Powered by Deep Web Technologies
Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SCE - Multi-Family Residential Energy Efficiency Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Energy Efficiency Programs Multi-Family Residential Energy Efficiency Programs SCE - Multi-Family Residential Energy Efficiency Programs < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Other Program Info Funding Source System Benefits Charge Start Date 1/1/2012 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount LED Pool/Spa Lighting: $75 - $100/unit Pool Pumps: $100 Energy Star Ceiling Fan (with Energy Star CFLs): $20/unit High Efficiency Clothes Washers: $50 - $100/unit Energy Star Refrigerators: $50/unit Dual Pane Windows: $0.75/sq. ft.

2

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info Funding Source System Benefits Charge Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Clothes Washers (In-Unit): $50 Clothes Washers (Common Area): $150 Central System Water/Space Heating: $1,500/Unit Storage Water Heater: $200/Unit Boilers: $500/Unit Furnace: $150 - $300/Unit Provider Residential Programs Through the Rebates for Multi-Family Properties Program, PG&E offers prescriptive rebates for owners and managers of multi-family properties of

3

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

4

SoCalGas - Multi-Family Residential Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Rebate Program Multi-Family Residential Rebate Program SoCalGas - Multi-Family Residential Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Dishwashers: $30 Insulation: 25% Natural Gas Storage Water Heaters: $30 Tankless Water Heaters: $300 Central Furnaces: $200 Central System Water Heaters: $500 Central System Boilers: $1,500 Central Demand Hot Water Controllers: $700 or $1400 Provider Southern California Gas Company Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy

5

Seattle City Light - Multi-Family Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Seattle City Light - Multi-Family Residential Energy Efficiency Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: 85% discount on installation costs Insulation: 50% discount on installation costs Window Replacement: $3 - $5/sq. ft. Provider Seattle City Light Seattle City Light provides incentives for its multi-family housing customers to increase their energy efficiency. Rebates are offered for common area lighting and weatherization measures including the installation

6

PG&E - Multi-Family Residential Energy Efficiency Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

PG&E - Multi-Family Residential Energy Efficiency Rebates PG&E - Multi-Family Residential Energy Efficiency Rebates PG&E - Multi-Family Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Other Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Program Info Expiration Date 03/01/2013 State California Program Type Utility Rebate Program Rebate Amount Attic Insulation: $0.15/sq. ft. Wall Insulation: $0.50/sq. ft. Clothes Washers: $50 - $150/Unit Refrigerator: $75/unit High Performance Dual Pane Windows: $0.75/sq. ft. Refrigerator, Freezer and Room AC Recycling: $25 - $35

7

SDG&E (Electric) - Multi-Family Residential Efficiency Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Efficiency Program Multi-Family Residential Efficiency Program SDG&E (Electric) - Multi-Family Residential Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washers: $75-$150 Room Air Conditioner: $50 Central Heat Pumps: $100 Insulation: $0.15/sq. ft. CFLs: $4-$10 Ceiling Fans with CFLs: $20 Interior Hardwired Fluorescent Fixtures: $32-$45 Exterior Hardwired Fluorescent Fixtures: $30 T12 De-lamping: $6/lamp Water Heaters: $30 Occupancy Sensors: $10 LED Exit Signs: $35 Photocells: $10/unit

8

Expansion of the residential conservation service program to multi-family and small commercial buildings  

SciTech Connect (OSTI)

Alternative regulatory provisions are considered which might permit achievement of the building energy conservation regulatory goals at a lower cost. Major issues, regulatory and legislative options, and cost-benefit analyses are discussed for multi-family and commercial buildings. The following are presented: related government programs, urban and community impact analysis, institutional impacts, energy cost, Residential Conservation Service coverage, methods of analysis, and regional studies. (MHR)

None

1980-11-01T23:59:59.000Z

9

Development of a housing performance evaluation model for multi-family residential buildings in Korea  

Science Journals Connector (OSTI)

This paper presents the development and application of a housing performance evaluation model for multi-family residential buildings in Korea. This model is intended to encourage initiatives toward achieving better housing performance and to support a homebuyer's decision-making on housing comparison and selection. Forty-one objective and feasible housing performance indicators, which were selected from the review of existing evaluation models and interviews with experts, are classified into a series of categories. The weights of each category and indicator are calculated by using the analytic hierarchy process (AHP) analysis, and a weight is converted into credit. Next, the performance grades are divided into four levels, and evaluation criteria are suggested based on statutory performance value or the one frequently met in practice. Finally, the evaluation program and the application procedure are established through the field case study. This model can be used for objective and practical evaluation and comparison of residential housing alternatives.

Sun-Sook Kim; In-Ho Yang; Myoung-Souk Yeo; Kwang-Woo Kim

2005-01-01T23:59:59.000Z

10

LEED for Homes Rating System affordablemarket rate multi-family  

E-Print Network [OSTI]

LEED for Homes Rating System affordablemarket rate multi-family #12;The top 25% of new homes based% REGULATIONS lawbreakers DEGREE OF GREEN MARKET SHIFT typical building practices market leaders innovators the negative impact of buildings on their occupants and on the environment. LEED for Homes categories

Zaferatos, Nicholas C.

11

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

12

Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump  

SciTech Connect (OSTI)

A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

None

1981-03-01T23:59:59.000Z

13

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect (OSTI)

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

14

Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy  

Science Journals Connector (OSTI)

Abstract Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10 min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for the development of residential energy forecasting models, our results have practical significance for the deployment and installation of advanced smart metering devices. Ultimately, accurate and cost effective wide-scale energy prediction is a vital step towards next-generation energy efficiency initiatives, which will require not only consideration of the methods, but the scales for which data can be distilled into meaningful information.

Rishee K. Jain; Kevin M. Smith; Patricia J. Culligan; John E. Taylor

2014-01-01T23:59:59.000Z

15

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, "Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Re  

Broader source: Energy.gov (indexed) [DOE]

"Energy "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update (DOE/EA-1871) March 16, 2011 2 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update

16

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

17

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

18

Austin Energy - Multi-Family Energy Efficiency Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Multi-Family Energy Efficiency Rebate Program Austin Energy - Multi-Family Energy Efficiency Rebate Program Austin Energy - Multi-Family Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Maximum Rebate $200,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Split System Air Conditioning: $200 - $550 Packaged Unit Air Conditioning: $300 - $500 Split System Heat Pumps: $250 - $600 Packaged Unit Heat Pumps: $350 - $550 Solar Screens/Solar Film: $1.00 - $1.25/sq. ft. Low E Window Replacement: $2.00/sq. ft.

19

Burlington Electric Department - Multi-Family Rental Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Rental Energy Multi-Family Rental Energy Efficiency Rebate Program Burlington Electric Department - Multi-Family Rental Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Rebates totaling over 2,500 must be pre-approved by BED More than 15 free CFL's per apartment or 100 free CFL's per building requires pre-approval Program Info State Vermont Program Type Utility Rebate Program Rebate Amount CFLs: Free Ventilation Systems: $110/unit Boilers: $2/MBh Furnaces: $2/MBh Electronically Commutated Motor: $100 Refrigerators: $150/unit Lighting: In-store discounts Provider Burlington Electric Department Burlington Electric Department offers an innovative rebate program geared

20

EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Environmental Assessment for Direct Final Rule, 10 CFR 434, Energy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsŽ and 10 CFR 435, Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

22

Environmental Assessment for Direct Final Rule, 10 CFR 434, Energy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsŽ and 10 CFR 435, Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

Broader source: Energy.gov (indexed) [DOE]

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

23

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network [OSTI]

of, new, multi- family residential buildings with PV (seemarket-rate, multi-family residential building. One of thecapacity) on multi- family residential buildings. Installed

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

24

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential BuildingsŽ and 10 CFR 435, Energy Efficiency Standards for New Federal Residential Low-Rise Re  

Broader source: Energy.gov (indexed) [DOE]

7 7 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Final Rule, 10 CFR 433, "Energy Efficiency Standards for

25

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program |  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Maximum Rebate Steam Boiler: $2500 Energy Management System: 70% of total cost Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Hot Water Gas Boilers (85%-89% TE): $1000-$3500/boiler Hot Water Gas Condensing Boilers (90%+ TE): $2000-$15,000/boiler Gas Steam Boilers: $700/boiler (300 MBH) Heating System Clean and Tune: $225/boiler

26

Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

27

Residential photovoltaic systems costs  

SciTech Connect (OSTI)

A study of costs associated with the installation and operation of a residential photovoltaic system has been conducted to determine present and projected (1986) status. As a basis for the study, a residential photovoltaic system design projected for 1986 was assumed, consisting of two principal components: a roof-mounted array and a utility-interactive inverter. The scope of the study encompassed both silicon and cadmium sulfide photovoltaic modules. Cost estimates were obtained by a survey and study of reports generated by companies and agencies presently active in each of the subsystem area. Where necessary, supplemental estimates were established as part of this study. The range of estimates for silicon-based systems strongly suggest that such systems will be competitive for new installations and reasonably competitive for retrofit applications. The cadmium-sulfide-based system cost estimates, which are less certain than those for silicon, indicate that these systems will be marginally competitive with silicon-based systems for new construction, but not competitive for retrofit applications. Significant variations from the DOE system price sub-goals were found, however, particularly in the areas of array mounting, wiring and cleaning. Additional development work appears needed in these areas.

Cox, C.H. III

1980-01-01T23:59:59.000Z

28

Optimal Sizing for Residential CHP System  

Science Journals Connector (OSTI)

Residential CHP systems have been introduced around Japan recently, ... the process of boosting the adoption of residential CHP systems, both manufacturers and customers are interested...

Hongbo Ren; Weijun Gao; Yingjun Ruan

2007-01-01T23:59:59.000Z

29

Renovating Residential HVAC Systems HVAC Systems  

E-Print Network [OSTI]

- 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker and Air Conditioning), and Stacy Hunt and Ananda Harzell (IBACOS). #12;- 3 - Renovating Residential HVAC Guideline for Residential HVAC Retrofits (http

30

EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

31

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

32

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

33

California Solar Initiative - Multi-Family Affordable Solar Housing (MASH)  

Broader source: Energy.gov (indexed) [DOE]

California Solar Initiative - Multi-Family Affordable Solar Housing California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type State Rebate Program Rebate Amount Track 1: Fully Subscribed Track 2: Closed '''''Track 2 was closed in 2011. Track 1 incentives have been fully subscribed for all three program administrators and waitlists have been established. Contact the appropriate program administrator for up to date information on the status of Track 1. ''''' The California Solar Initiative (CSI) provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and

34

Puget Sound Energy - Multi-Family Efficiency Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Puget Sound Energy - Multi-Family Efficiency Programs Puget Sound Energy - Multi-Family Efficiency Programs < Back Eligibility Construction Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Solar Swimming Pool Heaters Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Multi-Family Retrofit CFLs: $20/fixture or FREE LEDs: $20- $30 Windows/Sliding Glass Doors: $6 - $8/sq. ft. Insulation: $0.75/sq. ft. In-Unit Water Heater: $50/unit Clothes Washer: $50 - $100 In-Unit Refrigerator: $20 Solar Pool Heater: Not Specified

35

Ameren Illinois (Electric) - Multi-Family Properties Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Ameren Illinois (Electric) - Multi-Family Properties Energy Ameren Illinois (Electric) - Multi-Family Properties Energy Efficiency Rebate Program Ameren Illinois (Electric) - Multi-Family Properties Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate See rebate amounts listed above Program Info State Illinois Program Type Utility Rebate Program Rebate Amount '''Common Area Efficiency''' CFL's: $1.50 Modular CFL's: $23-$26 T8 Lamps: $7-$12, depending on ballast and wattage Occupancy Sensors: $25 LED Exit Sign: $22 In-Unit Efficiency Installations: CFLs, pipe insulation and water savings

36

Residential Geothermal Systems Credit  

Broader source: Energy.gov [DOE]

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

37

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

38

Be SMART Multi-Family Efficiency Loan Program (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Efficiency Loan Program (Maryland) Multi-Family Efficiency Loan Program (Maryland) Be SMART Multi-Family Efficiency Loan Program (Maryland) < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Not specified Program Info Funding Source American Recovery and Reinvestment Act (ARRA); State Energy Program State Maryland Program Type State Loan Program Rebate Amount Varies Provider Maryland Department of Housing and Community Development Note: The eligible technologies listed above are only examples of some

39

Residential Building Renovations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

40

Lincoln Electric System (Residential)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

42

SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE  

E-Print Network [OSTI]

1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

43

Florida Power and Light - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Florida Power and Light - Residential Energy Efficiency Program Florida Power and Light - Residential Energy Efficiency Program Florida Power and Light - Residential Energy Efficiency Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Program Info State Florida Program Type Utility Rebate Program Rebate Amount Residential Home Energy Survey: Free A/C and Heat Pump: $140 - $1930, depending on system size and efficiency rating Reflective Roof (Metal or Tile): $325 Duct Test: Discounted Single Family Duct System Repair: up to $154 Multi-family and Manufactured Home Duct System Repair: $60/account Ceiling and Roof Insulation: varies based upon existing insulation levels

44

Procedures and Standards for Residential Ventilation System  

E-Print Network [OSTI]

1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated, commissioning, procedures, standards, ASHRAE 62.2 Please use the following citation for this report: Stratton, J.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

45

Unitil - Residential Energy Efficiency Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Cooling Maximum Rebate Home Performance with Energy Star: $4,000 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: 50% Clothes Washer: $30 Refrigerator: $30 Room Air Conditioner: $20 Room Purifier: $15 CFLs: In-store discounts Provider Unitil Energy Systems

46

Energy Efficiency Fund (Electric and Gas) - Residential New Construction  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Fund (Electric and Gas) - Residential New Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Varies Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount Varies by technology for prescriptive measures and whether the applicant is seeking ENERGY STAR Certification or Home Energy Rating System (HERS)

47

NYSEG (Electric) - Residential Efficiency Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge Start Date 5/1/2011 State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 rebate and free removal Multifamily Dwelling Units: 6 free CFLS and smart power strips Multifamily Common Area Ligting: 50% off custom lighting upgrades Provider NYSEG/RG&E NYSEG is offering residential electric customers rebates for recycling refrigerators, and its multifamily customers free CFLs, smart power strips and 50% off common area lighting equipment. All equipment requirements must

48

Massachusetts multi-family passive solar program  

SciTech Connect (OSTI)

The Massachusetts Executive Office of Energy Resources (EOER), in cooperation with the US Department of Energy, the State Executive Office of Communities and Development, and Local Housing Authorities is putting passive solar and special energy conservation features into new multi-family housing for the elderly throughout the Commonwealth. The Multi-Family Passive Solar Program provides design and technical assistance to the housing agencies, project architects, and engineers, and uses funds from EOER's $25 million Energy Bond Program to pay for incremental conservation and solar costs. In October 1980, 17 projects including over 400 passive solar heated units received awards for design and construction totalling $1.5 million. Many of them are already under construction. The projects represent a wide range of building types (from suburban cottages to mid-rise elevator buildings) and structural systems (from light wood to steel to concrete frames), and respond to a variety of real world constraints which make them non-optimal. Solar systems include direct gain, Trombe walls, passive domestic water heating, and a variety of sunspace configurations, some using remote storage. Additional projects are now in design development, plans for monitoring are underway, and a case study book outlining our experience and recommendations for multi-family passive solar design is being drafted.

Rouse, R.E.

1981-01-01T23:59:59.000Z

49

Noise?insulation requirements for multi?family dwellings  

Science Journals Connector (OSTI)

Noise insulation standards are part of the California Administrative Code (Title 25 Section 1092). These standards apply to all new multi?family dwelling units such as hotels apartments duplexes townhouses and condominium units. Detached single?family dwellings are specifically excluded. The standards establish minimum requirements for the isolation of interior spaces from exterior noise and set minimum ratings for noise insulation of partitions between dwelling units. A community noise equivalent level (CNEL) of 45 dB is set as the maximum for intrusive noise from exterior sources such as rail or road traffic or aircraft operations. American Society for Testing and Materials (ASTM) testing procedures for party wall and floor/ceiling system sound transmission provide the basis for setting minimum acceptable performance for separations between units. As a consultant to builders planners and architects the site planning and design of residential projects have been examined and field evaluations have been performed on completed projects. Building designs and the selection of suitable building elements (wall construction composites window assemblies vent configurations etc.) which assure compliance with the standards have been identified. The paper provides a brief description of the standards their enforcement pitfalls and an assessment of their impact on residential construction in California.

John J. Van Houten

1981-01-01T23:59:59.000Z

50

Multi-Family Housing Loans and Grants  

Broader source: Energy.gov [DOE]

Multi-family housing programs offer rural rental housing loans to provide affordable multi-family rental housing for very low-, low-, and moderate-income families, the elderly, and persons with...

51

Property Tax Exemption for Residential Solar Systems  

Broader source: Energy.gov [DOE]

[http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0233.pdf HB 233 of 2010] exempted residential solar energy systems from property tax assessments. According to state law, for the purposes of...

52

Designing density : building form and site design for contextually appropriate multi-family housing in Boston's inner-ring suburbs ; Building form and site design for contextually appropriate multi-family housing in Boston's inner-ring suburbs .  

E-Print Network [OSTI]

??This research focuses on multi-family residential development in the inner-ring suburbs around Boston in order to understand how dense housing can be designed in ways… (more)

Kanson-Benanav, Jesse

2009-01-01T23:59:59.000Z

53

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

54

Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date  

E-Print Network [OSTI]

on new multi-family buildings State Organization Standard PVmulti- family residential construction projects with PV and other green building

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

55

Solar Leasing for Residential Photovoltaic Systems  

Broader source: Energy.gov [DOE]

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

56

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

SciTech Connect (OSTI)

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

57

Passive solar design for multi-family buildings. Case studies and conclusions from Massachusetts' Multi-Family Passive Solar Program  

SciTech Connect (OSTI)

This book is the culmination of a four-year effort. It summarizes experiences and conclusions from Massachusetts' Multi-Family Passive Solar Program (MFPS) - a pioneering project conceived at the Executive Office of Energy Resources in February 1979 and still underway. The program educates architects, engineers, and housing officials about passive solar design by addressing problems and opportunities in their own buildings. It is the first major investigation of multi-family passive solar design in this country and has served as a national model. Section I provides an overview of the Multi-Family Passsive Solar Program and its projects, together with a summary of program conclusions and design recommendations. The section should be particularly useful to developers and housing officials interested in passive solar options. Section II presents detailed case studies on seven housing projects containing Energy Office-funded conservation and passive solar features. It gives the reader a thorough analysis of actual multi-family buildings, now occupied or under construction, and lists the unique problems and opportunities each presents. The case studies are candid about design errors, as well as successes, and should help architects and developers avoid similar mistakes. Section III focuses on the key energy design issues for multi-family passive solar buildings and is intended for architects and designers. The section begins with an overview of climate, micro-climate, and thermal comfort, followed by a chapter on what makes multi-family buildings different from homes or offices. Energy-conserving components and installation practices, window selection, and passive solar system design are then discussed in depth. The final chapter points out pitfalls to be avoided when analyzing conservation and solar costs, performance, and cost-effectiveness. The section is followed by appendices.

Rouse, R.E.

1983-01-01T23:59:59.000Z

58

Residential energy gateway system in smart grid.  

E-Print Network [OSTI]

??This project discusses about the residential energy gateway in the Smart Grid. A residential energy gateway is a critical component in the Home Energy Management… (more)

Thirumurthy, Vinod Govindswamy

2010-01-01T23:59:59.000Z

59

Assessment of Residential GSHP System  

SciTech Connect (OSTI)

This report first briefly reviews geothermal heat pump (GHP) technology and the current status of the GHP industry in the United States. Then it assesses the potential national benefits, in terms of energy savings, reduced summer peak electrical demand, consumer energy cost savings, and reduced CO{sub 2} emissions from retrofitting the space heating, space cooling, and water heating systems in existing U.S. single-family homes with state-of-the-art GHP systems. The investment for retrofitting typical U.S. single-family homes with state-of-the-art GHP systems is also analyzed using the metrics of net present value and levelized cost.

Liu, Xiaobing [ORNL

2010-09-01T23:59:59.000Z

60

Residential Solar Sales Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption < Back Eligibility Commercial General Public/Consumer Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info Start Date 09/01/2005 State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption from state sales tax Provider New York State Department of Taxation and Finance New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to non-residential solar systems in August 2012 (S.B. 3203), effective beginning January 1, 2013.

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) |  

Broader source: Energy.gov (indexed) [DOE]

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount $175 incentive toward the cost of a high-performance AC tune-up of a system size 5 tons or less $200 incentive toward the cost of a high-performance AC tune-up of a system size over 5 tons Tier 1 Home Energy Survey --- Survey $75 discount

62

Duquesne Light Company - Residential Solar Water Heating Program |  

Broader source: Energy.gov (indexed) [DOE]

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

63

Residential Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

64

Residential Weatherization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

65

Residential  

Science Journals Connector (OSTI)

The residential sector can be divided into apartment blocks and low-rise housing. Apartment blocks have many similarities to the non-domestic sector, such as office buildings, which are covered by the range of...

2009-01-01T23:59:59.000Z

66

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

67

Kansas City Power and Light - Cool Homes Residential Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Missouri Program Type Utility Rebate Program Rebate Amount SEER 14/15: $650 SEER 16/Greater: $850 Provider Kansas City Power and Light Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models. In order to qualify for a rebate, the system being replaced must have an EER of 8.0 or less, as tested by a CheckMe!-trained HVAC contractor. The replacement of "dead"

68

Residential Solar Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Tax Credit Solar Tax Credit Residential Solar Tax Credit < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate 5,000 for solar-energy systems Program Info Start Date 01/01/1998 (solar electric); 01/01/2006 (solar thermal) State New York Program Type Personal Tax Credit Rebate Amount 25% for solar-electric (PV) and solar-thermal systems; for third-party owned systems this is in reference to the aggregate amount owed under the contract rather than the amount owed in any single year Provider New York State Department of Taxation and Finance Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential

69

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

distribution (in multi-family buildings); efficiency (eithercentral systems in multi- family buildings are assigned a54 °C (130 °F) for multi-family buildings that have central

Lutz, Jim

2014-01-01T23:59:59.000Z

70

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on HomeEffects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold in

Hoen, Ben

2011-01-01T23:59:59.000Z

71

Independence Power and Light - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Independence Power and Light - Residential Energy Efficiency Rebate Independence Power and Light - Residential Energy Efficiency Rebate Program Independence Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Central A/C: $109 - $384 Heat Pumps: $259 - $701 Heat Pumps Water Heaters: $300 Provider Independence Power and Light Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps, and water heaters. Rebates on equipment vary based upon size, capacity, and efficiency of the unit. See

72

RG&E - Residential Efficiency Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Residential Efficiency Program - Residential Efficiency Program RG&E - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source PSC-mandated System Benefits Charge (SBC) State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 rebate and free removal Multifamily Dwelling Units: 6 free CFLS and smart power strips Multifamily Common Area Ligting: 50% off custom lighting upgrades RG&E is offering residential electric customers rebates for recycling refrigerators, and its multifamily customers free CFLs, smart power strips and 50% off common area lighting equipment. All equipment requirements must be met in order to receive rebates. See the program website for details.

73

Summary Review of Advanced Inverter Technologies for Residential PV Systems  

E-Print Network [OSTI]

Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter of Hawai`i at Manoa #12;Summary of Inverter Technologies Prepared for the U.S. Department of Energy Office

74

Residential Alternative Energy System Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit < Back Eligibility Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Home Weatherization Water Water Heating Wind Maximum Rebate $500 per individual taxpayer; up to $1,000 per household Program Info Start Date 1/1/2002 Expiration Date none State Montana Program Type Personal Tax Credit Rebate Amount 100% Provider Montana Department of Environmental Quality Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost of the system and

75

Optimizing Hydronic System Performance in Residential Applications  

SciTech Connect (OSTI)

Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

Arena, L.; Faakye, O.

2013-10-01T23:59:59.000Z

76

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Themarginal impacts of photovoltaic (PV) energy systems on home

Hoen, Ben

2014-01-01T23:59:59.000Z

77

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Themarginal impacts of photovoltaic (PV) energy systems on home

Hoen, Ben

2013-01-01T23:59:59.000Z

78

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

79

Residential hot water distribution systems: Roundtablesession  

SciTech Connect (OSTI)

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

80

Residential Forced Air System Cabinet Leakage and Blower Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

82

EWEB - Residential Energy Efficiency Loan Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EWEB - Residential Energy Efficiency Loan Programs EWEB - Residential Energy Efficiency Loan Programs EWEB - Residential Energy Efficiency Loan Programs < Back Eligibility Multi-Family Residential Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Ductwork: not specified Thermostats: not specified Ductless Heat Pump: $4,000 Air Source Heat Pump: $7,000 Geothermal Heat Pump: $8,000 Air Sealing: up to $800 Program Info State Oregon Program Type Utility Loan Program Utility Loan Program Rebate Amount Windows and Insulation: not specified Ductwork: not specified

83

Advanced Controls and Sustainable Systems for Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

84

Residential and commercial buildings data book: Third edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

85

Residential photovoltaic flywheel storage system performance and cost  

SciTech Connect (OSTI)

A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power-conditioning electronics, are described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery and inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in utility-interactive applications.

Hay, R.D.; Millner, A.R.; Jarvinen, P.O.

1980-01-01T23:59:59.000Z

86

Procedures and Standards for Residential Ventilation System Commissioning:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

87

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Unitary and Split Air Conditioning Systems and Air Source Heat Pumps: $25-$45/ton Chillers: $10-$40/ton Ground Source Heat Pumps: $40/ton Hotel Occupancy Sensors: $20-$40 Energy Management Control System: $0.10/sq. ft. or $0.21/sq. ft.

88

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

89

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

90

Grid?independent residential power systems  

Science Journals Connector (OSTI)

A self?powered gas?fired warm air furnace is evaluated as a candidate for the autonomous generation of electrical power. A popular commercial residential furnace is analyzed for electrical power requirements. Available energy conversion concepts are considered for this application and the thermophotovoltaic (TPV) option is selected due to reliability and cost. The design and the internal components peculiar to the TPV converter will be covered. Operating results including NO x emission will be summarized. This work was sponsored by the Basic Research Group Gas Research Institute Chicago IL.

Robert E. Nelson

1996-01-01T23:59:59.000Z

91

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

92

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

93

Tax Credit for Solar Energy Systems on Residential Property (Personal) |  

Broader source: Energy.gov (indexed) [DOE]

Personal) Personal) Tax Credit for Solar Energy Systems on Residential Property (Personal) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $12,500 per installed system; 1 installed system per residence Program Info Start Date 1/1/2008 Expiration Date 12/31/2017 State Louisiana Program Type Personal Tax Credit Rebate Amount 50% of the first $25,000 of the cost of each system Leased systems installed after December 31, 2013: 38% of the first $25,000 of the cost of each system Provider LA Department of Revenue '''''Note: HB 705 of 2013 made several significant changes to this tax credit. Among other changes, wind energy systems are no longer eligible,

94

Tax Credit for Solar Energy Systems on Residential Property (Corporate) |  

Broader source: Energy.gov (indexed) [DOE]

Corporate) Corporate) Tax Credit for Solar Energy Systems on Residential Property (Corporate) < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $12,500 per installed system; 1 installed system per residence Program Info Start Date 1/1/2008 Expiration Date 12/31/2017 State Louisiana Program Type Corporate Tax Credit Rebate Amount 50% of the first $25,000 of the cost of each system Leased systems installed after December 31, 2013: 38% of the first $25,000 of the cost of each system Provider LA Department of Revenue '''''Note: HB 705 of 2013 made several significant changes to this tax credit. Among other changes, wind energy systems are no longer eligible,

95

Residential Marketing Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

96

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Program Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single family, duplex, or triplex: $960 per unit Multi-family dwelling (four or more units): $480 per unit. Program Info State California Program Type Utility Grant Program Rebate Amount Weatherization: 80% of the cost Do-It-Yourself Weatherization: 70% of the cost Provider Alameda Municipal Power Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency.

97

Efficiency Analysis of Natural Gas Residential Micro-cogeneration Systems  

Science Journals Connector (OSTI)

The systems feature different energy conversion technologies: Stirling engine (WhisperGen), spark-ignition internal combustion (IC) engine (FreeWatt), and polymer electrolyte fuel cell (PEFC) (EBARA Ballard). ... The Stirling engine is the least expensive that requires the least maintenance. ... Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol ...

Amir A. Aliabadi; Murray J. Thomson; James S. Wallace

2010-01-22T23:59:59.000Z

98

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network [OSTI]

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECThave sold with photovoltaic (PV) energy systems installed at

Hoen, Ben

2012-01-01T23:59:59.000Z

99

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold ingrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

100

Rural Development Multi-Family Housing Energy Efficiency Initiative  

Broader source: Energy.gov [DOE]

In order to help create a more energy independent rural America for the next century, the USDA Rural Development Multi-Family Housing Energy Efficiency Initiative enables applicants to several USDA...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Consumers Energy (Electric) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Residential Energy Efficiency Program Electric) - Residential Energy Efficiency Program Consumers Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Windows: $250 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300

102

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

103

Modeling of Residential Buildings and Heating Systems  

E-Print Network [OSTI]

-zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

Masy, G.; Lebrun, J.

2004-01-01T23:59:59.000Z

104

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

105

Technical assessment of an oil-fired residential cogeneration system  

SciTech Connect (OSTI)

The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

McDonald, R.J.

1993-01-01T23:59:59.000Z

106

Dynamic Simulation of a Superinsulated Residential Structure with a Hybrid Desiccant Cooling System.  

E-Print Network [OSTI]

??This thesis explores the efficiency and performance of residential HVAC systems applied to new high performance buildings which meet the standards of the Passivhaus movement.… (more)

O'Kelly, Matthew E.

2012-01-01T23:59:59.000Z

107

Study of Low Global Warming Potential Refrigerants in Heat Pump System for Residential Applications.  

E-Print Network [OSTI]

??R410A is one of the major refrigerants used for air conditioning and heat pump systems in residential applications. It has zero ODP but its GWP… (more)

Barve, Atharva

2012-01-01T23:59:59.000Z

108

Smart Operation of Centralized Temperature Control System in Multi-Unit Residential Buildings.  

E-Print Network [OSTI]

??Smart Grid has emerged a very important concept in modern power systems. The integration of different loads such as residential, commercial and industrial into the… (more)

Kundu, Rajib

2013-01-01T23:59:59.000Z

109

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

110

Energy Optimization (Electric) - Residential Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

111

Empire District Electric - Residential Energy Efficiency Rebate |  

Broader source: Energy.gov (indexed) [DOE]

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

112

Massachusetts Multi-Family Passive Solar Program: recent activities and findings  

SciTech Connect (OSTI)

Passive solar features are being put into new multi-family housing for the elderly throughout Massachusetts. The Multi-Family Passive Solar (MFPS) program provides design and technical assistance to housing agencies, project architects, and engineers. To date, awards totalling almost $2 million have been made to 19 projects including almost 500 passive solar heated apartments. Thirteen are under construction and several are substantially complete. An extensive data base on incremental costs has been developed, and it is found that standard cost estimating techniques may substantially overestimate conservation and passive solar costs. It is indicated that if mechanical systems are intelligently sized to reflect improved conservation features, resultant cost credits may more than offset supposed incremental conservation costs. (LEW)

Rousse, R.E.; Noble, E.C.

1981-01-01T23:59:59.000Z

113

A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): social experience, drinking water savings and economic costs  

Science Journals Connector (OSTI)

Many urban areas suffer water scarcity but paradoxically, a local source of water such as rainwater is mostly treated as a risk rather than as a valuable resource. Scepticism regarding the use of rainwater harvesting technologies still prevails today, particularly in low precipitation areas. However, some regions such as the Metropolitan Area of Barcelona (MAB) have started to promote the use of rainwater through specific regulations and incentives. This paper aims to examine the use of rainwater harvesting in the two main types of buildings prevalent in the MAB by analysing users’ practices and perceptions, drinking water savings and economic costs. Despite low precipitation inputs and a high variability of precipitation, daily balances show that toilet flushing demand of a single family house can be practically met with a relatively small tank. Rooftop rainwater can also meet more than 60% of the landscape irrigation demand in both single and multi-family buildings. The main drawback is the long pay-back period that rainwater harvesting systems present today. Nevertheless, it is remarkable that in multi-family buildings residents usually take no notice of the costs associated with the system. In contrast, benefits for the whole society are usually much more appreciated. Users’ reactions and their level of satisfaction towards rainwater harvesting systems suggest that both regulations and subsidies are good strategies to advocate and expand rainwater harvesting technologies in residential areas. However, a multidirectional learning environment needs to be promoted to ensure a proper use of rainwater harvesting systems and risk minimisation.

Laia Domènech; David Saurí

2011-01-01T23:59:59.000Z

114

National Grid (Electric) - Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

National Grid (Electric) - Residential Energy Efficiency Rebate National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Other Commercial Weatherization Manufacturing Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $30 Multifamily Energy Evaluation: Free assessment, installation of up to ten CFLs/unit, water efficiency measures, hot water pipe and tank wrap, and a $300 rebate for refrigerator replacement costs. Provider National Grid Residential Upstate Efficiency Programs National Grid residential electric customers in Upstate New York are

115

New Mexico Gas Company - Residential Efficiency Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Efficiency Programs Residential Efficiency Programs New Mexico Gas Company - Residential Efficiency Programs < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Insulation: $500 Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount ENERGY STAR Qualifying Home: $750 New Mexico Energy$mart Income Qualifying Weatherization: Free Tankless Water Heater: $300 Insulation: 25% of cost up to $500 The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding

116

A study of pressure losses in residential air distribution systems  

SciTech Connect (OSTI)

An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effects on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

117

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

118

Solar Leasing for Residential Photovoltaic Systems (Revised) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the past year, the residential solar lease has received In the past year, the residential solar lease has received significant attention in the solar marketplace, primarily for its ability to leverage two key commercial tax credits for the individual homeowner. However, on January 1, 2009, the $2,000 cap on the residential investment tax credit (ITC) was lifted. As a result, the expansion of the solar lease model across the United States may be slower than antici-

119

Review of Residential Low-Load HVAC Systems  

SciTech Connect (OSTI)

In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

2013-09-01T23:59:59.000Z

120

Cost goals for a residential photovoltaicthermal liquid collector system set in three northern locations  

E-Print Network [OSTI]

This study compares the allowable costs for a residential PV/T liquid collector system with those of both PV-only and side-by-side PV and thermal collector systems. Four types of conventional energy systems provide backup: ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Renewable Energy Systems Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Home Weatherization Water Swimming Pool Heaters Water Heating Wind Maximum Rebate Based on investment of $20,000 for single family, and on investment of $100,000 for multi-family, non-residential. Program Info State Montana Program Type Property Tax Incentive Rebate Amount 100% for 10 years. Provider Montana Department of Revenue Montana's property tax exemption for recognized non-fossil forms of energy generation or low emission wood or biomass combustion devices may be

122

Residential commissioning to assess envelope and HVAC system performance  

SciTech Connect (OSTI)

Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non-energy benefits associated with improving the performance of a component, it must also indicate how individual components interact in the complete building system. For this paper, we limit our discussion to diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. The remainder of this paper first describes what residential commissioning is, its characteristic elements, and how one might structure its process. Subsequent sections describe a consolidated set of practical diagnostics that the building industry can use now. Where possible, we also discuss the accuracy and usability of these diagnostics, based on recent laboratory work and field studies. We conclude by describing areas in need of research and development, such as practical field diagnostics for envelope thermal conductance and combustion safety. There are several potential benefits for builders, consumers, code officials, utilities, and energy planners of commissioning houses using a consistent set of validated methods. Builders and/or commissioning agents will be able to optimize system performance and reduce consumer costs associated with building energy use. Consumers will be more likely to get what they paid for and builders can show they delivered what was expected. Code officials will be better able to enforce existing and future energy codes. As energy reduction measures are more effectively incorporated into the housing stock, utilities and energy planners will benefit through greater confidence in predicting demand and greater assurance that demand reductions will actually occur. Performance improvements will also reduce emissions from electricity generating plants and residential combustion equipment. Research to characterize these benefits is underway.

Wray, Craig P.; Sherman, Max H.

2001-08-31T23:59:59.000Z

123

Residential and commercial buildings data book. Second edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

124

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

125

Springfield Utility Board - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Springfield Utility Board - Residential Energy Efficiency Rebate Springfield Utility Board - Residential Energy Efficiency Rebate Program Springfield Utility Board - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $25 Electric Water Heaters: $25 Clothes Washers: $30 - $80 Recycle Refrigerator/Freezer: $25 Duct Sealing/Testing: $150 - $400 Heat Pump: $500 Ductless Heat Pump: $1,000 Insulation: 50% (100% for qualified low income customers) Provider Springfield Utility Board

126

Anaheim Public Utilities - Residential Home Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Home Efficiency Rebate Residential Home Efficiency Rebate Program Anaheim Public Utilities - Residential Home Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Duct Repair: $300 Ceiling Fan: 3 fans Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Refrigerator Recycling: $50 Dishwasher: $50 Room A/C: $50 Central A/C: $100/ton High Performance windows: $1/sq ft Air Duct Repair: 50% of repair cost Ceiling Fan: $20 Whole House Fan: $100

127

Burbank Water and Power - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Burbank Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Program Info State California Program Type Utility Rebate Program Rebate Amount Products purchased from a Burbank retailer are typically awarded higher rebates than those purchased outside Burbank. Inside Burbank: Ceiling Fans: $25 (maximum three) Clothes Washer: $50 Dishwasher: $35 Refrigerator/Freezer: $75 Room A/C: $35 Low E Windows/Doors: $2.00/sq ft

128

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

129

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

130

Protected Water Area System (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Protected Water Area System (Iowa) Protected Water Area System (Iowa) Protected Water Area System (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The Natural Resource Commission maintains a state plan for the design and

131

Natural, Scenic, and Recreational River System (Indiana) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources

132

City of Madison - Green Madison Residential Revolving Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

City of Madison - Green Madison Residential Revolving Loan Program City of Madison - Green Madison Residential Revolving Loan Program City of Madison - Green Madison Residential Revolving Loan Program < Back Eligibility Multi-Family Residential Residential Savings Category Other Solar Buying & Making Electricity Maximum Rebate $15,000 Program Info Start Date 2011 State Wisconsin Program Type Local Loan Program Rebate Amount $1,000-$15,000 Provider City of Madison Green Madison is a revolving loan program for residential energy efficiency improvements. Loans are available for owner-occupied single family residences or owner-occupied multi-family residences of up to three units. Property must be located within the City of Madison. To sign up for the program, interested residents should use the sign up form on the program

133

Sustainability Assessment of Residential Building Energy System in Belgrade  

E-Print Network [OSTI]

of harmful substances. Multi-criteria method is a basic tool for the sustainability assessment in metropolitan cities. The design of potential options is the first step in the evaluation of buildings. The selection of a number of residential buildings...

Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

2010-01-01T23:59:59.000Z

134

E-Print Network 3.0 - america residential system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Housing, Dining & Residential Services Housing, Dining... & Residential Services Housing, Dining & Residential ... Source: Balandin, Alexander- Department of...

135

Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment  

Broader source: Energy.gov [DOE]

The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

136

Residential Solar and Wind Energy Systems Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar and Wind Energy Systems Tax Credit Residential Solar and Wind Energy Systems Tax Credit Residential Solar and Wind Energy Systems Tax Credit < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate 1,000 maximum credit per residence, regardless of number of energy devices installed Program Info Start Date 1/1/1995 State Arizona Program Type Personal Tax Credit Rebate Amount 25% Provider Arizona Department of Revenue Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind energy device at the taxpayer's Arizona residence. The credit is allowed against the taxpayer's personal income tax in the

137

Wastewater Regulations for National Pollutant Discharge Elimination System  

Broader source: Energy.gov (indexed) [DOE]

Wastewater Regulations for National Pollutant Discharge Elimination Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential

138

Ames Electric Department - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Ames Electric Department - Residential Energy Efficiency Rebate Ames Electric Department - Residential Energy Efficiency Rebate Programs Ames Electric Department - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of the equipment cost Programmable Thermostats: 3 per household Room AC: 2 per household Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $500 Energy Audit: FREE Lighting: $2 - $16 per fixture Lighting Sensors: $10 per unit Refrigerators: $25 - $100 Freezers: $50 Dishwashers: $50

139

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

140

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

142

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

143

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Maximum Rebate Ceiling Insulation: $200 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Missouri Program Type Utility Rebate Program Rebate Amount Furnace: $200 (Owner Occupied); $300 (Landlord) Boiler: $100 - $150 (Owner Occupied); $150 - $300 (Landlord) Programmable Thermostat: $25 or 50% of cost Ceiling Insulation: $0.008 x sq ft Comprehensive Audit Measures: Varies widely

144

Gulf Power - Residential Energy Efficiency EarthCents Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Manufacturing Insulation Water Heating Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Energy Select Programmable Thermostat and Time of Use Control: Free HVAC Maintenance: $215 Duct Repair and Air Sealing: $150 - $300 Fan Motor Retrofit: $150 Heat Pump: $100 - $1000; varies by size and efficiency

145

Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Eau Claire Energy Cooperative - Residential Energy Efficiency Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate Program Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Clothes washer: $25 Dishwashers: $25 Refrigerators: $25 Room Air Conditioner: $25 Dehumidifier: $25 Refrigerator/Freezer/Room AC Recycling: $25 Central Air Conditioner/Mini Split: $40 - $80/Ton Air Source Heat Pump/Mini-Split Heat Pumps: $150/Ton Package Terminal Heat Pump: $150/Ton Geothermal Heat Pump: $300/Ton

146

Passive solar multi-family housing: design, development, finance and market strategies  

SciTech Connect (OSTI)

A basis is provided for problem definition of energy and multi-family housing. A comprehensive look at the costs of energy is taken, not just in the cost per Btu, but also in terms of the marginal or replacement cost of energy, the social and environmental costs of consuming imported energy, and at the projected future costs and availability of non-renewable energy supplies. Some reasons are identified why a developer should consider an energy efficient passive solar project, and the roles that each project team should play to achieve the successful project are described. The concepts necessary to understand the physics and design of passive solar systems are introduced. The unique characteristics of multiple housing are covered and basic ideas for the application of solar concepts are provided. Site selection and planning, design considerations for planning the building, design considerations for individual unit designs, and ways to integrate energy efficient and passive solar components in townhouses and apartments are covered. Techniques are covered for energy conscious and solar design and construction, with emphasis on supplying the tools for making decisions at the appropriate times in the design process. Also covered are: the profit motive to develop housing; state and federal programs, present or planned, the encourage passive solar and energy efficient construction; Solar and Conservation Banks; state and federal tax credits; and financial analysis and marketing strategies. The Massachusetts Passive Multi-Family Program is described. Twelve examples of passive solar multifamily projects from around the country are also described. (LEW)

Not Available

1981-01-01T23:59:59.000Z

147

Residential Enhanced Rewards Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Enhanced Rewards Program Residential Enhanced Rewards Program Residential Enhanced Rewards Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info Funding Source Focus on Energy Expiration Date 05/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Natural Gas Furnace: $475 Furnace with ECM (natural gas, propane, or oil-fired): $850 Hot-Water Boiler ( Natural Gas Furnace with AC: $1,500 Provider Focus on Energy Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less are eligible for the incentives. Applicants must be able to document a gross household income of

148

Alameda Municipal Power - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Grant Program Rebate Amount Refrigerator Replacement: Up to $100 Second Refrigerator Pickup: $35 CFLs: 3 free replacement bulbs Motors: $0.18/per kWh saved Lighting: $0.20/per kWh saved HVAC: $0.22/per kWh saved Refrigeration: $0.22/per kWh saved Provider Alameda Municipal Power Alameda Municipal Power (AMP) has multiple program in place to help

149

Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners  

E-Print Network [OSTI]

EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies... COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Dooley, Jeffrey Brandon

2005-02-17T23:59:59.000Z

150

Bottom line: comments on incremental costs in the Massachusetts multi-family passive solar housing program  

SciTech Connect (OSTI)

As part of its ongoing Passive Solar Multifamily Housing Program, the Office of Energy Resources performs detailed in-house estimates of incremental passive solar and conservation costs. These estimates are part of an iterative design reviewing process and are used to minimize costs while assuring good system performance. The Office of Energy Resources will finance approved energy conservation and passive solar features in over 20 elderly housing projects presently in various stages of design and construction. Experience gained refining cost-effective designs of these projects is discussed. The discussion includes: isolating and analyzing incremental costs, accruing credits for downsized heating systems, and accounting for soft variables such as additional space and architectural amenity. Cost implications of system type, building scale and geometry, and construction details are outlined, and incremental costs for several specific designs are presented in detail. Much of this information should be applicable to design for single-family and commercial buildings, as well as multi-family housing.

Shannon, R.F.

1980-01-01T23:59:59.000Z

151

Fuzzy rule-based methodology for residential load behaviour forecasting during power systems restoration  

Science Journals Connector (OSTI)

Inadequate load pickup during power system restoration can lead to overload and underfrequency conditions, and even restart the blackout process, due to thermal energy losses. Thus, load behaviour estimation during restoration is desirable to avoid inadequate pickups. This work describes an artificial intelligence method to aid the operator in taking decisions during system restoration by estimating residential load behaviour parameters such as overload in buses and the necessary time to recover steady-state power consumption. This method uses a fuzzy rule-based system to forecast the residential load, obtaining correct estimates with low computational cost. Test results using actual substation data are presented.

Lia Toledo Moreira Mota; Alexandre Assis Mota; Andre Luiz Morelato Franca

2005-01-01T23:59:59.000Z

152

Residential Energy Management system for optimization of on-site generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Energy Management system for optimization of on-site generation Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the individual movements towards Net Zero Energy Homes (NZEH) and the SmartGrid converge on residential buildings, three major challenges need to be addressed: Flatten the highly peaked electric load profile of low energy homes Provide easy integration of energy efficiency into existing homes Provide builders and consumers with visibility into building operation, and ease of management. A Home Energy Management System (HEMS) owned by the consumer, capable of two way communications with Utility DR/SmartGrid/AMI is required to resolve these challenges. The HEMS will need to increase energy efficiency of building operations, provide consumers feedback and

153

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

154

Designing a residential hybrid electrical energy storage system based on the energy buffering strategy  

Science Journals Connector (OSTI)

Due to severe variation in load demand over time, utility companies generally raise electrical energy price during periods of high load demand. A grid-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric ... Keywords: electric bill savings, energy management, hybrid electrical energy storage system

Di Zhu; Siyu Yue; Yanzhi Wang; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2013-09-01T23:59:59.000Z

155

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION  

E-Print Network [OSTI]

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

156

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Manufacturing Program Info State Connecticut Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy property; municipalities are authorized to exempt certain CHP systems Provider Connecticut Office of Policy and Management Connecticut provides a property tax exemption for "Class I" renewable energy systems* and hydropower facilities** that generate electricity for

157

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies Provider Energy Efficiency Programs Group Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency Rebate Program. The program is available to all residential NIPSCO natural gas and electric customers. Flat rebates are offered for natural gas boilers, natural gas

158

Detroit Public Lighting Department - Residential Energy Wise Program |  

Broader source: Energy.gov (indexed) [DOE]

Detroit Public Lighting Department - Residential Energy Wise Detroit Public Lighting Department - Residential Energy Wise Program Detroit Public Lighting Department - Residential Energy Wise Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFLs: $2-$10 LED Task Light: $10.00 LED Night light: $1.25 Energy Star Ceiling Fan: $10 Provider Detroit Public Lighting Department The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent lights (CFLs). Specific rebate amounts, equipment requirements, and applications are available on

159

Catalog of thermal bridges in commercial and multi-family residential construction  

SciTech Connect (OSTI)

The catalog comprises a collection of 21 thermal bridges commonly encountered in commercial buildings, as well as alternative construction techniques which reduce the deleterious effects of these bridges. The thermal bridges presented here are conduction-dominated. Construction details which transfer heat mostly through convection or radiation are not addressed. The benefits of the alternate designs are expressed for each thermal bridge as (1) reductions in U-values and (2) reductions in moisture condensation. These reductions, in turn, are extrapolated at the whole building level in order to predict changes in the energy used for space heating and cooling and to estimate changes in the magnitude of the surface areas affected by moisture condensation. Finally, technical notes address the probable effects (thermal and moisture) of minor variations in the construction details presented in this catalog. The technical notes also give a more detailed prediction of the potential for moisture condensation due to thermal bridging.

Tuluca, A.N.; Evans, D.M.; Kumar, D.; Krarti, M. (Winter (Steven) Associates, Inc., New York, NY (USA)); Childs, K.; Courville, G. (Oak Ridge National Lab., TN (USA)); Vonier, T. (Vonier (Thomas) Associates, Inc., Washington, DC (USA)); Tye, R. (Holometrix, Inc., Cambridge, MA (USA))

1989-12-01T23:59:59.000Z

160

MassSAVE (Electric) - Residential Energy Efficiency Programs | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Programs Energy Efficiency Programs MassSAVE (Electric) - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Weatherization: $2,000 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization: 75% Heat Pump Water Heater: $750 Income Eligible Customers: free home energy consultation Mulitifamily Incentives: comprehensive energy analysis, lighting upgrades, insulation, air sealing and other energy saving measures.

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Progress Energy Carolinas - Residential New Construction Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

South Carolina) South Carolina) Progress Energy Carolinas - Residential New Construction Rebate Program (South Carolina) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount New homes can qualify for either equipment incentives or whole house incentives, not both Equipment Incentives Heat Pump Water Heaters: $350 High Efficiency HVAC; air-to-air heat pumps: $300 High Efficiency HVAC; central air conditioning: $300 Whole House Incentives $1,000 - $4,000 Provider Progress Energy Progress Energy's residential new construction program provides cash

162

City of Austin - Commercial and Residential Green Building Requirements |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » City of Austin - Commercial and Residential Green Building Requirements City of Austin - Commercial and Residential Green Building Requirements < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating Water Heating Wind Program Info State Texas Program Type Building Energy Code Provider Austin Energy '''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the circumstances of a given project.

163

Progress Energy Carolinas - Residential New Construction Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

North Carolina) North Carolina) Progress Energy Carolinas - Residential New Construction Rebate Program (North Carolina) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount New homes can qualify for either equipment incentives or whole house incentives, not both Equipment Incentives Heat Pump Water Heaters: $350 High Efficiency HVAC; air-to-air heat pumps: $300 High Efficiency HVAC; central air conditioning: $300 Whole House Incentives $1,000 - $4,000 Provider Progress Energy Progress Energy's residential new construction program provides cash

164

MassSAVE (Electric) - Residential Retrofit Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Retrofit Programs Retrofit Programs MassSAVE (Electric) - Residential Retrofit Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Weatherization: $2000 Program Info Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization: 75% Heat Pump Water Heater: $1,000 Income Eligible Customers: free home energy consultation Mulitifamily Incentives: comprehensive energy analysis, lighting upgrades, insulation, air sealing and other energy saving measures.

165

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

166

Optimal Design and Management of a Smart Residential PV and Energy Storage System  

E-Print Network [OSTI]

. However, the home owners are not yet convinced of the saving cost benefits of this technologyOptimal Design and Management of a Smart Residential PV and Energy Storage System Di Zhu, Yanzhi University, Korea {dizhu, yanzhiwa, pedram}@usc.edu, naehyuck@elpl.snu.ac.kr Abstract-- Solar photovoltaic

Pedram, Massoud

167

Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems  

E-Print Network [OSTI]

1 LBNL-43724 Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems Walker, I., Sherman, M., and Siegel, J. Environmental Energy Technologies Division Energy .................................................................................................................. 14 Figure 1. Simulations of Pulldowns from 3:00 p.m. on a Sacramento Design Day

168

Window annual energy rating systems: What they tell us about residential window design and selection  

SciTech Connect (OSTI)

Residential window annual energy rating systems have been developed in Canada and the US. These systems combine window properties of solar heat gain coefficient, U-factor, and air-infiltration into a single number representative of the energy performance for each of the heating season and the cooling season. These systems provide a simple means for designers to select the best energy performing window for low-rise residential buildings over the heating and cooling seasons. The two systems, which rank windows in the same order, give different information on optimum window design and selection than just a simple U-factor comparison. These systems show the importance of a high window SHGC in cold climates and a low SHGC in hot climates. The impact of window air infiltration is surprisingly small relative to the solar heat gain and heat conduction losses.

Carpenter, S.C.; McGowan, A.G.; Miller, S.R. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

169

City of Cleveland - Residential Property Tax Abatement for Green Buildings  

Broader source: Energy.gov (indexed) [DOE]

City of Cleveland - Residential Property Tax Abatement for Green City of Cleveland - Residential Property Tax Abatement for Green Buildings City of Cleveland - Residential Property Tax Abatement for Green Buildings < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% for 10-15 years Provider City of Cleveland Department of Community Development The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 100% tax abatement for residential properties built to

170

ConEd (Electric) - Residential Energy Efficiency Incentives Program |  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Central A/C: $400 or $600 Central Air Source Heat Pump: $400 or $600 Electric Heat Pump Water Heater: $400 Energy Star Thermostats: up to $25 Duct Sealing: $100/hr Air Sealing: $75/hr Refrigerator/Freezer Recycling: $50 Con Edison is offering the Residential HVAC Electric Rebate Program.

171

Southwest Gas Corporation - Residential and Builder Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Residential and Builder Efficiency Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Residential: 2 per household Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Residential Natural Gas Tankless Water Heater: $450 Natural Gas Clothes Dryer: $30 Windows: $0.95/sq ft Attic Insulation: $0.15/sq ft Floor Insulation: $0.30/sq ft Builders Energy Star Certified Home: $450 Natural Gas Tankless Water Heater: $450 Attic Insulation: $0.15/sq ft

172

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

173

Mikroproduktion av solel i flerfamiljshus; Micro production of solar electricity in multi-family buildings.  

E-Print Network [OSTI]

?? This thesis is commissioned by the Swedish electricity trading company GodEl with the purpose of evaluate solar electricity in multi-family buildings in the Stockholm… (more)

Werner, Linus

2014-01-01T23:59:59.000Z

174

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network [OSTI]

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

175

SMUD - Residential Energy Efficiency Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rebate Program Rebate Program SMUD - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Sealing Your Home Ventilation Water Heating Maximum Rebate Contact SMUD for individual program or equipment maximum amounts Program Info Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Home Performance Program: up to $5,000 Multi-Family Housing Program: $500 for 10% energy savings plus $40 for each additional percentage Central A/C and/or Heat Pump: $400 - $1,100

176

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

177

IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.  

SciTech Connect (OSTI)

The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

ANDREWS, J.W.

2001-04-01T23:59:59.000Z

178

Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) |  

Broader source: Energy.gov (indexed) [DOE]

Programs (Idaho) Programs (Idaho) Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Limit of one rebate per appliance type Duct Sealing/Insulation: $450 (Single Family); $250 (Multifamily) Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200-$400 Solar Assisted Water Heater: $750 Storage Water Heater: $50-$100 Gas Condensing/Hybrid Water Heater: $350 Tankless Water Heater: $300-$350 Boiler: $400 - $600 Solar Hot Water Heater: $750 Gas Clothes Washer: $50

179

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

180

CPS Energy - New Residential Construction Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CPS Energy - New Residential Construction Incentives CPS Energy - New Residential Construction Incentives CPS Energy - New Residential Construction Incentives < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Start Date 01/01/2010 State Texas Program Type Utility Rebate Program Rebate Amount Energy Star Compliant (HERS Rating 75-58): $800/structure Energy Star Compliant (HERS rating 57 or less): $1,500/structure Other Rating Methods(15% to 30% above code): $800/structure Other Rating Methods(31% or greater above code): $1,500/structure Provider CPS Energy CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Colorado Springs Utilities - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Colorado Springs Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Maximum Rebate Visit website for details Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Duct Sealing: 40% of job up to $100 Dishwasher: $50 Gas Boiler: $250 Gas Furnace: $250 Gas Water Heater: $50 Insulation and Air Sealing: 40% of job up to $200 Irrigation: varies Refrigerator: $50 + $50 recycle bonus Toilets: up to $75 (max 2) Windows: $4.67/sq ft, up to $200 Provider Residential Efficiency Incentives Colorado Springs Utilities offers a variety of energy and water efficiency

182

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

183

City of Frisco - Residential and Commercial Green Building Codes |  

Broader source: Energy.gov (indexed) [DOE]

City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Insulation Program Info State Texas Program Type Building Energy Code Provider Frisco Department of Planning and Development '''''Note: In the spring on 2012, the city of Frisco was working to update the residential requirements. No official city council action had been taken at the time this summary was updated. Check program web site for current status of updates.''''' The city of Frisco administers a green building program with separate rules

184

Xcel Energy - Residential and Low Income Home Energy Service | Department  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy - Residential and Low Income Home Energy Service Xcel Energy - Residential and Low Income Home Energy Service Xcel Energy - Residential and Low Income Home Energy Service < Back Eligibility Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State New Mexico Program Type Utility Rebate Program Rebate Amount Evaporative Cooling: $200-$1000/unit Saver's Switch A/C Cycling: $20/ton of enrolled air conditioning Refrigerator Recycling: $75 CFLs: $1/bulb LED's: $10/bulb

185

Penelec - Residential Energy Efficiency Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Penelec - Residential Energy Efficiency Programs Penelec - Residential Energy Efficiency Programs Penelec - Residential Energy Efficiency Programs < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Whole House Program: $900 Program Info Funding Source Pennsylvania Electric Company (Penelec), Metropolitan Edison Company (Met-Ed), and Pennsylvania Power Company (PennPower) Start Date 10/29/2009 Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount PA Energy Efficient New Homes Program: $1000 - $10,000 based on % savings

186

Cowlitz County PUD - Residential Weatherization Plus Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Cowlitz County PUD - Residential Weatherization Plus Program Cowlitz County PUD - Residential Weatherization Plus Program Cowlitz County PUD - Residential Weatherization Plus Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Site-Built Home Attic Insulation, existing below R-19: $0.70/sq. ft. Attic Insulation, existing R-19 or above: $0.40/sq. ft. Floor Insulation: $0.40/sq. ft. Wall Insulation (blown in): $0.70/sq. ft. Knee Wall Insulation (batts): $0.25/sq. ft. Replacement Windows: $6.00/sq. ft.

187

Austin Energy - Residential Energy Efficiency Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Residential Energy Efficiency Loan Program Austin Energy - Residential Energy Efficiency Loan Program Austin Energy - Residential Energy Efficiency Loan Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Heat Pumps Windows, Doors, & Skylights Maximum Rebate Option One: $15,000 Option Two: $15,000 Option Three: $20,000 Program Info State Texas Program Type Utility Loan Program Rebate Amount Minimum Loan: $1,500 Provider Austin Energy Austin Energy offers three types of loans to residential customers to finance energy efficient improvements in eligible homes. The "Home Energy Improvements Loan" (Option One) can be used to complete suggested

188

Consumers Energy (Gas) - Residential Energy Efficiency Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Gas) - Residential Energy Efficiency Program Gas) - Residential Energy Efficiency Program Consumers Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Commercial Weatherization Manufacturing Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300 Room A/C: $25 Dehumidifier: $25 ECM Blower: $100 Refrigerator Recycling: $30 Clothes Washer: $25-$50

189

Unitil (Gas) - Residential Energy Efficiency Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs < Back Eligibility Commercial Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Ventilation Appliances & Electronics Water Heating Maximum Rebate Home Performance with Energy Star: 50% Utility Rebate up to $4,000 Home Energy Assistance (Low-income residents): $5,000 Program Info Start Date 1/1/2011 Expiration Date 12/31/2011 State New Hampshire Program Type Utility Rebate Program Rebate Amount Natural Gas Warm Air Furnace: $500 or $800 Natural Gas Boiler: $1,000 or $1,500

190

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect (OSTI)

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

191

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average...

192

Performance of solar assisted heatpump systems in residential applications  

Science Journals Connector (OSTI)

In this experimental study, several solar-assisted heating and cooling configurations have beenconsidered for a basic system comprised of a two-speed heat pump, photovoltaic (PV) arrays, solar thermal collectors, and thermal storage. The objective of the study was to determine the performance of the PV arrays at decreased insolation, the effects of air preheat by solar thermal energy on heat pump operation, and cooling system performance under two different configurations. During the entire operation, the PV arrays converted 4.7 per cent (9.5 MWh) of the incident solar insolation to d.c. power, of which 54.6 per cent was used by the residence. This contributed 23.4 per cent of the total house electrical demand. The remaining 45.4 per cent of the output was fed to the utility, indicating the arrays and the heat pump were not properly sized with each other. Based on results from the winter heating operation, it is shown that for the particular heating system consdered, the best performance is attained when the solar heating is used alone. By using the heat pump as a booster, the remaining available solar energy left in the storage tank can be used with good seasonal performance factor. Summer cooling operation consisted of two sequential cooling configurations. In the first cooling test, the heat pump was operated to either the house or storage when the PV array generation level was greater than the energy demand of the heat pump and associated equipment. When the array output level was less than the cooling system demand, the operating strategy was that of an off-peak cooling operation to chill the water storage. Utilization of chilled water storage was not realized in the first cooling test because of the inherent inefficient design of the Tri-X coil. The capacity at low-speed heat pump operation was too small to effect significant cooling of the water loop; whereas high-speed heat pump operation in attempting to chill water (fan operation absent) caused frosting of the coil. The heat pump was utilized only to maintain chilled water storage in the second cooling test, without heat transfer through the Tri-X coil. Cooling system performance obtained in cooling test 2 using the Ametex exchanger was considerably improved over the test 2 performance with the Tri-X coil.

S. Kugle; S. Green; A. Haji-Sheikh; D.Y.S. Lou

1984-01-01T23:59:59.000Z

193

Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system  

SciTech Connect (OSTI)

Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

McKay, F.; McKay, G.; McKay, S.; Flynn, T. [McKay Pump and Drilling, Reno, NV (United States)

1995-12-31T23:59:59.000Z

194

Comparison of measurement indices of noise intrusions in multi?family housing  

Science Journals Connector (OSTI)

Methods for measuring sound levels associated with transportation impact and airborne sound intrusions in multi?family housing are well established in the field. This paper compares field testing of assemblies where complaints and retrofits have been involved where traditional assessments of intruding noises showed compliance with design criteria but where residents and/or building owners perceived problems. Case study 1 involves noise from airplanes approaching a runway at a large international airport as heard in an all?glass high?rise condominium evaluated by LDNs and SELs of actual flyovers in computer models and in a full size mock?up of a typical unit built on site. Case study 2 involves noise from outdoor amplified entertainment propagating into neighborhoods as evaluated by various noise ordinance criteria. Case study 3 involves footstep noise through flooring systems comparing IIC ratings with actual sound pressure levels of people walking on floors above. Case study 4 compares noise and vibration levels for various pieces of mechanical equipment before and after retrofit with NC RC and other room criteria. Auralizations of the case studies will be shown along with measurement data to illustrate the diagnostics made in each case.

2006-01-01T23:59:59.000Z

195

Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport  

SciTech Connect (OSTI)

This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24. Current information on ducts and thermal distribution research can be found at http://ducts.lbl.gov

Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

1998-12-01T23:59:59.000Z

196

Residential Rewards Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rewards Program Rewards Program Residential Rewards Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info Funding Source Focus On Energy Program Expiration Date 12/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Furnace (90% AFUE with ECM): $125 Furnace (95% AFUE with ECM): $275 Furnace (95% AFUE with ECM) and AC (16 SEER): $400 Air Source Heat Pump (16 SEER): $300 Natural gas space heating boiler (90% AFUE): $300 Natural gas space heating boiler (95% AFUE): $400 Indirect Water Heater (with high efficiency space heating boiler): $100 Tankless Water Heater (0.82 EF or higher): $100 Storage Water Heater (0.67 EF or higher): $50

197

An Analysis of the Effects of Residential Photovoltaic Energy Systems on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Residential Photovoltaic Energy Systems on An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Title An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Hoen, Ben, Ryan H. Wiser, Peter Cappers, and Mark Thayer Pagination 60 Date Published 04/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, photovoltaics, property values, public acceptance Abstract The Working Group III Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy (RE) sources to the mitigation of climate change. It is intended to provide policy relevant information to governments, intergovernmental processes and other interested parties. This Summary for Policymakers provides an overview of the SRREN, summarizing the essential findings. The SRREN consists of 11 chapters. Chapter 1 sets the context for RE and climate change; Chapters 2 through 7 provide information on six RE technologies, and Chapters 8 through 11 address integrative issues. References to chapters and sections are indicated with corresponding chapter and section numbers in square brackets. An explanation of terms, acronyms and chemical symbols used in this SPM can be found in the glossary of the SRREN (Annex I).Conventions and methodologies for determining costs, primary energy and other topics of analysis can be found in Annex II and Annex III. This report communicates uncertainty where relevant.

198

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Markets and Policy Group * Energy Analysis Department Energy Markets and Policy Group * Energy Analysis Department An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Ben Hoen, Peter Cappers, Mark Thayer, Ryan Wiser Lawrence Berkeley National Laboratory LBNL Webinar June 9 th , 2011 This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance.

199

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network [OSTI]

assuming north?south and east?west facings of the building. For each orientation, different types of glazing (Table 4) and different glazing areas are considered. The first case(the base case) assumes a single clear glazing with a window-to-wall ratio.... Floor plan of the east-west oriented residential building taken for study (not to scale) Table 1. The zones basic characteristics Zone Area (m2) Volume (m3) Occupancy (people/m2) Venti- lation (l/s) HVAC system Bed room1 15.12 52...

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

200

An Analysis of Residential Energy Intensity in Iran, A System Dynamics Approach  

E-Print Network [OSTI]

Abstract: substantial development of counties needs to use the resources in an efficient way. One indicator that shows the degree of efficient use of energy resources is energy intensity. Statistics show that Iran’s energy intensity was in a bad situation during past years and if this manner of using energy resources continues, it will get worse.In this study a system dynamics approach is used to model changes of energy intensity in residential sector in Iran. By implementation and simulation of this model we found some reasons of this problem in Iran. Then we tried to introduce some policies to make steady improvement in energy intensity in the future. Keywords:

Mohamed M. Jamshidi

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

single-family and multi-family buildings (representingsingle-family and multi-family buildings. The prototypes aresingle-family and multi- family buildings. The survey also

Wenzel, T.P.

2010-01-01T23:59:59.000Z

202

Efficiency and Emissions Study of a Residential Micro–cogeneration System Based on a Stirling Engine and Fuelled by Diesel and Ethanol.  

E-Print Network [OSTI]

??This study examined the performance of a residential micro–cogeneration system based on a Stirling engine and fuelled by diesel and ethanol. An extensive number of… (more)

Farra, Nicolas

2010-01-01T23:59:59.000Z

203

City of Madison - Green Madison Residential Incentives | Department of  

Broader source: Energy.gov (indexed) [DOE]

of Madison - Green Madison Residential Incentives of Madison - Green Madison Residential Incentives City of Madison - Green Madison Residential Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Wisconsin Program Type Local Rebate Program Rebate Amount Energy Audit: $200 15-24% energy savings: $1,000 25-34% energy savings: $1,500 35% or more energy savings: $2,000 Provider City of Madison Green Madison offers homeowners in the City of Madison incentives for installing recommended energy-efficiency improvements. In order to qualify, residents must have a comprehensive home energy assessment by an approved consultant. Incentives vary by the amount of energy savings achieved

204

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

205

Benton PUD - Residential Energy Efficiency Rebate Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Benton PUD - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation: Contact Benton PUD Program Info Expiration Date 9/30/2015 State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washers: $30 (electric); $20 (gas) Refrigerators: $15 Refrigerator/Freezer Recycling: $15 Water Heaters: $25 Windows: $6 per sq ft Insulation: $0.05 to $0.85 per sq ft depending on location Duct Sealing: $400 Heat Pumps: $500 - $1,000

206

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) | Department  

Broader source: Energy.gov (indexed) [DOE]

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate Project Sponsor Limits (Large Projects): $125,000 Project Sponsor Limits (Small Projects): $30,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Tier 1: $245/kW; $0.08/kWh Tier 2: $270/kW; $0.09/kWh Tier 3: $300/kW; $0.10/kWh Tier 4: $350/kW; $0.11/kWh Provider Southwestern Electric Power Company The SWEPCO Residential Standard Offer Program provides incentives to

207

PECO Energy (Electric) - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

PECO Energy (Electric) - Residential Energy Efficiency Rebate PECO Energy (Electric) - Residential Energy Efficiency Rebate Program PECO Energy (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Program Info Expiration Date 12/31/2012 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Effective June 1, 2013: Central A/C: $400 Air-Source Heat Pump: $300-$400 Geothermal Heat Pump: $200/ton Heat Pump Water Heater: $400 Storage Tank Electric Water Heater: $25 Room Air Conditioner: $25 Refrigerator: $50 Refrigerator/Freezer Recycling: $35 PECO electric service customers are eligible for rebates on ENERGY STAR qualified appliances and HVAC equipment. Whether eligible technologies are

208

JEA - ShopSmart Residential Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

JEA - ShopSmart Residential Rebate Program JEA - ShopSmart Residential Rebate Program JEA - ShopSmart Residential Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Limit one rebate per appliance type per customer Insulation: $250 Program Info Start Date 12/01/2009 State Florida Program Type Utility Rebate Program Rebate Amount CFLs: Up to a $1.25 markdown per product in stores Refrigerators: $25 Clothes Washers: $25 Window Film/Solar Screens: $30/window - South, east, and west exposures only - up to $300 Insulation: $0.30/square foot

209

Duquesne Light Company - Residential Energy Efficiency Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Duquesne Light Company - Residential Energy Efficiency Program Duquesne Light Company - Residential Energy Efficiency Program Duquesne Light Company - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heating Commercial Lighting Lighting Heat Pumps Water Heating Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Energy Star Dehumidifier: $24 Energy Star Freezer: $10 Energy Star Refrigerator: $24 Energy Star Room A/C: $24 Energy Star Dishwasher with Electric Water Heater: $24 Energy Star Clothes Washer - (Electric Water Heating Only): $24 Electric Clothes Dryer with Moisture Sensor: $24 Swimming Pool Pump, Two-Speed or Variable Speed: $57

210

Port Angeles Public Works and Utilities - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Port Angeles Public Works and Utilities - Residential Energy Port Angeles Public Works and Utilities - Residential Energy Efficiency Rebate Program Port Angeles Public Works and Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Expiration Date 08/31/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Heat Pump $300 - $1,900 Ductless Heat Pump: $1,500 Duct Sealing: $400 - $500 Windows: $6.00 per square foot Wall Insulation: $0.60 per square foot Attic Insulation: $0.18 - $0.85 per square foot, depending on starting

211

Energy Smart - Residential Energy Efficiency Rebate Program (20  

Broader source: Energy.gov (indexed) [DOE]

Smart - Residential Energy Efficiency Rebate Program (20 Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heating Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $75-$150 Furnace with ECM: $150 Heat Pump Water Heater: $150 Electric Hot Water Heater: $25 Electric Clothes Dryer: $25 Programmable Thermostat: $15 Energy Star® Room Air Conditioner: $15 Energy Star® Refrigerator: $25 Energy Star® Dehumidifier: $15 Intelligent Surge Protector: $10 Energy Star® Personal Computer: $15

212

Columbia Water and Light - Residential Super Saver Loans | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Super Saver Loans Residential Super Saver Loans Columbia Water and Light - Residential Super Saver Loans < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Solar Maximum Rebate $15,000 Program Info State Missouri Program Type Utility Loan Program Rebate Amount Home Performance Super Saver Loan: up to $15,000 Provider Columbia Water and Light The Columbia Water and Light (CWL) Home Performance Super Saver Loan allows Columbia residents to finance energy improvements to homes with affordable, low interest loans with five to ten year terms. If a Water and Light

213

City of San Francisco - Residential Efficiency Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Francisco - Residential Efficiency Rebates Francisco - Residential Efficiency Rebates City of San Francisco - Residential Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Maximum Rebate $5,000 Program Info Funding Source PG&E, ARRA State California Program Type Local Rebate Program Rebate Amount Home Energy Upgrade: 15% energy reduction: $1,500 20% energy reduction: $2,000 25% energy reduction: $2,500 30% energy reduction: $3,000 35% energy reduction: $3,500 40% energy reduction: $4,000 Lower Income Households: Bonus $1,000 Single family homeowners in San Francisco's PG&E territory can receive

214

New York - Residential Energy Efficient Appliance Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

New York - Residential Energy Efficient Appliance Rebate Program New York - Residential Energy Efficient Appliance Rebate Program New York - Residential Energy Efficient Appliance Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Cooling Maximum Rebate $4,999 per item $20,000 per government entity Program Info Funding Source U.S. DOE Energy Efficiency and Conservation Block Grant (EECBG) Start Date 09/25/2012 Expiration Date 3/12/2013 State New York Program Type State Rebate Program Rebate Amount 75% of purchase price '''''Note: Under the American Recovery and Reinvestment Act (ARRA) of 2009, the U.S. Department of Energy (DOE) is providing a total of $300 million to U.S. states, U.S. territories and the District of Columbia to establish

215

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

216

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

217

Water Distribution and Wastewater Systems Operators (North Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health

218

A distributed data storage and processing framework for next-generation residential distribution systems  

Science Journals Connector (OSTI)

Abstract As the number of smart meters/sensors increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such a big data explosion. Hence, an innovative data management system is urgently needed to facilitate the real-world deployment of a future residential distribution system. In this paper, we investigate a radically different approach through distributed software agents to translate the legacy centralized data storage and processing scheme to a completely distributed cyber-physical architecture. We further substantiate the proposed distributed data storage and processing framework on a proof-of-concept testbed using a cluster of low-cost and credit-card-sized single-board computers. Finally, we evaluate the proposed distributed framework and proof-of-concept testbed with a comprehensive set of performance measures.

Ni Zhang; Yu Yan; Shengyao Xu; Wencong Su

2014-01-01T23:59:59.000Z

219

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

220

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

SciTech Connect (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment  

SciTech Connect (OSTI)

The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

Farhar, B. C.; Buhrmann, J.

1998-07-01T23:59:59.000Z

222

Economic evaluation of a residential photovoltaic system based on a probability model using actual meteorological data  

SciTech Connect (OSTI)

To design a photovoltaic (PV) generation system economically, it is necessary to use date of the total insolation on a horizontal surface. However, such data is only the total daily values and does not represent the power variation caused by the cloud cover. This paper presents the probability method which represents not only the average but also the variance of the PV generation power, and shows simulated results using this methodology. This study's results indicate that the distribution of the PV power divided by the estimated value of the total insolation on a tilted surface is similar to a normal distribution and that a residential (privately-owned) system without storage, whose PV capacity is more than 2 kWp, has little effect upon the reduction of the energy of an average Japanese household.

Sutoh, T.; Suzuki, H.; Sekine, Y.

1987-03-01T23:59:59.000Z

223

Economic analysis of residential and commercial solar heating and hot water systems  

SciTech Connect (OSTI)

The economic evaluation of residential and commercial solar heating and hot water systems is presented. Commercial systems are further categorized as taxable and non-taxable applications in recognition of the effect of Federal and state tax incentives and disincentives for solar energy systems. The economic evaluation of each system type is performed utilizing two distinct methods of analysis. The economic analyses follow a brief description of each method. The Cash Flow Analyses provide insight into the short and long term effects of a solar investment on the budget of the solar energy system purchaser while the Return-On-Investment Analyses provide an appropriate method of measuring the attractiveness of a solar investment in comparison to alternative long term investments. Utilizing a typical system for each system type and application the Cash Flow and Return-On-Investment Analyses are presented. The sensitivity of the results on the numerous variables in the economic analyses is shown. Maps provide a graphic display of the results of the economic analysis of typical systems using Federal and state tax credits and average state conventional fuel costs for each system type. Conclusions based on the economic analyses performed and a thorough discussion of the present status of the data required for the complete economic evaluation of solar energy systems are summarized. The current availability and limitations of data and requirements for further work in this area are discussed.

None

1980-09-23T23:59:59.000Z

224

Technical and cost analyses of two different heat storage systems for residential micro-CHP plants  

Science Journals Connector (OSTI)

Abstract The heat storage system represents a key component for micro-cogeneration plants since it permits to store the unused thermal energy during electricity production for a later use. Nevertheless, it also represents a consistent additional cost that has to be taken into account in order to evaluate the profitability of the micro-CHP system with respect to the separate generation. In this paper the results of a technical and of a cost analysis of two different types of thermal energy storage systems for residential micro-CHP plants are presented. Indeed, in the present work hot water thermal energy storage systems and latent heat thermal energy storage systems have been dimensioned for different micro-CHP systems producing electrical and thermal energy for two different buildings situated in Italy. For each analysed micro-CHP system an adequate thermal energy storage capacity is estimated on the basis of the operational logic and of the electric and thermal loads, and the sizing of the cylindrical tank and of the coil heat exchanger relative to both types of thermal energy storage systems is performed. Comparisons in terms of components cost between hot water thermal energy storage systems and latent heat thermal energy storage systems are performed as well.

L. Mongibello; M. Capezzuto; G. Graditi

2014-01-01T23:59:59.000Z

225

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

226

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network [OSTI]

of electricity retail rates or on the private economics ofelectricity rates and hence the customer economics of residential, behind-the-meter PV. We calculate the private

Barbose, Galen

2013-01-01T23:59:59.000Z

227

Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application  

Science Journals Connector (OSTI)

The aim of this paper is the evaluation of the profitability of micro-CHP systems for residential application. An integrated CHP system composed of a prime mover, an Electric Energy Storage system, a thermal storage system and an auxiliary boiler has been considered. The study has been carried out taking into account a particular electrochemical storage system which requires also thermal energy, during its operation, for a better exploitation of the residual heat discharged by the prime mover. The prime mover could be a conventional Internal Combustion Engine or also an innovative system, such as fuel cell or organic Rankine cycle. An investigation of this integrated CHP system has been carried out, by means of an in-house developed calculation code, performing a thermo-economic analysis. This paper provides useful results, in order to define the optimum sizing of components of the integrated CHP system under investigation; the developed code allows also to evaluate the profitability and the primary energy saving with respect to the separate production of electricity and heat.

M. Bianchi; A. De Pascale; F. Melino

2013-01-01T23:59:59.000Z

228

U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys  

E-Print Network [OSTI]

dormitory multi-family apartment building mobile orfamily house multi-family apartment building mobile or

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

229

Residential Humidity Control Strategies  

Broader source: Energy.gov (indexed) [DOE]

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

230

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4476E 4476E An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Ben Hoen, Ryan Wiser, Peter Cappers and Mark Thayer Environmental Energy Technologies Division April 2011 Download from http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government.

231

Meeting Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment Expert Meeting  

Broader source: Energy.gov (indexed) [DOE]

Final Report on the Expert Meeting for Final Report on the Expert Meeting for DIAGNOSTIC AND PERFORMANCE FEEDBACK FOR RESIDENTIAL SPACE CONDITIONING SYSTEM EQUIPMENT Building Science Corporation Industry Team 15 July 2010 Work Performed Under Funding Opportunity Number: DE-FC26-08NT00601 Submitted By: Building Science Corporation 30 Forest Street Somerville, MA 02143 Principal Investigators: Joseph W. Lstiburek, Ph.D., P.Eng. ASHRAE Fellow Betsy Pettit, FAIA Phone Number: 978-589-5100 Fax Number: 978-589-5103 E-Mail: joe@buildingscience.com E-Mail: betsy@buildingscience.com Submitted To: U. S. Department of Energy National Energy Technology Laboratory PM: Rob Martinez E-Mail: Rob.Martinez@NETL.DOE.GOV EXECUTIVE SUMMARY 1. Title: Final Report on the Expert Meeting for Diagnostic and Performance Feedback for

232

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

233

Irrigation Districts: Establishment of Electric Light and Power Systems:  

Broader source: Energy.gov (indexed) [DOE]

Irrigation Districts: Establishment of Electric Light and Power Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources Irrigation districts, created in section 46-1xx, are encouraged to

234

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

235

AEP (Central and North) - Residential Energy Efficiency Programs (Texas) |  

Broader source: Energy.gov (indexed) [DOE]

AEP (Central and North) - Residential Energy Efficiency Programs AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate SOP TCC: $150,000 (Large Projects); $150,000 (Small Projects); $25,000 (Small Projects Monthly Reservation Limit) SOP TNC: $40,000 (Large Projects); $20,000 (Small Projects); $5,000 (Small Projects Monthly Reservation Limit) SOP TCC (Hard to Reach): $75,000/sponsor SOP TNC (Hard to Reach): $50,000/sponsor Program Info State Texas Program Type

236

Cape Light Compact - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Cape Light Compact - Residential Energy Efficiency Rebate Program Cape Light Compact - Residential Energy Efficiency Rebate Program Cape Light Compact - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Windows, Doors, & Skylights Solar Water Heating Maximum Rebate Home Energy Assessment/Weatherization: $2,000 Income Eligible Weatherization Measures: $2,000 - $3,000 Program Info State Massachusetts Program Type Local Rebate Program Rebate Amount Home Energy Assessment/Weatherization: 75% Single Family Energy Star Home: $750 - $8,000 Multi-Family Energy Star Home: $350 - $4,000/unit Income Eligible Weatherization Measures: 100% of cost

237

Research, Development and Demonstration of Micro-CHP System for Residential Applications  

SciTech Connect (OSTI)

ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

Karl Mayer

2010-03-31T23:59:59.000Z

238

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

239

Impact of extensive residential solar water heating on power system losses  

Science Journals Connector (OSTI)

South Africa is in the grips of an electricity crisis. Currently, the bulk of power is produced at coal fired power stations which are located far from the large load centres. Solar energy is widely available in South Africa, and could be used to complement this coal based generation, and supply energy at the point of use. This paper aims to investigate the impact of residential solar water heating on power system transmission losses. Initially simulations were carried out in order to determine the impact of solar water heating on a household's electricity demand. These were done for households located in Cape Town, Johannesburg and Durban. A number of solar water heating installations in Cape Town were also monitored, in order to validate the simulation results. Lastly, a power system model was developed in order to investigate the possible impact of large-scale implementation of solar water heating, at varied penetration levels, on a transmission system. Using the model and the results obtained from the simulations, a utility impact analysis was carried out in order to determine the effect on transmission losses. It was concluded that large-scale implementation of solar water heating can be used as a means to alleviate loading and losses on power systems' transmission lines particularly during peak demand.

K.P. Ijumba; A.B. Sebitosi; P. Pillay; K. Folly

2009-01-01T23:59:59.000Z

240

On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach  

Science Journals Connector (OSTI)

Abstract Against the background of the ambitious German targets for renewable energy and energy efficiency, this paper investigates the economic potential for thermal load management with virtual power plants consisting of micro-cogeneration plants, heat pumps and thermal storage within the residential sector. An optimising energy system model of the electricity and residential heat supply in Germany is developed in the TIMES (The Integrated MARKAL EFOM System) modelling framework and used to determine capacity developments and dispatch of electricity and residential heat generation technologies until 2050. The analysed scenarios differ with respect to the rate of technological development of heat and power devices, fuel and CO2 prices as well as renewable electricity expansion. Results show that high fuel prices and a high renewable electricity expansion favour heat pumps and insulation measures over micro-cogeneration, whereas lower fuel prices and lower renewable electricity expansion relatively favour the expansion of micro-cogeneration. In the former case heat pump capacities increase to around 67 GWel, whereas in the latter case the total capacity of micro-cogeneration reaches 8 GWel. With the aid of thermal storage, this provides considerable flexibility for electrical load shifting through heat pumps and electricity generation from micro-cogeneration in residential applications, needed for the integration of fluctuating renewable electricity technologies.

Daniel Fehrenbach; Erik Merkel; Russell McKenna; Ute Karl; Wolf Fichtner

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, researchers from Building America team Consortium for Advanced Residential Buildings worked with industry partners to develop hydronic system designs that would address barriers and result in higher overall system efficiencies and improved response times.

242

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

243

An economic analysis of grid-connected residential solar photovoltaic power systems  

E-Print Network [OSTI]

The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

Carpenter, Paul R.

244

Comparative Life-Cycle Assessment of Residential Heating Systems, Focused on Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

This study aims to analyze a Solid Oxide Fuel Cell (SOFC) for residential heating applications by...producer, the user as an individual and the user...intended as the heating demand of a building, applied by defa...

Alba Cánovas; Rainer Zah; Santiago Gassó

2013-01-01T23:59:59.000Z

245

Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems  

Broader source: Energy.gov [DOE]

This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

246

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect (OSTI)

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

247

Integrated window systems: An advanced energy-efficient residential fenestration product  

SciTech Connect (OSTI)

The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

Arasteh, D.; Griffith, B.; LaBerge, P.

1994-03-01T23:59:59.000Z

248

Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan  

Science Journals Connector (OSTI)

This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

A. Al-Salaymeh; Z. Al-Hamamre; F. Sharaf; M.R. Abdelkader

2010-01-01T23:59:59.000Z

249

Carteret County - Wind Energy System Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Local Government Multi-Family Residential Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Carteret County Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process depending on the size and location of a system. Small systems up to 25 kilowatts (kW) are considered to be an accessory use and do not require the approval of a Wind Energy Permit

250

Residential Load Management Program and Pilot  

E-Print Network [OSTI]

In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

Haverlah, D.; Riordon, K.

1994-01-01T23:59:59.000Z

251

Ashe County - Wind Energy System Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an ongoing debate over

252

Lansing Board of Water and Light - Hometown Energy Savers® Residential  

Broader source: Energy.gov (indexed) [DOE]

Savers® Savers® Residential Rebates Lansing Board of Water and Light - Hometown Energy Savers® Residential Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Other Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Small Business Direct Install Program: No cost or purchase necessary for participation Custom $0.08/kWh Commercial Cooking Equipment: Varies Commercial Refrigeration Equipment: Varies Lighting Compact Fluorescent Lamps: $1.50-$8 Compact Fluorescent Lamp Fixtures: $20 LED Lamps: $5-$15 LED Fixtures: $20 LED Exit Signs: $12.50

253

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

254

Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System  

SciTech Connect (OSTI)

Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

255

Measuring Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

256

Local Option - Property Tax Exemption for Renewable Energy Systems  

Broader source: Energy.gov (indexed) [DOE]

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems (Connecticut) Local Option - Property Tax Exemption for Renewable Energy Systems (Connecticut) < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info State Connecticut Program Type Property Tax Incentive Rebate Amount Local Option Provider Connecticut Office of Policy and Management Connecticut municipalities are authorized, but not required, to offer a property tax exemption lasting up to 15 years for qualifying cogeneration systems installed on or after July 1, 2007 (see Conn. Gen. Stat. § 12-81

257

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)  

SciTech Connect (OSTI)

This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Not Available

2012-05-01T23:59:59.000Z

258

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

SciTech Connect (OSTI)

This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-09-01T23:59:59.000Z

259

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Broader source: Energy.gov (indexed) [DOE]

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

260

Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990  

SciTech Connect (OSTI)

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

Balsavich, J.C.; Breault, R.W.

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

multi-family buildings in the north (and electric furnace and heatMulti-Family Building Prototypes Cond. Regional Floor Heat

Wenzel, T.P.

2010-01-01T23:59:59.000Z

262

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

263

Residential Demand Response under Uncertainty  

Science Journals Connector (OSTI)

This paper considers a residential market with real-time electricity pricing and flexible electricity consumption profiles for customers. Such a market raises an optimisation problem for home automation systems w...

Paul Scott; Sylvie Thiébaux…

2013-01-01T23:59:59.000Z

264

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

265

Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet)  

Broader source: Energy.gov [DOE]

The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building America team, conducted a study to identify best practices, costs, and savings associated with balancing steam distribution systems through increased main line air venting, radiator vent replacement, and boiler control system upgrades.

266

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

267

Sustainability assessment of renovation packages for increased energy efficiency for multi-family buildings in Sweden  

Science Journals Connector (OSTI)

In this paper, we propose a method for assessing renovation packages drawn up with the goal of increasing energy efficiency. The method includes calculation of bought energy demand, life-cycle cost (LCC) analysis and assessment of the building according to the Swedish environmental rating tool Miljöbyggnad (MB). In this way the methodology assesses economic, indoor environmental quality (IEQ) and specifically environmental aspects associated with energy demand of such packages from a sustainability point-of-view. Through MB, energy efficiency packages are placed in context with other necessary measures required to improve environmental performance in buildings, providing a consistent and systematic basis other than simply financial performance by which to compare capital improvements. The method is further explained and analyzed by applying it in three case studies. In each case study a multi-family building representing a typologically significant class in the Swedish building stock is considered, and for each building a base case and two renovation packages with higher initial investment requirement and higher energy efficiency are defined. It is shown that higher efficiency packages can impact IEQ indicators both positively and negatively and that packages reducing energy demand by approx. 50% have somewhat higher LCC. Identified positive IEQ impacts point to added value for packages that may not otherwise be communicated, while negative impacts identify areas where packages need to be improved, or where MB indicators may be referred to as specifications in procurement procedures.

Nils W.O. Brown; Tove Malmqvist; Wei Bai; Marco Molinari

2013-01-01T23:59:59.000Z

268

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

269

The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil  

Science Journals Connector (OSTI)

Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasília and Florianópolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatística—Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informações de Posses de Eletrodomésticos e Hábitos de Consumo—Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each façade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical façades at the sites investigated.

Martin Ordenes; Deivis Luis Marinoski; Priscila Braun; Ricardo Rüther

2007-01-01T23:59:59.000Z

270

Xcel Energy (Electric)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential customers rebates for high efficiency appliances and systems. Currently, rebates are available for high efficiency electric water heaters, electric...

271

Detailed residential electric determination  

SciTech Connect (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

272

Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.  

SciTech Connect (OSTI)

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

2011-11-01T23:59:59.000Z

273

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

274

An Analysis of Residential PV System Price Differences Between the United States and Germany  

E-Print Network [OSTI]

L. , 1978. Cost of Photovoltaic Energy Systems as Determinedcommercial photovoltaic systems in California. Energy PolicyDepartment of Energy, 2010. $1/W Photovoltaic Systems. White

Seel, Joachim

2014-01-01T23:59:59.000Z

275

The impacts of duct design on life cycle costs of central residential heating and air-conditioning systems  

Science Journals Connector (OSTI)

Abstract Many central residential HVAC systems in the U.S. operate at high external static pressures due to a combination of system restrictions. Undersized and constricted ductwork are thought to be key culprits that lead to excess external static pressures in many systems, although the magnitude of energy impacts associated with restrictive ductwork and the costs or benefits associated with addressing the problem are not well known. Therefore, this work uses annual energy simulations of two typical new single-family homes in two separate climates in the United States (Austin, TX and Chicago, IL) to predict the impacts of various external static pressure ductwork designs from independent HVAC contractors (using both flexible and rigid sheet metal ductwork materials) on annual space conditioning energy use. Results from the simulations are combined with estimates of the initial installation costs of each duct design made by each contractor to evaluate the total life cycle costs or savings of using lower pressure duct designs in the two homes over a 15-year life cycle. Lower pressure ductwork systems generally yielded life cycle cost savings, particularly in homes with PSC blowers and particularly when making comparisons with constant ductwork materials (i.e., comparing flex only or rigid only).

Brent Stephens

2014-01-01T23:59:59.000Z

276

U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

2014-10-01T23:59:59.000Z

277

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

force” additional pumped hydro storage in the system (i.e. ,6.33 GW of pumped hydro storage into the system, in addition

Darghouth, Naim

2014-01-01T23:59:59.000Z

278

The Multi-Family Calculator: An Early Stage Tool for Integrated Design Teams  

E-Print Network [OSTI]

.austinenergy.com 7 DOE Multifamily midrise: Floor area: 950 sq ft/dwelling unit Window fraction: 12% Cooling type: Packaged Terminal Heat Pump + Other characteristics Prototype Buildings ESL-KT-13-12-19 CATEE 2013: Clean Air Through Energy Efficiency Conference, San...Multifamily Energy Calculator Rapid modeling of mid-rise residential projects Greg Arcangeli | Graduate Engineer | LEED AP BD+C Cristina Woodings | Graduate Engineer ESL-KT-13-12-19 CATEE 2013: Clean Air Through Energy Efficiency Conference, San...

Arcangeli, G.; Woodings, C.

2013-01-01T23:59:59.000Z

279

The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems  

E-Print Network [OSTI]

and Renewable Energy, Solar Technologies Program of the U.S.Renewable Energy (Solar Energy Technologies Program) and thetechnologies, both utility-scale and behind-the-meter. Future installations of residential solar

Darghouth, Naim

2014-01-01T23:59:59.000Z

280

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Differential rates for district heating and the influence on the optimal retrofit strategy for multi-family buildings  

Science Journals Connector (OSTI)

When renovating existing multi-family buildings it is very important to implement the best retrofit strategy possible in order to minimize the remaining life-cycle cost for the building. If the building is heated with district heating this strategy of course changes due to the energy rate used by the utility. It is also very important for the utility that the consumer is encouraged to save energy when there is a need for it, i.e. during peak load conditions. Our paper shows that an accurate cost differential rate provides all these facilities.

Stig-Inge Gustafsson; Björn G. Karlsson; Bertil H. Sjöholm

1987-01-01T23:59:59.000Z

282

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

283

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

demand response scenario—includes a simulated system- wide price elasticityPrice Elasticity ($/ton) Notes: C = carbon; NG = natural gas; RE = renewable energy; DR = demand response.

Darghouth, Naim

2014-01-01T23:59:59.000Z

284

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network [OSTI]

schemes on power prices: The case of wind electricity inand Wind Penetration. IEEE Transactions on Power Systems 27,of wind (50%), PV (35%), and concentrating solar power (CSP,

Darghouth, Naim

2014-01-01T23:59:59.000Z

285

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

CPUC) (2010) CPUC California Solar Initiative: 2009 ImpactCPUC). (2011) California Solar Statistics. http://systems through the California Solar Initiative program.

Cappers, Peter

2012-01-01T23:59:59.000Z

286

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

SciTech Connect (OSTI)

An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

2011-04-12T23:59:59.000Z

287

Airflow regulation in variable-speed systems for residential HVAC applications  

SciTech Connect (OSTI)

In the majority of heating, ventilating, and air-conditioning (HVAC) systems, air is the final medium for adding or extracting heat from or to the space to be air conditioned. Air is heated by passing it over a heat transfer device called a coil, which is a heat exchanger with air on the outside and the primary heating/cooling medium (water, steam, electricity, refrigerant, etc.) on the inside. One of the major factors determining heat transfer is the airflow rate, which can be controlled by mechanical means or by controlling the speed of the fan. Centrifugal fans driven by single-speed induction motors traditionally have been used in the JVAC industry but have an airflow characteristic that depends on the static pressure seen by the system. Variable-speed systems are starting to emerge as a strong alternative to traditional systems because of their ability to match the demand of the air-conditioned space, resulting in higher efficiencies and higher comfort. System efficiency can be improved by constraining the range of airflows provided by the fan or blower system in response to system pressure, that is, by controlling the airflow over the heat exchanger. This paper presents a method to regulate airflow independent of the static pressure and without the need for airflow sensors.

Becerra, R.C.; Beifus, B.L. [General Electric Co., Fort Wayne, IN (United States)

1996-11-01T23:59:59.000Z

288

Residential propane prices decreases  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating...

289

Residential propane price decreases  

Gasoline and Diesel Fuel Update (EIA)

6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel...

290

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel...

291

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel...

292

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel...

293

Residential propane prices surges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel...

294

Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy's (DOE's) Better Buildings Residential programs  work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

295

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend.  

E-Print Network [OSTI]

??A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized… (more)

Khan, Umer

2012-01-01T23:59:59.000Z

296

Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment  

Science Journals Connector (OSTI)

The purpose of the research described in this paper was to demonstrate that an old Danish multi-family building built in 1896 could be retrofitted to a “nearly-zero” energy building. Three types of retrofit measures were implemented in a “test” apartment to obtain practical experiences. The first measure was the installation of two different types of interior insulation, specifically, an insulation component consisting of an aerogel–stone wool mixture or vacuum insulation panels. The second measure related to the retrofit of windows in which five measures were completed that consisted of applying a secondary frame, a sash mounted on the frame or to coupled frames. The third measure consisted of installing a decentralised mechanical ventilation system with heat recovery. The results showed that following the retrofit the building's theoretical energy use diminished from 162.5 kWh/(m2 year) to 51.5 kWh/(m2 year), corresponding to a reduction in energy use of 68%. The theoretical energy use after retrofitting fulfilled the requirements for new buildings in Denmark. The practical experiences that were retained following the retrofit were that the ventilation system ought to be installed with low noise components, insulation materials must be sized and cut to fit on site, and that new windows were selected.

Martin Morelli; Leif Rønby; Svend Erik Mikkelsen; Maja G. Minzari; Troels Kildemoes; Henrik M. Tommerup

2012-01-01T23:59:59.000Z

297

The development of an Automated Residential Expert System (A.R.E.S.)  

E-Print Network [OSTI]

are employing this vibrant technology to the following areas: expert systems, fuzzy logic, neural networks, robotics, vision, natural language, speech recognition, and genetic algorithms. As a society, artificial intelligence has prompted intense philosophical...

White, Pablo

2013-02-22T23:59:59.000Z

298

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

SciTech Connect (OSTI)

An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

2011-04-12T23:59:59.000Z

299

Review of Residential Ventilation Technologies.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

300

An investigation of a residential solar system coupled to a radiant panel ceiling  

SciTech Connect (OSTI)

An experimental study of a solar-radiant heating system was performed at Iowa State University's Energy Research House (ERH). The ERH was constructed with copper tubes embedded in the plaster ceilings, thus providing a unique radiant heating system. In addition, 24 water-glycol, flat-plate solar collectors were mounted on the south side of the residence. The present study uses the solar collectors to heat a storage tank via a submerged copper tube oil. Hot water from the storage tank is then circulated through a heat exchanger, which heats the water flowing through the radiant ceiling. This paper contains a description of the solar-radiant system and an interpretation of the data that were measured during a series of transient experiments. In addition, the performance of the flat-plate solar collectors and the water storage tank were evaluated. The characteristics of a solar-to-radiant heat exchanger were also investigated. The thermal behavior of the radiant ceiling and the room enclosures were observed, and the heat transfer from the ceiling by radiation and convection was estimated. The overall heating system was also evaluated using the thermal performances of the individual components. The results of this study verify that it is feasible to use a solar system coupled to a low-temperature radiant-panel heating system for space heating. A sample performance evaluation is also presented.

Zhang, Z.; Pate, M.; Nelson, R.

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Designing, selecting and installing a residential ground-source heat pump system  

SciTech Connect (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

302

Operating results and simulations on a fuel cell for residential energy systems  

Science Journals Connector (OSTI)

This paper describes the performance evaluation of a polymer electrolyte fuel cell (PEFC) prototype and demonstration experiments of the electric power and domestic hot water system using it from a pragmatic view-point. Three types of demonstration experiments were carried out applying standard electric power and hot water demands. It was shown that the primary energy reduction rate of this system as compared to the conventional system reached up to 24% under double daily start and stop (DSS) operation. The amount of primary energy reduction in experiments using the energy demand of a household in Sapporo in winter exceeded the experimental results of the standard energy demand, demonstrating that the effects of the introduction of a fuel cell in cold regions could be considerable, in particular, during the winter season.

Yasuhiro Hamada; Ryuichiro Goto; Makoto Nakamura; Hideki Kubota; Kiyoshi Ochifuji

2006-01-01T23:59:59.000Z

303

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

SciTech Connect (OSTI)

An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

2011-04-19T23:59:59.000Z

304

Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Optimizing Hydronic Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings, www.carb-swa.com Building Component: Space heating, water heating Application: New; single and multifamily Year Tested: 2012-2013 Applicable Climate Zone(s): 4,5,6,7 PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $6,100-$8,200 Projected Energy Savings:

305

A computer simulation appraisal of non-residential low energy cooling systems in California  

SciTech Connect (OSTI)

An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-05-17T23:59:59.000Z

306

Condensing heat exchanger systems for residential/commercial furnaces and boilers. Phase IV  

SciTech Connect (OSTI)

The development of condensing heat exchanger systems is studied. In the work reported here, the focus is on the corrosion resistance of materials to condensate produced by gas-fired heating equipment, and the characterization of the spatial variation of condensation corrosivity in condensing heat exchangers.

Razgaitis, R.; Payer, J.H.; Talbert, S.G.; Hindin, B.; White, E.L.; Locklin, D.W.; Cudnik, R.A.; Stickford, G.H.

1985-10-01T23:59:59.000Z

307

Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code  

SciTech Connect (OSTI)

IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

Rudd, A.; Prahl, D.

2014-12-01T23:59:59.000Z

308

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect (OSTI)

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

309

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Commission (CPUC) "CPUC California Solar Initiative: 2009California has been and continues to be the country’s largest market for photovoltaic solar (solar PV is expanding rapidly in the U.S. Almost 100,000 PV systems have been installed in California

Hoen, Ben

2013-01-01T23:59:59.000Z

310

Experimental Investigation of Direct Expansion Dynamic Ice-on-coil Storage System Used in Residential Buildings  

E-Print Network [OSTI]

The reduction in electricity consumption of an ice-storage system in the daytime leads to financial savings for building owners and extension savings for a power plant and national economy. Great advancements have been made in domestic ice-storage...

Zheng, M.; Kong, F.; Han, Z.; Liu, W.

2006-01-01T23:59:59.000Z

311

Austin Energy - Value of Solar Residential Rate (Texas) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info Start Date 10/01/2012 State Texas Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and approved by Austin City Council in June 2012, will be available for all past, present and future residential solar customers beginning October 1, 2012. This tariff replaces net billing for residential solar PV systems no larger than 20 kilowatts (kW). Under this new tariff, residential customers will be credited monthly for their solar generation based on the Value of Solar energy generated from

312

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

313

Comparing advanced exergetic assessments of two geothermal district heating systems for residential buildings  

Science Journals Connector (OSTI)

Abstract Advanced exergy analysis method has been increasingly utilized in analyzing and assessing the performance of energy-related systems in recent years due to more deeply investigating the exergy destructions. In this study, two various geothermal district heating systems (GDHSs), the Afyon and Bigadiç GDHSs, which have been operated in Turkey, were considered to perform their advanced exergy analyses and assessments. The \\{GDHSs\\} studied were also compared with each other for the first time in terms of advanced exergetic aspects. In the analyses and calculations of the GDHS, the actual operational data obtained from the measurements and technical staff were utilized. The overall conventional and advanced exergetic efficiency values for the Afyon GDHS are determined to be 27.53% and 34.72% while those for the Bigadiç GDHS are obtained to be 21.03% and 32.52%, respectively. Considering both the interactions among components and the potential for improving components, more effective and efficient improvement priorities were proposed.

Ali Keçeba?; Can Coskun; Zuhal Oktay; Arif Hepbasli

2014-01-01T23:59:59.000Z

314

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

315

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

E-Print Network [OSTI]

home, a unit in a multi-family building, or a mobile home.and housing units in multi-family buildings. We assumed thatHHDs) HHDs in Multi-Family Buildings HHD HHD Income Toilet

McNeil, Michael

2008-01-01T23:59:59.000Z

316

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

SciTech Connect (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

317

Testing residential energy pricing in the Krakow, Poland, municipal district heat system  

SciTech Connect (OSTI)

While understanding of the operation of the price and rebate mechanism may be imperfect in the United States, in Poland most of the necessary infrastructure simply does not exist. Of all the former Soviet-bloc countries, Poland has moved the quickest to a market economy; however, the stresses have been and continue to be significant, particularly on the pensioned. The energy sector of the economy is still centrally planned while the legal framework for a transition to a regulated market is created. Some utilities have made more rapid progress than others in the transition. This paper describes the first year of an experiment involving design, implementation, and analysis of a pilot pricing, conservation, and heating system control experiment in 264 apartments in four buildings. The results--and experience in the United States--will be used to guide the pricing decisions of the municipal district heat utility and the conservation and air quality strategies of the Krakow development authority. Development of a price incentive strategy involved considerations of public policy toward fixed-income occupants and ownership of energy metering. Thermostats were installed to permit occupant control, and building-level conservation and control techniques were implemented. Physical constraints required the use of German ``cost allocator`` metering technology at the apartment level. Final subsidy or ``pseudo-pricing`` design included-building-level incentives as well as apartment performance inducements. Results include insights on communication and cultural impacts and guidance for future testing as well as energy conservation effectiveness values.

Wisnewski, R.; Reeves, G. [George Reeves Associates, Inc., Lake Hopatcong, NJ (United States); Markiewicz, J. [Fundacja na Rzecz Efektywnego Wykorzystania Energii w Krakowie, Krakow (Poland)

1995-08-01T23:59:59.000Z

318

Mississippi Power - EarthCents Residential Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Power - EarthCents Residential Efficiency Rebate Mississippi Power - EarthCents Residential Efficiency Rebate Program Mississippi Power - EarthCents Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Heat Pump Conversion: $150 - $200 Ductless HVAC System (Whole House): $250 Geothermal Heat Pump: $500 Water Heater Conversions: $150 Heat Pump Water Heater: $300 Provider Efficiency Programs Mississippi Power offers rebates to its residential customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps, HVAC systems,

319

Groton Utilities - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Compact Fluorescent Bulbs: Free While Supplies Last Insulation: $0.50/sq ft Heat Pump Water Heater: Up to $500 HVAC Controls: $250/unit Single Package/Split System Unitary AC: $250/ton Air-Source Heat Pump: $250/ton Water-Source Heat Pump: $150/ton Home Energy Savings Program: Free for Electric Customers

320

Improvement in impact insulation ratings of common floor/ceiling assemblies in multi?family dwellings with standard floor coverings  

Science Journals Connector (OSTI)

Improvement in the field?rated impact insulation class [FIIC] was measured for several common floor/ceiling assemblies in existing multi?family buildings utilizing several standard grades of carpet pad and various vinyl products. Testing included determination of FIIC ratings with existing floor coverings and with other more effective floor coverings including ordinary cushioned vinyl thickly cushion?backed vinyl and vinyl products with fiber board and particle board underlayment. Test results indicate that a significant improvement in the FIIC ratings of existing vinyl covered floor/ceiling assemblies can be achieved by the superposition of an appropriate cushioned vinyl on top of the existing standard vinyl. The test results also indicate that a significant increase in FIIC ratings of existing carpeted floor/ceiling assemblies can be achieved by appropriate selection of new pad and carpet. Test data from measurements performed in accordance with ISO recommendation R140 are presented in the paper for several representative configurations.

Stanley M. Rosen

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

322

EA-2001: Final Rule, 10 CFR Part 433, ‘Energy Efficiency Standards for New Federal Commercial and Multi-Family High- Rise Residential Buildings’ Baseline Standards Update  

Broader source: Energy.gov [DOE]

The EA examines the potential incremental environmental impacts of the PreliminaryFinal Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the PreliminaryFinal Rule, DOE compared the PreliminaryFinal Rule with the “no-action alternative” of using the minimum requirements of the previous version of the Federal standard – 10 CFR Part 433 (referred to as the “no-action alternative”).

323

Modeling of Residential Attics with Radiant Barriers  

E-Print Network [OSTI]

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

Wilkes, K. E.

1988-01-01T23:59:59.000Z

324

Chicopee Electric Light- Residential Solar Rebate Program  

Broader source: Energy.gov [DOE]

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

325

SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Bill Financing Program On-Bill Financing Program SoCalGas - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Program Info State California Program Type Utility Loan Program Rebate Amount General Minimum Loan Amount: $5,000/meter minimum Non-Institutional Customers: up to $100,000/meter with 5 year max payback Taxpayer Funded Institutions: up to $250,000/meter with 10 year max payback State of California: up to $1,000,000 with 10 year max payback Provider Southern California Gas Company The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

326

SCE - Non-Residential On-Bill Financing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Bill Financing Program On-Bill Financing Program SCE - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Maximum Rebate Taxpayer Funded Institutions: up to $250,000/meter with 5 year max payback Non-Institutional Customers: up to $100,000/meter with 5 year max payback State of California: up to $1,000,000 with 10 year max payback Program Info Start Date 8/2/2010 State California Program Type Utility Loan Program Rebate Amount 5,000 minimum Provider Business Programs The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

327

SoCalGas - Residential Energy Efficiency Rebate Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Rebate Programs Rebate Programs SoCalGas - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info Start Date 1/1/2010 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount Clothes Washer: $35 Dishwasher: $30 Storage Water Heater: $30 or $75 (.62 EF) Gas Furnace: $200 Attic and Wall Insulation: $0.15/sq. ft. Tankless Water Heater: $300 or $400 Provider Southern California Gas Company The Southern California Gas Company (SoCalGas) Home Energy Efficiency Rebate Program offers cash rebates on qualifying energy-efficiency upgrades or improvements made to single family homes, multi-family apartments, or

328

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

329

The Energy Cooperative - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

The Energy Cooperative - Residential Energy Efficiency Rebate The Energy Cooperative - Residential Energy Efficiency Rebate Program The Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $599 Water Heater (Replacement): $100 Water Heater (New): $250 - $350 Geothermal Heat Pump: $599 Central AC: $100 Provider The Energy Cooperative The Energy Cooperative offers incentives to residential customers for the installation of dual fuel heating systems, water heaters, geothermal heat pumps and central air conditioners. Equipment must be installed in eligible

330

Steven Winter Associates (Consortium for Advanced Residential Buildings) |  

Open Energy Info (EERE)

Winter Associates (Consortium for Advanced Residential Buildings) Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name Steven Winter Associates (Consortium for Advanced Residential Buildings) Place Norwalk, CT Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Steven Winter Associates (Consortium for Advanced Residential Buildings) is a company located in Norwalk, CT. References Retrieved from "http://en.openei.org/w/index.php?title=Steven_Winter_Associates_(Consortium_for_Advanced_Residential_Buildings)&oldid=379243" Categories: Clean Energy Organizations

331

NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Southern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Air Conditioners: Up to $1000 Variable Speed Pool Pump: $200 '''Pool Pump and duct system rebates are temporarily suspended. Contact NV Energy for additional information on funding and program availability.''' NV Energy offers rebates for the installation of high efficiency A/C units, air source heat pumps, and pool pumps for residential customers in southern

332

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

333

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

334

East Central Electric Cooperative - Residential Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Cooling Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Replacement ground source heat pump - $150 per ton Complete system (unit and ground loop) - $750 per ton Electric water heater - $150 Energy Star Room AC - $50 Energy Star clothes washer - varies depending on cost Energy Star dishwasher - varies depending on cost Provider East Central Electric Cooperative East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water

335

Walton EMC - Residential Energy Efficiency Rebate Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Walton EMC - Residential Energy Efficiency Rebate Programs Walton EMC - Residential Energy Efficiency Rebate Programs Walton EMC - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Heating Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $200 Water Heater: $150 - $200 Waste Heat Recovery System: $200 Underground Wiring Refund: up to $500 Provider Walton Electric Membership Corporation Walton Electric Membership Corporation (EMC) is an electric cooperative that serves approximately 100,000 customers in 10 northeastern Georgia counties. Walton EMC provides financial incentives for residential members that wish to improve the energy efficiency of eligible residences.

336

Indianapolis Power & Light - Residential Energy Incentives Program |  

Broader source: Energy.gov (indexed) [DOE]

Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFLs: In store discounts A/C Cycling: $20/summer Split System AC: $300 - $400 Air Source Heat Pump: $200 - $300 Home Energy Evaluation and Energy Efficiency Kit: Free Refrigerator/Freezer Recycling: $30/unit Provider IPL Energy Incentives Program The Indianapolis Power and Light Energy Incentives Programs assist residential customers with reducing energy consumption. The program offers

337

Residential Loan Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Residential Loan Fund Residential Loan Fund < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Maximum Rebate $20,000 Program Info Funding Source System Benefits Charge (SBC) Start Date 11/10/2009 (current offering) State New York Program Type State Loan Program Rebate Amount Varies Provider New York State Energy Research and Development Authority '''''The New York State Energy Research and Development Authority (NYSERDA) has extended the Participation Agreements of the Assisted Home Performance

338

Residential Retrofit Program Design Guide  

Broader source: Energy.gov [DOE]

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

339

NREL: Buildings Research - Residential Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Capabilities Photo showing a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the...

340

Performance Tested Comfort Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region… (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

342

Energy Savings Potential and RD&D Opportunities for Residential...  

Broader source: Energy.gov (indexed) [DOE]

Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and...

343

Xcel Energy (Gas and Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to Minnesota residential customers for the purchase of energy efficient HVAC systems, insulation, appliances and lighting equipment....

344

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Broader source: Energy.gov [DOE]

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

345

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

World Conference on Photovoltaic Energy Conversion, 2003,Effects of Residential Photovoltaic Energy Systems on Homeand renewable energy technologies, solar photovoltaic (PV)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

346

Salt Lake County Residential Solar Financing Study  

Broader source: Energy.gov [DOE]

As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the community-scale solar project in St. George, Utah. We have also provided cost estimates for each system.

347

An Occupant-Based Dynamic Simulation Tool for Predicting Residential Power Demand and Quantifying the Impact of Residential Demand Response.  

E-Print Network [OSTI]

?? With their large impact on the power system and widespread distribution, residential loads provide vast resources that if utilized correctly have the potential to… (more)

Johnson, Brandon Jeffrey

2013-01-01T23:59:59.000Z

348

Evaluation of evolving residential electricity tariffs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of evolving residential electricity tariffs Evaluation of evolving residential electricity tariffs Title Evaluation of evolving residential electricity tariffs Publication Type Conference Paper Year of Publication 2011 Authors Lai, Judy, Nicholas DeForest, Sila Kiliccote, Michael Stadler, Chris Marnay, and Jonathan Donadee Conference Name ECEEE Summer Study, June 6-11, 2011 Date Published 06/2011 Publisher LBNL Conference Location Belambra Presqu'île de Giens, France Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30%, 100%, 200%, and 300%+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

349

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

350

Development of a Residential Integrated Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

351

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

352

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

353

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

354

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

355

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy...

356

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential...

357

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential...

358

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential...

359

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential...

360

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential propane price increases  

U.S. Energy Information Administration (EIA) Indexed Site

propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

362

Residential propane prices stable  

Gasoline and Diesel Fuel Update (EIA)

propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

363

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential...

364

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential...

365

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy...

366

Residential propane prices increase  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential...

367

Residential propane prices available  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

propane prices available The average retail price for propane is 2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey....

368

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential...

369

Residential Energy Disclosure (Hawaii)  

Broader source: Energy.gov [DOE]

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

370

Xcel Energy (Electric) - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Xcel Energy (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Evaporative Cooling: $1000 High Efficiency A/C: $1000 Insulation: $300 Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 A/C and Heat Pumps: $500-$1100 Evaporative Cooling (Standard System): $100-$250/unit Evaporative Cooling (Premium System): $500-$600/unit

371

AEP SWEPCO - Residential Energy Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

SWEPCO - Residential Energy Efficiency Rebate Program SWEPCO - Residential Energy Efficiency Rebate Program AEP SWEPCO - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount '''Home Performance with ENERGY STAR®''' Central AC Replacements: $125 - $800/system Heat Pump Replacements: $125 - $825/system Insulation: $0.12-$0.25/sq. ft. Duct Sealing/Replacement: $175 - $300/home Duct Insulation: $0.50/ln. ft. AC Tune-up: $80 Air Infiltration: $100 - $150

372

New York City - Residential Solar Sales Tax Exemption | Department of  

Broader source: Energy.gov (indexed) [DOE]

City - Residential Solar Sales Tax Exemption City - Residential Solar Sales Tax Exemption New York City - Residential Solar Sales Tax Exemption < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info Start Date 12/01/2005 State New York Program Type Sales Tax Incentive Rebate Amount 100% local sales tax exemption Provider New York City In July 2005, New York enacted [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NY24F&re... legislation] that allows local governments to grant a local sales tax exemption for residential solar energy systems. New York City passed Resolution 1121 in August 2005 (effective December 1, 2005) to exempt residential solar energy systems equipment and services from sales tax.

373

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network [OSTI]

117 4.3.4 33% Renewable energy mixlevels. 33% Renewable energy mix scenario The 33% RE mixUnder the 33% renewable energy mix scenario, the residential

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

374

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLARIZE GUIDEBOOK: SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems 1 ACKNOWLEDGEMENTS This guide is an updated version of the original The Solarize Guidebook, published in February 2011 (see www.nrel.gov/docs/fy11osti/50440.pdf), which was developed for the National Renewable Energy Laboratory and the City of Portland. The original Solarize campaigns were initiated and replicated by Portland's Neighborhood Coalition network with help from the Energy Trust of Oregon, City of Portland, and Solar Oregon. AUTHORS Linda Irvine, Alexandra Sawyer and Jennifer Grove, Northwest Sustainable Energy for Economic Development (Northwest SEED). Northwest SEED is solely responsible for errors and omissions. CONTRIBUTORS Lee Rahr, Portland Bureau of Planning and Sustainability

375

Residential Retrofit Program Design Guide Overview Transcript...  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide...

376

Fact Sheet: Better Buildings Residential Network | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

377

Solar Energy Option Requirement for Residential Developments | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy Option Requirement for Residential Developments Solar Energy Option Requirement for Residential Developments Solar Energy Option Requirement for Residential Developments < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State New Jersey Program Type Building Energy Code Provider New Jersey Department of Community Affairs In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential developments. The law requires that, whenever "technically feasible", developers of residential developments with 25 or more dwelling units (i.e., single-family residences) offer to install or provide for the

378

PNM - Residential Energy Efficiency Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PNM - Residential Energy Efficiency Rebate Program PNM - Residential Energy Efficiency Rebate Program PNM - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Refrigerator/Freezer Recycling: 2 units per household Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount +Refrigerator/Freezer Recycling: $50/unit Compact Fluorescent Light Bulbs (CFLs): point-of-purchase discounts AC Cycling: $25 sign-up and $25/year Provider Customer Service PNM offers incentives for residential customers to improve the efficiency of eligible homes. PNM will provide a $50 rebate for the proper recycling of old refrigerators or freezers. Customers who agree to cycle the operation of residential air conditioning systems are also eligible for a

379

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

380

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clallam County PUD - Residential Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clallam County PUD - Residential Efficiency Rebate Program Clallam County PUD - Residential Efficiency Rebate Program Clallam County PUD - Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $15 Freezer: $15 CFL Fixtures: $10 Electric Water Heater: $25 Drain Water Heat Recovery System: $220 Air Sealing: $160 to installer PTCS Duct-Sealing (Manufactured Home): $350 - $500 to installer PTCS Duct-Sealing (Site-Built Home): $500 to installer

382

Black Hills Energy (Electric) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Residential Energy Efficiency Electric) - Residential Energy Efficiency Program Black Hills Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Attic Insulation: $500 Wall Insulation: $500 Air Sealing: $300 Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount Energy Star New Home: Contact Black Hills Energy Air-Source Heat Pump Split System: $400 Central A/C: $500-$700 Ground Source Heat Pumps: $1,200

383

About Residential | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

384

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

385

Residential Solar Water Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

386

Residential Building Code Compliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

387

Progress in Residential Retrofit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

388

Building Technologies Residential Survey  

SciTech Connect (OSTI)

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

389

Residential Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

390

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

391

Residential Buildings Integration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

392

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

393

Residential propane price is unchanged  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating...

394

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

395

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

396

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

397

STORM WATER Residential  

E-Print Network [OSTI]

STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

California at Santa Cruz, University of

398

Residential Mechanical Precooling  

SciTech Connect (OSTI)

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

399

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

400

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

402

Efficient Engine-Driven Heat Pump for the Residential Sector  

Broader source: Energy.gov [DOE]

Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

403

Alliant Energy Interstate Power and Light (Gas) - Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

All equipment must meet certain efficiency requirements listed on the program web site. Landlords and renters of multi-family homes can also take advantage of various...

404

Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data  

E-Print Network [OSTI]

1 2 3 4 5 6 7 8 9 Predicting residential indoor concentrations of nitrogen dioxide, fine collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2

Paciorek, Chris

405

Progress Energy Carolinas - SunSense Residential PV Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Progress Energy Carolinas - SunSense Residential PV Incentive Program Progress Energy Carolinas - SunSense Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for 2013 $500 per kilowatt AC, plus a monthly bill credit of $4.50 per kW Provider Progress Energy Carolinas '''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1, 2014. ''''' Progress Energy is offering incentives for their residential customers to install photovoltaics (PV) systems on their homes through their SunSense

406

College Station Utilities - Residential Energy Back II Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

College Station Utilities - Residential Energy Back II Rebate College Station Utilities - Residential Energy Back II Rebate Program College Station Utilities - Residential Energy Back II Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central A/C, Heat Pumps: $200 - $600, varies by efficiency rating Provider College Station Utilities College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system must be a minimum of 14 SEER or higher. Both the evaporator coil (inside unit) and the condensing unit (outside unit) must be replaced as a matching system as rated in the

407

Building Energy Software Tools Directory: Right-Suite Residential for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Right-Suite Residential for Windows Right-Suite Residential for Windows Right-Suite Residential for Windows logo. All-in-one HVAC software performs residential loads calculations, duct sizing, energy analysis, equipment selection, cost comparison calculations, and geothermal loop design. Also allows you to design your own custom proposals. Used for system design, for sales representation, and for quotation preparations. Buy only what you need. Unused functions are shipped as demos, so the program can grow with your needs. Keywords residential loads calculations, duct sizing, energy analysis, HVAC equipment selection, system design Validation/Testing N/A Expertise Required Knowledge of general HVAC concepts. High level of computer literacy not required. Users Over 10,000 users of Right-J loads.

408

Cuivre River Electric - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Cuivre River Electric - Residential Energy Efficiency Rebate Cuivre River Electric - Residential Energy Efficiency Rebate Programs Cuivre River Electric - Residential Energy Efficiency Rebate Programs < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pumps: Maximum of 10 tons for residential systems and 50 tons for commercial systems Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Water Heater: $50 Geothermal Heat Pumps: $750/ton Dual Fuel Air-source Heat Pumps: $150/ton Provider Cuivre River Electric Cuivre River Electric Cooperative, through the Take Control and Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water heaters. Water

409

Pend Oreille PUD - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Pend Oreille PUD - Residential Energy Efficiency Rebate Program Pend Oreille PUD - Residential Energy Efficiency Rebate Program Pend Oreille PUD - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Energy Star Clothes Washer: $30 Energy Star Refrigerator: $15 Ductless Heating/Cooling System: $1,500 Provider Pend Oreille PUD Pend Oreille PUD offers cash incentives to residential customers for a number of energy efficient upgrades. Energy Star refrigerators are eligible for a rebate of $15, while Energy Star clothes washers may receive a rebate of $30. Additionally, eligible ductless heating and cooling systems qualify

410

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

411

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

412

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

1 1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Housing Type

413

Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) |  

Broader source: Energy.gov (indexed) [DOE]

Butler Rural Electric Cooperative - Residential Rebate Program Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Systems (New Installations): $1,200 Geothermal Systems (Replacement Systems): $600 Dual Fuel Heating Systems (New Installations): $600 Dual Fuel Heating Systems (Replacements): $300 Air Source Heat Pump Systems (New and Replacements): $300 Marathon Water Heaters: $350 - $550 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative provides rebates for geothermal heat pumps, dual fuel heating systems, and water heaters. A $1,200 rebate is

414

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network [OSTI]

residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change, Kansas City, Seattle, Minneapolis and Phoenix). In order to capture moisture related HVAC system.2, design strategies for moisture control, humidity and comfort. #12;INTRODUCTION ASHRAE standards 62

415

Residential GSHPs: Efficiency With Short Payback Periods  

SciTech Connect (OSTI)

This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

Cooperman, Alissa; Dieckmann, John; Brodrick, James

2012-04-30T23:59:59.000Z

416

Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)  

SciTech Connect (OSTI)

This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

Not Available

2014-11-01T23:59:59.000Z

417

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

418

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

419

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

420

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Broader source: Energy.gov (indexed) [DOE]

4: Small Commercial 4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 2.1 Programs with Enhanced Measures ................................................................................. 5 3 Savings Calculations .............................................................................................................. 6

422

A Study of Pressure Losses in Residential Air Distribution Systems Bass Abushakra Iain S. Walker Max H. Sherman  

E-Print Network [OSTI]

. The experimental tests conformed to ASHRAE Standard 120P ­ Methods of Testing to Determine Flow Resistance of HVAC on the power consumption and the overall performance of the HVAC system. To satisfy the ARI 210 in the air-distribution system is critical. Proctor and Parker (2000) noted that the measured external static

423

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Dual Fuel Heat Pumps: two systems per house Geothermal Heat Pumps: $1,000 Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $500 Geothermal Heat Pumps: $200/ton Electric Water Heaters: $200 - $250, depending on size Provider Pee Dee Electric Cooperative Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for

424

Clallam County PUD - Residential and Small Business Solar Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Clallam County PUD - Residential and Small Business Solar Loan Clallam County PUD - Residential and Small Business Solar Loan Program Clallam County PUD - Residential and Small Business Solar Loan Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Provider PUD #1 of Clallam County In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems. There is no application fee and Clallam County PUD covers the loan fee. A list of [http://www.clallampud.net/conservation/res_Eligible_Measures.asp eligible measures] for the loan program is located on the program website. Loans are

425

Residential Renewable Energy Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Renewable Energy Tax Credit Residential Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar-electric systems placed in service after 2008: no maximum Solar water heaters placed in service after 2008: no maximum Wind turbines placed in service after 2008: no maximum Geothermal heat pumps placed in service 2008: no maximum Fuel cells: 500 per 0.5 kW Program Info Start Date 1/1/2006 Expiration Date 12/31/2016 Program Type Personal Tax Credit Rebate Amount 30% Provider U.S. Internal Revenue Service Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric

426

EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

EnergyUnited - Residential Energy Efficient Heat Pump Rebate EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 per dwelling Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Heat Pumps (14 SEER): $150 Heat Pumps (15 SEER +): $300 Provider EnergyUnited EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program website and must be completed by the installing HVAC contractor. Each unit will require a separate form in order to qualify for rebates. Systems must be

427

Dixie Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Home Weatherization Windows, Doors, & Skylights Maximum Rebate $5,000 Program Info State Alabama Program Type Utility Loan Program Rebate Amount up to $5,000 Provider Dixie Electric Cooperative Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a maximum loan of $5,000 at a 5% interest rate. Funds can be used for improvements, upgrades, gas to electric conversions, or installation of a heat pump system. The payments

428

Fort Collins Utilities - Residential On-Bill Financing Program Program  

Broader source: Energy.gov (indexed) [DOE]

Fort Collins Utilities - Residential On-Bill Financing Program Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Heating & Cooling Heating Heat Pumps Water Heating Solar Maximum Rebate $15,000 Program Info State Colorado Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space heating systems, and

429

WIN Energy REMC - Residential Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WIN Energy REMC - Residential Rebate Program WIN Energy REMC - Residential Rebate Program WIN Energy REMC - Residential Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Electric Water Heater: $50 - $150 or Free Heat Pump Water Heater: $300-$400 Air Source Heat Pump: $300 - $1,000 Geothermal Heat Pump: $1,000 Central Air: $200 - $300 Provider WIN Energy REMC WIN Energy REMC offers incentives to residential customers for the purchase and installation of energy efficient water heaters, air source heat pumps, geothermal heat pumps, and central air conditioning systems. All equipment

430

Residential heating conservation in Krakow  

SciTech Connect (OSTI)

A four-building conservation experiment was conducted in Krakow, Poland, during the 1992--1993 and 1993--1994 winters, aimed at determining potential savings of heat in typical multifamily residential buildings connected to the district heat network. Four identical multifamily buildings were selected for measurement and retrofitting. Together with the U.S. team, the local district heat utility, the Krakow development authority, and a Polish energy-efficiency foundation designed and conducted the 264-residence test of utility, building, and occupant conservation strategies during the 1992--1993 winter Baseline data were collected on each building prior to any conservation work. A different scope of work was planned and executed for each building, ranging from controls at the building level only to thermostatic valve control and weatherization. The project team has identified and demonstrated affordable and effective conservation technologies that can be applied to Krakow`s existing concrete-element residential housing. The results suggest that conservation strategies will be key to many alternatives in Krakow`s plan to eliminate low-emission air pollution sources. Conservation can allow connecting more customers to the utility network and eliminating local boilers without requiring construction of new combined heat and power plants. It can reduce heat costs for customers converting from solid-fuel heat sources to less polluting sources. By reducing heat demand, more customers can be served by existing gas and electric distribution systems.

Markel, L.C. [Electrotek Concepts, Knoxville, TN (United States); Reeves, G. [George Reeves Associates, Lake Hopatcong, NJ (United States); Gula, A.; Szydlowski, R.F. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1995-08-01T23:59:59.000Z

431

Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems  

Science Journals Connector (OSTI)

Abstract In recent years the global photovoltaic (PV) market has expanded rapidly due to a sharp decline in PV prices and increased attention to the importance of sustainable energy. Northern Chile has one of the highest irradiance levels in the world as well as one the highest electricity rates in Latin America. Because of these conditions, Chile is one of very few countries where several PV projects are being developed without government subsidies and consequently, the PV industry is experiencing rapid growth. This paper reviews the opportunity to take advantage of these market conditions within the residential sector, modeling PV arrays across 10 cities in Chile. A detailed modeling of PV systems is performed to achieve an accurate analysis of energy production and electricity cost, using local resource data, optimal array orientation and inclination, and production losses. A review of how Net Metering and Net Billing affect the value of the PV production is applied and a comparison using levelized cost of electricity (LCOE) is conducted. Net Metering is found to be a better policy choice to promote PV systems than Net Billing because energy injected into the electrical network is paid at the complete retail rate. However, in developed countries this kind of policy is unlikely to be supported because of it?s economic unfeasibility. Under a Net Billing scheme a consumer will see an advantage when energy is recorded over longer time intervals and when installing a system with smaller capacity relative to household electricity consumption. This prevents excess generation from being injected into the network which would be bought by the utility at lower prices than the retail rate. Payback periods are found to be low, between 6 years in northern areas with high retail rates and 13 years in other areas with lower radiation and retail rates.

David Watts; Marcelo F. Valdés; Danilo Jara; Andrea Watson

2015-01-01T23:59:59.000Z

432

Long Island Power Authority - Residential Solar Water Heating Rebate  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

433

Assessing the potential of residential demand response systems to assist in the integration of local renewable energy generation  

Science Journals Connector (OSTI)

Mass market demand response programmes may be utilised to assist bulk ... and software architecture in households. In contrast, demand response systems based only on information exchange between ... uptake. The e...

A. D. Peacock; E. H. Owens

2014-06-01T23:59:59.000Z

434

Residential mobility in China: home ownership among rural–urban migrants after reform of the hukou registration system  

Science Journals Connector (OSTI)

This paper analyzes the housing tenure of China’s rural–urban migrants in eight destination municipalities in Jiangsu province after the reform of the urban registration system (called hukou...in Chinese). The ob...

Xu Huang; Martin Dijst; Jan van Weesep…

2014-11-01T23:59:59.000Z

435

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Building Energy Efficiency Standards .. 4 Multi-FamilyBuilding Energy Efficiency Standards 11 Multi-FamilyBuilding Energy Efficiency Standards 48 Multi-Family

Lutz, Jim

2012-01-01T23:59:59.000Z

436

A demand side management strategy based on forecasting of residential renewable sources: A smart home system in Turkey  

Science Journals Connector (OSTI)

Abstract The existing electricity systems have been substantially designed to allow only centralized power generation and unidirectional power flow. Therefore, the objective of improving the conventional power systems with the capabilities of decentralized generation and advanced control has conflicted with the present power system infrastructure and thus a profound change has necessitated in the current power grids. To that end, the concept of smart grid has been introduced at the last decades in order to accomplish the modernization of the power grid while incorporating various capabilities such as advanced metering, monitoring and self-healing to the systems. Among the various advanced components in smart grid structure, “smart home” is of vital importance due to its handling difficulties caused by the stochastic behaviors of inhabitants. However, limited studies concerning the implementation of smart homes have so far been reported in the literature. Motivated by this need, this paper investigates an experimental smart home with various renewable energy sources and storage systems in terms of several aspects such as in-home energy management, appliances control and power flow. Furthermore, the study represents one of the very first attempts to evaluate the contribution of power forecasting of renewable energy sources on the performance of smart home concepts.

A. Tascikaraoglu; A.R. Boynuegri; M. Uzunoglu

2014-01-01T23:59:59.000Z

437

Building Technologies Office: About Residential Building Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

438

Central Electric Cooperative- Non-Residential Lighting Rebate  

Broader source: Energy.gov [DOE]

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

439

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures  

E-Print Network [OSTI]

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures Improved Refrigerant Charge Purpose Component packages require in some climate zones that split system air refrigerant charge. For the performance method, the proposed design is modeled with less efficiency

440

Columbia Water and Light- Residential HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Use of composite environmental indicators in residential construction  

E-Print Network [OSTI]

As a result of the damage caused by hurricane Katrina in August 2005, fifty percent of New Orleans residential housing was destroyed or severely damaged. A systems model is being developed at MIT for promoting resource ...

Hall, Terianne C

2008-01-01T23:59:59.000Z

442

Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings  

Science Journals Connector (OSTI)

Abstract This article presents the analysis of the structure, energy and cost efficiency of three lightweight structural systems – wood light frames (WLF), lightweight steel frames (LGSF) and 3D sandwich (3DSP) panels – during their useful life. The structural systems focussed upon in this study are commonly used in Eastern Europe with specific reference to Turkey. The structural analysis and design was carried out using ETABS while EnergyPlus was used in the analysis of the energy consumption of the buildings. The results of the structural analysis of the three alternative construction systems show that 3DSP has better structural behaviour in terms of resistance against lateral loads. The thermal performance evaluation of the walls and ceilings shows that the WLF and LGSF walls have better insulation values (12.5% lower U-value) while the roof construction of the 3DSP has much better insulation performance (70% lower U-value). Moreover, the building designed with 3DSP requires 11% less energy for total heating and cooling during one year. The information for the building industry in Turkey shows that the cost of construction for 3DSP construction is 34.6% lower than for WLF and 27.7% lower than LGSF.

Sareh Naji; O?uz Cem Çelik; U. Johnson Alengaram; Mohd Zamin Jumaat; Shahaboddin Shamshirband

2014-01-01T23:59:59.000Z

443

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network [OSTI]

ESL-TR-08-06-01 THE APPLICATION AND VERIFICATION OF ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) TO DOE-2.1e SIMULATION PROGRAM Jeff S... Systems Laboratory, Texas A&M University System 1 EXECUTIVE SUMMARY This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal...

Kim, S.; Haberl, J. S.

444

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector- Fact Sheet, 2013  

Broader source: Energy.gov [DOE]

Fact sheet overview of a natural gas heat pump system for the residential sector that will incorporate an internal combustion engine that drives a vapor-compression heat pump

445

Residential solar home resale analysis  

SciTech Connect (OSTI)

One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

Noll, S.A.

1980-01-01T23:59:59.000Z

446

Residential appliances technology atlas  

SciTech Connect (OSTI)

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

447

Delta-Montrose Electric Association - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Residential Energy Efficiency Rebate Program Delta-Montrose Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwasher: $30 Clothes Washer: $40 Refrigerator/Freezer: $40 Refrigerator/Freezer Recycling: $60 Water Heaters: $150; additional $25 for the installation of a timer Heat Pumps: $150/ton; plus additional $100 - $150 for Energy Star qualified systems Split System Air Conditioner: $150; plus additional $100 - $150 for Energy Star qualified systems Provider Delta-Montrose Electric Association Delta-Montrose Electric Association (DMEA) offers a variety of rebates for

448

Empire Electric Association - Residential Energy Efficiency Credit Program  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential State Government Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount HVAC Equipment: $250 - $300; additional rebates available for higher efficiency levels Controlled Resistance Heating: $24 - $32/kW Terminal Unit Heat Pump: $170 Water Heater: $100; additional rebates available for warranties, timers, and controls Split System A/C: $300/unit Refrigerator/freezer: $90/unit Refrigerator/freezer Recycling: $40 Dishwasher: $60 Clothes Washer: $80 Provider Empire Electric Association, Inc. Empire Electric Association provides financial incentives to its residential consumers who upgrade to energy efficient appliances and HVAC

449

City of Portland - Streamlined Building Permits for Residential Solar  

Broader source: Energy.gov (indexed) [DOE]

Commercial Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of

450

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

451

Fact Sheet: Better Buildings Residential Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another...

452

Residential Energy Efficiency Technical Update Meeting: August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary...

453

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers [EERE]

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

454

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

455

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

456

Quality Assurance for Residential Retrofit Programs | Department...  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance for Residential Retrofit Programs Quality Assurance for Residential Retrofit Programs Blue version of the EERE PowerPoint template, for use with PowerPoint 2007....

457

Better Buildings Residential Network | Department of Energy  

Energy Savers [EERE]

more. Residential Network Members Welcome Our Newest Members Cascadia Consulting Group Johnson Environmental The Building Performance Center, Inc. *Residential Network members that...

458

Better Buildings Residential Network Orientation Peer Exchange...  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Residential Network Orientation Peer Exchange Webinar Better Buildings Residential Network Orientation Peer Exchange Webinar September 11, 2014 7:00PM to 8:3...

459

Better Buildings Residential Network Membership Form | Department...  

Broader source: Energy.gov (indexed) [DOE]

Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

460

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Environmental Management (EM)

will build on system concepts and technical solutions developed for an 11-ton packaged natural gas heat pump. Residential Multi-Function Gas Heat Pump More Documents &...

Note: This page contains sample records for the topic "multi-family residential systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy lossesgains that when combined will be offset by a building's heatingcooling system...

462

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

463

A Laboratory Study of Pressure Losses in Residential Air Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Laboratory Study of Pressure Losses in Residential Air Distribution A Laboratory Study of Pressure Losses in Residential Air Distribution Systems Speaker(s): Bass Abushakra Date: March 7, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Duo Wang An experimental study was conducted to evaluate the pressure drop of residential air distribution system components that are either not available or poorly described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests apparatus followed ASHRAE Standard 120P - Methods of Testing to Determine Flow

464

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

465

Residential Ventilation & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

466

Evaluation of evolving residential electricity tariffs  

SciTech Connect (OSTI)

Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

2011-03-22T23:59:59.000Z

467

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

This guidebook is intended as a road map for project planners and solar advocates who want to convert "interest" into"action," to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

468

Residential Alternative Energy Tax Deduction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction < Back Eligibility Residential Savings Category Bioenergy Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Maximum Rebate 5,000 per year; 20,000 total deduction Program Info State Idaho Program Type Personal Deduction Rebate Amount 40% in the first year; 20% per year for next three years Provider Idaho Tax Commission This statute allows taxpayers an income tax deduction of 40% of the cost of a solar, wind, geothermal, and certain biomass energy devices used for heating or electricity generation. Taxpayers can apply this 40% deduction in the year in which the system is installed and can also deduct 20% of the

469

Solar Water Heating Requirement for New Residential Construction |  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

470

Lake Country Power - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Country Power - Residential Energy Efficiency Rebate Program Country Power - Residential Energy Efficiency Rebate Program Lake Country Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $400 per ton Central AC: $30 - $630 Air Source Heat Pumps: $330 - $630 Ductless Air-source Heat Pump: $300 ECM Furnace Motor: $100 Off-Peak ETS Heating System: $25/KW Cycled AC/Heat Pump: $100 Off-Peak Water Heater: $100 - $200 Heat Pump Water Heater: $200 Refrigerator/Freezer: $75 (with recycling of old appliance) CFL: $1 per bulb LED holiday lights: $3 per strand

471

City of Portland - Streamlined Building Permits for Residential Solar  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Green Building Incentive Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of approximately 2-3 business days for building permits.

472

Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Fort Pierce Utilities Authority - Residential Energy Efficiency Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate Program Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Insulation: $300 Room A/C Units: 2 per household All other equipment: 1 per customer account Program Info State Florida Program Type Utility Rebate Program Rebate Amount Room A/C Unit: $150 Insulation: $0.40/sq ft (NEW); $0.125/sq ft (ADDED) Central A/C System/Heat Pumps: $50 - $2,100; varies by size and efficiency Programmable Thermostat: $25 Clothes Washer: $50 Refrigerator: $50 Provider Fort Pierce Utilities Authority

473

Tax Incentives for Residential Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1,

474

Wabash Valley Power Association - Residential Energy Efficiency Program  

Broader source: Energy.gov (indexed) [DOE]

Wabash Valley Power Association - Residential Energy Efficiency Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $400/unit Air-source Heat Pumps: $250-$1,500/unit Geothermal Heat Pumps: $1,500/unit Dual Fuel Heat Pump Rebate: $1,500 Appliance Recycling: $35 Provider Wabash Valley Power Association Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois. View the WVPA

475

Springfield Utility Board - Residential Energy Efficiency Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Springfield Utility Board - Residential Energy Efficiency Loan Springfield Utility Board - Residential Energy Efficiency Loan Program Springfield Utility Board - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Heat Pumps: $7,000 Weatherization: $4,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Heat Pumps: up to $7,000 Weatherization: up to $4,000 Provider Springfield Utility Board The Springfield Utility Board offers qualifying customers a 0% loan for the purchase of qualifying energy-efficient heat pumps, insulation upgrades, duct sealing, and energy efficient windows. For the Heat Pump Loan Program, qualifying systems must have a programmable

476

Property Tax Exemption for Residential Renewable Energy Equipment |  

Broader source: Energy.gov (indexed) [DOE]

Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment < Back Eligibility Residential Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Colorado Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy system property Most locally assessed renewable energy property meet the criteria to be classified as personal property under § 39-1-102 (11), C.R.S. For Colorado property taxation purposes, solar energy facilities property used to produce two (2) megawatts or less of AC electricity and wind energy facilities property used to produce two (2) megawatts or less of AC

477

Mason County PUD 3 - Residential Energy Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mason County PUD 3 - Residential Energy Rebates Mason County PUD 3 - Residential Energy Rebates Mason County PUD 3 - Residential Energy Rebates < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $30 - $70 Refrigerator/Freezer: $15 Decommissioned Refrigerator/Freezer: $30 Storage Water Heater: $25 Heat Pump Water Heater: $300 - $500 PTSC Duct Sealing: $400 - $500 Insulation: Varies based on R-Value increase and location Air Source Heat Pump (conversion): $1,400 - $1,900 Ductless Heat Pump System: $1,500