National Library of Energy BETA

Sample records for multi-filter rotating shadowband

  1. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  2. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  3. Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status

    SciTech Connect (OSTI)

    Hodges, G.

    2005-03-18

    There are currently twenty-four Multi-Filter Rotating Shadowband Radiometers (MFRSR) operating within Atmospheric Radiation Measurement (ARM). Eighteen are located within the Southern Great Plains (SGP) region, there is one at each of the North Slope of Alaska (NSA) and Tropical Western Pacific (TWP) sites, and one is part of the instrumentation of the ARM Mobile Facility. At this time there are four sites, all extended facilities within the SGP, that are equipped for a MFRSR but do not have one due to instrument failure and a lack of spare instruments. In addition to the MFRSRs, there are three other MFRSR derived instruments that ARM operates. They are the Multi-Filter Radiometer (MFR), the Normal Incidence Multi-Filter Radiometer (NIMFR) and the Narrow Field of View (NFOV) radiometer. All are essentially just the head of a MFRSR used in innovative ways. The MFR is mounted on a tower and pointed at the surface. At the SGP Central Facility there is one at ten meters and one at twenty-five meters. The NSA has a MFR at each station, both at the ten meter level. ARM operates three NIMFRs; one is at the SGP Central Facility and one at each of the NSA stations. There are two NFOVs, both at the SGP Central Facility. One is a single channel (870) and the other utilizes two channels (673 and 870).

  4. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    SciTech Connect (OSTI)

    Stamnes, K.; Leontieva, E.

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  5. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  6. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    SciTech Connect (OSTI)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  7. ARM: Portable Radiation Package: Fast Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Fast Rotating Shadowband Radiometer full resolution 6-s sampling Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: ...

  8. NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (35.93 N, 84.31 W, 245 m, GMT-5) Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband

  9. NREL: MIDC/SMUD Anatolia Rotating Shadowband Radiometer (38.55 N, 121.24 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    51 m, GMT-8) SMUD Anatolia Irradiance Inc. Rotating Shadowband

  10. Failure and Redemption of Multifilter Rotating Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites (Journal Article) | SciTech Connect Journal Article: Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North

  11. Rotating shadowband radiometer development and analysis of spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.; Min, Q.

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  12. Improved Rotating Shadowband Radiometer Measurement Performance: Cooperative Research and Development Final Report, CRADA Number CRD-08-294

    SciTech Connect (OSTI)

    Andreas, A. M.

    2015-02-01

    Under this Agreement, NREL will work with Participant to improve rotating shadowband radiometer (RSR) performance characterizations. This work includes, but is not limited to, research and development for making the RSR a more accurate and fully characterized instrument for solar power technology development and commercial solar power project site assessment. Cooperative R&D is proposed in three areas: instrument calibration, instrument field configuration and operation, and measurement extrapolation and interpolation using satellite images. This work will be conducted at NREL and Participant facilities.

  13. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  14. Cloud Optical Properties from the Multifilter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid ... Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). ...

  15. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    public from the National Technical Information Service, Springfield, VA at www.ntis.gov. ... depths larger than approximately 7. The retrieval assumes a single cloud layer consisting ...

  16. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    The Min and Harrison algorithm has been incorporated into an ARM Value-Added Product (VAP) ... As specified by Min and Harrison (1996), the wavelength at 415 nm was chosen due to the ...

  17. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  18. ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3...

    Office of Scientific and Technical Information (OSTI)

    Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Title: ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Multi-Filter Radiometer ...

  19. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  20. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrally Resolved Shortwave Flux at Atmospheric Radiation Measurement Program: History and the Present Status of Rotating Shadowband Spectroradiometer P. Kiedron and J. Schlemmer Atmospheric Sciences Research Center State University of New York at Albany, New York Overview The rotating shadowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multi-filter rotating shadowband radiometer. Like the multi-filter rotating shadowband radiometer, it provides

  1. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosol occurrences between the two sites. In the case of aerosols, each site fielded a Multi-filter Rotating Shadowband Radiometer (MFRSR) used to infer aerosol optical thickness...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed, which combines downwelling radiative fluxes at 415 nm, measured by a multi-filter rotating shadowband radiometer and liquid water path retrievals from a microwave...

  3. Aerosol Retrievals from ARM SGP MFRSR Data (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Aerosol Retrievals from ARM SGP MFRSR Data Title: Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous ...

  4. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MFRSR Calibration Capabilities. The SGP recently acquired from Pacific Northwest National Laboratory equipment needed to calibrate Multi-Filter Rotating Shadowband Radiometers ...

  5. ARM: Portable Radiation Package: Fast Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 ...

  6. Failure and Redemption of Multifilter Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ... Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ...

  7. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fine and Coarse Mode Aerosols in Southern Great Plains Multi-Filter Rotating Shadowband Radiometer Datasets M. Alexandrov and B. Cairns Columbia University New York, New York M. Alexandrov, B E. Carlson, A.A. Lacis, and B. Cairns National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Introduction We present results obtained using the new version of the multi-filter rotating shadowband radiometer (MFRSR) data analysis algorithm (Alexandrov et al.

  8. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status G. Hodges Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado Overview Currently 24 multi-filter rotating shadowband radiometers (MFRSRs) operate within the Atmospheric Radiation Measurement (ARM) Program. Eighteen MFRSRs are located at Southern Great Plains (SGP) site, one is located at each of the North Slope of Alaska (NSA) and

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developments in Multi-Filter Rotating Shadowband Radiometer Data Analysis M. Alexandrov and B. Cairns Columbia University New York, New York A.A. Lacis and B.E. Carlson National Aeronautics and Space Administration-Goddard Institute for Space Studies New York, New York Introduction We present further development of our analysis algorithm (Alexandrov et al. 2005) for multi-filter rotating shadowband radiometer (MFRSR) data. The new additions include a study of MFRSR retrievals sensitivity to

  10. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Multi-Filter Rotating Shadowband Radiometer - A Look Ahead G. Hodges Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado Introduction The multi-filter rotating shadowband radiometer (MFRSR) is one of the Atmospheric Radiation Measurement (ARM) Program's original instruments. As atmospheric research has advanced, the ways in which the MFRSR has been used have increased, along with an ever advancing desire from the scientific community for well

  11. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD). An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, D. D.; McFarlane, S. A.; Riihimaki, L.; Shi, Y.; Lo, C.; Min, Q.

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  12. ARM - Datastreams - mfrsraux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmfrsraux Documentation Data Quality Plots Citation DOI: 10.5439/1025226 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MFRSRAUX Auxiliary data for the ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR) Active Dates 2010.11.03 - 2016.09.02 Originating Instrument Multifilter Rotating Shadowband Radiometer (MFRSR) Measurements Only measurements

  13. Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    2009-02-03

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  14. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  15. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  16. Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  20. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  1. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  2. Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Radiation Exposure Occupational Radiation Exposure Welcome The Occupational Radiation Exposure Information page on this web page is intended to provide the latest available information on radiation exposure to the workforce at DOE facilities. In addition, this page is intended to serve as a central location for the dissemination of information concerning the recording and reporting requirements for occupational radiation exposure at DOE facilities. Only "occupationally"

  3. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    2012-04-01

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  4. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2010-04-26

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  5. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-03-16

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  6. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    2007-09-12

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  7. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2009-07-22

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-14

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-13

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry L. Harrison Atmospheric: Sciences Research Center State University of New York at Albany Albany, NY 12205 I am developing two related instruments for use in the Atmospheric Radiation Measurement (ARM) p,rogram; both use an automated rotating shadowband technique to make spectrally resolved measurements of the direct-normal, total horizontal, and diffuse horizontal irradiances. These parameters of the sky-radiance

  11. Section 85

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    i ' -ln I i I 0 i *µ%c i µ, c i Wm &2 c i NO 2 O 3 NO 2 c i c i NO 2 Session Papers 379 (1) Retrieval of Aerosol Optical Depth, Aerosol Size Distribution Parameters, Ozone and Nitrogen Dioxide Column Amounts from Multifilter Rotating Shadowband Radiometer Data M. Alexandrov, A. A. Lacis, B. E. Carlson and B. Cairns National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Introduction The MultiFilter Rotating Shadowband Radiometer (MFRSR)

  12. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2012-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depths and Liquid Water Paths at the NSA CART J. C. Doran, J. C. Barnard, and S. Zhong Pacific Northwest National Laboratory Richland, Washington C. J. Jakob European Centre for Medium-Range Weather Forecasts Reading, England Introduction As part of our efforts to characterize the cloud properties at the North Slope of Alaska (NSA) Cloud and Radiation Testbed (CART), we have used microwave radiometers (MWRs) and multi-filter rotating shadowband radiometers (MFRSRs) at Barrow (a coastal

  16. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust Properties Derived from Multi-Filter Rotating Shadowband Radiometer Data in Niamey E. Kassianov, T. Ackerman, J. Barnard, C. Flynn, and S. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction One of the key uncertainties in the earth's radiation balance is the effect of dust on radiative fluxes (aerosol radiative forcing), which in turn affects climatic processes on both planetary and local scales (e.g., Intergovernmental Panel on Climate Change 2001; Sokolik et

  17. Final Report for Grant DE-FG02-90ER61072

    SciTech Connect (OSTI)

    Lee Harrison

    2006-02-20

    This is the final report for the work done by our research group at the Atmospheric Sciences Research Center for the US DOE Atmopheric Radiation Measurement (ARM) Program. We were involved from the beginning of the ARM effort; we designed the Multi-filter Rotating Shadowband Spectroradiometer (MFRSR) which was widely deployed (and still operational in ARM) and through the years did a wide variety of data analysis on the returned data from these instruments. We also developed the Rotating Shadowband Spectroradiometer, which ARM deployed and also still deploys. Many scientific papers have been written using the data from these instruments, and the ongoing data streams remain part of the current ARM effort. Earlier reports contain our progress from previous grant periods, this report covers the last period and provides references to published work.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-09-27

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1990--September 14, 1991

    SciTech Connect (OSTI)

    Harrison, L.; Michalsky, J.

    1991-03-13

    Three separate tasks are included in the first year of the project. Two involve assembling data sets useful for testing radiation models in global climate modeling (GCM) codes, and the third is concerned with the development of advance instrumentation for performing accurate spectral radiation measurements. Task 1: Three existing data sets have been merged for two locations, one in the wet northeastern US and a second in the dry western US. The data sets are meteorological data from the WBAN network, upper air data from the NCDC, and high quality solar radiation measurements from Albany, New York and Golden, Colorado. These represent test data sets for those modelers developing radiation codes for the GCM models. Task 2: Existing data are not quite adequate from a modeler`s perspective without downwelling infrared data and surface albedo, or reflectance, data. Before the deployment of the first CART site in ARM the authors are establishing this more complete set of radiation measurements at the Albany site to be operational only until CART is operational. The authors will have the site running by April 1991, which will provide about one year`s data from this location. They will coordinate their measurements with satellite overpasses, and, to the extent possible, with radiosonde releases, in order that the data set be coincident in time. Task 3: Work has concentrated on the multiple filter instrument. The mechanical, optical, and software engineering for this instrument is complete, and the first field prototype is running at the Rattlesnake Mountain Observatory (RMO) test site. This instrument is performing well, and is already delivering reliable and useful information.

  20. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  1. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument

    SciTech Connect (OSTI)

    Ermold, B; Flynn, CJ; Barnard, J

    2013-11-27

    The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with over 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.

  2. Section 33

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in ' c n I o n exp (&T in / µ i ) T i,n ' µ i log (I o n / I i,n ) % µ i log (c n ) Session Papers 145 (1) (2) Multi-Spectral Atmospheric Column Extinction Analysis of Multi-Filter Rotating Shadowband Radiometer Measurements A.A. Lacis and B.E. Carlson National Aeronautics and Space Administration/Goddard Institute for Space Studies New York, New York B. Cairns Columbia University National Aeronautics and Space Administration/Goddard Institute for Space Studies New York, New York Abstract

  3. Section 37

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ' T(J,csza) T " ' T%"a sph T/(1&"a sph ) Session Papers 161 (1) (2) Cloud Optical Properties Obtained from the Multi-Filter Rotating Shadowband Radiometer Instrument: Methodology and Analysis of Data Obtained in Fairbanks, Alaska E. Leontieva and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska Introduction A retrieval technique is presented to infer the cloud optical depth from data obtained by a ground-based, multi-channel radiometer operating in the

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preview of TWP MFRSR Data Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Figure 1. MFRSR data from the TWP site (97/09/10) Figure 2. Aerosol optical depth and Angstrom exponent Figure 3. Water vapor derived from MFRSR and MWR Key contributors to this work are Jim Barnard and Will Shaw. The Multi-Filter Rotating Shadowband Radiometer (MFRSR) is a ground-based radiometer that uses

  5. ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAerosol Retrievals from ARM SGP MFRSR Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM

  6. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sky Imager Cloud Properties, Radiometric Not Online MFRIRT Multifilter Radiometer and Infrared Thermometer Radiometric MFRSR Multifilter Rotating Shadowband Radiometer...

  7. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  8. CONTROL ROD ROTATING MECHANISM

    DOE Patents [OSTI]

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  9. Diamagnetism of rotating plasma

    SciTech Connect (OSTI)

    Young, W. C.; Hassam, A. B.; Romero-Talamas, C. A.; Ellis, R. F.; Teodorescu, C.

    2011-11-15

    Diamagnetism and magnetic measurements of a supersonically rotating plasma in a shaped magnetic field demonstrate confinement of plasma pressure along the magnetic field resulting from centrifugal force. The Grad-Shafranov equation of ideal magnetohydrodynamic force balance, including supersonic rotation, is solved to confirm that the predicted angular velocity is in agreement with spectroscopic measurements of the Doppler shifts.

  10. Rotatable shear plate interferometer

    DOE Patents [OSTI]

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  11. Rotation sensor switch

    DOE Patents [OSTI]

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  12. Rotatable seal assembly. [Patent application; rotating targets

    DOE Patents [OSTI]

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  13. On rapid plasma rotation

    SciTech Connect (OSTI)

    Helander, P.

    2007-10-15

    The conditions under which rapid plasma rotation may occur in a general three-dimensional magnetic field with flux surfaces, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields whose strength B depends on the arc length l along the field in approximately the same way for all field lines on each flux surface {psi}, i.e., B{approx_equal}f({psi},l). Moreover, it is shown that the rotation must be in the direction of the vector {nabla}{psi}x{nabla}B.

  14. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  15. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  16. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Solar Spectrum 360 to 1050 nm from Rotating Shadowband Spectroradiometer (RSS) ... In addition to supporting a revision of our estimates of the Sun's spectrum, these data ...

  18. ARM - Journal Articles 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ARM Min Photon path length distributions inferred from rotating shadowband spectrometer measurements at the Atmospheric Radiation Measurements Program Southern Great Plains site ...

  19. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... path length distributions inferred from rotating shadowband spectrometer measurements at the Atmospheric Radiation Measurements Program Southern Great Plains site", J. Geophys. ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path length distributions inferred from rotating shadowband spectrometer measurements at the Atmospheric Radiation Measurements Program Southern Great Plains site, J. Geophys. ...

  1. ARM - Field Campaign - Millimeter-wave Radiometric Arctic Winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westwater Scanning-O2 Radiometer Order Data Racette Millimeter-wave Imaging Radiometer (MIR) Order Data Han Corrected ARM MWR data Order Data Michalsky Rotating Shadowband...

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. Rotating Aperture System

    DOE Patents [OSTI]

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  4. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  5. Rotating flexible drag mill

    DOE Patents [OSTI]

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  6. Rotating shielded crane system

    SciTech Connect (OSTI)

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  7. Troubleshooting rotating equipment

    SciTech Connect (OSTI)

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  8. Rotatable stem and lock

    DOE Patents [OSTI]

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  9. Rotatable stem and lock

    DOE Patents [OSTI]

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  10. Rotatable seal assembly

    DOE Patents [OSTI]

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  11. Rotating plug bearing and seal

    DOE Patents [OSTI]

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  12. ROTATING PLASMA DEVICE

    DOE Patents [OSTI]

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  13. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  14. Digital rotation measurement unit

    DOE Patents [OSTI]

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  15. Rotating drum filter

    DOE Patents [OSTI]

    Anson, Donald

    1990-01-01

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  16. Surface dimpling on rotating work piece using rotation cutting tool

    DOE Patents [OSTI]

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  17. Aerosol optical depth derived from solar radiometry observations at northern mid-latitude sites

    SciTech Connect (OSTI)

    Laulainen, N.S.; Larson, N.R.; Michalsky, J.J.; Harrison, L.C.

    1994-01-01

    Routine, automated solar radiometry observations began with the development of the Mobile Automated Scanning Photometer (MASP) and its installation at the Rattlesnake Mountain Observatory (RMO). We have introduced a microprocessor controlled rotating shadowband radiometer (RSR), both the single detector and the multi-filter/detector (MFRSR) versions to replace the MASP. The operational mode of the RSRs is substantially different than the MASP or other traditional sun-tracking radiometers, because, by virtue of the automated rotating shadowband, the total and diffuse irradiance on a horizontal plane are measured and the direct-normal component deduced through computation from the total and diffuse components by the self-contained microprocessor. Because the three irradiance components are measured using the same detector for a given wavelength, the calibration coefficients are identical for each component, thus reducing errors when comparing them. The MFRSR is the primary radiometric instrument in the nine-station Quantitative Links Network (QLN) established in the eastern United States in late 1991. Data from this network are being used to investigate how cloud- and aerosol-induced radiative effects vary in time and with cloud structure and type over a mid-latitude continental region. This work supports the DOE Quantitative Links Program to quantify linkages between changes in atmospheric composition and climate forcing. In this paper we describe the setup of the QLN and present aerosol optical depth results from the on-going measurements at PNL/RMO, as well as preliminary results from the QLN. From the time-series of data at each site, we compare seasonal variability and geographical differences, as well as the effect of the perturbation to the stratosphere by Mt. Pinatubo. Analysis of the wavelength dependence of optical depth also provides information on the evolution and changes in the size distribution of the aerosols.

  18. Precise rotation rates for five slowly rotating A stars

    SciTech Connect (OSTI)

    Gray, David F.

    2014-04-01

    Projected rotation rates of five early A-type slowly rotating stars are measured spectroscopically to a precision of 0.2 km s{sup 1}. A detailed Fourier analysis is done, as well as a comparison of profiles directly. Macroturbulence is needed in addition to rotation to reproduce the profile shapes. An upper limit of ?2 km s{sup 1} is placed on the microturbulence dispersion. Small unexplained differences between the models and the observations are seen in the sidelobe structure of the transforms. The v sin i results are: ? Dra, 26.2; ? Leo, 22.5; ? CMa A, 16.7; ? Gem A, 10.7; o Peg, 6.0 km s{sup 1}. These stars are suitable as standards for measuring rotation using less fundamental methods.

  19. Axial gap rotating electrical machine

    DOE Patents [OSTI]

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  20. Cooling system for rotating machine

    DOE Patents [OSTI]

    Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit

    2011-08-09

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  1. Rotation Reversal Bifurcation and Energy Confinement Saturation...

    Office of Scientific and Technical Information (OSTI)

    Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak OhmicL-Mode Plasmas Citation Details In-Document Search Title: Rotation Reversal Bifurcation and Energy...

  2. Rotating head and piston engine

    SciTech Connect (OSTI)

    Gomm, T.J.; Messick, N.C.

    1992-07-21

    This patent describes a rotary piston combustion engine. It comprises a housing means, an engine block housing a single toroidal bore, a piston carrier ring spaced outwardly along the entire perimeter of the toroidal bore with at least one finger extending inwardly for piston attachment, a power transfer cylinder, a power output shaft, an auxiliary shaft with driven gearing means meshing with the driving gearing means, a rotating head with windows for piston passage, a trapezoidal porting means in the engine block and in the rotating head, an exhaust port means.

  3. Holder for rotating glass body

    DOE Patents [OSTI]

    Kolleck, Floyd W.

    1978-04-04

    A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

  4. Rotating drum variable depth sampler

    DOE Patents [OSTI]

    Nance, Thomas A.; Steeper, Timothy J.

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  5. Rotation of highly excited nuclei: Mass dependence of rotational damping

    SciTech Connect (OSTI)

    Million, B.; Frattini, S.; Bracco, A.; Leoni, S.; Camera, F.; Blasi, N.; Lo Bianco, G.; Pignanelli, M.; Vigezzi, E.; Herskind, B.; Doessing, T.; Bergstroem, M.; Varmette, P.; Toermaenen, S.; Maj, A.; Kmiecik, M.; Napoli, D. R.; Matsuo, M.

    1999-11-16

    The {gamma}-decay of the continuum has been measured in two mass regions. The excitation function of the continuum decay as well as spectral shape and fractional Doppler shifts are discussed for both {sup 114}Te and {sup 164}Yb compound nuclei, and show the typical features of rotational collective motion. Moreover, in both cases an upper limit of {gamma}{sub rot} is given and the number of decay-paths is determined from the fluctuation analysis method. Simulations based on microscopic calculations of the rotational damping model reproduce quite well the experimental findings for both N{sub path} and the scaling of {gamma}{sub rot} as a function of the mass number.

  6. harrison-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Rotating Shadowband Spectroradiometer (RSS) Data L. C. Harrison, J. J. Michalsky, Q. Min, and M. Beauharnois Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The rotating shadowband spectroradiometer (RSS, shown in Figure 1) is our most recently developed instrument. It can be thought of as a 512-channel multifilter rotating shadow- band radiometer (MFRSR) spanning the wavelength range 360 nm to 1050 nm. (a) This portion of the shortwave

  7. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  8. Rotating concave eddy current probe

    DOE Patents [OSTI]

    Roach, Dennis P. (Albuquerque, NM); Walkington, Phil (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Hohman, Ed (Albuquerque, NM)

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  9. Translation and rotation positioning motor

    DOE Patents [OSTI]

    Schmid, Andreas; Schaff, Oliver

    2005-02-01

    A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.

  10. Translation and rotation positioning motor

    DOE Patents [OSTI]

    Schmid, Andreas; Schaff, Oliver

    2006-07-04

    A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.

  11. Gravity controlled anti-reverse rotation device

    DOE Patents [OSTI]

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  12. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Marinovici, Maria C.

    2015-10-15

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  13. Are azobenzenophanes rotation-restricted?

    SciTech Connect (OSTI)

    Ciminelli, Cosimo; Granucci, Giovanni; Persico, Maurizio

    2005-11-01

    We simulated the photoisomerization dynamics of an azobenzenophane with a semiclassical surface hopping approach and a semiempirical reparametrized quantum mechanics/molecular mechanics Hamiltonian. Only one of the two azobenzene chromophores in the molecule is taken into account quantum mechanically: the other one is treated by molecular mechanics. Both n{yields}{pi}* and {pi}{yields}{pi}* excitations are considered. Our results show that the photoisomerization reaction mainly involves the rotation around the N=N double bond. The excited state relaxation features are in qualitative agreement with experimental time-resolved fluorescence results.

  14. Dual rotating shaft seal apparatus

    DOE Patents [OSTI]

    Griggs, J.E.; Newman, H.J.

    1983-06-16

    The report is directed to apparatus suitable for transferring torque and rotary motion through a wall in a manner which is essentially gas impermeable. The apparatus can be used for pressurizing, agitating, and mixing fluids and features two ferrofluidic, i.e., ferrometic seals. Each seal is disposed on one of two supported shafts and each shaft is operably connected at one end to a gear mechanism and at its other end to an adjustable coupling means which is to be connected to a rotatable shaft extending through a wall through which torque and rotary motion are to be transferred.

  15. ARM - Campaign Instrument - mfrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Multifilter Rotating Shadowband Radiometer (MFRSR) Instrument Categories...

  16. ARM - Campaign Instrument - rss

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrss Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Rotating Shadowband Spectroradiometer...

  17. ARM - Campaign Instrument - tcrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstcrsr Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Thin Cloud Rotating Shadowband...

  18. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  19. Trirotron: triode rotating beam radio frequency amplifier

    DOE Patents [OSTI]

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Rotating Shadowband Spectroradiometer Data from SGP Harrison, L., Min, Q., and Michalsky, J. J., Atmospheric Sciences Research Inst., State University of New York at Albany Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We show Rotating Shadowband Spectroradiometer (RSS) optical depth spectra from the Southern Great Plains (SGP) for a range of clear-sky cases, and discuss comparisons of the spectral direct/diffuse irradiance ratios with modeled results as a test

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical and Optical Properties from Multifilter Rotating Shadowband Radiometers E. Kassianov, J. Barnard, T. Ackerman, C. Flynn, and D. Flynn Pacific Northwest National Laboratory Richland, Washington Introduction Multifilter rotating shadowband radiometers (MFRSRs) provide measurements of the total and diffuse solar irradiances at six wavelengths (415, 500, 615, 673, 870 and 940 nm). Direct solar irradiances are inferred by finding the difference between the two measured irradiances, and

  2. In-line rotating capacitive torque sensor

    DOE Patents [OSTI]

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  3. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  4. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  5. In-line rotating capacitive torque sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  6. Rotation Reversal Bifurcation and Energy Confinement Saturation...

    Office of Scientific and Technical Information (OSTI)

    Title: Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak Ohmic L -Mode Plasmas Authors: Rice, J. E. ; Cziegler, I. ; Diamond, P. H. ; Duval, B. P. ; ...

  7. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  8. Microfabricated microengine with constant rotation rate

    DOE Patents [OSTI]

    Romero, Louis A. (Albuquerque, NM); Dickey, Fred M. (Albuquerque, NM)

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  9. Rotational Electrophoresis of Striped Metallic Microrods (Journal...

    Office of Scientific and Technical Information (OSTI)

    The torque due to polarization has a second order dependence on the electric field ... ELECTRIC FIELDS; ELECTROPHORESIS; ORIENTATION; POLARIZATION; ROTATION; SIMULATION; TORQUE

  10. DEVICE FOR CONVEYING AND ROTATING OBJECTS

    DOE Patents [OSTI]

    Frantz, C.E.; Roslund, J.

    1958-01-21

    A device is described for conveying cylindrical material with a combined rotary and axial motion. The material rides on a series of balls which are retained in a guide plate and rotated by bearing against a rotating drum. The drum has a series of conical sections or grooves cut in its outer surface on which the balls ride. The grooves and balls match in such a way that all the balls are caused to rotate about an axis at an angle to the drum axis. This skewed rotation of the ball imparts a longitudinal as well as a rotary motion to the cylinders being conveyed.

  11. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and magnetization history. Left: A typical speckle pattern from the CoPd multilayer. Color bar at bottom indicates relative intensity. The rotational symmetry of a scattering...

  12. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect (OSTI)

    Parra Diaz, Felix

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  13. Experimental and analytical study of rotating cavitation

    SciTech Connect (OSTI)

    Kamijo, Kenjiro; Shimura, Takashi; Tsujimoto, Yoshinobu [National Aerospace Lab., Miyagi (Japan). Kakuda Research Center

    1994-12-31

    This paper describes experimental and analytical results of rotating cavitation. There are four major sections in this paper. The first section presents the main characteristics of rotating cavitation which was found in the inducer test using a water tunnel. The second section describes the rotating cavitation which occurred in the development test of an LE-7 liquid oxygen pump for the H-II rocket. Also described in this section is how the rotating cavitation was suppressed. The rotating cavitation was the cause of both super synchronous shaft vibration and an unstable head coefficient curve. The third section presents how the theory of rotating cavitation was developed. The final section shows the measured cavitation compliance and mass flow gain factor of the LE-7 pump inducer for comparison of the experimental and analytical results of the rotating cavitation of the LE-7 pump inducer. Almost all the information presented in this paper has already been reported by Kamijo et al. (1977, 1980, 1993, 1993) and by Shimura (1993). In the present paper, the authors attempt to combine and give a clear overview of the experimental and analytical results described in the previous papers to systematically show their experience and findings on rotating cavitation.

  14. Rotation Manager Pro Version 1.0b1

    Energy Science and Technology Software Center (OSTI)

    2002-02-01

    The Rotation Manager Pro Package maintains databases of instructions to replicate plate tectonic movements. The instructions are in the standard of tectonic plate rotations, including plate identification and location and angle of the rotation pole. Each database is accompanied by various metadata, including information about each rotation pole and the database itself. The package provides a range of tools to actively manage the database using methods specifically required for rotations: rotation pole addition and subtraction,more » viewing of a rotation chain through the rotation hierarchy, and the rotation of data points.« less

  15. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  16. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  17. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect (OSTI)

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  18. Physics of Intrinsic Plasma Rotation Explained for First Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors ...

  19. Forming rotated SAR images by real-time motion compensation....

    Office of Scientific and Technical Information (OSTI)

    collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated...

  20. Water-Efficient Technology Opportunity: Multi-Stream Rotational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Stream Rotational Sprinkler Heads Water-Efficient Technology Opportunity: ... rotational sprinkler heads as a water-saving technology that is relevant to the ...

  1. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and

  2. Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.

    2000-08-29

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.

  3. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect (OSTI)

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  4. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  5. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  6. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  7. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  8. Excitation system for rotating synchronous machines

    DOE Patents [OSTI]

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  9. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in EB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  10. Compound And Rotational Damping In Warm Nuclei

    SciTech Connect (OSTI)

    Leoni, S.; Bracco, A.; Benzoni, G.; Blasi, N.; Camera, F.; Grassi, C.; Million, B.; Paleni, A.; Pignanelli, M.; Vigezzi, E.; Wieland, O.; Matsuo, M.; Doessing, T.; Herskind, B.; Hagemann, G.B.; Wilson, J.; Maj, A.; Kmiecik, M.; LoBianco, G.; Petrache, C.M.

    2005-04-05

    The {gamma}-decay from excited nuclei is used to study the interplay between rotational motion and compound nucleus formation in deformed nuclei. A new analysis technique is presented which allows for the first time to directly measure the rotational and compound damping widths {gamma}rot and {gamma}{mu} from {gamma}-coincidence spectra. The method is first tested on simulated spectra and then applied to high-statistics EUROBALL data on the nucleus 163Er. Experimental values of {approx_equal}200 and 20 keV are obtained for {gamma}rot and {gamma}{mu}, respectively, in the spin region I {approx_equal} 30-40 ({Dirac_h}/2{pi}), in good agreement with microscopic cranked shell model calculations for the specific nucleus. A dependence of rotational damping on the K-quantum number of the nuclear states is also observed, both in experiment and theory, resulting in a {approx_equal}30% reduction of {gamma}rot for high-K states. This points to a delayed onset of rotational damping in high-K configurations.

  11. Lateral displacement and rotational displacement sensor

    DOE Patents [OSTI]

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  12. Rotatable superconducting cyclotron adapted for medical use

    DOE Patents [OSTI]

    Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  13. A theoretical analysis of rotating cavitation in inducers

    SciTech Connect (OSTI)

    Tsujimoto, Y.; Kamijo, K. (National Aerospace Lab., Miyagi, (Japan)); Yoshida, Y. (Osaka Univ., Toyonaka, (Japan). Engineering Science)

    1993-03-01

    Rotating cavitation was analyzed using an actuator disk method. Quasi-steady pressure performance of the impeller, mass flow gain factor, and cavitation compliance of the cavity were taken into account. Three types of destabilizing modes were predicted: rotation cavitation propagating faster than the rotational speed of the impeller, rotating cavitation propagating in the direction opposite that of the impeller, and rotating stall propagating slower than the rotational speed of the impeller. It was shown that both types of rotating cavitation were caused by the positive mass flow gain factor, while the rotating stall was caused by the positive slope of the pressure performance. Stability and propagation velocity maps are presented for the two types of rotating cavitation in the mass flow gain factor-cavitation compliance place. The correlation between theoretical results and experimental observations is discussed.

  14. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  15. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  16. Actuator assembly including a single axis of rotation locking member

    DOE Patents [OSTI]

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  17. Faraday rotation assisted by linearly polarized light

    SciTech Connect (OSTI)

    Choi, Jai Min; Kim, Jang Myun; Cho, D.

    2007-11-15

    We demonstrate a type of chiral effect of an atomic medium. Polarization rotation of a probe beam is observed only when both a magnetic field and a linearly polarized coupling beam are present. We compare it with other chiral effects like optical activity, the Faraday effect, and the optically induced Faraday effect from the viewpoint of spatial inversion and time reversal transformations. As a theoretical model we consider a five-level configuration involving the cesium D2 transition. We use spin-polarized cold cesium atoms trapped in a magneto-optical trap to measure the polarization rotation versus probe detuning. The result shows reasonable agreement with a calculation from the master equation of the five-level configuration.

  18. Rotational Electrophoresis of Striped Metallic Microrods

    SciTech Connect (OSTI)

    Rose, K A; Meier, J A; Dougherty, G M; Santiago, J G

    2005-11-28

    Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.

  19. MEMS inertial sensors with integral rotation means.

    SciTech Connect (OSTI)

    Kohler, Stewart M.

    2003-09-01

    The state-of-the-art of inertial micro-sensors (gyroscopes and accelerometers) has advanced to the point where they are displacing the more traditional sensors in many size, power, and/or cost-sensitive applications. A factor limiting the range of application of inertial micro-sensors has been their relatively poor bias stability. The incorporation of an integral sensitive axis rotation capability would enable bias mitigation through proven techniques such as indexing, and foster the use of inertial micro-sensors in more accuracy-sensitive applications. Fabricating the integral rotation mechanism in MEMS technology would minimize the penalties associated with incorporation of this capability, and preserve the inherent advantages of inertial micro-sensors.

  20. Chiral meta-atoms rotated by light

    SciTech Connect (OSTI)

    Liu Mingkai; Powell, David A.; Shadrivov, Ilya V.

    2012-07-16

    We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.

  1. Face seal assembly for rotating drum

    DOE Patents [OSTI]

    Morgan, J. Giles; Rennich, Mark J.; Whatley, Marvin E.

    1982-01-01

    A seal assembly comprises a tube rotatable about its longitudinal axis and having two longitudinally spaced flanges projecting radially outwardly from the outer surface thereof. Slidably positioned against one of the flanges is a seal ring, and disposed between this seal ring and the other flange are two rings that are forced apart by springs, one of the latter rings being attached to a flexible wall.

  2. Short-Rotation Woody Biomass Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Short-Rotation Woody Biomass Sustainability Natalie A. Griffiths, Oak Ridge National Laboratory C. Rhett Jackson, University of Georgia Kellie Vache, Oregon State University Jeffrey J. McDonnell, University of Saskatchewan Gregory Starr, University of Alabama John I. Blake, Ben M. Rau, USDA Forest Service This presentation does not contain any proprietary, confidential, or otherwise restricted information March 23, 2015 Analysis and Sustainability *2 Managed by UT-Battelle for the U.S.

  3. Diagnostics - Rotating Wall Machine - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics UW Madison Line Tied Reconnection Experiment Diagnostics LTRX HomeResearch MissionLTRX DevicePhysics TopicsDiagnosticsLTRX GalleryLTRX People CPLA Home Directory Publications Links University of Wisconsin Physics Department Department of Energy National Science Foundation As the UW-LTRX was designed with the goal of employing a rotating solid wall along the boundary of the experimental volume, diagnostic access is necessarily much more constrained than in comparable devices. With the

  4. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  5. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  6. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  7. Rotating copper plasmoid in external magnetic field

    SciTech Connect (OSTI)

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  8. Edge rotational magnons in magnonic crystals

    SciTech Connect (OSTI)

    Lisenkov, Ivan Kalyabin, Dmitry; Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700 Moscow Region ; Nikitov, Sergey; Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700 Moscow Region; Saratov State University, 112 Bol'shaya Kazach'ya, Saratov 410012

    2013-11-11

    It is predicted that in 2D magnonic crystals the edge rotational magnons of forward volume magnetostatic spin waves can exist. Under certain conditions, locally bounded magnons may appear within the crystal consisting of the ferromagnetic matrix and periodically inserted magnetic/non-magnetic inclusions. It is also shown that interplay of different resonances in 2D magnonic crystal may provide conditions for spin wave modes existence with negative group velocity.

  9. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  10. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  11. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  12. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  13. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  14. Video: Collective cell motion - rotation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video: Collective cell motion - rotation Share Topic Environment Biology Computational biology Programs Materials science Materials simulation & theory Mathematics, computing, & ...

  15. Microscopic origin of quantum chaos in rotational damping

    SciTech Connect (OSTI)

    Matsuo, M.; Dossing, T.; Vigezzi, E.; Broglia, R.A. (Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto (Japan) The Niels Bohr Institute, University of Copenhagen (Denmark) Instituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy) Departimento di Fisica dell'Universita di Milano, Milano (Italy))

    1993-05-03

    The rotational spectrum of [sup 168]Yb is calclated by diagonalizing different effective interactions within the basis of unperturbed rotational bands provided by the cranked shell model. A transition between order and chaos taking place in the energy region between 1 and 2 MeV above the yrast line is observed, associated with the onset of rotational damping. It can be related to the higher multipole components of the force acting among the unperturbed rotational bands.

  16. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 Consider Steam Turbine Drives for Rotating Equipment (January 2012) (398.66 KB) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  17. 3 MW Solid Rotating Target Design

    SciTech Connect (OSTI)

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  18. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect (OSTI)

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  19. Controlling Data Collection to Support SAR Image Rotation

    DOE Patents [OSTI]

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  20. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOE Patents [OSTI]

    Romero, Louis; Christenson, Todd; Aaronson, Gene

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  1. Tracking single-particle rotation during macrophage uptake

    SciTech Connect (OSTI)

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

  2. Tracking single-particle rotation during macrophage uptake

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particlemore » rotation.« less

  3. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    SciTech Connect (OSTI)

    Chrystal, C.; Burrell, K. H.; Lao, L. L.; Pace, D. C.; Grierson, B. A.

    2014-11-15

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution is improved. Significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.

  4. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energys (DOEs) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (?0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for nearby overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  5. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  6. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    SciTech Connect (OSTI)

    Cébron, D.; Hollerbach, R. E-mail: r.hollerbach@leeds.ac.uk

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  7. Manipulator for rotating and examining small spheres

    DOE Patents [OSTI]

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  8. Magnetospheric structure of rotation powered pulsars

    SciTech Connect (OSTI)

    Arons, J. California Univ., Livermore, CA . Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  9. Rotating electric machine with fluid supported parts

    DOE Patents [OSTI]

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  10. Manipulator for rotating and examining small spheres

    DOE Patents [OSTI]

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  11. Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

    SciTech Connect (OSTI)

    Lim, Chjan

    2013-12-18

    Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.

  12. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    SciTech Connect (OSTI)

    Epstein, Courtney R.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.

  13. Rotational actuator of motor based on carbon nanotubes

    DOE Patents [OSTI]

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  14. Rotational actuator or motor based on carbon nanotubes

    DOE Patents [OSTI]

    Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2006-05-30

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  15. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  16. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  17. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technique | Department of Energy Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Presentation slides from the Fuel Cell Technologies Office webinar, "Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique," held March 12, 2013. Presenters were Shyam S. Kocha, National Renewable Energy Laboratory; Yannick Garsany, Naval Research

  18. Physics of Intrinsic Plasma Rotation Explained for First Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors such as ITER July 23, 2013 CHANG.JPG Flamelets or hot spots along the plasma edge (a) drive turbulence intensity (b), temperature intensity (c), and intrinsic torque (d) inward, converting heat into toroidal rotation. (S. Ku et al.) If humans could harness nuclear fusion, the process that powers stars like our sun, the

  19. Joint Downscale Fluxes of Energy and Potential Enstrophy in Rotating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stratified Boussinesq Flows | Argonne Leadership Computing Facility Joint Downscale Fluxes of Energy and Potential Enstrophy in Rotating Stratified Boussinesq Flows Authors: Kurien, S., Aluie, H. We use high-resolution simulations of Boussinesq flows, forced in the large-scales, with fixed rotation and stable stratification along the vertical axis, to study the cascades of energy and potential enstrophy to small-scales in three different regimes of stratification and rotation. For strongly

  20. Forming rotated SAR images by real-time motion compensation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2012-12-01

    Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

  1. Strategies for Single-Laser-Shot Femtosecond Pure-Rotational...

    Office of Scientific and Technical Information (OSTI)

    Title: Strategies for Single-Laser-Shot Femtosecond Pure-Rotational CARS Thermometry. Authors: Kearney, Sean P. ; Farrow, Darcie ; Miller, Joseph ; Meyer, Terrence R. Publication ...

  2. Interactions between Grain Rotation and Local Deformation. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Interactions between Grain Rotation and Local Deformation. Abstract not provided. Authors: Carroll, Jay ; Lim, Hojun ; Boyce, Brad Lee ; Battaile, Corbett Chandler. ; ...

  3. Evaluating Deformation-Induced Rotation in a Polycrystal During...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluating Deformation-Induced Rotation in a Polycrystal During In Situ Tensile Deformation using EBSD. Abstract not provided. Authors: Carroll, Jay ; Clark, Blythe ; Boyce, ...

  4. Cooling for a rotating anode X-ray tube

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  5. Abstract: Development and Deployment of a Short Rotation Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header Abstract: Development and Deployment of a Short Rotation Woody Crops Harvesting ...

  6. Change of translational-rotational coupling in liquids revealed...

    Office of Scientific and Technical Information (OSTI)

    of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than ...

  7. Hybrid fs/ps Rotational CARS Temperature and Concentration Measurement...

    Office of Scientific and Technical Information (OSTI)

    Hybrid fsps Rotational CARS Temperature and Concentration Measurements Using Two Different ps-Duration Probe Beams. Citation Details In-Document Search Title: Hybrid fsps ...

  8. Controlling octahedral rotations in a perovskite via strain doping...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlling octahedral rotations in a perovskite via strain doping Citation Details In-Document Search ... Type: Accepted Manuscript Journal Name: Scientific Reports ...

  9. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotating Disk-Electrode Aqueous Electrolyte Accelerated Stress Tests for PGM ElectrocatalystSupport Durability Evaluation Performance Measurement of MEAs Catalysis Working Group ...

  10. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Consider Steam Turbine Drives for Rotating Equipment Steam turbines are well suited as ... This service generally calls for a backpressure noncondensing steam turbine. The ...

  11. A rotating target wheel system for Gammasphere (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    System). A brief history of these rotating target ... 10.10631.59072; (c) 1999 American Institute of Physics; ... Country of Publication: United States Language: English ...

  12. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    SciTech Connect (OSTI)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  13. Magnetic and antimagnetic rotation in covariant density functional theory

    SciTech Connect (OSTI)

    Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J.

    2012-10-20

    Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.

  14. Galvano-rotational effect induced by electroweak interactions in pulsars

    SciTech Connect (OSTI)

    Dvornikov, Maxim

    2015-05-21

    We study electroweakly interacting particles in rotating matter. The existence of the electric current along the axis of the matter rotation is predicted in this system. This new galvano-rotational effect is caused by the parity violating interaction between massless charged particles in the rotating matter. We start with the exact solution of the Dirac equation for a fermion involved in the electroweak interaction in the rotating frame. This equation includes the noninertial effects. Then, using the obtained solution, we derive the induced electric current which turns out to flow along the rotation axis. We study the possibility of the appearance of the galvano-rotational effect in dense matter of compact astrophysical objects. The particular example of neutron and hypothetical quark stars is discussed. It is shown that, using this effect, one can expect the generation of toroidal magnetic fields comparable with poloidal ones in old millisecond pulsars. We also briefly discuss the generation of the magnetic helicity in these stars. Finally we analyze the possibility to apply the galvano-rotational effect for the description of the asymmetric neutrino emission from a neutron star to explain pulsars kicks.

  15. Test report for slow rotation core sampling test

    SciTech Connect (OSTI)

    Ralston, G.L.

    1995-04-03

    This report documents the temperature increase experienced when core sampling equipment is rotated slowly with a relatively low downforce applied to the drill string (nominal 10 rpm/400 lb downforce). The test was carried out in close to worst-case conditions, rotating against a cement mixture in one test sequence, and a steel plate in the second test sequence.

  16. Rotational dynamics of cargos at pauses during axonal transport

    SciTech Connect (OSTI)

    Gu, Yan; Sun, Wei; Wang, Gufeng; Jeftinija, Ksenija; Jeftinija, Srdija; Fang, Ning

    2012-08-28

    Direct visualization of axonal transport in live neurons is essential for our understanding of the neuronal functions and the working mechanisms of microtubule-based motor proteins. Here we use the high-speed single particle orientation and rotational tracking technique to directly visualize the rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport, with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause.

  17. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  18. Ultrafast terahertz Faraday rotation in graphene

    SciTech Connect (OSTI)

    Heyman, J. N.; Foo Kune, R. F.; Alebachew, B. A.; Nguyen, M. D.; Robinson, J. T.

    2014-12-07

    Terahertz (THz) Faraday rotation measurements were performed to investigate carrier dynamics in p-type Chemical vapor deposition (CVD) graphene. We used static and time-resolved polarization-sensitive THz transmission measurements in a magnetic field to probe free carriers in GaAs, InP, and Graphene. Static measurements probe the equilibrium carrier density and momentum scattering rate. Time-resolved (optical pump/THz probe) measurements probe the change in these quantities following photoexcitation. In a typical CVD graphene sample, we found that 0.5 ps following photoexcitation with 1 × 10{sup 13} photons/cm{sup 2} pulses at 800 nm the effective hole scattering time decreased from 37 fs to 34.5 fs, while the carrier concentration increased from 2.0 × 10{sup 12} cm{sup −2} to 2.04 × 10{sup 12} cm{sup −2}, leading to a transient decrease in the conductivity of the film.

  19. Theoretical rotation-vibration spectrum of thioformaldehyde

    SciTech Connect (OSTI)

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-11-28

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41?809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup ?1} and provides the energies and line intensities for 547?926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  20. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOE Patents [OSTI]

    Pin, F.G.; Killough, S.M.

    1994-12-20

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.

  1. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOE Patents [OSTI]

    Pin, Francois G.; Killough, Stephen M.

    1994-01-01

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.

  2. Tracking single particle rotation: Probing dynamics in four dimensions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  3. Improvement of the edge rotation diagnostic spectrum analysis via simulation

    SciTech Connect (OSTI)

    Luo, J.; Zhuang, G. Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-15

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  4. Machine protection system for rotating equipment and method

    DOE Patents [OSTI]

    Lakshminarasimha, Arkalgud N.; Rucigay, Richard J.; Ozgur, Dincer

    2003-01-01

    A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.

  5. Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator...

    Office of Scientific and Technical Information (OSTI)

    Title: Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator C -Mod Tokamak Plasmas Authors: Rice, J. E. ; Hughes, J. W. ; Diamond, P. H. ; Kosuga, Y. ; Podpaly, Y. A. ; ...

  6. A Microscopic Quantal Model for Nuclear Collective Rotation

    SciTech Connect (OSTI)

    Gulshani, P.

    2007-10-26

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored.

  7. Contrast from rotating frame relaxation by adiabatic pulses

    DOE Patents [OSTI]

    Michaeli, Shalom; Garwood, Michael G.; Ugurbil, Kamil; Sorce, Dennis J.

    2007-10-09

    This document discusses, among other things, a system and method for modulating transverse and longitudinal relaxation time contrast in a rotating frame based on a train of radio frequency pulses.

  8. Reducing collective quantum state rotation errors with reversible dephasing

    SciTech Connect (OSTI)

    Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.

    2014-12-29

    We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21?dB in the context of collective population measurements of the spin states of an ensemble of 2.110{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

  9. Registration of the rotation axis in X-ray tomography

    SciTech Connect (OSTI)

    Yang, Yimeng; Yang, Feifei; Hingerl, Ferdinand F.; Xiao, Xianghui; Liu, Yijin; Wu, Ziyu; Benson, Sally M.; Toney, Michael F.; Andrews, Joy C.; Pianetta, Piero A.

    2015-01-01

    There is high demand for efficient, robust and automated routines for tomographic data reduction, particularly for synchrotron data. Registration of the rotation axis in data processing is a critical step affecting the quality of the reconstruction and is not easily implemented with automation. Existing methods for calculating the center of rotation have been reviewed and an improved algorithm to register the rotation axis in tomographic data is presented. The performance of the proposed method is evaluated using synchrotron-based microtomography data on geological samples with and without artificial reduction of the signal-to-noise ratio. The proposed method improves the reconstruction quality by correcting both the tilting error and the translational offset of the rotation axis. The limitation of this promising method is also discussed.

  10. Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC...

    Office of Scientific and Technical Information (OSTI)

    Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC-Mod Tokamak Plasmas Citation Details In-Document Search Title: Edge Temperature Gradient as Intrinsic Rotation...

  11. The pure rotational spectrum of thorium monosulfide, ThS (Journal...

    Office of Scientific and Technical Information (OSTI)

    The pure rotational spectrum of thorium monosulfide, ThS This content will become publicly available on November 28, 2017 Prev Next Title: The pure rotational spectrum of ...

  12. Apodised aperture using rotation of plane of polarization

    DOE Patents [OSTI]

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-09-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)

  13. Self-cleaning rotating anode x-ray source

    DOE Patents [OSTI]

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  14. High-Performance Refrigerator Using Novel Rotating Hear Exchanger

    Broader source: Energy.gov (indexed) [DOE]

    High-Performance Refrigerator Using Novel Rotating Heat Exchanger 2016 Building Technologies Office Peer Review Omar Abdelaziz, abdelazizoa@ornl.gov Oak Ridge National Laboratory 2 Project Summary Timeline: Start date: 10/01/2014 Planned end date: 09/30/2016 Key Milestones 1. Development of the first prototype 2. Successful one-week-long open circuit testing 3. The rotating HX and frost collector unit successfully run and tested for one week Budget: Total Project $ to Date: * DOE: $895,977 *

  15. Self-cleaning rotating anode X-ray source

    DOE Patents [OSTI]

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  16. Manipulator for rotating and translating a sample holder

    DOE Patents [OSTI]

    van de Water, Jeroen; van den Oetelaar, Johannes; Wagner, Raymond; Slingerland, Hendrik Nicolaas; Bruggers, Jan Willem; Ottevanger, Adriaan Huibert Dirk; Schmid, Andreas; Olson, Eric A.; Petrov, Ivan G.; Donchev, Todor I.; Duden, Thomas

    2011-02-08

    A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

  17. Critical surface for explosions of rotational core-collapse supernovae

    SciTech Connect (OSTI)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 (Japan)

    2014-09-20

    The effect of rotation on the explosion of core-collapse supernovae is investigated systematically in three-dimensional simulations. In order to obtain the critical conditions for explosion as a function of mass accretion rate, neutrino luminosity, and specific angular momentum, rigidly rotating matter was injected from the outer boundary with an angular momentum, which is increased every 500 ms. It is found that there is a critical value of the specific angular momentum, above which the standing shock wave revives, for a given combination of mass accretion rate and neutrino luminosity, i.e., an explosion can occur by rotation even if the neutrino luminosity is lower than the critical value for a given mass accretion rate in non-rotational models. The coupling of rotation and hydrodynamical instabilities plays an important role in characterizing the dynamics of shock revival for the range of specific angular momentum that are supposed to be realistic. Contrary to expectations from past studies, the most rapidly expanding direction of the shock wave is not aligned with the rotation axis. Being perpendicular to the rotation axis on average, it can be oriented in various directions. Its dispersion is small when the spiral mode of the standing accretion shock instability (SASI) governs the dynamics, while it is large when neutrino-driven convection is dominant. As a result of the comparison between two-dimensional and three-dimensional rotational models, it is found that m ? 0 modes of neutrino-driven convection or SASI are important for shock revival around the critical surface.

  18. Rotation-dependent catastrophic disruption of gravitational aggregates

    SciTech Connect (OSTI)

    Ballouz, Ronald-Louis; Richardson, Derek C.; Schwartz, Stephen R.; Michel, Patrick

    2014-07-10

    We carry out a systematic exploration of the effect of pre-impact rotation on the outcomes of low-speed collisions between planetesimals modeled as gravitational aggregates. We use pkdgrav, a cosmology code adapted to collisional problems and recently enhanced with a new soft-sphere collision algorithm that includes more realistic contact forces. A rotating body has lower effective surface gravity than a non-rotating one and therefore might suffer more mass loss as the result of a collision. What is less well understood, however, is whether rotation systematically increases mass loss on average regardless of the impact trajectory. This has important implications for the efficiency of planet formation via planetesimal growth, and also more generally for the determination of the impact energy threshold for catastrophic disruption (leading to the largest remnant retaining 50% of the original mass), as this has generally only been evaluated for non-spinning bodies. We find that for most collision scenarios, rotation lowers the threshold energy for catastrophic dispersal. For head-on collisions, we develop a semi-analytic description of the change in the threshold description as a function of the target's pre-impact rotation rate, and find that these results are consistent with the 'universal law' of catastrophic disruption developed by Leinhardt and Stewart. Using this approach, we introduce re-scaled catastrophic disruption variables that take into account the interacting mass fraction of the target and the projectile in order to translate oblique impacts into equivalent head-on collisions.

  19. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect (OSTI)

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  20. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOE Patents [OSTI]

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  1. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    SciTech Connect (OSTI)

    Martinez Gonzalez, M. J.

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  2. Rotational stability of a long field-reversed configuration

    SciTech Connect (OSTI)

    Barnes, D. C. Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  3. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  4. Rotational viscometer for high-pressure, high-temperature fluids

    DOE Patents [OSTI]

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  5. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Shipboard Fast-Rotating Shadowband Spectral Radiometer Reynolds, R.M., Miller, M.A., and Bartholemew, M.J., Brookhaven National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Brookhaven National Laboratory has developed a shipboard radiation instrument platform called the Portable Radiation Package (PRP). This poster presents design details, calibration information and results from ship cruises

  7. Ultra high vacuum heating and rotating specimen stage

    DOE Patents [OSTI]

    Coombs, A.W. III

    1995-05-02

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

  8. A nonlinear calculation of rotating cavitation in inducers

    SciTech Connect (OSTI)

    Tsujimoto, Y. [Osaka Univ., Toyonaka, Osaka (Japan). Dept. of Mechanical Engineering]|[National Aerospace Lab., Kakuda, Miyagi (Japan); Watanabe, S.; Yoshida, Y. [Osaka Univ., Toyonaka, Osaka (Japan); Kamijo, K. [National Aerospace Lab., Kakuda, Miyagi (Japan)

    1996-09-01

    In the previous linear analysis (Tsujimoto et al., 1993) it was found that there can be a backward rotating cavitation as well as a forward mode which rotates faster than impeller. Although some shaft vibration has been observed, which might be caused by the backward mode, experimental evidence has been obtained only for the forward mode. The purpose of the present study is to find out the factors which determine the amplitude of each mode of rotating cavitation by taking into account several nonlinearities. A time marching nonlinear 2-D flow analysis was carried out for this purpose. It was found that the increase of cavitation compliance at lower inlet pressure can be a factor which limits the amplitude. The mode selectivity is mainly dependent on the stability limit obtained by a linear analysis for which the phase delay of cavity has a most important effect.

  9. Regenerative braking device with rotationally mounted energy storage means

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  10. Rotational order–disorder structure of fluorescent protein FP480

    SciTech Connect (OSTI)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-09-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate.