wells using quantum-well LED emission  

Science Journals Connector (OSTI)

We have investigated the low-temperature optical properties of InSb quantum-well (QW) light-emitting diodes, with different barrier compositions, as a function of well width. Three devices were studied: QW1 had a 20 nm undoped InSb quantum well with a barrier composition of Al0.143In0.857Sb, QW2 had a 40 nm undoped InSb well with a barrier composition of Al0.077In0.923Sb, and QW3 had a 100 nm undoped InSb well with a barrier composition of Al0.025In0.975Sb. For QW1, the signature of two transitions (CB1-HH1 and CB1-HH2) can be seen in the measured spectrum, whereas for QW2 and QW3 the signature of a large number of transitions is present in the measured spectra. In particular transitions to HH2 can be seen, the first time this has been observed in AlInSb/InSb heterostructures. To identify the transitions that contribute to the measured spectra, the spectra have been simulated using an eight-band k.p calculation of the band structure together with a first-order time-dependent perturbation method (Fermi golden rule) calculation of spectral emittance, taking into account broadening. In general there is good agreement between the measured and simulated spectra. For QW2 we attribute the main peak in the experimental spectrum to the CB2-HH1 transition, which has the highest overall contribution to the emission spectrum of QW2 compared with all the other interband transitions. This transition normally falls into the category of “forbidden transitions,” and in order to understand this behavior we have investigated the momentum matrix elements, which determine the selection rules of the problem.

T. G. Tenev; A. Palyi; B. I. Mirza; G. R. Nash; M. Fearn; S. J. Smith; L. Buckle; M. T. Emeny; T. Ashley; J. H. Jefferson; C. J. Lambert

2009-02-02T23:59:59.000Z

311

BETTI NUMBERS OF SEMIALGEBRAIC SETS DEFINED BY QUANTIFIER-FREE FORMULAE  

E-Print Network (OSTI)

BETTI NUMBERS OF SEMIALGEBRAIC SETS DEFINED BY QUANTIFIER-FREE FORMULAE ANDREI GABRIELOV, NICOLAI that the sum of Betti numbers of X is less than O(k2d)n. Let an algebraic set X Rn be defined by polynomial [12] provide the upper bound b(X) d(2d - 1)n-1 for the sum of Betti numbers b(X) of X (with respect

Gabrielov, Andrei

312

Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume II. Well test data. Final report  

SciTech Connect

The following are included in appendices: field test data, field non-edited data, raw data, tentative method of testing for hydrogen sulfide in natural gas using length of stain tubes, combined sample log, report on reservoir fluids study, well test analysis, analysis of solids samples from primary zone, chemical analysis procedures, scale and corrosion evaluation, laboratory report on scale deposits, and sand detector strip charts. (MHR)

Not Available

1981-01-01T23:59:59.000Z

313

Waste Management Area (WMA) and supplemental well (SPW) guidance. Final report  

SciTech Connect

The purpose of the document is to provide guidance to RCRA Permit Writers and other interested parties regarding the implementation of WMA and SPW approaches according to the proposed amendments to the Subpart F Rule. The document will assist permit writers in defining single or multiple WMAs and includes a description of the proposed criteria to be considered when defining WMAs. The document also provides guidance for identifying the need for SPWs, describes the difference between SPWs and POC wells, and explains the use of SPWs for corrective action. Real and hypothetical cases are presented as examples throughout the document. Appendix I contains proposed modifications to the model permit language to be used in implementing the WMA and SPW approaches. Appendix II compares and contrasts the objectives and uses of WMAs and Corrective Action Management Units (CAMUs).

Not Available

1993-06-01T23:59:59.000Z

314

Use of an acoustic borehole televiewer to investigate casing corrosion in geothermal wells  

SciTech Connect

Corrosion of well and surface equipment due to the presence of hot, corrosive brines is one of the major problems facing geothermal operators. For wellbore casing, this problem is complicated by the fact that in-place inspection is difficult at best. In an attempt to improve this situation, a prototype acoustic borehole televiewer designed to operate in geothermal wells was used to study the corrosion damage to casing in three commercial wells. The results of this experiment were promising. The televiewer returns helped to define areas of major corrosion damage and to indicate the extent of the damage. This paper briefly discusses the corrosion problem, describes the acoustic borehole televiewer, and then summarizes the results of the field test of the televiewer's capability for investigating corrosion.

Carson, C.C.; Bauman, T.

1986-03-01T23:59:59.000Z

315

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents (OSTI)

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-04-29T23:59:59.000Z

316

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents (OSTI)

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2013-01-08T23:59:59.000Z

317

RAPID/Geothermal/Well Field/Colorado | Open Energy Information  

Open Energy Info (EERE)

the Use of Wells, "Geothermal Well" means a well that is constructed for the purpose of exploration, use of a geothermal resource, or reinjection of a geothermal fluid. A permit...

318

Property:WellFieldParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Name WellFieldParasiticConsump Property Type Number Description Well-Field Parasitic Consumption (MWh). Pages using the property "WellFieldParasiticConsump" Showing 2 pages using...

319

Economic viability of multiple-lateral horizontal wells  

E-Print Network (OSTI)

Horizontal wells are gaining popularity throughout the petroleum industry as a means to increase well productivity and enhance incremental economics. Horizontal wells provide greater reservoir exposure and are useful in intersecting additional pay...

Smith, Christopher Jason

2012-06-07T23:59:59.000Z

320

Masco Home Services/WellHome | Open Energy Information  

Open Energy Info (EERE)

WellHome Jump to: navigation, search Name: Masco Home ServicesWellHome Place: Taylor, MI Website: http:www.mascohomeserviceswe References: Masco Home ServicesWellHome1...

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Science and Technology for Sustainable Well-Being  

Science Journals Connector (OSTI)

...to well-being and sustainability, before turning...Well-Being and Sustainability Human well-being rests on a foundation of three pillars, the preservation...to the challenge of sustainability for ocean systems and...

John P. Holdren

2008-01-25T23:59:59.000Z

322

UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)  

SciTech Connect

A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

David Lim

2014-12-19T23:59:59.000Z

323

UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)  

DOE Data Explorer (OSTI)

A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

David Lim

324

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

well Deep Blue No. 1. Notes Well log data was collected in Deep Blue No. 1 upon its completion. The logging was conducted by Welaco Well Analysis Corporation. Temperature,...

325

RAPID/Geothermal/Well Field/Utah | Open Energy Information  

Open Energy Info (EERE)

if they meet the requirements of Section 73-3-8, they will be approved by the State Engineer on a well-to-well basis or as a group of wells which comprise an operating unit and...

326

Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a second binary geothermal power...

327

RAPID/Geothermal/Well Field/California | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit Agency: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Drilling & Well Field Permit Before drilling can commense,...

328

Hydraulics and Well Testing of Engineered Geothermal Reservoirs...  

Open Energy Info (EERE)

Hydraulics and Well Testing of Engineered Geothermal Reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydraulics and Well Testing of...

329

Sustainability Assessment of Workforce Well-Being and Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability Assessment of Workforce Well-Being and Mission Readiness Sustainability Assessment of Workforce Well-Being and Mission Readiness Presentation by Dr. Jodi Jacobsen,...

330

Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP)...

331

NMOSE-Proof of Completion of Well | Open Energy Information  

Open Energy Info (EERE)

Citation NMOSE-Proof of Completion of Well (2014). Retrieved from "http:en.openei.orgwindex.php?titleNMOSE-ProofofCompletionofWell&oldid727378" Categories: References...

332

ELIMINATING THE WELLBORE RESPONSE IN TRANSIENT WELL TEST ANALYSIS  

E-Print Network (OSTI)

Steam-Water Flow in Geothermal Wells", J. Pet. Tech. , ~, p.Storage Effects in Geothermal Wells," Soc. Pet. Eng. J. ,

Miller, C.W.

2014-01-01T23:59:59.000Z

333

Definition: Stepout-Deepening Wells | Open Energy Information  

Open Energy Info (EERE)

Stepout-Deepening Wells Stepout-Deepening Wells Jump to: navigation, search Dictionary.png Stepout-Deepening Wells A well drilled at a later time over remote, undeveloped portions of a partially developed continuous reservoir rock. A deepening well is reentering a well and drilling to a deeper reservoir. Often referred to as an "infield exploration well" in the oil and gas industry.[1] Also Known As delayed development well References ↑ http://www.answers.com/topic/step-out-well Ste LikeLike UnlikeLike You like this.Sign Up to see what your friends like. p-out-well: a well drilled in the expected extent of a reservoir that is being developed but at a significant distance, usually two or more drilling and spacing units, from the nearest producer in that reservoir. A step-out

334

Low cost methodologies to analyze and correct abnormal production decline in stripper gas wells  

SciTech Connect

The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This first quarterly technical report describes the data reduction and methodology to establish a study group of stripper gas wells in which Artex Oil Company or its affiliate, Arloma Corporation, own a working or royalty interest. The report describes the procedures to define wells exhibiting abnormal decline and identify the associated problem. Finally, the report discusses initial development of diagnostic procedures to evaluate the cause of abnormal production declines.

James, J.; Huck, G.; Knobloch, T.

2000-01-01T23:59:59.000Z

335

Developments in geothermal energy in Mexico—part nineteen. Corrosion in Mexican geothermal wells  

Science Journals Connector (OSTI)

The Instituto de Investigaciones Eléctricas and the Comisión Federal de Electricidad have initiated a collaborative study to define the specifications of steels for use in geothermal well construction in Mexico. Tests have been designed to characterize and control identifiable factors affecting corrosion. The study includes three main areas of activity: (a) studies of cases of material failure from several Mexican fields were made; (b) studies of general, localized and stress corrosion of sample coupons exposed to geothermal fluid were made in wellhead pressure chambers; (c) laboratory tests are being carried out under controlled hydrodynamic conditions.

J.A. Sampedro; N. Rosas; R. Díaz; B. Domínguez

1988-01-01T23:59:59.000Z

336

Defining and Model Checking Abstractions of Complex Railway Models using CSP||B  

E-Print Network (OSTI)

Defining and Model Checking Abstractions of Complex Railway Models using CSP||B Faron Moller1. In [11, 10] we propose a new modelling approach for railway interlockings. We use CSP||B [13], which involves events such as train movements and, in the interlocking, state based reasoning. In this sense, CSP

Doran, Simon J.

337

Using the PROMETHEE Multi-Criteria Decision Making Method to Define New Exploration Strategies for Rescue  

E-Print Network (OSTI)

the environment. The aim of the exploration process is to cover the whole environment in a minimum period of timeUsing the PROMETHEE Multi-Criteria Decision Making Method to Define New Exploration Strategies University CNRS, UMR 6072 GREYC F-14032 Caen, France serge.stinckwich@ird.fr Abstract -- The exploration

Paris-Sud XI, Université de

338

Defining the Proton Topology of the Zr6Based Metal-Organic Framework NU-1000  

E-Print Network (OSTI)

,16-19 heavy metal capture,20,21 sensing,12 ionic conductivity,22 toxic industrial chemical capture,23Defining the Proton Topology of the Zr6Based Metal-Organic Framework NU-1000 Nora Planas,, Joseph E of Science, King Abdulaziz University, Jeddah, Saudi Arabia *S Supporting Information ABSTRACT: Metal

339

Holographically Defined TiO2 Electrodes for Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

Holographically Defined TiO2 Electrodes for Dye-Sensitized Solar Cells ... We analyze the morphological features of the h-TiO2 electrodes and consider their applicability to dye-sensitized solar cells (DSSCs). ... holographic lithography; solar cells ...

Woo-Min Jin; Ju-Hwan Shin; Chang-Yeol Cho; Ji-Hwan Kang; Jong Hyeok Park; Jun Hyuk Moon

2010-10-27T23:59:59.000Z

340

Geodesic diameter of sets defined by few quadratic equations and inequalities  

E-Print Network (OSTI)

Geodesic diameter of sets defined by few quadratic equations and inequalities Michel Coste and Seydou Moussa September 2, 2010 Abstract We prove a bound for the geodesic diameter of a subset borrowed from D'Acunto and Kurdyka (to deal with the geodesic diameter) and from Barvinok (to take

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2  

E-Print Network (OSTI)

/or decontamination are related to direct50 groundwater use. Benefits are often considered as avoided costs1 Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2 3 J.7 *Corresponding author (E-mail: jd.rinaudo@brgm.fr)8 9 Abstract10 The use of cost-benefit analysis

Paris-Sud XI, Université de

342

Defining Multi-Disciplinary Views of a Computer Model of Buildings  

E-Print Network (OSTI)

Defining Multi-Disciplinary Views of a Computer Model of Buildings Robert W. Amor and Dr John G is the development, and maintenance, of multiple views of the building model as required by different disciplines method of accessing information in product data models to facilitate use by different building

Amor, Robert

343

Optimal Spectrum Sharing for Multi-hop Software Defined Radio Networks  

E-Print Network (OSTI)

Optimal Spectrum Sharing for Multi-hop Software Defined Radio Networks Y. Thomas Hou Yi Shi Hanif D. The uneven size of bands in the radio spectrum prompts the need of further division into sub the required network-wide radio spectrum resource for a set of user sessions. Since such problem formulation

Hou, Y. Thomas

344

Some current issues in accounting for the cost of defined benefit pension schemes  

Science Journals Connector (OSTI)

......Accounting Standard 19. This...currently under review: (1) A...return on plan assets, which...Accounting Standard 19. This...currently under review: (1) A...return on plan assets, which...defined benefit plans, the project...comprehensive review and, in particular...accounting standards. Many believe......

Geoffrey Whittington; Anne Mcgeachin

2003-04-01T23:59:59.000Z

345

Defining Good Infill A Convening Report on SB 226 and the California  

E-Print Network (OSTI)

, UC Davis School of Law, and Sean Hecht, UCLA School of Law. For more information, please contact and support. Photos courtesy of Greenbelt Alliance. #12;1Berkeley Law \\ UC Davis Law \\ UCLA Law Defining Good Berkeley Convening On March 9, 2012, UC Berkeley, UC Davis, and UCLA Schools of Law hosted a convening

Kammen, Daniel M.

346

Nanotechnology is defined as materi-als and systems ranging from 1 to 100  

E-Print Network (OSTI)

Nanotechnology is defined as materi- als and systems ranging from 1 to 100 nm which exhibit novel in the potentially revo- lutionary impacts that nanotechnology has to offer clinical medicine, particu- larly oncology. Numerous proof of concept appli- cations of nanotechnology have been described for high impact

Wong, Pak Kin

347

World Commission on the Environment, 1987 Sustainability first defined and addressed as a global goal.  

E-Print Network (OSTI)

compromising the ability of future generations to meet their needs." Three pillars: Social Economical#12;World Commission on the Environment, 1987 · Sustainability first defined and addressed as a global goal. · "Sustainable development is meeting the needs of the present generation without

Hasýrcý, Vasýf

348

Abstract 4445: Defining a pipeline to use next generation sequencing for genetic testing in hereditary cancer  

Science Journals Connector (OSTI)

...Chicago, IL Abstract 4445: Defining a pipeline to use next generation sequencing for...analysis combined the Variant Identification Pipeline software (VIP, De Shrijver, JM et...improvement of the kit and the analysis pipeline, the validation set of 14 samples demonstrated...

Conxi Lazaro; Adriana Lopez-Doriga; Ester Castellsague; Jesus del Valle; Eva Tornero; Victor Moreno; Marta Pineda; Sara Gonzalez; Lidia Feliubadalo; Gabriel Capella

2012-06-04T23:59:59.000Z

349

Software-Defined Solutions for Managing Energy Use in Small Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: University of California, Berkeley Project Partners: -- California Institute for Energy & Enviornment - Berkeley, CA -- Software Defined Buildings/EECS/UC Berkeley - Berkeley, CA -- Western Regional Cooling Center/UC Davis - Davis, CA -- Lawrence Berkeley National Laboratory - Berkeley, CA -- Building Robotics - Oakland, CA

350

Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop  

E-Print Network (OSTI)

Neuron Article Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico report that hippo- campal CA2 pyramidal neurons, whose function has remained obscure for 75 years, have a reversed synaptic strength rule. Thus, CA2 neurons are strongly excited by their distal dendritic inputs

Contractor, Anis

351

A SHARPER ESTIMATE ON THE BETTI NUMBERS OF SETS DEFINED BY QUADRATIC INEQUALITIES  

E-Print Network (OSTI)

A SHARPER ESTIMATE ON THE BETTI NUMBERS OF SETS DEFINED BY QUADRATIC INEQUALITIES SAUGATA BASU AND MICHAEL KETTNER Abstract. In this paper we consider the problem of bounding the Betti num- bers, bi by a new approach, whereby we first bound the Betti numbers of non-singular complete intersections

Basu, Saugata

352

COMPUTING THE BETTI NUMBERS OF SEMI-ALGEBRAIC SETS DEFINED BY PARTLY QUADRATIC SYSTEMS OF  

E-Print Network (OSTI)

COMPUTING THE BETTI NUMBERS OF SEMI-ALGEBRAIC SETS DEFINED BY PARTLY QUADRATIC SYSTEMS the the Betti numbers of S generalizing a similar algorithm described in [6]. The complexity of the algorithm. Designing efficient algorithms of computing the Betti numbers of semi-algebraic sets is an important problem

Basu, Saugata

353

COMPUTING THE TOP BETTI NUMBERS OF SEMI-ALGEBRAIC SETS DEFINED BY QUADRATIC  

E-Print Network (OSTI)

COMPUTING THE TOP BETTI NUMBERS OF SEMI-ALGEBRAIC SETS DEFINED BY QUADRATIC INEQUALITIES the top Betti numbers of S, bk-1(S), . . . , bk- (S), in polynomial time. The complexity of the algorithm for computing all the Betti numbers of S whose complexity is k2O(s) . 1. Introduction Let R be a real closed

Basu, Saugata

354

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined on the  

E-Print Network (OSTI)

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined 6th 2009 #12;Outline Optimal investment and utility-based pricing hedging Asymptotic expansions horizon T 3. preferences over terminal wealth described by a utility function U #12;Trading strategies

Sîrbu, Mihai

355

Effects of magnesium ions on the stabilization of RNA oligomers of defined structures  

E-Print Network (OSTI)

Effects of magnesium ions on the stabilization of RNA oligomers of defined structures MARTIN J as a function of magnesium ion concentration. The oligomers included helices composed of Watson­Crick base pairs could best be interpreted as nonspecific binding of metal ions to the RNAs. The effect of magnesium ions

Westhof, Eric

356

Defining Development Standards for Reusable User Interface Max Mulawa, Rich Picking and Vic Grout  

E-Print Network (OSTI)

for standard aware development. · Constraints on API of the component. · Documentation structure. · IntegrationDefining Development Standards for Reusable User Interface Components Max Mulawa, Rich Picking.NET user-interface components. This standard aims to assess the quality of implemented components

Grout, Vic

357

American Institute of Aeronautics and Astronautics Defining a US Architecture for Environmental Monitoring  

E-Print Network (OSTI)

American Institute of Aeronautics and Astronautics 1 Defining a US Architecture for Environmental.S. lacks a coherent integrated architecture, organization, and strategy for planning capabilities and investments in space-based environmental monitoring. In order to clarify the underlying problem, this paper

de Weck, Olivier L.

358

VIRGINIA TECH WILL BE A LEADER IN CAMPUS SUSTAINABILITY We define sustainability as the  

E-Print Network (OSTI)

VIRGINIA TECH WILL BE A LEADER IN CAMPUS SUSTAINABILITY We define sustainability of future generations. History of Sustainability at Virginia Tech Virginia Tech is committed to being a leader in campus sustainability. In June, 2009, the Board of Visitors unanimously approved the Virginia

Buehrer, R. Michael

359

Data Validation Using Data Descriptors Data validation is often defined by six data descriptors  

E-Print Network (OSTI)

APPENDIX N Data Validation Using Data Descriptors Data validation is often defined by six data descriptors: 1) reports to decision maker 2) documentation 3) data sources 4) analytical method and detection limit 5) data review 6) data quality indicators The decision maker or reviewer examines the data

360

Defining a Stream Restoration Body of Knowledge as a Basis for National Certification  

E-Print Network (OSTI)

to improving ecosystem function and enhancing aquatic biodiversity (Wohl et al. 2005). Despite the abundanceForum Defining a Stream Restoration Body of Knowledge as a Basis for National Certification Sue L-7900.0000814 Introduction The practice of stream restoration has become widely accepted as an essential component

Curran, Joanna C.

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Defining potential mechanisms by which Cables is lost in ovarian cancer  

Science Journals Connector (OSTI)

...Defining potential mechanisms by which Cables is lost in ovarian cancer Sakamoto Hideo...Assoc Cancer Res, Volume 47, 2006] 1547 Cables is a novel cyclin-dependent kinase...maps to human chromosome 18q11-12. Cables appears to be primarily involved in cell...

Sakamoto Hideo; Rosemary Foster; Michael V. Seiden; Esther Oliva; Daniel C. Chung; Maureen P. Lynch; Lawrence R. Zukerberg; Bo R. Rueda

2006-04-15T23:59:59.000Z

362

The Drug Transporter?Metabolism Alliance: Uncovering and Defining the Interplay  

Science Journals Connector (OSTI)

The Drug Transporter?Metabolism Alliance: Uncovering and Defining the Interplay ... Work characterizing the rate limiting processes in the drug transporter?metabolism alliance is then addressed, ending with a review of areas of the interplay that require further studies and analysis. ...

Leslie Z. Benet

2009-10-29T23:59:59.000Z

363

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 1976–2009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

364

Developments in geothermal energy in Mexico—part thirty. Conclusion of the corrosion in mexican geothermal wells project  

Science Journals Connector (OSTI)

This paper is complementary to part 19 of this series, in which partial results from the joint IIE/CFE studies were presented. The objective was to define the specifications for steel used in geothermal well construction in Mexico and to characterize and control identifiable corrosion inducing factors. The complete results of corrosion testing in wellhead pressure chambers, down hole chambers and in an autoclave simulation system are included. Also shown are chemical, mechanical and metallographic studies on steels commonly used in Mexican geothermal wells, as well as the main conclusions.

J.A. Sampedro; N. Rosas; R. Díaz; B. Dominguez

1990-01-01T23:59:59.000Z

365

Well blowout rates in California Oil and Gas District 4--Update and Trends  

SciTech Connect

Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

Jordan, Preston D.; Benson, Sally M.

2009-10-01T23:59:59.000Z

366

Sufficient Conditions for Well-behaved Adaptive Hypermedia Systems  

E-Print Network (OSTI)

for the architecture of adaptive hypermedia applications: the Adaptive Hypermedia Application Model (AHAM) [DHW99]. AHAM describes AHS at an abstract level, using an architecture consisting of three parts: · a domain (AE) are discussed in earlier paper [WDD01]. We defined a rule language for AHS, AHAM-CA and proposed

De Bra, Paul

367

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

368

Salt Wells, Eight Mile Flat | Open Energy Information  

Open Energy Info (EERE)

Salt Wells, Eight Mile Flat Salt Wells, Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau of Mines and Geology Published Online Nevada Encyclopedia, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells, Eight Mile Flat Citation Nevada Bureau of Mines and Geology. Salt Wells, Eight Mile Flat [Internet]. 2009. Online Nevada Encyclopedia. [updated 2009/03/24;cited 2013/08/07]. Available from: http://www.onlinenevada.org/articles/salt-wells-eight-mile-flat Related Geothermal Exploration Activities Activities (1) Areas (1) Regions (0) Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Salt Wells Geothermal Area

369

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

370

Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso  

Open Energy Info (EERE)

Stratigraphy: Interpretation of New Wells in the Coso Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation between wells is also presented. Analyses from multiple boreholes show fluid stratigraphy that correlates from well to well. The wells include large producers, small to moderate producers, problem producers, injectors, and non producers Author(s): Dilley, L.M.; Newman, D.L. ; McCulloch, J.; Wiggett, G. Published: Geothermal Resource Council Transactions 2005, 1/1/2005

371

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

372

FOSTERING MULTI-LATERAL COOPERATION BETWEEN THE GOVERNMENTS OF MEXICO, COLOMBIA, AND THE UNITED STATES TO ENHANCE THE PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES  

SciTech Connect

The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide from sabotage, theft or diversion. The GTRI program has worked successfully with foreign countries to remove and protect nuclear and radioactive materials including high-activity sources used in medical, commercial, and research applications. There are many barriers to successful bilateral cooperation that must be overcome including language, preconceived perceptions, long distances, and different views on the threat and protection requirements. Successful cooperation is often based on relationships and building trusting relationships takes time. In the case of Mexico, GTRI first made contact in 2005. The project then lost momentum and stalled. At the same time, GTRI’s cooperation with the Republic of Colombia was a resounding success resulting in the securing of forty sites; the consolidation of numerous disused/orphan sources at a secure national storage facility; and, the development of a comprehensive approach to security including, inter alia, training and sustainability. The government of Colombia also showcased this comprehensive approach to thirteen Central American and Caribbean countries at a GTRI regional security conference held in Panama in October 2004. Representatives from the Colombian government were aware of GTRI’s interest in initiating cooperation with the Government of Mexico and to facilitate this cooperation, they offered to invite their Mexican counterparts to Colombia to observe its successful cooperation with GTRI. Shortly after that visit, the Government of Mexico agreed to move forward and requested that the cooperative efforts in Mexico be performed in a tripartite manner, leveraging the skills, experience, and resources of the Colombians. As a result, 22 of Mexico’s largest radioactive sites have had security upgrades in place within 18 months of cooperation.

Butler, Nicholas; Watson, Erica E.; Wright, Kyle A.

2009-10-07T23:59:59.000Z

373

Multi-well sample plate cover penetration system  

SciTech Connect

An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

Beer, Neil Reginald (Pleasanton, CA)

2011-12-27T23:59:59.000Z

374

Negative specific heat, phase transition and particles spilling from a potential well  

SciTech Connect

For a finite number of noninteracting particles in a box with a potential well in the center, the microcanonical kinetic energy in dependence on the total energy as it is negative can be classified into three categories. The first exhibits a monotonical rise and the specific heat is positive. The second shows a diminishing sawtooth wave with a global rise. The last corresponds to the extreme case and takes the regular sawtooth wave form. The sawtooth wave portion associates periodically a kinetic energy fall in spite of an increase of the total energy; and we attribute to such a fall the negative specific heat. The phase transition can be defined when the relatively dense particle state in the well and relatively dilute particle state in the rest volume of the box coexist, and the appearance of the negative specific heat is sufficient but not necessary for the onset of the phase transition.

Rao, J. [School for Theoretical Physics, and Department of Applied Physics, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Engineering, Hunan City University, Yiyang 413049 (China); Liu, Q.H. [School for Theoretical Physics, and Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: quanhuiliu@gmail.com; Liu, T.G.; Li, L.X. [School for Theoretical Physics, and Department of Applied Physics, Hunan University, Changsha 410082 (China)

2008-06-15T23:59:59.000Z

375

Defining and transforming security rules in an MDA approach for DWs  

Science Journals Connector (OSTI)

Data Warehouses (DWs) store historical information which support the decision-making process. Since this information is crucial, it has to be protected from unauthorised accesses by defining security constraints in all stages of the DW development ... Keywords: DWs, MDA, OLAP, QVT, data warehouse security, data warehouses, metamodelling, model-driven architecture, multidimensional modelling, on-line analytical processing, query-view-, security rules, transformation

Carlos Blanco; Ignacio Garcia-Rodriguez de Guzman; Eduardo Fernandez-Medina; Juan Trujillo; Mario Piattini

2010-01-01T23:59:59.000Z

376

Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires  

E-Print Network (OSTI)

optoelectronic devices. KEYWORDS: Cadmium sulfide selenide, bandgap-graded nanowire, lasing, defining wavelength, mode selectivity Semiconductor NW lasers have recently attracted a great deal of interest, since they have large numbers of potential... applications in future photonic and optoelectronic devices.1-5 To push NW lasers closer to practical applications, some important challenges, for instance, wavelength variability, must be addressed. To date, a number of binary semiconductor NW lasers...

Yang, Zongyin; Wang, Delong; Meng, Chao; Wu, Zhemin; Wang, Yong; Ma, Yaoguang; Dai, Lun; Liu, Xiaowei; Hasan, Tawfique; Liu, Xu; Yang, Qing

2014-05-05T23:59:59.000Z

377

Measuring solar reflectance-Part I: Defining a metric that accurately  

NLE Websites -- All DOE Office Websites (Extended Search)

solar reflectance-Part I: Defining a metric that accurately solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Title Measuring solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., Hashem Akbari, and Paul Berdahl Journal Solar Energy Volume 84 Pagination 1717-1744 Keywords Heat Island, Methods & Protocols Abstract Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective "cool colored" surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope 5:12 [23°]) by as much as 89 W m-2, and underestimate its peak surface temperature by up to 5 K. Using RE891BN to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%.

378

RAPID/Geothermal/Well Field/Idaho | Open Energy Information  

Open Energy Info (EERE)

Any person, owner or operator who proposes to construct a well for the production of or exploration for geothermal resources or to construct an injection well shall first apply...

379

RAPID/Geothermal/Well Field/Hawaii | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit A developer seeking to drill, modify, or modify the use of a well for exploration or development must receive a drilling or modification permit prior to...

380

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

......................................................................................................................... 65 x LIST OF FIGURES FIGURE Page 1 Algorithm for single generation of GA.... well location......................................................... 40 11 Maximum function fitness value vs generation number for Case 1........... 41 12 Case 2 fitness value vs. well location...

Gibbs, Trevor Howard

2011-08-08T23:59:59.000Z

382

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Office of Environmental Management (EM)

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

383

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

384

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

387

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

388

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

390

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

391

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

392

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

393

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

394

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

395

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

396

Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35...

397

Montana Board of Water Well Contractors Webpage | Open Energy...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Board of Water Well Contractors Webpage Abstract Provides information on water well...

398

California--State Offshore Natural Gas Withdrawals from Gas Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

399

Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

400

Texas--State Offshore Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...  

Annual Energy Outlook 2012 (EIA)

Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

402

Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

403

Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...  

Annual Energy Outlook 2012 (EIA)

Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

404

Texas--State Offshore Natural Gas Withdrawals from Gas Wells...  

Annual Energy Outlook 2012 (EIA)

Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

405

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

406

1999 Well Installation Report, Project Shoal Area, Churchill...  

Office of Legacy Management (LM)

. . . . . . . . . . . . . . . 5-14 5-10 Well HC-8 Tritium Activities During DevelopmentTest Pumping . . . . . . . . . . . . 5-16 5-11 Well HC-8 Summary of Drilling Parameters . ....

407

Raser Receives Third Party Analysis on Well Field | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GeothermEx reported that well 24-34 indicated 3.6 megawatts (MW) net at the well depth level Raser plans to produce, with temperatures in excess of 280 degrees F. GeothermEx's...

408

Single-well Modeling of Coalbed Methane Production  

E-Print Network (OSTI)

curves. Further solution of a specific CBM single-well problem and parametric study for evaluation impact of separate parameters were conducted. Focus of the studies was on well production forecasting, effect of mechanical properties of coal...

Martynova, Elena

2014-01-14T23:59:59.000Z

409

Hawaii Well Abandonment Report Form (DLNR Form WAR) | Open Energy...  

Open Energy Info (EERE)

LibraryAdd to library Form: Hawaii Well Abandonment Report Form (DLNR Form WAR) Abstract Completion of this form is required for well abandonment. Form Type ApplicationNotice...

410

Well Deepening At Lightning Dock Geothermal Area (Witcher, 2006...  

Open Energy Info (EERE)

Number DE-FC07-00AL66977 Notes This project deepened a well and took 4 samples from wells around the Lightning Docks KGRA and performed extensive chamical and isotope analysis...

411

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

412

Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

413

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

414

Basic Data Report for Monitor Well AEC-7 Reconfiguration  

SciTech Connect

The New Mexico Office of the State Engineer (OSE) permitted well AEC-7 as C-2742. This well has been part of the far-field monitoring network since 1974. The well was used to obtain water level elevations and hydraulic parameters from both the Bell Canyon Formation and the Culebra Member of the Rustler Formation. This basic data report provides a historical account of the well from the original installation to the current configuration.

Washington Regulatory and Environmental Services

2005-01-20T23:59:59.000Z

415

Multiple-well testing in low permeability gas sands  

SciTech Connect

The purpose of this work was to determine the effect of various reservoir and well parameters in order to design a multiple-well pressure transient test to be conducted in low permeability, porosity, gas saturation, net pay thickness and well spacing. Long test times were found to be required for interference or pulse testing in low permeability gas reservoirs; however, the well spacing has been optimized. These calculations were made using two techniques: interference testing and pulse testing.

Bixel, H.; Carroll, H.B. Jr.; Crawley, A.

1980-10-01T23:59:59.000Z

416

Multifunctional Corrosion-resistant Foamed Well Cement Composites  

Energy.gov (U.S. Department of Energy (DOE))

Multifunctional Corrosion-resistant Foamed Well Cement Composites presentation at the April 2013 peer review meeting held in Denver, Colorado.

417

Well interference tests at the Cerro Prieto Geothermal Field  

SciTech Connect

Two well interference tests were carried out by the LBL at the Cerro Prieto geothermal field located in Baja California, Mexico, during 1978. The first test incorporated five wells located about 1 km south of the power plant. Standard analyses of the well interference test data yielded permeability estimates that are much higher than the values obtained from two-rate tests performed by the CFE during the development of production wells. 4 refs.

Schroeder, R.C.; Goranson, C.B.; Benson, S.M.; Lippmann, M.J.

1980-01-01T23:59:59.000Z

418

Observation Wells At Lightning Dock Geothermal Area (Reeder,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957) Exploration Activity Details Location...

419

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING  

E-Print Network (OSTI)

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process. This is followed, in section 3, by an oil well drilling scenario and an example from a problem solving session

Aamodt, Agnar

420

University of NebraskaLincoln The UNL Wellness Initiative  

E-Print Network (OSTI)

programming: wellness.unl.edu Don't see what you are looking for to fulfill your wellness needs? Give us and their families may utilize short-term counseling services. Student On-campus Resource: Counseling Wellness Karen Miller, Registered Dietitian 402­472­0880 Nutrition Consultation and Assessments Receive

Powers, Robert

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soda Lake Well Lithology Data and Geologic Cross-Sections  

SciTech Connect

Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

Faulds, James E.

2013-12-31T23:59:59.000Z

422

Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

423

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

424

Oil/gas separator for installation at burning wells  

SciTech Connect

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

425

Analysis of gas deliverability curves for predicting future well performance  

E-Print Network (OSTI)

-Darcy flow) Forecast of Rate vs. Time for Well A (Pipeline pressure = 200 psia) Forecast of Cum. Prod. vs. Time for Well A (Pipeline pressure = ZOO psia) Forecast of Rate v s. Time for Well 8 (Pipeline pressure = 1, 000 psia) Forecast of Cum. Prod. vs.... Time for Well 8 (Pipeline pressure = 1, 000 psia) 54 55 56 57 58 59 60 63 64 65 66 Figure LIST OF FIGURES (Continued) page 39 Forecast of Rate vs. Time for Well C (Pipeline pressure = 1, 000 psia) 40 Forecast of Cum. Prod. vs. Time...

Corbett, Thomas Gary

2012-06-07T23:59:59.000Z

426

Geothermal Well Testing and Evaluation | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Testing and Evaluation Geothermal Well Testing and Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geothermal Well Testing and Evaluation Author Jon Ragnarsson Published Iceland Geosurvey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Well Testing and Evaluation Citation Jon Ragnarsson. Geothermal Well Testing and Evaluation [Internet]. 2013. Iceland Geosurvey. [cited 2013/10/18]. Available from: http://www.geothermal.is/geothermal-well-testing-and-evaluation Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Well_Testing_and_Evaluation&oldid=688939" Categories: References Geothermal References Uncited References What links here Related changes Special pages

427

Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Magnetotellurics Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

428

Oil and Gas Wells: Regulatory Provisions (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or manager, to use or permit the use of gas by direct well pressure. Any person or persons, firm, company or corporation violating any of the provisions of this act shall be deemed guilty of a misdemeanor, and upon conviction shall be fined in any

429

Exploratory Well At Raft River Geothermal Area (1950) | Open Energy  

Open Energy Info (EERE)

50) 50) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1950) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1950 Usefulness not indicated DOE-funding Unknown Exploration Basis Agricultural Wells Notes The geothermal resource at Raft River was discovered sometime prior to 1950 when two shallow agricultural wells, the Bridge and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1950)&oldid=473844

430

Well fluid isolation and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA)

1995-01-01T23:59:59.000Z

431

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

Six Well Flow Test Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted during 1986 at the Dixie Valley geothermal field. Flow duration lasted from 40 to 74 days with a maximum rate of 5.9 million pounds/hour. During the test, downhole pressures were monitored in eight surrounding wells. Downhole pressure and temperature surveys were run in each of the flowing wells,usually in conjunction with productivity tests. Results from the flow test and earlier interference tests indicate that six wells are capable of providing in excess of the 4.5 million pounds/hour required for a 62 mw (gross) power plant. Author William L. Desormier Published Journal Geothermal Resources Council, TRANSACTIONS, 1987

432

Logging, Testing and Monitoring Geothermal Wells | Open Energy Information  

Open Energy Info (EERE)

Logging, Testing and Monitoring Geothermal Wells Logging, Testing and Monitoring Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Logging, Testing and Monitoring Geothermal Wells Abstract Wells or boreholes are essential components in both geothermal research and utilization as they enable a drastic increase in geothermal energy production beyond natural out-flow as well as providing access deep into the systems, not otherwise possible. Wells also play a vital role in all geothermal reservoir physics (also called reservoir engineering) research, which would be particularly ineffec-tive without the access into geothermal systems provided by wells. During drilling the main reservoir physics research is performed through logging of different parameters as functions

433

Vision Statement Marketing at Kent State University should consist of centrally developed, well-managed, well-funded  

E-Print Network (OSTI)

of centrally developed, well-managed, well-funded and strategically placed image, message support and involvement. The Kent State University "Brand" Marketing research requirements to building brand equity. While terms such as "brand," "branding

Palffy-Muhoray, Peter

434

2009-2010 Special Projects Boellstorff: A Southern Region Well Owner Network to Safeguard Private Well and Aquifer Integrity  

E-Print Network (OSTI)

, improper well construction techniques, abandoned wells, improperly sited and functioning on-site wastewater treatment systems, and changes in land use. The aim of the proposed Southern Region Well Owner Network integrity. The SRWON will improve rural and rural-urban interface environmental management by providing

435

Description of work for 200-UP-1 characterization of monitoring wells. Revision 1  

SciTech Connect

This description of work details the field activities associated with the drilling, soil sampling, and construction of groundwater monitoring and dual-use wells as part of the Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit and will serve as a field guide for those performing the work. It will be used in conjunction with DOE-RE and Environmental Investigations and Site Characterization Manual. Groundwater wells are being constructed to characterize the vertical and horizontal extent of the Uranium and {sup 99}Tc plumes and to define aquifer properties such as hydraulic communication between aquifers and hydrostratigraphy. Some of these wells may be utilized for extraction purposes during the Interim Remedial Measures (IRM) phase anticipated at this operable unit and are being designed with a dual use in mind. These data will be used to optimize the IRM for the cleanup of these two plumes. The data will also be used with later Limited Field Investigation data to perform a Qualitative Risk Assessment for the operable unit. The locations for the proposed groundwater wells are presented. The contaminants of concern for the project are presented also.

Innis, B.E.; Kelty, G.G.

1994-03-31T23:59:59.000Z

436

Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification  

SciTech Connect

This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

Bonior, Jason D [ORNL; Hu, Zhen [Tennessee Technological University; Guo, Terry N. [Tennessee Technological University; Qiu, Robert C. [Tennessee Technological University; Browning, James P. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Wicks, Michael C. [University of Dayton Research Institute

2015-01-01T23:59:59.000Z

437

Methodology for Defining Gap Areas between Course-over-ground Locations  

SciTech Connect

Finding all areas that lie outside some distance d from a polyline is a problem with many potential applications. This application of the Visual Sample Plan (VSP) software required finding all areas that were more than distance d from a set of existing paths (roads and trails) represented by polylines. An outer container polygon (known in VSP as a “sample area”) defines the extents of the area of interest. The term “gap area” was adopted for this project, but another useful term might be “negative coverage area.” The project required a polygon solution rather than a raster solution. The search for a general solution provided no results, so this methodology was developed

Wilson, John E.

2013-09-30T23:59:59.000Z

438

Hostile wells: the borehole seismic challenge | Open Energy Information  

Open Energy Info (EERE)

Hostile wells: the borehole seismic challenge Hostile wells: the borehole seismic challenge Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hostile wells: the borehole seismic challenge Citation William Wills. Hostile wells: the borehole seismic challenge [Internet]. 2013. Oil and Gas Engineer - Subsea & Seismic. [cited 2013/10/01]. Available from: http://www.engineerlive.com/content/22907 Retrieved from "http://en.openei.org/w/index.php?title=Hostile_wells:_the_borehole_seismic_challenge&oldid=690045" Categories: References Geothermal References

439

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

440

Estimation of static formation temperatures in geothermal wells | Open  

Open Energy Info (EERE)

Estimation of static formation temperatures in geothermal wells Estimation of static formation temperatures in geothermal wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Estimation of static formation temperatures in geothermal wells Abstract Stabilized formation temperatures were estimated at different depths in 40 wells from the Los Humeros geothermal field, Mexico, using the Horner and the spherical radial flow (SRF) methods. The results showed that the Horner method underestimates formation temperatures, while the SRF method gives temperatures that are closer to the true formation temperatures. This was supported by numerical simulation of a combined circulation and shut-in period in several wells, and results for well H-26 are presented. Numerical reproduction of logged temperature is more feasible if an initial

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Observation Wells At Mccoy Geothermal Area (DOE GTP) Observation Wells At Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Observation Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes 4 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Observation_Wells_At_Mccoy_Geothermal_Area_(DOE_GTP)&oldid=402599" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

442

Success of Geothermal Wells: A Global Study | Open Energy Information  

Open Energy Info (EERE)

Success of Geothermal Wells: A Global Study Success of Geothermal Wells: A Global Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Success of Geothermal Wells: A Global Study Author International Finance Corporation Organization International Finance Corporation Published International Finance Corporation World Bank Group, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Success of Geothermal Wells: A Global Study Citation International Finance Corporation (International Finance Corporation). 2013. Success of Geothermal Wells: A Global Study. Washington, D.C.: International Finance Corporation World Bank Group. Retrieved from "http://en.openei.org/w/index.php?title=Success_of_Geothermal_Wells:_A_Global_Study&oldid=687100

443

Generalized IPR curves for predicting well behavior. [Inflow Performance Relation  

SciTech Connect

Oil well productivity calculations are required to relate surface measured oil rate to the pressure drawdown of the well in order to predict well behavior. The productivity index concept and the inflow performance relation concept can be combined to derive a workable form of a well's deliverability which covers the entire pressure range above and below the bubble point. A procedure for predicting well behavior is presented using equations to determine the relationship between shut-in bottom-hole pressure, bubble point pressure, and bottom-hole producing pressure. An example calculation is provided comparing 2 wells. The conclusion is that one set of production test data (rate and bottom-hole producing pressure) together with the shut-in bottom-hole pressure (or average reservoir pressure) and bubble point pressure are enough to construct a reliable inflow performance relation.

Patton, L.D.; Goland, M.

1980-06-01T23:59:59.000Z

444

How postcapping put Kuwait`s wells back onstream  

SciTech Connect

In late february 1991, the retreating Iraqi army blew up, or otherwise caused to blowout, some 700 wells in Kuwait. Between March and November, all of the fires were extinguished and the wells were capped. Work began in July 1991 to recomplete the damaged wells with replaced or reworked tubulars and well heads so that production could be resumed. Except for some of the earlier-capped wells into which cement was pumped, thus requiring more extensive downhole work, many of the damaged wells, particularly in Burgan field, were put back into production mode by the procedure described here, which became known as postcapping. This paper describes the equipment and techniques used in postcapping damaged wellheads.

Wilson, D. [ABB Vetco Gray Inc., Houston, TX (United States)

1994-01-01T23:59:59.000Z

445

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

446

Single-Dose Pharmacokinetic Study of Lycopene Delivered in a Well-Defined Food-Based Lycopene Delivery System (Tomato Paste-Oil Mixture) in Healthy Adult Male Subjects  

Science Journals Connector (OSTI)

...incorporated into 5 ml of olive oil. This mixture was then mixed...mixture. The addition of olive oil had the purpose of improving...reverse-phase column. The peaks were detected by Waters 490 Programmable...Consulting, Inc., Apex, NC). Peak plasma concentration (C max...

David M. Gustin; Keith A. Rodvold; Jeffery A. Sosman; Veda Diwadkar-Navsariwala; Maria Stacewicz-Sapuntzakis; Marlos Viana; James A. Crowell; Judith Murray; Patricia Tiller; and Phyllis E. Bowen

2004-05-01T23:59:59.000Z

447

Investigation and evaluation of geopressured-geothermal wells  

SciTech Connect

Over the life of the project, 1143 wildcat wells were screened for possible use. Although many did not meet the program's requirement for sand development, a surprisingly large number were abandoned because of downhole mechanical problems. Only 94 of these wells were completed as commercial hydrocarbon producers. Five wells of opportunity were funded for testing. Of these, two were evaluated for their hydraulic energy, thermal energy, and recoverable methane, and three were abandoned because of mechanical problems. (MHR)

Hartsock, J.H.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

448

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

449

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

450

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

451

The Magma Energy Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Article: The Magma Energy Exploratory Well Abstract Abstract unavailable. Authors John T. Finger and John C. Eichelberger Published Journal Geothermal Resources Council...

452

Two wells drilled from one surface bore with downhole splitter  

SciTech Connect

A downhole multiwell drilling template, called a downhole splitter, allows two wells to be drilled, cased, and completed from one well bore. After completion, each well can be produced, serviced, and worked over independently of the other. The downhole splitter was successfully field tested in Wyoming. The downhole splitter is suitable for use on offshore platforms, subsea completions, offshore exploitation and delineation wells, inland waters, and onshore in environmentally sensitive areas. It is also ideal for planned multilateral or multivertical completions. The paper describes the downholds splitter and its development, then discusses the field test: casing program, directional procedure, and results.

Collins, G. (Marathon Oil Co., Houston, TX (United States)); Bennett, R. (Baker Oil Tools, Houston, TX (United States))

1994-10-03T23:59:59.000Z

453

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

454

NMOCD - Form G-105 - Geothermal Resources Well Log | Open Energy...  

Open Energy Info (EERE)

Well Log Author State of New Mexico Energy and Minerals Department Published New Mexico Oil Conservation Division, 1978 DOI Not Provided Check for DOI availability: http:...

455

Private Water Well Education for Adult Residents of Oklahoma.  

E-Print Network (OSTI)

??The scope of this study involved an investigation into the education of the adult residents of Oklahoma regarding private water wells. The groundwater supply for… (more)

Robbins, Sharon Marie

2012-01-01T23:59:59.000Z

456

Electromagnetically Induced Transparency in a Double Well Atomic Josephson Junction  

E-Print Network (OSTI)

observation of these Josephson junction resonances. 2.dressed Bose condensed Josephson junction Let us consider ain a Double Well Atomic Josephson Junction J.O. Weatherall

Weatherall, J. O.; Search, C. P.

2009-01-01T23:59:59.000Z

457

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 12312014 Next Release Date: 1302015 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Illinois Natural Gas Gross Withdrawals and...

458

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 12312014 Next Release Date: 1302015 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells South Dakota Natural Gas Gross Withdrawals and...

459

NMOCD - Form G-107 - Geothermal Resources Well History | Open...  

Open Energy Info (EERE)

Reference LibraryAdd to library General: NMOCD - Form G-107 - Geothermal Resources Well History Author State of New Mexico Energy and Minerals Department Published New Mexico Oil...

460

Mixed Integer Model Predictive Control of Multiple Shale Gas Wells.  

E-Print Network (OSTI)

?? Horizontal wells with multistage hydraulic fracturing are today the most important drilling technology for shale gas extraction. Considered unprofitable before, the production has now… (more)

Nordsveen, Espen T

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Production Wells At Lightning Dock Geothermal Area (Cyrq Energy...  

Open Energy Info (EERE)

Area Exploration Technique Production Wells Activity Date 2013 Usefulness useful DOE-funding Unknown Exploration Basis Cyrc Energy bought Lightnign Dock Geothermal Inc. and...

462

CDWR Well Permitting Forms and Associated Documents | Open Energy...  

Open Energy Info (EERE)

Associated Documents Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: CDWR Well Permitting Forms and Associated Documents Abstract This webpage...

463

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

Abstract Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A...

464

RAPID/Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

receive approval from the Bureau of Land Management (BLM) of a Notice of Intent (NOI) to Conduct Geothermal Resource Exploration Operations. For other types of wells on federal...

465

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique...

466

Geothermal Well Logging: Geological Wireline Logs and Fracture...  

Open Energy Info (EERE)

Logging: Geological Wireline Logs and Fracture Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Logging: Geological...

467

Fabrication of A Quantum Well Based System for Truck HVAC  

Energy.gov (U.S. Department of Energy (DOE))

Discusses performance differences between conventional modules and quantum well modules and details a conventional HZ-14 device, using bulk bismuth-telluride advantageous for truck HVAC applications.

468

Investigation of induction motors of pumps for water wells  

Science Journals Connector (OSTI)

A digital three-phase model of a submersible induction motor drive for pumps of water wells that is convenient for modeling on...

R. I. Mustafaev; R. A. Saidov

2011-04-01T23:59:59.000Z

469

Costs of Crude Oil and Natural Gas Wells Drilled  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

470

Temperature Data From Wells in Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Temperature Data From Wells in Long Valley Caldera, California Abstract No abstract...

471

Energetic Materials for EGS Well Stimulation (solids, liquids, gases)  

Energy.gov (U.S. Department of Energy (DOE))

Energetic Materials for EGS Well Stimulation (solids, liquids, gases) presentation at the April 2013 peer review meeting held in Denver, Colorado.

472

Property:WellFieldDescription | Open Energy Information  

Open Energy Info (EERE)

Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area R cont. Rye Patch Geothermal Area S Salt Wells Geothermal Area V Valles Caldera - Redondo Geothermal...

473

Property:FirstWellTemp | Open Energy Information  

Open Energy Info (EERE)

+ L Long Valley Caldera Geothermal Area + R Roosevelt Hot Springs Geothermal Area + Rye Patch Geothermal Area + S Salt Wells Geothermal Area + Retrieved from "http:en.openei.org...

474

Property:FirstWellName | Open Energy Information  

Open Energy Info (EERE)

+ L Long Valley Caldera Geothermal Area + R Roosevelt Hot Springs Geothermal Area + Rye Patch Geothermal Area + S Salt Wells Geothermal Area + Retrieved from "http:en.openei.org...

475

Fluid Inclusion Stratigraphy: Interpretation of New Wells in...  

Open Energy Info (EERE)

Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the...

476

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

477

Idaho Well Construction and Drilling Forms Webpage | Open Energy...  

Open Energy Info (EERE)

Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Well Construction and Drilling Forms Webpage Author Idaho Department of...

478

Raft River monitor well potentiometric head responses and water...  

Open Energy Info (EERE)

one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be...

479

Well Log Data At North Brawley Geothermal Area (Matlick & Jayne...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration Activity Details...

480

Guide to Colorado Well Permits, Water Rights, and Water Administration...  

Open Energy Info (EERE)

Colorado Well Permits, Water Rights, and Water Administration Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

Note: This page contains sample records for the topic "multi-lateral wells defines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics  

Energy.gov (U.S. Department of Energy (DOE))

Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics presentation at the April 2013 peer review meeting held in Denver, Colorado.

482

Production Wells At Lightning Dock Geothermal Area (McCants,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Production Wells At Lightning Dock Geothermal Area (McCants, 1974) Exploration Activity Details...

483

Study on the flow production characteristics of deep geothermal wells  

Science Journals Connector (OSTI)

This paper describes a study on the potential flow production characteristics of three non-producing, deep (average depth 4000 m) geothermal wells in the Cerro Prieto geothermal field. The expected production characteristics of these wells were computed in order to determine whether their inability to sustain flow was due to: (1) heat loss effects in the well; (2) the influence of casing diameters; (3) transient temperature effects during the first days of well discharge, and/or (4) the effects of secondary low-enthalpy inflows. For the study, the conservation equations of mass, momentum and energy for two-phase homogeneous flow were solved for the wellbore, since homogeneous flow provides the simplest technique for analyzing two-phase flows when the flow patterns are not well established. The formation temperature distribution was computed assuming radial transient heat conduction. The numerical model was validated by comparison with analytical solutions and with measured pressure and temperature profiles of well H-17 from the Los Humeros geothermal field, Mexico. It was found that the wells should have sustained production. The early heat losses were so large that the flow needed to be induced, and flow will be sustained only after a few days of induced discharge. For well M-202, the analysis suggests that the inflow of secondary colder fluids was responsible for stopping the flow in this well.

Alfonso Garcia-Gutierrez; Gilberto Espinosa-Paredes; Isa??as Hernandez-Ramirez

2002-01-01T23:59:59.000Z

484

Fully Coupled Well Models for Fluid Injection and Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target...

485

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

312014 Next Release Date: 1302015 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

486

A molecularly defined duplication set for the X chromosome of Drosophila melanogaster  

SciTech Connect

We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

2010-07-22T23:59:59.000Z

487

Applications of CBR in oil well drilling "A general overview"  

E-Print Network (OSTI)

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar successfully. Keywords: Case-based reasoning, oil well drilling 1 Introduction Case-based reasoning (CBR provide to the oil and gas drilling industry. The number of publications on the application of CBR

Aamodt, Agnar

488

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network (OSTI)

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

489

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

490

Prediction of future well performance, including reservoir depletion effects  

SciTech Connect

In the past, the reservoir material balance (voidage) effects occurring between the end of the measured (known) production history and future Inflow Performance Relationship (IPR) time levels have been commonly ignored in the computation of the future IPR behavior. Neglecting the reservoir voidage that occurs during the time interval between the end of the known production history and the future IPR time levels results in erroneous estimates of the future IPR behavior. A detailed description is given of the mathematically rigorous technique that has been used in the development of a multilayer well performance simulator that properly accounts for the reservoir voidage effects. Some of the more significant results are also presented of an extensive effort to develop an accurate and computationally efficient well performance simulation model. The reservoir can be considered to be multilayered, with mixed reservoir layer completion types and outer boundary shapes, drainage areas and boundary conditions. The well performance model can be used to simulate performance in three different operating modes: (1) constant wellhead rate, (2) constant bottomhole pressure, and (3) constant wellhead pressure. The transient performance of vertical, vertically fractured and horizontal wells can be simulated with this well performance model. The well performance model uses mathematically rigorous transient solutions and not simply the approximate solutions for each of the well types, as do most of the other commercially available well performance models.

Poe, B.D. Jr.; Elbel, J.L.; Spath, J.B.; Wiggins, M.L.

1995-12-31T23:59:59.000Z

491

On the relation of a three-well energy  

Science Journals Connector (OSTI)

...relaxation of a three-well energy 787 Note finally that...only change is that the Green's function G has to...relaxation of non-convex energies is postponed for future...relaxation of a three-well energy 811 Appendix A. Green's function and related...

1999-01-01T23:59:59.000Z

492

Slow technology for well-being Steffi Beckhaus  

E-Print Network (OSTI)

Slow technology for well-being Steffi Beckhaus IAD - Technical University of Darmstadt interactiondesign@steffi.beckhaus.de ABSTRACT Slow technology is technology that actively influences our well): Miscellaneous General Terms Slow Technology SLOW TECHNOLOGY IS... Slow technology is technology that actively

Beckhaus, Steffi

493

texas well owner network More than a million private water  

E-Print Network (OSTI)

the successful Texas Watershed Stewards program by emphasizing best management practices (BMPs). Agri have a better understanding of the relation- ships between practices in or near wells and the quality ·U.S. Environmental Protection Agency twon.tamu.edu Private water wells have a greater risk

494

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

495

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

496

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

497

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

498

ENEL Salt Wells Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

ENEL Salt Wells Geothermal Facility ENEL Salt Wells Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home ENEL Salt Wells Geothermal Facility General Information Name ENEL Salt Wells Geothermal Facility Facility Salt Wells Geothermal Facility Sector Geothermal energy Location Information Location Churchill, NV Coordinates 39.651603422063°, -118.49778413773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.651603422063,"lon":-118.49778413773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site February 10, 2012 - 12:00pm Addthis Washington, DC - A technology to remotely monitor conditions at energy-rich Marcellus Shale gas wells to help insure compliance with environmental requirements has been developed through a research partnership funded by the U.S. Department of Energy (DOE). NETL-RUA researcher Dr. Michael McCawley hasdeveloped a technology to remotely monitor theenvironment around energy-rich Marcellus Shale gas wells. Photo courtesy of West Virginia University.The technology - which involves three wireless monitoring modules to measure volatile organic compounds, dust, light and sound - is currently being tested at a Marcellus

500

Controlled Source Frequency-Domain Magnetics At Salt Wells Area  

Open Energy Info (EERE)

Controlled Source Frequency-Domain Magnetics At Salt Wells Area Controlled Source Frequency-Domain Magnetics At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At Salt Wells Area (Montgomery, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Controlled Source Frequency-Domain Magnetics Activity Date 2004 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis AMP Resource contracted Willowstick Technologies, LLC to conduct a Controlled Source-Frequency Domain Magnetics (CS-FDM) geophysical investigation at Salt Wells in order to characterize and delineate areas showing the greatest concentrations and highest temperatures of geothermal groundwater. The investigation also sought to map blind faults beneath the