Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

(L{sub e}-L{sub {mu}-}L{sub {tau}}) discrete symmetry for heavy right-handed neutrinos and degenerate leptogenesis  

Science Conference Proceedings (OSTI)

The degenerate leptogenesis is studied when the degeneracy in two of the heavy right-handed neutrinos [the third one is irrelevant if {mu}-{tau} symmetry is assumed] is due to L{identical_to}(L{sub e}-L{sub {mu}-}L{sub {tau}}) discrete symmetry. It is shown that a sizable leptogenesis asymmetry ({epsilon}{>=}10{sup -6}) is possible. The level of degeneracy required also predicts the Majorana phase needed for the asymmetry and this prediction is testable since it is the same phase, which appears in the double {beta} decay. Implications of nonzero reactor angle {theta}{sub 13} are discussed. It is shown that the contribution from sin{sup 2{theta}}{sub 13} to the leptogenesis asymmetry parameter may even dominate. An accurate measurement of sin{sup 2{theta}}{sub 13} would have important implications for the mass degeneracy of heavy right-handed neutrinos.

Riazuddin [Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi (Pakistan) and National Centre for Physics, Quaid-i-Azam University, Islamabad (Pakistan)

2010-05-01T23:59:59.000Z

2

Tau Neutrino Appearance with a 1000 Megaparsec Baseline  

E-Print Network (OSTI)

A high-energy neutrino telescope, such as the operating AMANDA detector, may detect neutrinos produced in sources, possibly active galactic nuclei or gamma-ray bursts, distant by a thousand megaparsecs. These sources produce mostly nu_e or nu_mu neutrinos. Above 1 PeV, nu_e and nu_mu are absorbed by charged-current interactions in the Earth before reaching the opposite surface. However, the Earth never becomes opaque to nu_tau since the tau^- produced in a charged-current nu_tau interaction decays back into nu_tau before losing significant energy. This preferential penetration of tau neutrinos through the Earth above 10^14 eV provides an experimental signature for neutrino oscillations. The appearance of a nu_tau component would be evident as a flat zenith angle dependence of a source intensity at the highest neutrino energies. Such an angular dependence would indicate nu_tau mixing with a sensitivity to delta-m^2 as low as 10^-17 eV^2, for the farthest sources. In addition, the presence of tau neutrino mixing would provide the opportunity for neutrino astronomy well beyond the PeV cutoff, possibly out to the energies matching those of the highest energy protons observed above 10^20 eV.

Francis Halzen; David Saltzberg

1998-04-21T23:59:59.000Z

3

Atmospheric neutrino oscillations and tau neutrinos in ice  

E-Print Network (OSTI)

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

Gerardo Giordano; Olga Mena; Irina Mocioiu

2010-04-20T23:59:59.000Z

4

Lepton flavour violating Higgs Boson decays, tau --> mu gamma and B(s) --> mu+mu- in the constrained MSSM+NR with large tan beta  

E-Print Network (OSTI)

Realistic predictions are made for the rates of lepton flavour violating Higgs boson decays, tau --> mu gamma, mu --> e gamma, Bs --> mu+mu-, Bs --> tau mu and tau --> 3mu, via a top-down analysis of the Minimal Supersymmetric Standard Model(MSSM) constrained by SU(5) unification with right-handed Neutrinos and large tan beta. The third family neutrino Yukawa coupling is chosen to be of order 1, in this way our model bares a significant resemblance to supersymmetric SO(10). In this framework the large PMNS mixings result in potentially large lepton flavour violation. Our analysis predicts tau --> mu gamma and mu --> e gamma rates in the region (10^{-8}-10^{-6}) and (10^{-15}-10^{-14}) respectively. We also show that the rates for lepton flavour violating Higgs decays can be as large as 10^{-7}. The non-decoupling nature of H --> tau mu is observed which leads to its decay rate becoming comparable to that for tau --> mu gamma for large values of m_0 and M_1/2. We also find that the present bound on Bs --> mu+mu- is an important constraint on the rate of lepton flavour violating Higgs decays. The recently measured Bs-Bsbar mixing parameter Delta Ms is also investigated.

J. K. Parry

2005-10-24T23:59:59.000Z

5

Theta-13 as a Probe of Mu-Tau symmetry for Leptons  

E-Print Network (OSTI)

Many experiments are being planned to measure the neutrino mixing parameter $\\theta_{13}$ using reactor as well as accelerator neutrino beams. In this note, the theoretical significance of a high precision measurement of this parameter is discussed. It is emphasized that it will provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. For instance if exact $\\mu\\leftrightarrow \\tau$ symmetry in the neutrino mass matrix is assumed to be the reason for maximal $\

R. N. Mohapatra

2004-08-17T23:59:59.000Z

6

Lepton flavour violating Higgs and tau to mu gamma  

E-Print Network (OSTI)

We update phenomenological constraints on a Two Higgs Doublet Model with lepton flavour non-conserving Yukawa couplings. We review that $\\tan \\beta$ is ambiguous in such "Type III" models, and define it from the $\\tau$ Yukawa coupling. The neutral scalars $\\phi$ could be searched for at hadron colliders in $ \\phi \\to \\tau \\bar{\\mu}$, and are constrained by the rare decay $\\tau \\to \\mu \\gamma$. The Feynman diagrams for the collider process, with Higgs production via gluon fusion, are similar to the two-loop "Barr-Zee" diagrams which contribute to $\\tau \\to \\mu \\gamma$. Some "tuning" is required to obtain a collider cross-section of order the Standard Model expectation for $\\sigma (gg \\to h_{SM} \\to \\tau^+ \\tau^-)$, while agreeing with the current bound from $\\tau \\to \\mu \\gamma$.

Sacha Davidson; Gerald Grenier

2010-01-04T23:59:59.000Z

7

Tracing Very High Energy Tau Neutrinos from Cosmological Distances in Ice  

E-Print Network (OSTI)

Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above $10^6$ GeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.

J. Jones; I. Mocioiu; I. Sarcevic; M. H. Reno

2004-08-04T23:59:59.000Z

8

Search for NMSSM Higgs bosons in the h ---> aa ---> mu mu mu mu, mu mu tau tau channels using p anti-p collisions at s**(1/2) = 1.96-TeV  

Science Conference Proceedings (OSTI)

We report on a first search for production of the lightest neutral CP-even Higgs boson (h) in the next-to-minimal supersymmetric standard model, where h decays to a pair of neutral pseudoscalar Higgs bosons (a), using 4.2 fb{sup -1} of data recorded with the D0 detector at Fermilab. The a bosons are required to either both decay to {mu}{sup +}{mu}{sup -} or one to {mu}{sup +}{mu}{sup -} and the other to {tau}{sup +}{tau}{sup -}. No significant signal is observed, and we set limits on its production as functions of M{sub a} and M{sub h}.

Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Northeastern U.

2009-05-01T23:59:59.000Z

9

Detecting Tau Neutrino Oscillations at PeV Energies  

E-Print Network (OSTI)

It is suggested that a large deep underocean (or ice) neutrino detector, given the presence of significant numbers of neutrinos in the PeV energy range as predicted by various models of Active Galactic Nuclei, can make unique measurements of the properties of neutrinos. It will be possible to observe the existence of the tau neutrino, measure its mixing with other flavors, in fact test the mixing pattern for all three flavors based upon the mixing parameters suggested by the atmospheric and solar neutrino data, and measure the tau neutrino cross section. The key signature is the charged current tau neutrino interaction, which produces a double cascade, one at either end of a lightly radiating track. At a few PeV these cascades would be separated by roughly 100 m, and thus be easily resolvable in next generation DUMAND-like detectors. First examples might be found in detectors presently under construction. Future applications are precise neutrino astronomy and earth tomography. This paper is an expanded version of hep-ph/9405296, for publication.

John G. Learned; Sandip Pakvasa

1994-08-16T23:59:59.000Z

10

Lepton flavor violating Higgs bosons and {tau}{yields}{mu}{gamma}  

SciTech Connect

We update phenomenological constraints on a two Higgs doublet model with lepton flavor nonconserving Yukawa couplings. We review that tan{beta} is ambiguous in such 'type III' models, and define it from the {tau} Yukawa coupling. The neutral scalars {phi} could be searched for at hadron colliders in {phi}{yields}{tau}{mu} and are constrained by the rare decay {tau}{yields}{mu}{gamma}. The Feynman diagrams for the collider process, with Higgs production via gluon fusion, are similar to the two-loop ''Barr-Zee'' diagrams, which contribute to {tau}{yields}{mu}{gamma}. Some ''tuning'' is required to obtain a collider cross section of order the standard model expectation for {sigma}(gg{yields}h{sub SM{yields}{tau}}{sup +{tau}-}), while agreeing with the current bound from {tau}{yields}{mu}{gamma}.

Davidson, Sacha; Grenier, Gerald [IPNL, Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, 4 rue E. Fermi 69622 Villeurbanne cedex (France)

2010-05-01T23:59:59.000Z

11

Muon and Tau Neutrinos Spectra from Solar Flares  

E-Print Network (OSTI)

Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeV

D. Fargion; F. Moscato

2004-05-03T23:59:59.000Z

12

Lepton flavor violation decays with the fourth generation neutrino  

E-Print Network (OSTI)

We investigate the lepton flavor violation decays, $\\tau \\to \\mu\\gamma$, $\\tau \\to e\\gamma$ and $\\mu \\to e\\gamma$, in the framwork of a squential fourth generation model with a heavy fourth neutrino, $\

Huo, W J; Huo, Wu-Jun; Feng, Tai-Fu

2002-01-01T23:59:59.000Z

13

The energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos  

E-Print Network (OSTI)

We present a semi-analytic calculation of the tau-lepton flux emerging from the Earth, induced by the incident high energy neutrinos interacting inside the Earth for $10^{5} \\leq E_{\

J. -J. Tseng; T. -W. Yeh; H. Athar; M. A. Huang; F. -F. Lee; G. -L. Lin

2003-05-27T23:59:59.000Z

14

Neutrino telescopes as a probe of active and sterile neutrino mixings  

E-Print Network (OSTI)

If the ultrahigh-energy (UHE) neutrino fluxes produced from a distant astrophysical source can be measured at a km^3-size neutrino telescope, they will provide a promising way to help determine the flavor mixing pattern of three active neutrinos. Considering the conventional UHE neutrino source with the flavor ratio \\phi_e : \\phi_\\mu : \\phi_\\tau = 1 : 2 : 0, I show that \\phi^D_e : \\phi^D_\\mu : \\phi^D_\\tau = (1 -2 \\Delta) : (1 +\\Delta) : (1 +\\Delta) holds at the detector of a neutrino telescope, where \\Delta characterizes the effect of \\mu-\\tau symmetry breaking (i.e., \\theta_13 \

Xing, Zhi-zhong

2007-01-01T23:59:59.000Z

15

Neutrino telescopes as a probe of active and sterile neutrino mixings  

E-Print Network (OSTI)

If the ultrahigh-energy (UHE) neutrino fluxes produced from a distant astrophysical source can be measured at a km^3-size neutrino telescope, they will provide a promising way to help determine the flavor mixing pattern of three active neutrinos. Considering the conventional UHE neutrino source with the flavor ratio \\phi_e : \\phi_\\mu : \\phi_\\tau = 1 : 2 : 0, I show that \\phi^D_e : \\phi^D_\\mu : \\phi^D_\\tau = (1 -2 \\Delta) : (1 +\\Delta) : (1 +\\Delta) holds at the detector of a neutrino telescope, where \\Delta characterizes the effect of \\mu-\\tau symmetry breaking (i.e., \\theta_13 \

Zhi-zhong Xing

2007-11-27T23:59:59.000Z

16

Determining the Flavour Content of the Low-Energy Solar Neutrino Flux  

E-Print Network (OSTI)

We study the sensitivity of the HELLAZ and Borexino solar neutrino experiments on discriminating the neutrino species nu_e, anti-nu_e, nu_{mu,tau}, anti-nu_{mu,tau}, and nu_{sterile} using the difference in the recoil electron kinetic energy spectra in elastic neutrino-electron scattering. We find that one can observe a non-vanishing nu_{mu,tau} component in the solar neutrino flux, especially when the nu_e survival probability is low. Also, if the data turn out to be consistent with nu_e nu_{mu,tau} oscillations, an anti-nu_e component can be excluded effectively.

De Gouvêa, A; Gouvea, Andre de; Murayama, Hitoshi

2000-01-01T23:59:59.000Z

17

Study of the tau- ---> 3h- 2h+ tau-neutrino decay  

SciTech Connect

The branching fraction of the {tau}{sup -} {yields} 3h{sup -} 2h{sup +} {nu}{sub {tau}} decay (h = {pi}, K) is measured with the BABAR detector to be (8.56 {+-} 0.05 {+-} 0.42) x 10{sup -4}, where the first error is statistical and the second systematic. The observed structure of this decay is significantly different from the phase space prediction, with the {rho} resonance playing a strong role. The decay {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -}{nu}{sub {tau}}, with the f{sub 1}(1285) meson decaying to four charged pions, is observed and the branching fraction is measured to be (3.9 {+-} 0.7 {+-} 0.5) x 10{sup -4}.

Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Oregon U. /SLAC /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

2005-05-04T23:59:59.000Z

18

Neutrino Factories  

SciTech Connect

Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

Geer, Steve; /Fermilab

2010-01-01T23:59:59.000Z

19

Glossary Item - Neutrino  

NLE Websites -- All DOE Office Websites (Extended Search)

that rarely interact with matter. Scientists know of three types of neutrinos: electron-neutrinos, muon-neutrinos and tau-neutrinos. Wolfgang Pauli first proposed the...

20

Tau-Mu Flavor Violation and the Scale of New Physics 1  

E-Print Network (OSTI)

Abstract. Motivated by the strong experimental evidence of large ?µ ??? neutrino oscillations, we study existing constraints for related µ ? ? flavor violation. Using a general bottom-up approach, we construct dimension-6 effective fermionic operators whose coefficients encode the scale of new physics associated with µ ?? flavor violation, which is a piece in the puzzle of the origin of neutrino oscillations. We survey existing experimental bounds on this scale, which arise mostly from ? and B decays. In many cases the new physics scale is constrained to be above a few TeV. We also discuss the operators which are either weakly constrained or, at present, subject to no experimental bounds.

Deirdre Black; Tao Han; Hong-jian He; Marc Sher

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Aspects of Neutrino Production in Supernovae  

E-Print Network (OSTI)

I discuss neutrino production in supernovae (SNe) and the detection of both Galactic core collapse events and the diffuse extra-galactic MeV neutrino background expected from the integrated history of star formation. In particular, I consider what processes might affect our expectations for both. I focus on ``rapid'' rotation, defined as leading to millisecond initial neutron star spin periods. Rotation affects the neutrino luminosity, the average neutrino energy, the duration of the Kelvin-Helmholtz cooling epoch, and the ratios of luminosities and average energies between neutrino species; it can strongly suppresses the anti-electron as well as mu, anti-mu, tau, and anti-tau neutrino fluxes relative to those for the electron neutrinos. As a result, depending on the prevalence of rapid rotation in SN progenitors through cosmic time, this may affect predictions for the MeV neutrino background and the history of nucleosynthetic enrichment. I emphasize connections between the MeV neutrino background and tracers of the star formation rate density at high redshift in other neutrino and photon wavebands.

Todd A. Thompson

2006-08-10T23:59:59.000Z

22

MINOS Sterile Neutrino Search  

SciTech Connect

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

Koskinen, David Jason; /University Coll. London

2009-09-01T23:59:59.000Z

23

Neutrino observations from the Sudbury Neutrino Observatory  

SciTech Connect

The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

2001-09-24T23:59:59.000Z

24

Background Study on nu_e Appearance from a nu_mu Beam in Very Long Baseline Neutrino Oscillation Experiments with a Large Water Cherenkov Detector  

E-Print Network (OSTI)

There is a growing interest in very long baseline neutrino oscillation experimentation using accelerator produced neutrino beam as a machinery to probe the last three unmeasured neutrino oscillation parameters: the mixing angle theta_13, the possible CP violating phase delta_CP and the mass hierarchy, namely, the sign of delta-m^2_32. Water Cherenkov detectors such as IMB, Kamiokande and Super-Kamiokande have shown to be very successful at detecting neutrino interactions. Scaling up this technology may continue to provide the required performance for the next generation of experiments. This report presents the latest effort to demonstrate that a next generation (> 100 kton) water Cherenkov detector can be used effectively for the rather difficult task of detecting nu_e events from the neutrino oscillation nu_mu -> nu_e despite the large expected potential background resulting from pi^0 events produced via neutral current interactions.

Chiaki Yanagisawa; Chang Kee Jung; Trung Le; Brett Viren

2010-08-05T23:59:59.000Z

25

Background Study on nu_e Appearance from a nu_mu Beam in Very Long Baseline Neutrino Oscillation Experiments with a Large Water Cherenkov Detector  

E-Print Network (OSTI)

There is a growing interest in very long baseline neutrino oscillation experimentation using accelerator produced neutrino beam as a machinery to probe the last three unmeasured neutrino oscillation parameters: the mixing angle theta_13, the possible CP violating phase delta_CP and the mass hierarchy, namely, the sign of delta-m^2_32. Water Cherenkov detectors such as IMB, Kamiokande and Super-Kamiokande have shown to be very successful at detecting neutrino interactions. Scaling up this technology may continue to provide the required performance for the next generation of experiments. This report presents the latest effort to demonstrate that a next generation (> 100 kton) water Cherenkov detector can be used effectively for the rather difficult task of detecting nu_e events from the neutrino oscillation nu_mu -> nu_e despite the large expected potential background resulting from pi^0 events produced via neutral current interactions.

Yanagisawa, Chiaki; Le, Trung; Viren, Brett

2010-01-01T23:59:59.000Z

26

Neutrino interactions with e/sup +/. mu. /sup -/ and multiple K/sup 0/'s. [Branching ratio  

DOE Green Energy (OSTI)

A scan for directly produced positrons in 5,000 neutrino interactions in the neon (21 percent) hydrogen filled bubble chamber at Fermilab has yielded 15 events, 9 of which have ..mu../sup -/'s identified in the external muon identifier. On correcting for detection efficiency one obtains sigma(e/sup +/..mu../sup -/)/sigma(..mu../sup -/) approximately 1 x 10/sup -2/ for E/sub e/sup +// > .8 GeV and E/sub ..nu../ > 5 GeV. The kaon multiplicity is unexpectedly high. Eleven of the events have one or more Vees and three have two or more. Among the 11 events are two clear ..lambda..'s and two ambiguous K/sup 0//..lambda... There are four events with identifiable charged kaons. A 16th e/sup +/ event (9) is a definite ..nu../sub e/. From this information one concludes that the kaon multiplicity is 2 +- .6 K/sup 0/'s and 2 +- 1 K/sup + -/'s per interaction. From the observation

mu../sup -//>/

= 6.6, one concludes that the e/sup +/'s are probably not uniquely from heavy lepton decay. From a variety of analyses involving the e/sup +/ and/or K/sup 0/'s one learns that the mass of the hadron (C) that produces the e/sup +/'s is greater than 1.6 GeV. By determining the fraction of normal charged current (CC) events that have K/sup 0//sub s/ ..-->.. ..pi../sup +/..pi../sup -/ one is able to compare this fraction with the fraction of CC events that have e/sup +/..mu../sup -/ (K/sup 0//sub s/ ..-->.. ..pi../sup +/..pi../sup -/) to establish a conservative lower limit to the semileptonic branching ratio, C ..-->.. (e/sup +/ and ..mu../sup +/) ..nu../C ..-->.. all > 0.33 (1 +- .42), provided that the same number of K/sup 0//sub s/ exists in thenonleptonic decays as in the semileptonic ones, and that the phase space for ..mu../sup +/ and e/sup +/ are nearly equal. There is no compelling evidence for an energy threshold and there is a hint of some neutral current events among the e/sup +/ events.

Stevenson, M.L.

1976-07-01T23:59:59.000Z

27

Measurement of sigma(ppbar->Z) Br(Z->tau+tau-) and search for Higgs bosons decaying to tau+tau- at s**(1/2) = 1.96 TeV  

SciTech Connect

The resonant production of tau-lepton pairs is as interesting for the study of Standard Model (SM) physics as the production of lighter leptons pairs. For new phenomena, such as Higgs boson production or in case new particles beyond the SM would arise, the detection of (resonant) pairs of tau leptons becomes much more interesting. This is due to the fact that tau leptons are much heavier than the other leptons, which increases the chance that these new phenomena would be observed first in this channel. Unfortunately their clean detection is far more difficult than that of muons or electrons. The cross section times branching ratio {sigma}{center_dot} Br for the process p{bar p} {yields} Z {yields} {tau}{sup +}{tau}{sup -} was measured at {radical}s = 1.96 GeV using 1.0 fb{sup -1} of data collected by the D0 experiment. This measurement was performed in the channel in which one of the tau leptons decays to a muon and neutrinos, while the other decays either hadronically or to an electron and neutrinos. A set of 1511 events, of which about 20% estimated background, passed all selection criteria. The trigger and muon reconstruction efficiencies, as well as the efficiency for track reconstruction were obtained from data using the 'tag and probe' method on Z {yields} {mu}{sup +}{mu}{sup -} events. The multijet background was estimated from the sample of events which passed all selection criteria but in which the muon and the tau candidate had the same charge. The W {yields} {mu}{nu} + jets background was modeled by Monte Carlo simulations, but normalized to data. All the other backgrounds, as well as the efficiency for Z {yields} {tau}{sup +}{tau}{sup -} events were estimated using simulated events normalized to the theoretical calculations of cross sections at next-to-leading order or next-to-next-to-leading order. The energy of the tau candidates was corrected for the estimated response of the charged pions in the calorimeter, which is of the order 50-80%. Since the charged pion response in data was not well reproduced by the default simulation of hadronic interactions (Geisha), a different simulation (gCALOR) was used to obtain an estimated charged pion response consistent with the one measured in data. This tau energy correction method makes use of the superior resolution of the track momentum measurement compared to the resolution of the tau candidate energy as measured by the calorimeter, which leads to a better data--simulation agreement and a decrease of 10% in the resolution of the visible mass peak. The result of this measurement is {sigma}(p{bar p} {yields} Z) {center_dot} Br(Z {yields} {tau}{sup +}{tau}{sup -}) = 240 {+-} 8(stat) {+-} 12(syst) {+-} 15(lumi) pb, in good agreement with the theoretical predictions of 241.6{sub -3.2}{sup +3.6} pb [79] or 251.9{sub -12}{sup +5.1} pb [93-95], as well as with other measurements performed by the D0 and CDF experiments in all channels in which the Z boson decays leptonically [96-100]. This is the most precise Z boson cross section measurement to date performed in the tau lepton channel at hadron colliders. The analysis demonstrates the ability of the D0 experiment to identify tau leptons decaying hadronically with good efficiency and high purity, a challenging task in p{bar p} collisions where the number of jets resembling tau leptons is very high. This achievement forms a solid basis for other analyses using hadronic tau lepton decays, such as the search for the Higgs boson decaying into tau-lepton pairs, which was performed for the last part of this thesis.

Galea, Cristina Florina; /Nijmegen U.

2008-01-01T23:59:59.000Z

28

The Neutrino Signal from Protoneutron Star Accretion and Black Hole Formation  

SciTech Connect

We discuss the formation of stellar mass black holes via protoneutron star (PNS) collapse. In the absence of an earlier explosion, the PNS collapses to a black hole due to the continued mass accretion onto the PNS. We present an analysis of the emitted neutrino spectra of all three flavors during the PNS contraction. Special attention is given to the physical conditions which depend on the input physics, e.g. the equation of state (EoS) and the progenitor model. The PNSs are modeled as the central object in core collapse simulations using general relativistic three-flavor Boltzmann neutrino transport in spherical symmetry. The simulations are launched from several massive progenitors of 40 M{omicron} and 50 M{omicron}. We analyze the electron-neutrino luminosity dependencies and construct a simple approximation for the electron-neutrino luminosity, which depends only on the physical conditions at the electron-neutrinosphere. In addition, we analyze different ({mu}, {tau})-neutrino pair-reactions separately and compare the differences during the post-bounce phases of failed core collapse supernova explosions of massive progenitors. We also investigate the connection between the increasing {mu},{tau}-neutrino luminosity and the PNS contraction during the accretion phase before black hole formation. Comparing the different post bounce phases of the progenitor models under investigation, we find large differences in the emitted neutrino spectra. These differences and the analysis of the electron-neutrino luminosity indicate a strong progenitor model dependency of the emitted neutrino signal.

Fischer, T. [University of Basel; Whitehouse, S. [University of Basel; Mezzacappa, Anthony [ORNL; Thielemann, F.-K. [University of Basel; Liebendoerfer, M. [University of Basel

2009-01-01T23:59:59.000Z

29

Tau Physics 2006: Summary & Outlook  

E-Print Network (OSTI)

A large amount of new results have been presented at TAU2006. The highlights of the workshop, the present status of a few selected topics on lepton physics (universality, QCD tests, V_{us} determination from tau decay, g-2, neutrino oscillations, lepton-flavour violation) and the prospects for future improvements are briefly summarized.

Antonio Pich

2007-02-07T23:59:59.000Z

30

neutrino.html  

NLE Websites -- All DOE Office Websites (Extended Search)

Fall 2000 Fall 2000 Tau Neutrino Evidence Announced at Fermilab This summer scientists at Fermi National Accelerator Laboratory announced the first direct evidence for the subatomic particle, the tau neutrino. The tau is an almost massless particle that carries no electric charge and barely interacts with surrounding matter. Previous experiments showed indirect evidence for its existence, but it had not been observed directly as yet. The tau is the third neutrino of the Standard Model of elementary particles, a theoretical description that groups all particles into three generations. The first electron neutrino was discovered in 1956, the muon in 1962. The Fermilab experiment responsible for the announcement is the Direct Observation of the Nu Tau (DONUT) experiment. DONUT is a collaboration of

31

Effect of Collective Neutrino Oscillations on the Neutrino Mechanism of Core-Collapse Supernovae  

E-Print Network (OSTI)

In the seconds after collapse of a massive star, the newborn proto-neutron star (PNS) radiates neutrinos of all flavors. The absorption of electron-type neutrinos below the radius of the stalled shockwave may drive explosions (the "neutrino mechanism"). Because the heating rate is proportional to the square of neutrino energy, flavor conversion of mu and tau neutrinos to electron-type neutrinos via collective neutrino oscillations (CnuO) may in principle increase the heating rate and drive explosions. In order to assess the potential importance of CnuO for the shock revival, we solve the steady-state boundary value problem of spherically-symmetric accretion between the PNS surface (r_nu) and the shock (r_S), including a scheme for flavor conversion via CnuO. For a given r_nu, PNS mass (M), accretion rate (Mdot), and assumed values of the neutrino energies from the PNS, we calculate the critical neutrino luminosity above which accretion is impossible and explosion results. We show that CnuO can decrease the critical luminosity by a factor of at most ~1.5, but only if the flavor conversion is fully completed inside r_S and if there is no matter suppression. The magnitude of the effect depends on the model parameters (M, Mdot, and r_nu) through the shock radius and the physical scale for flavor conversion. We quantify these dependencies and find that CnuO could lower the critical luminosity only for small M and Mdot, and large r_nu. However, for these parameter values CnuO are suppressed due to matter effects. By quantifying the importance of CnuO and matter suppression at the critical neutrino luminosity for explosion, we show in agreement with previous studies that CnuO are unlikely to affect the neutrino mechanism of core-collapse supernovae significantly.

Ondrej Pejcha; Basudeb Dasgupta; Todd A. Thompson

2011-06-28T23:59:59.000Z

32

Evidence for B+ --> tau+ nu_tau Decays using Hadronic B Tags  

SciTech Connect

We present a search for the decay B{sup +} --> {tau}{sup +} {nu}{sub {tau}} using 467.8 x 10{sup 6} B{anti B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the SLAC PEP-II B-Factory. We select a sample of events with on completely reconstructed B{sup -} in an hadronic decay mode (B{sup -} --> D{sup (*)0}X{sup -} and B{sup -} --> J/{psi} X{sup -}). We examine the rest of the event to search for a B{sup +} --> {tau}{sup +} {nu}{sub {tau}} decay. We identify the {tau}{sup +} lepton in the following modes: {tau}{sup +} --> e{sup +} {nu}{sub e}{anti {nu}}{sub {tau}}, {tau}{sup +} --> {mu}{sup +} {nu}{sub {mu}}{anti {nu}}{sub {tau}}, {tau}{sup +} --> {pi}{sup +}{anti {nu}}{sub {tau}} and {tau}{sup +} --> {rho}{anti {nu}}{sub {tau}}. We find an excess of events with respect to expected background, which excludes the null signal hypothesis at the level of 3.3 {sigma} and can be converted to a branching fraction central value of B(B{sup +} --> {tau}{sup +} {nu}{sub {tau}})= (1.80{sup + 0.57}{sub - 0.54}(stat.) {+-} 0.26 (syst.)) x 10{sup -4}.

del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2011-08-11T23:59:59.000Z

33

Revising the solution of the neutrino oscillation parameter degeneracies at neutrino factories  

SciTech Connect

In the context of neutrino factories, we review the solution of the degeneracies in the neutrino oscillation parameters. In particular, we have set limits to sin{sup 2}2{theta}{sub 13} in order to accomplish the unambiguous determination of {theta}{sub 23} and {delta}. We have performed two different analysis. In the first, at a baseline of 3000 km, we simulate a measurement of the channels {nu}{sub e}{yields}{nu}{sub {mu}}, {nu}{sub e}{yields}{nu}{sub {tau}}, and {nu}{sub {mu}}{yields}{nu}{sub {mu}}, combined with their respective conjugate ones, with a muon energy of 50 GeV and a running time of five years. In the second, we merge the simulated data obtained at L=3000 km with the measurement of {nu}{sub e}{yields}{nu}{sub {mu}} channel at 7250 km, the so-called 'magic baseline.' In both cases, we have studied the impact of varying the {nu}{sub {tau}} detector efficiency-mass product ({epsilon}{sub {nu}{tau}xM{tau}}), at 3000 km, keeping unchanged the {nu}{sub {mu}} detector mass and its efficiency. At L=3000 km, we found the existence of degenerate zones, that correspond to values of {theta}{sub 13}, which are equal or almost equal to the true ones. These zones are extremely difficult to discard, even when we increase the number of events. However, in the second scenario, this difficulty is overcome, demonstrating the relevance of the 'magic baseline'. From this scenario, the best limits of sin{sup 2}2{theta}{sub 13}, reached at 3{sigma}, for sin{sup 2}2{theta}{sub 23}=0.95, 0.975, and 0.99 are: 0.008, 0.015, and 0.045, respectively, obtained at {delta}=0, and considering ({epsilon}{sub {nu}{tau}xM{tau}}){approx_equal}125, which is 5 times the initial efficiency-mass combination.

Gago, A. M.; Jones Perez, J. [Seccion Fisica, Departamento de Ciencias, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru)

2007-02-01T23:59:59.000Z

34

Search for Lepton Flavour Violating Decays Tau -> l Ks with the BABAR Detector  

SciTech Connect

We present the search for the lepton flavour violating decay {tau} {yields} lK{sup 0}{sub s} with the BaBar experiment data. This process and many other lepton flavour violating {tau} decays, like {tau} {yields} {mu}{gamma} and {tau} {yields} lll, are one of the most promising channel to search for evidence of new physics. According to the Standard Model and the neutrino mixing parameters, branching fractions are estimated well below 10{sup -14}, but many models of new physics allow for branching fractions values close to the present experimental sensitivity. This analysis is based on a data sample of 469fb{sup -1} collected by BABAR detector at the PEP-II storage ring from 1999 to 2007, equivalent to 431 millions of {tau} pairs. the BABAR experiment, initially designed for studying CP violation in B mesons, has demonstrated to be one of the most suitable environments for studying {tau} decays. The tracking system, the calorimeter and the particle identification of BABAR, together with the knowledge of the {tau} initial energy, allow an extremely powerful rejection of background events that, for this analysis, is better than 10{sup -9}. Being {tau} {yields} lK{sup 0}{sub s} a decay mode without neutrinos, the signal {tau} decay can be fully reconstructed. Kinematical constraints are used in a fit that provides a decay tree reconstruction with a high resolution. For this analysis MC simulated events play a decisive role for estimating the signal efficiency and study the residual background. High statistics MC sample are produced simulating detector conditions for different periods of data collection, in order to reduce any discrepancies with the data. When discrepancies can not be removed, we perform studies to compute a correction factor or an estimation of systematic errors that need to be included in the final measurement. A significant improvement of the current result can be reached only with a higher statistics and, therefore, with a new collider providing a luminosity from 10 to 100 times more than PEP-II. A new detector, with improved performance and able to collect data in a high background environment, is also requested to fully exploit the capability of such amount of data. In fact, only keeping the efficiency and the background as similar as possible to present ones, we will be able to scale almost linearly the estimated upper limit according to the luminosity. The strong potential of improvement for the search of lepton flavour violation {tau} decays makes the building of such a machine highly desirable.

Cenci, Riccardo; /SLAC

2009-03-20T23:59:59.000Z

35

Precision Measurements of Tau Lepton Decays  

SciTech Connect

Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a center-of-mass energy near 10.58 GeV, the branching fractions {Beta}({tau}{sup -} {yields} {pi}{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}) = (8.83 {+-} 0.01 {+-} 0.13)%, {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}) = (0.273 {+-} 0.002 {+-} 0.009)%, {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}}) = (0.1346 {+-} 0.0010 {+-} 0.0036)%, and {Beta}({tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}}) = (1.58 {+-} 0.13 {+-} 0.12) x 10{sup -5} are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the {tau}{sup -} {yields} {pi}{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}} {yields} K{sup -}{pi}{sup -}{pi}{sup +}{nu}{sub {tau}}, {tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}} decays are unfolded to correct for detector effects. A measurement of {Beta}({tau}{sup -} {yields} {phi}{pi}{sup -}{nu}{sub {tau}}) = (3.42 {+-} 0.55 {+-} 0.25) x 10{sup -5}, a measurement of {Beta}({tau}{sup -} {yields} {phi}K{sup -}{nu}{sub {tau}}) = (3.39 {+-} 0.20 {+-} 0.28) x 10{sup -5} and an upper limit on {Beta}({tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}}[ex.{phi}]) {le} 2.5 x 10{sup -6} {at} 905 CL are determined from a binned maximum likelihood fit of the {tau}{sup -} {yields} K{sup -}{pi}{sup -}K{sup +}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}} K{sup +}K{sup -} invariant mass distributions. The branching ratio {Beta}({tau}{sup -} {yields} K{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} {pi}{sup -}{nu}{sub {tau}}) is measured to be (6.531 {+-} 0.056 {+-} 0.093) x 10{sup -2} from which |V{sub us}| is determined to be 0.2255 {+-} 0.0023. The branching ratio {Beta}/({tau}{sup -} {yields} {mu}{nu}{sub {tau}}{bar {nu}}{sub {mu}})/{Beta}({tau}{sup -} {yields} e{sup -} {nu}{sub {tau}}{bar {nu}}{sub e}) = (9.796 {+-} 0.016 {+-} 0.035) x 10{sup -1} is measured enabling a precision test of the Standard Model assumption of charged current lepton universality, g{sub {mu}}/g{sub e} = 1.0036 {+-} 0.0020. The branching ratios {Beta}({tau}{sup -} {yields} K{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{sup -}{nu}{sub {tau}}{bar {nu}}{sub e}) = (3.882 {+-} 0.032 {+-} 0.057) x 10{sup -2}, and {Beta}({tau}{sup -} {yields} {pi}{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{nu}{sub {tau}}{bar {nu}}{sub e}) = (5.9545 {+-} 0.014 {+-} 0.061) x 10{sup -1} are measured which provide additional tests of charged current lepton universality, (g{sub {tau}}/g{sub {mu}}){sub {pi}} = 0.9856 {+-} 0.0057 and (g{sub {tau}}/g{sub {mu}}){sub K} = 0.9827 {+-} 0.0086 which can be combined to give (g{sub {tau}}/g{sub {mu}}){sub {pi}/K} = 0.9850 {+-} 0.0054. Any deviation of these measurements from the expected Standard Model values would be an indication of new physics.

Nugent, Ian M.; /Victoria U.

2010-03-16T23:59:59.000Z

36

Neutrino-electron scattering in a magnetic field with allowance for polarizations of electrons  

Science Conference Proceedings (OSTI)

We present an analytic formula for differential cross section (DCS) of neutrino-electron scattering (NES) in a magnetic field (MF) with allowance for longitudinal polarizations of initial and final electrons (IAFE). The DCS of NES in a MF is sensitive to the spin variable of the IAFE and to the direction of the incident and scattered neutrinos (IASN) momenta. Spin asymmetries and field effects in NES in a MF enable us to use initial electrons having a left-hand circular polarization (LHCP) as polarized electron targets in detectors for detection of low-energy neutrinos or relic neutrinos and for distinguishing neutrino flavor (NF). In general, gas consisting of only electrons having a LHCP and gas consisting of only electrons having a right-hand circular polarization (RHCP) are heated by neutrinos asymmetrically. The asymmetry of heating (AH) is sensitive to NF, MF strength, energies (Landau quantum numbers and third components of the momenta) of IAFE, final electron chemical potential, the final temperature of gas consisting of only electrons having a LHCP (RHCP), polar angles of IASN momenta, the difference between the azimuthal angles of IASN momenta, the angle {phi}, and IASN energies. In the heating process of electrons by neutrinos the dominant role belongs to electron neutrinos compared with the contribution of muon (tauon) neutrinos. Electrons having a LHCP in NES in a MF are heated by {nu}{sub e} and {nu}{sub {mu}}({nu}{sub {tau}}) unequally when both the IASN fly along or against the MF direction. For magnetars and neutrinos of 1 MeV energy, within the considered kinematics, the AH in an electron neutrino-electron scattering is 2.23 times that in a muon neutrino-electron scattering or in a tauon neutrino-electron scattering.

Guseinov, V. A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Jafarov, I. G. [Department of Theoretical Physics and Astrophysics, Azerbaijan State Pedagogical University, Baku (Azerbaijan); Gasimova, R. E. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

2007-04-01T23:59:59.000Z

37

Neutrino oscillations in an SO(10) supersymmetric grand unified theory with U(2)xU(1){sup n} family symmetry  

Science Conference Proceedings (OSTI)

In a previous paper we analyzed fermion masses (focusing on neutrino masses and mixing angles) in an SO(10) SUSY GUT with U(2)xU(1){sup n} family symmetry. The model is ''natural'' containing all operators in the Lagrangian consistent with the states and their charges. With minimal family symmetry breaking vacuum expectation values (VEVs) the model is also predictive giving a unique solution to atmospheric (with maximal {nu}{sub {mu}}{yields}{nu}{sub {tau}} mixing) and solar (with SMA MSW {nu}{sub e}{yields}{nu}{sub s} mixing) neutrino oscillations. In this paper we analyze the case of general family breaking VEVs. We now find several new solutions for three, four, and five neutrinos. For three neutrinos we now obtain SMA MSW, LMA MSW, or vacuum oscillation solutions for solar neutrinos. In all three cases the atmospheric data are described by maximal {nu}{sub {mu}}{yields}{nu}{sub {tau}} mixing. In the four and five neutrino cases, in addition to fitting atmospheric and solar data as before, we are now able to fit LSND data. All this is obtained with the additional parameters coming from the family symmetry breaking VEVs, providing only minor changes in the charged fermion fits. (c) 2000 The American Physical Society.

Blazek, T. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Raby, S. [Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210 (United States); Tobe, K. [Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210 (United States)

2000-09-01T23:59:59.000Z

38

Very Long Baseline Neutrino Oscillation Experiment for Precise Determination of Oscillation Parameters and Search for nu_mu -> nu_e Appearance and CP Violation  

E-Print Network (OSTI)

The possibility of making a low cost, very intense (1MW) high energy proton source at the Brookhaven Alternating Gradient Synchrotron (BNL-AGS) along with the forthcoming new large underground detectors (approaching 1 MT in mass) at the National Underground Science and Engineering Laboratory (NUSEL) in Homestake, South Dakota or at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, allows us to propose a program of experiments that will address fundamental aspects of neutrino oscillations and CP-invariance violation. This program is unique because of the very long baseline of more than 2500 km from BNL to the underground laboratory in the West. We used the running scenario of a low energy, wide band neutrino beam with 1 MW AGS, 500 kT of fiducial mass water Cherenkov detector, and 5x10^7 seconds of running time. In this report we show that with these conditions we precisely measure dm^2_32 and sin^2(2theta_23) and have excellent sensitivity to sin^2(2theta_13) with a distinctive signal spectrum. If sin^2(2theta_13) > 0.01 the experiment is sensitive to the CP-violating phase in the mixing matrix with only neutrino running. By running in the anti-neutrino mode we distinguish between the cases dm^2_31 > 0 versus dm^2_31 nu_e appearance channel.

BNL Neutrino Working Group; M. Diwan

2002-10-31T23:59:59.000Z

39

Constraining msugra parameters with mu->e gamma and mu-e conversion in nuclei  

E-Print Network (OSTI)

We show that, in the MSSM with msugra boundary conditions and seesaw induced neutrino masses, the values of BR(mu->e gamma) and the mu-e conversion rate in a nucleus determine the sign of mu and constrain tan beta in a model independent way.

Carlos E. Yaguna

2005-02-02T23:59:59.000Z

40

Studying neutrino oscillations using quasi-elastic events in MINOS  

SciTech Connect

MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations and make a measurement on the oscillation parameters, {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, via a {nu}{sub {mu}} beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one {mu} and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 {+-} 3. A fit to the energy distribution of these events gives {Delta}m{sub 23}{sup 2} = 2.91{sub -0.53}{sup +0.49}(stat){sub -0.09}{sup +0.08}(sys) x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} = 0.990{sub -0.180}(stat){sub -0.030}(sys).

Kumaratunga, Sujeewa Terasita; /Minnesota U.

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Octahedral Symmetry with Geometrical Breaking: New Prediction for Neutrino Mixing Angle theta_{13} and CP Violation  

E-Print Network (OSTI)

We propose octahedral group O_h as the family symmetry of neutrino-lepton sector, with subgroups Z_2(mu-tau) x Z_2(solar) and Z_4^l as the residual symmetries of neutrinos and charged leptons, respectively. We find that O_h is a minimal group which contains the subgroups Z_2(mu-tau) x Z_2(solar) and Z_4^l for realizing the bimaximal mixings theta_{23} = theta_{12} = 45^o. We present geometric interpretations of O_h and its residual symmetries, and further construct a natural geometrical breaking of Z_4^l. Our theory makes truly simple new predictions of a relatively large reactor angle, theta_{13} = 45^o - theta_{12} = 7.9^o - 14.0^o (3 sigma), the maximal atmospheric angle theta_{23} = 45^o, and the maximal Dirac CP violation delta_D = +-90^o. These agree well with the current neutrino data, and will be further probed by the on-going and upcoming oscillation experiments.

He, Hong-Jian

2012-01-01T23:59:59.000Z

42

Octahedral Symmetry with Geometrical Breaking: New Prediction for Neutrino Mixing Angle theta_{13} and CP Violation  

E-Print Network (OSTI)

We propose octahedral group O_h as the family symmetry of neutrino-lepton sector. We find that O_h contains subgroups Z_2(mu-tau) x Z_2(solar) and Z_4^l for realizing the bimaximal (BM) mixings, theta_{23} = theta_{12} = 45^o and theta_{13}=0^o, where Z_2(mu-tau) x Z_2(solar) and Z_4^l serve as the residual symmetries of neutrinos and charged leptons, respectively. We present geometric interpretations of BM mixing in the octahedron, and construct natural geometrical breaking of Z_4^l, leading to nontrivial deviations from the BM mixings. Our theory makes truly simple predictions of a relatively large reactor angle, theta_{13} = 45^o - theta_{12} = 7.5^o - 13.7^o (3 sigma), the nearly maximal atmospheric angle and the approximate maximal Dirac CP violation. These agree well with the current neutrino data, and will be further probed by the on-going and upcoming oscillation experiments.

Hong-Jian He; Xun-Jie Xu

2012-03-13T23:59:59.000Z

43

Lepton Universality, |V(Us)| and Search for Second Class Current in Tau Decays  

SciTech Connect

Several hundred million {tau} decays have been studied with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Recent results on Charged Current Lepton Universality and two independent measurements of |V{sub us}| using {tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}, {mu}{sup -}{bar {nu}}{sub {mu}}{nu}{sub {tau}}, {pi}{sup -}{nu}{sub {tau}}, K{sup -} {nu}{sub {tau}} and K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} decays, and a search for Second Class Current in {tau}{sup -} {yields} {pi}{sup -} {omega}{nu}{sub {tau}} decays are presented, where the charge conjugate decay modes are also implied.

Banerjee, Swagato; /Victoria U.

2011-11-10T23:59:59.000Z

44

Measurement of tau lepton branching fractions  

SciTech Connect

We present {tau}{sup {minus}} lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample of{tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sup {minus}}{pi}{sup +}{pi}{sup {minus}} events, we examine the resonance structure of the K{sup {minus}}{pi}{sup +}{pi}{sup {minus}} system and obtain the first measurements of branching fractions for {tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sub 1}{sup {minus}}(1270) and {tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sub 1}{sup {minus}}(1400). We also describe a complete set of branching fraction measurements in which all the decays of the {tau}{sup {minus}} lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, {mu}, {pi}, and K.

Nicol, N.A.

1993-09-30T23:59:59.000Z

45

Search for pair production of the scalar top quark in muon plus tau final states  

SciTech Connect

We present a search for the pair production of scalar top quarks ({tilde t}{sub 1}), the lightest supersymmetric partners of the top quarks, in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of 7.3 fb{sup -1} collected with the D0 experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}). We investigate final states arising from {tilde t}{sub 1}{ovr {tilde t}{sub 1}} {yields} b{bar b}{mu}{tau}{tilde {nu}}{tilde {nu}} and {tilde t}{sub 1}{ovr {tilde t}{sub 1}} {yields} b{bar b}{tau}{tau}{tilde {nu}}{tilde {nu}}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) plane.

Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey B. C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De La Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De La Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; Lopes de Sa R.; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

2012-04-20T23:59:59.000Z

46

Experiment Profile: Mu2e  

NLE Websites -- All DOE Office Websites (Extended Search)

Mu2e Mu2e NAME: Muon-to-electron conversion, or Mu2e WHAT IS THE EXPERIMENT LOOKING FOR? A muon that does not follow the traditional weak- force decay pattern into a lighter electron and two neutrinos, but converts wholly into an electron. WHAT WILL THIS TELL US ABOUT THE WORLD? * Observing Mu2e conversion would point the way to a unification of all the forces of nature controlling the interactions of matter. This unification of the four existing forces we observe today - gravity, the electromagnetic force, and the weak and strong forces - is considered Albert Einstein's dream of "grand unification. * Finding signs of this "grand unification" could explain how the universe evolved from being

47

Search for the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-  

E-Print Network (OSTI)

A search for the decays Bs -> mu+ mu- and B0 -> mu+ mu- is performed with 0.37 fb^-1 of pp collisions at sqrt{s} = 7 TeV collected by the LHCb experiment in 2011. The upper limits on the branching fractions are BR (Bs -> mu+ mu-) mu+ mu-) mu+ mu-) mu+ mu-) < 3.2 x 10^-9 at 95% confidence level.

LHCb Collaboration; R. Aaij; C. Abellan Beteta; B. Adeva; M. Adinolfi; C. Adrover; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; Y. Amhis; J. Anderson; R. B. Appleby; O. Aquines Gutierrez; F. Archilli; L. Arrabito; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; S. Bachmann; J. J. Back; D. S. Bailey; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; A. Bates; C. Bauer; Th. Bauer; A. Bay; I. Bediaga; S. Belogurov; K. Belous; I. Belyaev; E. Ben-Haim; M. Benayoun; G. Bencivenni; S. Benson; J. Benton; R. Bernet; M. -O. Bettler; M. van Beuzekom; A. Bien; S. Bifani; T. Bird; A. Bizzeti; P. M. Bjørnstad; T. Blake; F. Blanc; C. Blanks; J. Blouw; S. Blusk; A. Bobrov; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; T. J. V. Bowcock; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; D. Brett; M. Britsch; T. Britton; N. H. Brook; H. Brown; A. Büchler-Germann; I. Burducea; A. Bursche; J. Buytaert; S. Cadeddu; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; L. Carson; K. Carvalho Akiba; G. Casse; M. Cattaneo; Ch. Cauet; M. Charles; Ph. Charpentier; N. Chiapolini; K. Ciba; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; P. Collins; A. Comerma-Montells; F. Constantin; G. Conti; A. Contu; A. Cook; M. Coombes; G. Corti; G. A. Cowan; R. Currie; B. D'Almagne; C. D'Ambrosio; P. David; P. N. Y. David; I. De Bonis; S. De Capua; M. De Cian; F. De Lorenzi; J. M. De Miranda; L. De Paula; P. De Simone; D. Decamp; M. Deckenhoff; H. Degaudenzi; M. Deissenroth; L. Del Buono; C. Deplano; D. Derkach; O. Deschamps; F. Dettori; J. Dickens; H. Dijkstra; P. Diniz Batista; F. Domingo Bonal; S. Donleavy; F. Dordei; P. Dornan; A. Dosil Suárez; D. Dossett; A. Dovbnya; F. Dupertuis; R. Dzhelyadin; A. Dziurda; S. Easo; U. Egede; V. Egorychev; S. Eidelman; D. van Eijk; F. Eisele; S. Eisenhardt; R. Ekelhof; L. Eklund; Ch. Elsasser; D. Elsby; D. Esperante Pereira; L. Estéve; A. Falabella; E. Fanchini; C. Färber; G. Fardell; C. Farinelli; S. Farry; V. Fave; V. Fernandez Albor; M. Ferro-Luzzi; S. Filippov; C. Fitzpatrick; M. Fontana; F. Fontanelli; R. Forty; M. Frank; C. Frei; M. Frosini; S. Furcas; A. Gallas Torreira; D. Galli; M. Gandelman; P. Gandini; Y. Gao; J-C. Garnier; J. Garofoli; J. Garra Tico; L. Garrido; D. Gascon; C. Gaspar; N. Gauvin; M. Gersabeck; T. Gershon; Ph. Ghez; V. Gibson; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; E. Greening; S. Gregson; B. Gui; E. Gushchin; Yu. Guz; T. Gys; G. Haefeli; C. Haen; S. C. Haines; T. Hampson; S. Hansmann-Menzemer; R. Harji; N. Harnew; J. Harrison; P. F. Harrison; J. He; V. Heijne; K. Hennessy; P. Henrard; J. A. Hernando Morata; E. van Herwijnen; E. Hicks; K. Holubyev; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; R. S. Huston; D. Hutchcroft; D. Hynds; V. Iakovenko; P. Ilten; J. Imong; R. Jacobsson; A. Jaeger; M. Jahjah Hussein; E. Jans; F. Jansen; P. Jaton; B. Jean-Marie; F. Jing; M. John; D. Johnson; C. R. Jones; B. Jost; M. Kaballo; S. Kandybei; M. Karacson; T. M. Karbach; J. Keaveney; I. R. Kenyon; U. Kerzel; T. Ketel; A. Keune; B. Khanji; Y. M. Kim; M. Knecht; P. Koppenburg; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; K. Kruzelecki; M. Kucharczyk; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; T. Latham; C. Lazzeroni; R. Le Gac; J. van Leerdam; J. -P. Lees; R. Lefévre; A. Leflat; J. Lefrançois; O. Leroy; T. Lesiak; L. Li; L. Li Gioi; M. Lieng; M. Liles; R. Lindner; C. Linn; B. Liu; G. Liu; J. H. Lopes; E. Lopez Asamar; N. Lopez-March; H. Lu; J. Luisier; A. Mac Raighne; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; J. Magnin; S. Malde; R. M. D. Mamunur; G. Manca; G. Mancinelli; N. Mangiafave; U. Marconi; R. Märki; J. Marks; G. Martellotti; A. Martens; L. Martin; A. Martín Sánchez; D. Martinez Santos; A. Massafferri; Z. Mathe; C. Matteuzzi; M. Matveev; E. Maurice; B. Maynard; A. Mazurov; G. McGregor; R. McNulty; C. Mclean; M. Meissner; M. Merk; J. Merkel; R. Messi; S. Miglioranzi; D. A. Milanes; M. -N. Minard; J. Molina Rodriguez; S. Monteil; D. Moran; P. Morawski; R. Mountain; I. Mous; F. Muheim; K. Müller; R. Muresan; B. Muryn; B. Muster; M. Musy; J. Mylroie-Smith; P. Naik; T. Nakada; R. Nandakumar; I. Nasteva; M. Nedos; M. Needham; N. Neufeld; C. Nguyen-Mau; M. Nicol; V. Niess; N. Nikitin; A. Nomerotski; A. Novoselov; A. Oblakowska-Mucha; V. Obraztsov; S. Oggero; S. Ogilvy; O. Okhrimenko; R. Oldeman; M. Orlandea

2011-12-07T23:59:59.000Z

48

TAU Grupo | Open Energy Information  

Open Energy Info (EERE)

Grupo Jump to: navigation, search Name TAU Grupo Place Spain Sector Services Product String representation "Four services c ... e (TAU-Econat)." is too long. References TAU...

49

Measurements of Charged Current Lepton Universality and $|V_{us}|$ using Tau Lepton Decays to $e^- \\bar{\  

E-Print Network (OSTI)

Using 467 $fb^{-1}$ of $e^+e^-$ annihilation data collected with the BaBar detector, we measure $\\frac{{\\cal{B}}(\\tau^- \\to \\mu^- \\bar{\

Aubert, B

2009-01-01T23:59:59.000Z

50

SOLAR NEUTRINOS. II. EXPERIMENTAL  

SciTech Connect

A method is described for observing solar neutrinos from the reaction Cl/ sup 37/( nu ,e/sup -/)Ar/sup 37/ in C/sub 2/Cl/sub 4/. Two 5 00-gal tanks of C/ sub 2/Cl/sub 4/ were placed in a limestone mine (1800 m.w.e.) and the resulting Ar/sup 37/ activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

Davis, R. Jr.

1964-03-16T23:59:59.000Z

51

Deviations from Tri-Bimaximal Neutrino Mixing Using Type II Seesaw  

E-Print Network (OSTI)

We study the possibility of generating deviations from tri-bimaximal (TBM) neutrino mixing to explain the non-zero reactor mixing angle within the framework of both type I and type II seesaw mechanisms. The type I seesaw term gives rise to the $\\mu-\\tau$ symmetric TBM pattern of neutrino mass matrix as predicted by generic flavor symmetry models like $A_4$ whereas the type II seesaw term gives rise to the required deviations from TBM pattern to explain the non-zero $\\theta_{13}$. Considering extremal values of Majorana CP phases such that the neutrino mass eigenvalues have the structure $(m_1, -m_2, m_3)$ and $(m_1, m_2, m_3)$, we numerically fit the type I seesaw term by taking oscillation as well as cosmology data and then compute the predictions for neutrino parameters after the type II seesaw term is introduced. We consider a minimal structure of the type II seesaw term and check whether the predictions for neutrino parameters lie in the $3\\sigma$ range. We also outline two possible flavor symmetry models to justify the minimal structure of the type II seesaw term considered in the analysis.

Debasish Borah

2013-07-09T23:59:59.000Z

52

First Measurement of the Branching Fraction of the Decay $\\psi(2S) \\to \\tau\\tau$  

E-Print Network (OSTI)

The branching fraction of the psi(2S) decay into tau pair has been measured for the first time using the BES detector at the Beijing Electron-Positron Collider. The result is $B_{\\tau\\tau}=(2.71\\pm 0.43 \\pm 0.55) \\times 10^{-3}$, where the first error is statistical and the second is systematic. This value, along with those for the branching fractions into e+e- and mu+mu of this resonance, satisfy well the relation predicted by the sequential lepton hypothesis. Combining all these values with the leptonic width of the resonance the total width of the psi(2S) is determined to be $(252 \\pm 37)$ keV.

Bai, J Z; Bian, J G; Blum, I K; Chen, G P; Chen, H F; Chen, J; Chen Jia Chao; Chen, Y; Chen, Y B; Chen, Y Q; Cheng Bao Sen; Cui, X Z; Ding, H L; Dong, L Y; Du, Z Z; Dunwoodie, W M; Gao, C S; Gao, M L; Gao, S Q; Gratton, P; Gu, J H; Gu, S D; Gu, W X; Gu, Y F; Guo, Z J; Guo, Y N; Han, S W; Han, Y; Harris, F A; He, J; He, J T; He, K L; He, M; Heng, Y K; Hitlin, D G; Hu, G Y; Hu, H M; Hu, J L; Hu, Q H; Hu, T; Hu Xiao Qing; Huang, G S; Huang, Y Z; Izen, J M; Jiang, C H; Jin, Y; Jones, B D; Ju, X; Ke, Z J; Kelsey, M H; Kim, B K; Kong, D; Lai, Y F; Lang, P F; Lankford, A J; Li, C G; Li, D; Li, H B; Li, J; Li, J C; Li, P Q; Li, R B; Li, W; Li, W G; Li, X H; Li Xiao Nan; Liu, H M; Liu, J; Liu, R G; Liu, Y; Lou, X C; Lowery, B; Lu, F; Lu, J G; Luo, X L; Ma, E C; Ma, J M; Malchow, R; Mao, H S; Mao, Z P; Meng, X C; Nie, J; Olsen, S L; Oyang, J Y T; Paluselli, D; Pan, L J; Panetta, J; Porter, F; Qi, N D; Qi, X R; Qian, C D; Qiu, J F; Qu, Y H; Que, Y K; Rong, G; Schernau, M; Shao, Y Y; Shen, B W; Shen, D L; Shen, H; Shen, X Y; Sheng, H Y; Shi, H Z; Song, X F; Standifird, J; Sun, F; Sun, H S; Sun, Y; Sun, Y Z; Tang, S Q; Toki, W; Tong, G L; Varner, G S; Wang, F; Wang, L S; Wang, L Z; Wang, M; Wang, P; Wang, P L; Wang, S M; Wang, T J; Wang, Y Y; Weaver, M; Wei, C L; Wu, J M; Wu, N; Wu, Y G; Xi, D M; Xia, X M; Xie, P P; Xie, Y; Xie, Y H; Xu, G F; Xue, S T; Yan, J; Yan, W G; Yang, C M; Yang, C Y; Yang, H X; Yang, J; Yang, W; Yang, X F; Ye, M H; Ye Shu Wei; Ye, Y X; Yu, C S; Yu, C X; Yu, G W; Yu Yu Hei; Yu, Z Q; Yuan, C Z; Yuan, Y; Zhang Bing Yun; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H L; Zhang, J; Zhang, J W; Zhang, L; Zhang, L S; Zhang, P; Zhang, Q J; Zhang, S Q; Zhang, X Y; Zhang, Y Y; Zhao, D X; Zhao, H W; Zhao Jia Wei; Zhao, M; Zhao Wei Ren; Zhao, Z G; Zheng Jian Ping; Zheng Lin Sheng; Zheng Zhi Peng; Zhou, B Q; Zhou, G P; Zhou, H S; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhuang, B A

2002-01-01T23:59:59.000Z

53

Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Neutrinos at the Conclusion of the Sudbury Neutrino Observatory Noah Oblath April 22, 2008 The study of solar neutrinos began with the idea that one could use the neutrinos...

54

Neutrino Oscillations and Blazars  

E-Print Network (OSTI)

Three independent predictions follow from postulating the existence of protons co-accelerated with electrons in extragalactic jets (i) multi-TeV gamma ray emission from nearby blazars, (ii) extragalactic cosmic ray protons up to 10^20 eV, and (iii) extragalactic neutrinos up to 5 10^18 eV. Recent gamma ray observations of Mrk 421 and Mrk 501 employing the air-Cerenkov technique are consistent with the predicted gamma ray spectrum, if one corrects for pair attenuation on the infrared background. Prediction (ii) is consistent with cosmic ray data, if one requires that jets are responsible for at least a sizable fraction of the extragalactic gamma ray background. With kubic kilometer neutrino telescopes, it will be possible to test (iii), although the muon event rates are rather low. Neutrino oscillations can increase the event rate by inducing tau-cascades removing the Earth shadowing effect.

Karl Mannheim

1998-12-22T23:59:59.000Z

55

Neutrino Oscillations and Blazars  

E-Print Network (OSTI)

Three independent predictions follow from postulating the existence of protons co-accelerated with electrons in extragalactic jets (i) multi-TeV gamma ray emission from nearby blazars, (ii) extragalactic cosmic ray protons up to ? 10 20 eV, and (iii) extragalactic neutrinos up to ? 5 × 10 18 eV. Recent gamma ray observations of Mrk 421 and Mrk 501 employing the air-Cerenkov technique are consistent with the predicted gamma ray spectrum, if one corrects for pair attenuation on the infrared background. Prediction (ii) is consistent with cosmic ray data, if one requires that jets are responsible for a at least a sizable fraction of the extragalactic gamma ray background. With kubic kilometer neutrino telescopes, it will be possible to test (iii), although the muon event rates are rather low. Neutrino oscillations can increase the event rate by inducing tau-cascades removing the so-called Earth shadowing effect. 1

Karl Mannheim

1999-01-01T23:59:59.000Z

56

Measurements of Charged Current Lepton Universality and |Vus| using Tau Lepton Decays to e- v v, __- v v, pi- v and K- v  

SciTech Connect

Using 467 fb{sup -1} of e{sup +}e{sup -} annihilation data collected with the BABAR detector, they measure {Beta}({tau}{sup -} {yields} {mu}{sup -}{bar {nu}}{sub {mu}}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{sup -} {bar {nu}}{sub e}{nu}{sub {tau}}) = (0.9796 {+-} 0.0016 {+-} 0.0036), {Beta}({tau}{sup -} {yields} {pi}{sup -} {nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}) = (0.5945 {+-} 0.0014 {+-} 0.0061), and {Beta}({tau}{sup -} {yields} K{sup -}{nu}{sub {tau}})/{Beta}({tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}) = (0.03882 {+-} 0.00032 {+-} 0.00057), where the uncertainties are statistical and systematic, respectively. From these precision {tau} measurements, they test the Standard Model assumption of {mu}-e and {tau}-{mu} charge current lepton universality and provide determinations of |V{sub us}| experimentally independent of the decay of a kaon.

Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2011-06-30T23:59:59.000Z

57

Atmospheric Neutrinos in the MINOS Far Detector  

Science Conference Proceedings (OSTI)

The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

Howcroft, Caius L.F.; /Cambridge U.

2004-12-01T23:59:59.000Z

58

Sensitivity of the IceCube neutrino detector to dark matter annihilating in dwarf galaxies  

SciTech Connect

In this paper, we compare the relative sensitivities of gamma-ray and neutrino observations to the dark matter annihilation cross section in leptophilic models such as have been designed to explain PAMELA data. We investigate whether the high energy neutrino telescope IceCube will be competitive with current and upcoming searches by gamma-ray telescopes, such as the Atmospheric Cerenkov Telescopes (H.E.S.S., VERITAS, and MAGIC), or the Fermi Gamma-Ray Space Telescope, in detecting or constraining dark matter particles annihilating in dwarf spheroidal galaxies. We find that after 10 years of observation of the most promising nearby dwarfs, IceCube will have sensitivity comparable to the current sensitivity of gamma-ray telescopes only for very heavy (m{sub X} > or approx. 7 TeV) or relatively light (m{sub X} < or approx. 200 GeV) dark matter particles which annihilate primarily to {mu}{sup +{mu}-}. If dark matter particles annihilate primarily to {tau}{sup +{tau}-}, IceCube will have superior sensitivity only for dark matter particle masses below the 200 GeV threshold of current Atmospheric Cerenkov Telescopes. If dark matter annihilations proceed directly to neutrino-antineutrino pairs a substantial fraction of the time, IceCube will be competitive with gamma-ray telescopes for a much wider range of dark matter masses. K. F. would like to thank the Aspen Center for Physics and the Texas Cosmology Center, and P. S. would like to thank MCTP.

Sandick, Pearl [Theory Group and Texas Cosmology Center, University of Texas at Austin, Texas 78712 (United States); Spolyar, Douglas [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Department of Physics, University of California, Santa Cruz, California 95064 (United States); Buckley, Matthew [Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Freese, Katherine [Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60638 (United States)

2010-04-15T23:59:59.000Z

59

Neutrino Oscillations with Reactor Neutrinos  

E-Print Network (OSTI)

Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

Anatael Cabrera

2007-01-11T23:59:59.000Z

60

Neutrino Phenomenology  

E-Print Network (OSTI)

A general overview of neutrino physics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and the indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos and their confirmation with artificial neutrino sources.

Esteban Roulet

2004-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Leptonic CP Phase in {nu}{sub {mu}}{yields}{nu}{sub {mu}} Oscillations  

Science Conference Proceedings (OSTI)

In the case of large 1-3 mixing angle as sin{sup 2} 2{theta}{sub 13}{>=}0.03, we investigate the possibility for measuring the leptonic CP phase by using only {nu}{sub {mu}}{yields}{nu}{sub {mu}} oscillations independently of {nu}{sub {mu}}{yields}{nu}{sub e} oscillations. As the result, we find that the CP phase can be measured best around the energy E = 0.43 GeV and the baseline length L = 5000 km without depending on the uncertainties of other parameters too much. In this region, the CP phase effect remains even after averaging over neutrino energy.

Kimura, Keiichi; Yoshikawa, Tadashi [Department of Physics, Nagoya University, Nagoya, 464-8602 (Japan); Takamura, Akira [Department of Mathematics, Toyota National College of Technology Eisei-cho 2-1, Toyota-shi, 471-8525 (Japan)

2008-02-21T23:59:59.000Z

62

Neutrino Physics  

DOE R&D Accomplishments (OSTI)

The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

Lederman, L. M.

1963-01-09T23:59:59.000Z

63

Neutrino Oscillations and Blazars  

E-Print Network (OSTI)

Three independent predictions follow from postulating the existence of protons co-accelerated with electrons in extragalactic jets (i) multi-TeV gamma ray emission from nearby blazars, (ii) extragalactic cosmic ray protons up to ray observations of Mrk 421 and Mrk 501 employing the air-Cerenkov technique are consistent with the predicted gamma ray spectrum, if one corrects for pair attenuation on the infrared background. Prediction (ii) is consistent with cosmic ray data, if one requires that jets are responsible for the extragalactic gamma ray background above 100 MeV. With kubic kilometer neutrino telescopes, it will be possible to test (iii), although the muon event rates are rather low. Neutrino oscillations can increase the event rate by inducing tau-cascades removing the Earth shadowing effect.

Mannheim, K

1999-01-01T23:59:59.000Z

64

Measurements of the tau Mass and Mass Difference of the tau^+ and tau^- at BABAR  

SciTech Connect

The authors present the result of a precision measurement of the mass of the {tau} lepton, M{sub {tau}}, based on 423 fb{sup -1} of data recorded at the {Upsilon}(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, they determine the mass to be 1776.68 {+-} 0.12(stat) {+-} 0.41(syst) MeV. They also measure the mass difference between the {tau}{sup +} and {tau}{sup -}, and obtain (M{sub {tau}{sup +}} - M{sub {tau}{sup -}})/M{sub AVG}{sup {tau}} = (-3.4 {+-} 1.3(stat) {+-} 0.3(syst)) x 10{sup -4}, where M{sub AVG}{sup {tau}} is the average value of M{sub {tau}{sup +}} and M{sub {tau}{sup -}}.

Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2009-10-30T23:59:59.000Z

65

Neutrino Oscillations  

E-Print Network (OSTI)

This review summarizes recent experimental and theoretical progress in determining neutrino mixing angles and masses through neutrino oscillations. We describe the basic physics of oscillation phenomena in vacuum and matter, as well as the status of solar, reactor, atmospheric, and accelerator neutrino experiments that probe these phenomena. The results from current global analyses of neutrino parameters are given. Future efforts that may improve the precision with which these parameters are known or probe new aspects of the neutrino mixing matrix are described.

A. B. Balantekin; W. C. Haxton

2013-03-09T23:59:59.000Z

66

mu+-mu? colliders: possibilities and challenges  

SciTech Connect

The current status of the mu+-mu? collider concept is reviewed and discussed. In a reference scenario, a high-intensity pulsed proton accelerator (of K-factory class) produces large numbers of secondary pi's in a nuclear target, which produce muons by decay. The muons are collected and cooled (by "ionization cooling") to form high-intensity bunches that are accelerated to high-energy collisions. High-luminosity mu+-mu? and mu?-p colliders at TeV or higher energy scales may be possible. Challenges in implementing the scenario are described. Possible variations in muon production, accumulation, and collisions are discussed; further innovations and improvements are encouraged.

David Neuffer

1994-10-01T23:59:59.000Z

67

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector  

SciTech Connect

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3{+-}3.6. At 90% confidence we set an upper limit of E{sup 2}{Phi}{sub 90%CL}<3.6x10{sup -7} GeV{center_dot}cm{sup -2}{center_dot}s{sup -1}{center_dot}sr{sup -1} on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that {Phi}{proportional_to}E{sup -2} and the flavor composition of the {nu}{sub e} ratio {nu}{sub {mu}} ratio {nu}{sub {tau}} flux is 1 ratio 1 ratio 1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.

Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

2011-10-01T23:59:59.000Z

68

Searching for sterile neutrinos in ice  

E-Print Network (OSTI)

Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass $\\sim 1$ eV and mixing with the active neutrinos $|U_{\\mu 0}|^2 \\sim (0.02 - 0.04)$. It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the $\

Soebur Razzaque; A. Yu. Smirnov

2011-04-07T23:59:59.000Z

69

Neutrino Unification  

E-Print Network (OSTI)

Present neutrino data are consistent with neutrino masses arising from a common seed at some ``neutrino unification'' scale $M_X$. Such a simple theoretical ansatz naturally leads to quasi-degenerate neutrinos that could lie in the electron-volt range with neutrino mass splittings induced by renormalization effects associated with supersymmetric thresholds. In such a scheme the leptonic analogue of the Cabibbo angle $\\theta_{\\odot}$ describing solar neutrino oscillations is nearly maximal. Its exact value is correlated with the smallness of $\\theta_{reactor}$. These features agree both with latest data on the solar neutrino spectra and with the reactor neutrino data. The two leading mass-eigenstate neutrinos present in \

P. H. Chankowski; A. Ioannisian; S. Pokorski; J. W. F Valle

2000-11-10T23:59:59.000Z

70

Neutrino chirality flip in a supernova and the bound on the neutrino magnetic moment  

E-Print Network (OSTI)

The neutrino chirality-flip process under the conditions of the supernova core is investigated in detail with the plasma polarization effects in the photon propagator taken into account. It is shown that the contribution of the proton fraction of plasma is essential. New upper bounds on the neutrino magnetic moment are obtained: mu_nu flip. The best astrophysical upper bound on the neutrino magnetic moment is improved by the factor of 3 to 7.

A. V. Kuznetsov; N. V. Mikheev

2006-06-25T23:59:59.000Z

71

A search for sterile neutrinos in MINOS  

SciTech Connect

MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining {Delta}m{sub 23}{sup 2} and {theta}{sub 23} through the disappearance of {nu}{sub {mu}}, MINOS is able to measure {nu}{sub {mu}} {yields} {nu}{sub sterile} by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

Osiecki, Thomas Henry; /Texas U.

2007-12-01T23:59:59.000Z

72

Evidence for Neutrino Oscillations I: Solar and Reactor Neutrinos  

E-Print Network (OSTI)

This paper discusses evidence for neutrino oscillations obtained from measurements with solar neutrinos and reactor neutrinos.

A. B. McDonald

2004-12-06T23:59:59.000Z

73

Particle Data Group - 2009 Particle Listings  

NLE Websites -- All DOE Office Websites (Extended Search)

for Axions (A0) and Other Very Light Bosons, Searches for Collapse Gauge and Higgs Boson table LEPTONS (e, mu, tau, neutrinos, heavy leptons ...) electron muon tau Heavy...

74

Particle Data Group - Particle Listings - 2007 update  

NLE Websites -- All DOE Office Websites (Extended Search)

for Axions (A0) and Other Very Light Bosons, Searches for Collapse Gauge and Higgs Boson table LEPTONS (e, mu, tau, neutrinos, heavy leptons ...) electron muon tau Heavy...

75

Particle Data Group - 2011 Particle Listings  

NLE Websites -- All DOE Office Websites (Extended Search)

for Axions (A0) and Other Very Light Bosons, Searches for Collapse Gauge and Higgs Boson table LEPTONS (e, mu, tau, neutrinos, heavy leptons ...) electron muon tau Heavy...

76

Neutrino Superbeams  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgraded conventional neutrino beams: Neutrino superbeams Upgraded conventional neutrino beams: Neutrino superbeams The capabilities of greatly upgraded conventional neutrino beams and the comparison with neutrino factories is under study. This page collects together some useful working information-- and at the bottom you can find links to studies that have already been done! GROUP REPORT: Oscillation Measurements with Upgraded Conventional Neutrino Beams V. Barger et al., hep-ex/0103052 (FERMILAB-FN-703), Addendum to Report FN-692 to the Fermilab Directorate, March 5, 2001. MI upgrade limitations Conf-97-199, W. Chou NUMI low energy beam with L = 732 km uoscillation signals for point IA1 (LMA scenario) but with sin**2 2theta(13) = 0.01, from Steve Geer. NUMI medium energy beam with L = 2800 km oscillation signals for

77

MU-CAT  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Advanced Photon Source Advanced Photon Source User Activity Report MU-CAT, Midwest Universities Collaborative Access Team 6-ID The Advanced Photon Source is an...

78

Neutrino Oscillometry  

E-Print Network (OSTI)

Neutrino oscillations are studied employing sources of low energy monoenergetic neutrinos following electron capture by the nucleus and measuring electron recoils. Since the neutrino energy is very low the oscillation length appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector. Thus one may determine very accurately all the neutrino oscillation parameters. In particular one can measure or set a better limit on the unknown parameter theta13. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered

Vergados, J D; Novikov, Yu N

2010-01-01T23:59:59.000Z

79

Neutrino Oscillometry  

E-Print Network (OSTI)

Neutrino oscillations are studied employing sources of low energy monoenergetic neutrinos following electron capture by the nucleus and measuring electron recoils. Since the neutrino energy is very low the oscillation length appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector. Thus one may determine very accurately all the neutrino oscillation parameters. In particular one can measure or set a better limit on the unknown parameter theta13. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered

J. D. Vergados; Y. Giomataris; Yu. N. Novikov

2010-10-21T23:59:59.000Z

80

Solar Neutrinos  

DOE R&D Accomplishments (OSTI)

The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

Davis, R. Jr.; Harmer, D. S.

1964-12-00T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility  

E-Print Network (OSTI)

We propose a definite search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). With the 3 GeV Rapid Cycling Synchrotron (RCS) and spallation neutron target, an intense neutrino beam from muon decay at rest (DAR) is available. Neutrinos come from \\mu+ decay, and the oscillation to be searched for is (anti \

M. Harada; S. Hasegawa; Y. Kasugai; S. Meigo; K. Sakai; S. Sakamoto; K. Suzuya; E. Iwai; T. Maruyama; K. Nishikawa; R. Ohta; M. Niiyama; S. Ajimura; T. Hiraiwa; T. Nakano; M. Nomachi; T. Shima; T. J. C. Bezerra; E. Chauveau; T. Enomoto; H. Furuta; H. Sakai; F. Suekane; M. Yeh; G. T. Garvey; W. C. Louis; G. B. Mills; R. Van de Water

2013-10-05T23:59:59.000Z

82

Measuring Active-Sterile Neutrino Oscillations with a Stopped Pion Neutrino Source  

E-Print Network (OSTI)

The question of the existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the LSND oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, Lorentz violation, and extra dimensions. In this paper, we consider an experiment at a stopped pion neutrino source to determine if active-sterile neutrino oscillations with delta-m greater than 0.1 eV2 can account for the signal. By exploiting stopped pi+ decay to produce a monoenergetic nu_mu source, and measuring the rate of the neutral current reaction nu_x + 12C -> nu_x +12C* as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed.

G. T. Garvey; A. Green; C. Green; W. C. Louis; G. B. Mills; G. McGregor; H. Ray; R. Schirato; R. G. Van de Water; D. H. White

2005-01-03T23:59:59.000Z

83

Constraining nonstandard neutrino-quark interactions with solar, reactor, and accelerator data  

Science Conference Proceedings (OSTI)

We present a reanalysis of nonstandard neutrino-down-quark interactions of electron and tau neutrinos using solar, reactor, and accelerator data. In addition updating the analysis by including new solar data from SNO phase III and Borexino, as well as new KamLAND data and solar fluxes, a key role is played in our analysis by the combination of these results with the CHARM data. The latter allows us to better constrain the axial and axial-vector electron and tau-neutrino nonstandard interaction parameters characterizing the deviations from the standard model predictions.

Escrihuela, F. J.; Valle, J. W. F. [Instituto de Fisica Corpuscular-C.S.I.C./Universitat de Valencia, Campus de Paterna, Apt 22085, E-46071 Valencia (Spain); Miranda, O. G. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 Mexico, DF (Mexico); Tortola, M. A. [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

2009-11-15T23:59:59.000Z

84

Tau identification at the Tevatron  

SciTech Connect

Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

Levy, Stephen; /Chicago U., EFI

2005-07-01T23:59:59.000Z

85

Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball  

E-Print Network (OSTI)

The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.

Sarira Sahu; Nissim Fraija; Yong-Yeon Keum

2009-09-16T23:59:59.000Z

86

High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs  

E-Print Network (OSTI)

Observations suggest that $\\gamma$-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, $\\ge 10%$, of the fireball energy is expected to be converted by photo-meson production to a burst of $\\sim10^{14} eV$ neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving $\\tau$'s would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

Eli Waxman; John Bahcall

1997-01-30T23:59:59.000Z

87

Measuring neutrino oscillation parameters using $\  

SciTech Connect

MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

Backhouse, Christopher James; /Oxford U.

2011-02-01T23:59:59.000Z

88

Enhanced mu-e conversion in nuclei in the inverse seesaw model  

E-Print Network (OSTI)

We investigate nuclear mu-e conversion in the framework of an effective Lagrangian arising from the inverse seesaw model of neutrino masses. We consider lepton flavour violation interactions that arise from short range (non-photonic) as well as long range (photonic) contributions. Upper bounds for the LFV parameters characterizing mu-e conversion are derived in the inverse seesaw model Lagrangian using the available limits on the mu-e conversion branching ratio, as well as the expected sensitivities of upcoming experiments. We comment on the relative importance of these two types of contributions and their relationship with the measured solar neutrino mixing angle theta_12 and the dependence on theta_13. Finally we show how the LFV mu-e conversion and the mu -> e gamma rates are strongly correlated in this model.

F. Deppisch; T. S. Kosmas; J. W. F. Valle

2005-12-29T23:59:59.000Z

89

A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE  

SciTech Connect

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a {nu}{sub {mu}} beam with an average energy of {approx} 0.8 GeV and an intrinsic {nu}{sub e} content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH{sub 2}, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE {nu}{sub {mu}} charged current quasielastic (CCQE) scattering data. A data set with {approx} 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the {nu}{sub {mu}} and {nu}{sub e} fluxes are derived using the {nu}{sub {mu}} CCQE data set. A Monte Carlo study of a combined {nu}{sub {mu}} disappearance and {nu}{sub e} appearance oscillation fit is presented, which improves the {nu}{sub {mu}} {yields} {nu}{sub e} oscillation sensitivity of MiniBooNE with respect to a {nu}{sub e} appearance-only fit by 1.2-1.5{sigma}, depending on the value of {Delta}m{sup 2}.

Monroe, Jocelyn R.; /Columbia U.

2006-07-01T23:59:59.000Z

90

Cerenkov radiation by neutrinos in a supernova core  

E-Print Network (OSTI)

Neutrinos with a magnetic dipole moment propagating in a medium with a velocity larger than the phase velocity of light emit photons by the Cerenkov process. The Cerenkov radiation is a helicity flip process via which a left-handed neutrino in a supernova core may change into a sterile right-handed one and free-stream out of the core. Assuming that the luminosity of such sterile right-handed neutrinos is less than $10^{53}$ ergs/sec gives an upper bound on the neutrino magnetic dipole moment $\\mu_\

Subhendra Mohanty; Manoj K. Samal

1995-06-21T23:59:59.000Z

91

Search for Lepton Flavour Violating Decays tau- to l- Ks with the BaBar experiment  

SciTech Connect

A search for the lepton flavor violating decays {tau}{sup -} {yields} l{sup -} K{sub S}{sup 0} (l = e or {mu}) has been performed using a data sample corresponding to an integrated luminosity of 469 fb{sup -1}, collected with the BABAR detector at the SLAC PEP-II e{sup +}e{sup -} asymmetric energy collider. No statistically significant signal has been observed in either channel and the estimated upper limits on branching fractions are {Beta}({tau}{sup -} {yields} e{sup -} K{sub S}{sup 0}) < 3.3 x 10{sup -8} and {Beta}({tau}{sup -} {yields} {mu}{sup -}K{sub S}{sup 0}) < 4.0 x 10{sup -8} at 90% confidence level.

Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Karlsruhe U., EKP /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

2009-01-06T23:59:59.000Z

92

Neutrino Beams for Scattering Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Options for Neutrino Scattering Measurements Options for Neutrino Scattering Measurements Draft Skeleton Table Beam Characteristics K2K CERN AD FNAL Debuncher FNAL Booster NuMI LE NuMI ME NuMI HE Peak E(nu) (GeV) X X ~2.5 1 3.5 7.5 13 Maximum E(nu) (GeV) (->1% peak rate) X X 8.9 3 50 50+ 50+ Nu(mu) CC Rate (per ton-year) X 1.4 0 5,000 210,000 1,100,000 2,000,000 Nubar(mu) CC Rate (per ton-year) X 3.4 ~18 (Time Separated) ~360 (Prompt) 1,000 21,000 32,000 20,000 Nu(e) CC Rate (per ton-year) X 0 0 1 2,300 9,500 12,000 Nubar(e) CC Rate (per ton-year) X 0.4 ~18 (Time Separated) 0.5 630 660 600 Flux uncertainty X X 10% 10% 20% 20% 20% QE events / 100 ton-years X 169 nubar(mu) 47 nu(mu) 17 nubar(e) 525 nubar(e) 500,000 nu(mu) 100,000 nu(mu) X X X Floor space (m**2) X X New Hall New Hall 20 x 2.5 20 x 2.5 20 x 2.5 Run Type X X Parasitic Parasitic Parasitic Parasitic Parasitic

93

A Search for the Decay Modes B +/- to h +/- tau l  

SciTech Connect

We present a search for the lepton flavor violating decay modes B{sup {+-}} {yields} h{sup {+-}} {tau}{ell} (h = K, {pi}; {ell} = e, {mu}) using the BABAR data sample, which corresponds to 472 million B{bar B} pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and {ell} candidates, we are able to fully determine the {tau} four-momentum. The resulting {tau} candidate mass is our main discriminant against combinatorial background. We see no evidence for B{sup {+-}} {yields} h{sup {+-}} {tau}{ell} decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10{sup -5}.

Lees, J.P.

2012-07-20T23:59:59.000Z

94

Evidence for an excess of B -> D(*) Tau Nu decays  

E-Print Network (OSTI)

Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.

,

2012-01-01T23:59:59.000Z

95

Evidence for the Decay Sigma+ -> p mu+ mu-  

E-Print Network (OSTI)

We report the first evidence for the decay Sigma+ -> p mu+ mu- from data taken by the HyperCP experiment(E871) at Fermilab. Based on three observed events, the branching ratio is B(Sigma+ -> p,mu+,mu-) = [8.6 +6.6,-5.4(stat) +/-5.5(syst)] x 10**-8. The narrow range of dimuon masses may indicate that the decay proceeds via a neutral intermediate state, Sigma+ -> p P0, P0 -> mu+ mu-, with a P0 mass of 214.3 +/- 0.5 MeV/c**2 and branching ratio B(Sigma+ -> p P0; P0 -> mu+ mu-) = [3.1 +2.4,-1.(stat) +/-1.5(syst)] x 10**-8.

H. K. Park; R. A. Burnstein; A. Chakravorty; Y. C. Chen; W. S. Choong; K. Clark; E. C. Dukes; C. Durandet; J. Felix; Y. Fu; G. Gidal; H. R. Gustafson; T. Holmstrom; M. Huang; C. James; C. M. Jenkins; T. Jones; D. M. Kaplan; L. M. Lederman; N. Leros; M. J. Longo; F. Lopez; L. C. Lu; W. Luebke; K. B. Luk; K. S. Nelson; J. -P. Perroud; D. Rajaram; H. A. Rubin; J. Volk; C. G. White; S. L. White; P. Zyla

2005-01-07T23:59:59.000Z

96

Solar Neutrinos  

E-Print Network (OSTI)

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05T23:59:59.000Z

97

Neutrino Physics: Fundamentals of Neutrino Oscillations  

E-Print Network (OSTI)

In this lecture we review some of the basic properties of neutrinos, in particular their mass and the oscillation behavior. First we discuss how to describe the neutrino mass. Then, under the assumption that neutrinos are massive and mixed, the fundamentals of the neutrino oscillations are discussed with emphasis on subtle aspects which have been overlooked in the past. We then review the terrestrial neutrino oscillation experiments in the framework of three generations of neutrinos with the standard mass hierarchy. Finally, a brief summary of the current status of the solar and atmospheric neutrino problems will be given.

C. W. Kim

1996-07-22T23:59:59.000Z

98

Solar Neutrinos Before and After Neutrino 2004  

E-Print Network (OSTI)

We compare, using a three neutrino analysis, the allowed neutrino oscillation parameters and solar neutrino fluxes determined by the experimental data available Before and After Neutrino 2004. New data available after Neutrino2004 include refined KamLAND and gallium measurements. We use six different approaches to analyzing the KamLAND data. We present detailed results using all the available neutrino and anti-neutrino data for Delta m^2_{12}, tan^2 theta_{12}, sin^2 theta_{13}, and sin^2 eta (sterile fraction). Using the same complete data sets, we also present Before and After determinations of all the solar neutrino fluxes, which are treated as free parameters, an upper limit to the luminosity fraction associated with CNO neutrinos, and the predicted rate for a 7Be solar neutrino experiment. The 1 sigma (3 sigma) allowed range of Delta m^2_{21} = (8.2 +- 0.3) (^+1.0_-0.8)times 10^{-5} eV^2 is decreased by a factor of 1.7 (5), but the allowed ranges of all other neutrino oscillation parameters and neutrino fluxes are not significantly changed. Maximal mixing is disfavored at 5.8 sigma and the bound on the mixing angle theta_{13} is slightly improved to sin^2 theta_{13}reactor anti-neutrino oscillation parameters with neutrino oscillation parameters. We also show that the recent data disfavor at 91 % CL a proposed non-standard interaction description of solar neutrino oscillations.

John N. Bahcall; M. C. Gonzalez-Garcia; Carlos Pena-Garay

2004-06-28T23:59:59.000Z

99

Higgs quadruplet for the type III seesaw model and implications for {mu}{yields}e{gamma} and {mu}-e conversion  

SciTech Connect

In the type III seesaw model, the heavy neutrinos are contained in leptonic triplet representations. The Yukawa couplings of the triplet fermion and the left-handed neutrinos with the doublet Higgs field produce the Dirac mass terms. Together with the Majorana masses for the leptonic triplets, the light neutrinos obtain nonzero seesaw masses. We point out that it is also possible to have a quadruplet Higgs field to produce the Dirac mass terms to facilitate the seesaw mechanism. The vacuum expectation value of the quadruplet Higgs is constrained to be small by electroweak precision data. Therefore, the Yukawa couplings of a quadruplet can be much larger than those for a doublet. We also find that unlike the usual type III seesaw model where at least two copies of leptonic triplets are needed, with both doublet and quadruplet Higgs representations, just one leptonic triplet is possible to have a phenomenologically acceptable model because light neutrino masses can receive sizable contributions at both tree and one-loop levels. Large Yukawa couplings of the quadruplet can induce observable effects for lepton flavor violating processes {mu}{yields}e{gamma} and {mu}-e conversion. Implications of the recent {mu}{yields}e{gamma} limit from MEG and the limit on {mu}-e conversion on Au are also given. Some interesting collider signatures for the doubly charged Higgs boson in the quadruplet are discussed.

Ren Bo [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Tsumura, Koji [Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China); He Xiaogang [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China)

2011-10-01T23:59:59.000Z

100

Searches for New Physics at MiniBooNE: Sterile Neutrinos and Mixing Freedom  

SciTech Connect

The MiniBooNE experiment was designed to perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations in a region of {Delta}m{sup 2} and sin{sup 2} 2{theta} very different from that allowed by standard, three-neutrino oscillations, as determined by solar and atmospheric neutrino experiments. This search was motivated by the LSND experimental observation of an excess of {bar {nu}}{sub e} events in a {bar {nu}}{sub {mu}} beam which was found compatible with two-neutrino oscillations at {Delta}m{sup 2} {approx} 1 eV{sup 2} and sin{sup 2} 2{theta} < 1%. If confirmed, such oscillation signature could be attributed to the existence of a light, mostly-sterile neutrino, containing small admixtures of weak neutrino eigenstates. In addition to a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, MiniBooNE has also performed a search for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations, which provides a test of the LSND two-neutrino oscillation interpretation that is independent of CP or CPT violation assumptions. This dissertation presents the MiniBooNE {nu}{sub {mu}} {yields} {nu}{sub e} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} analyses and results, with emphasis on the latter. While the neutrino search excludes the two-neutrino oscillation interpretation of LSND at 98% C.L., the antineutrino search shows an excess of events which is in agreement with the two-neutrino {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation interpretation of LSND, and excludes the no oscillations hypothesis at 96% C.L. Even though the neutrino and antineutrino oscillation results from MiniBooNE disagree under the single sterile neutrino oscillation hypothesis, a simple extension to the model to include additional sterile neutrino states and the possibility of CP violation allows for differences between neutrino and antineutrino oscillation signatures. In view of that, the viability of oscillation models with one or two sterile neutrinos is investigated in global fits to MiniBooNE and LSND data, with and without constraints from other oscillation experiments with similar sensitivities to those models. A general search for new physics scenarios which would lead to effective non-unitarity of the standard 3 x 3 neutrino mixing matrix, or mixing freedom, is also performed using neutrino and antineutrino data available from MiniBooNE.

Karagiorgi, Georgia S.; /MIT

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

TAU Solar SL | Open Energy Information  

Open Energy Info (EERE)

Solar SL Jump to: navigation, search Name TAU Solar SL Place Madrid, Spain Zip 28043 Product Spanish PV project developer. References TAU Solar SL1 LinkedIn Connections...

102

Neutrino Magnetic Moments, Flavor Mixing, and the Super-Kamiokande Solar Data  

Science Conference Proceedings (OSTI)

We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For Mikheyev-Smirnov-Wolfenstein mixing, these cases are again obtained, though the effective moments can depend on the neutrino energy. Thus, e.g., the magnetic moments measured with {nu}(bar sign){sub e} from a reactor and {nu}{sub e} from the Sun could be different. With minimal assumptions, we find a new limit on {mu}{sub {nu}} using the 825-d Super-Kamiokande solar neutrino data: |{mu}{sub {nu}}|{<=}1.5x10{sup -} {sup 10}{mu}{sub B} at 90% CL, comparable to the existing reactor limit. (c) 1999 The American Physical Society.

Beacom, J. F.; Vogel, P.

1999-12-20T23:59:59.000Z

103

Tau Trigger at the ATLAS Experiment  

Science Conference Proceedings (OSTI)

Many theoretical models, like the Standard Model or SUSY at large tan({beta}), predict Higgs bosons or new particles which decay more abundantly to final states including tau leptons than to other leptons. At the energy scale of the LHC, the identification of tau leptons, in particular in the hadronic decay mode, will be a challenging task due to an overwhelming QCD background which gives rise to jets of particles that can be hard to distinguish from hadronic tau decays. Equipped with excellent tracking and calorimetry, the ATLAS experiment has developed tau identification tools capable of working at the trigger level. This contribution presents tau trigger algorithms which exploit the main features of hadronic tau decays and describes the current tau trigger commissioning activities. Many of the SM processes being investigated at ATLAS, as well as numerous BSM searches, contain tau leptons in their final states. Being able to trigger effectively on the tau leptons in these events will contribute to the success of the ATLAS experiment. The tau trigger algorithms and monitoring infrastructure are ready for the first data, and are being tested with the data collected with cosmic muons. The development of efficiency measurements methods using QCD and Z {yields} {tau}{tau} events is well advanced.

Benslama, K.; Kalinowski, A.; /Regina U.; Belanger-Champange, C.; Brenner, R.; /Uppsala U.; Bosman, M.; Casado, P.; Osuna, C.; Perez, E.; Vorwerk, V.; /Barcelona, IFAE; Czyczula, Z.; Dam, M.; Xella, S.; /Copenhagen U.; Demers, S.; /SLAC; Farrington, S.; /Oxford U.; Igonkina, O.; /NIKHEF, Amsterdam; Kanaya, N.; Tsuno, S.; /Tokyo U.; Ptacek, E.; Reinsch, A.; Strom, David M.; Torrence, E.; /Oregon U. /Sydney U. /Lancaster U. /Birmingham U.

2011-11-09T23:59:59.000Z

104

Tau Physics 2006: Summary & Outlook  

E-Print Network (OSTI)

A large amount of new results have been presented at TAU2006. The highlights of the workshop, the present status of a few selected topics on lepton physics (universality, QCD tests, Vus determination from ? decay, g ? 2, ? oscillations, lepton-flavour violation) and the prospects for future improvements are briefly summarized. 1.

A. Pich A

2007-01-01T23:59:59.000Z

105

A search for muon neutrino and antineutrino disappearance in the Booster Neutrino Beam  

SciTech Connect

This dissertation presents a search for {mu}{sub {nu}} and {bar {mu}{sub {nu}}} disappearance with the MiniBooNE experiment in the {Delta}m{sup 2} region of a few eV{sup 2}. Disappearance measurements in this oscillation region constrain sterile neutrino models and CPT violation in the lepton sector. Fits to the shape of the {mu}{sub {nu}} and {bar {mu}{sub {nu}}} energy spectra reveal no evidence for disappearance in either mode. This is the first test of {bar {mu}{sub {nu}}} disappearance between {Delta}m{sup 2} = 0:1 -- 10 eV2. In addition, prospects for performing a joint analysis using the SciBooNE detector in conjunction with MiniBooNE are discussed.

Mahn, Kendall Brianna McConnel; /Columbia U.

2009-04-01T23:59:59.000Z

106

Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutrinos' Instant Identity Changes Could Mean Big Things for the Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang July 11, 2011 - 12:23pm Addthis Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. | Courtesy of Fermilab, photo by Peter Ginter Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. | Courtesy of Fermilab, photo by Peter Ginter Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers at Fermilab have been studying neutrinos and how they might change, or oscillate, between their three different identities -- electron, muon and tau.

107

Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism  

Science Conference Proceedings (OSTI)

We study LHC signatures of the type III seesaw mechanism in which SU(2){sub L} triplet leptons are introduced to supply the heavy seesaw masses. To detect the signals of these heavy triplet leptons, one needs to understand their decays to standard model particles which depend on how light and heavy leptons mix with each other. We concentrate on the usual solutions with small light and heavy lepton mixing of the order of the square root of the ratio of light and heavy masses, (m{sub {nu}}/M{sub {nu}}{sub {sub R}}){sup 1/2}. This class of solutions can lead to a visible displaced vertex detectable at the LHC which can be used to distinguish small mixing and large mixing between light and heavy leptons. We show that, in this case, the couplings of light and heavy triplet leptons to gauge and Higgs bosons, which determine the decay widths and branching ratios, can be expressed in terms of light neutrino masses and their mixing. Using these relations, we study heavy triplet lepton decay patterns and production cross section at the LHC. If these heavy triplet leptons are below a TeV or so, they can be easily produced at the LHC due to their gauge interactions from being nontrivial representations of SU(2){sub L}. We consider two ideal production channels, (1) E{sup +}E{sup -}{yields}l{sup +}l{sup +}l{sup -}l{sup -}jj (l=e, {mu}, {tau}) and (2) E{sup {+-}}N{yields}l{sup {+-}}l{sup {+-}}jjjj in detail. For case 1, we find that with one or two of the light leptons being {tau} it can also be effectively studied. With judicious cuts at the LHC, the discovery of the heavy triplet leptons as high as a TeV can be achieved with 100 fb{sup -1} integrated luminosity.

Li Tong [Center for High Energy Physics, Peking University, Beijing, 100871 (China); He Xiaogang [Center for High Energy Physics, Peking University, Beijing, 100871 (China); Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China)

2009-11-01T23:59:59.000Z

108

A phenomenological outlook on three-flavor atmospheric neutrino oscillations  

E-Print Network (OSTI)

The recent observations of atmospheric nu events from the Super-Kamiokande experiment are compatible with three-flavor neutrino oscillations, occurring dominantly in the nu_munu_tau channel and subdominantly in the nu_munu_e channel. We present an updated analysis of the three-flavor mass-mixing parameters consistent with the present phenomenology, including the latest 45 kTy data sample from Super-Kamiokande. A comparison with our previous results, based on 33 kTy data, shows that the oscillation evidence is strengthened, and that the neutrino mass-mixing parameters are constrained in smaller ranges.

G. L. Fogli; E. Lisi; A. Marrone; G. Scioscia

1999-04-27T23:59:59.000Z

109

Atmospheric neutrinos: phenomenological summary and outlook  

E-Print Network (OSTI)

The predictions of the atmospheric nu event rates are affected by significant uncertainties, however the evidence for the `disappearance' of nu_mu's and nubar_mu's obtained by SK (and other underground detectors) is robust and cannot be accounted in the framework of the minimum standard model without assuming very large ad hoc experimental systematic effects. The existence of `new physics' beyond the standard model is therefore close to be established; neutrino oscillations provide a very good fit to all data. The theoretical uncertainties do have an important role in the detailed interpretation of the data, and in the estimate of oscillation parameters.

Paolo Lipari

1999-04-23T23:59:59.000Z

110

Study of Bs->mu+mu- in CMS  

E-Print Network (OSTI)

We present a Monte Carlo simulation study of measuring the rare leptonic decay Bs->mu+mu- with the CMS experiment at the LHC. The study is based on a full detector simulation for signal and background events. We discuss the high-level trigger algorithm and the offline event selection.

Urs Langenegger

2006-10-13T23:59:59.000Z

111

Reaction $nu$d $Yields$ $mu$$sup -$pp/sub s/  

SciTech Connect

After making the usual model assumptions, the shape of the dsigma/dQ$sup 2$ distribution and the energy dependence and magnitude of the cross section were fit in order to determine the shape of the form factors for the reaction $nu$d $Yields$ $mu$$sup -$pp. It is noted that one can also test the CVC hypothesis. The cross section is shown as a function of neutrino energy for the $nu$n $Yields$ $mu$$sup -$p reaction. Also shown is the Q$sup 2$ dependence of the $nu$n $Yields$ $mu$$sup -$p events. (JFP)

Barish, S.J.; Derrick, M.; Hyman, L.; Musgrave, B.; Schreiner, P.; Singer, R.; Barnes, V.; Carmony, D.; Garfinkel, A.

1975-01-01T23:59:59.000Z

112

Solar Neutrinos in 2011  

E-Print Network (OSTI)

I give an overview of the recent developments in the solar neutrino field. I focus on the Borexino detector, which has uncovered the solar neutrino spectrum below 5 MeV, providing new tests and confirmation for solar neutrino oscillations. I report on the updated measurements of the 8B solar neutrino flux by water Cherenkov and organic scintillator detectors. I review the precision measurement of the 7Be solar neutrino flux by Borexino and the search for its day-night asymmetry. I present Borexino's latest result on the study of pep and CNO neutrinos. Finally, I discuss the outstanding questions in the field and future solar neutrino experiments.

Chavarria, Alvaro

2012-01-01T23:59:59.000Z

113

Light sterile neutrinos, spin flavour precession and the solar neutrino experiments  

E-Print Network (OSTI)

We generalize to three active flavours a previous two flavour model for the resonant spin flavour conversion of solar neutrinos to sterile ones, a mechanism which is added to the well known LMA one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavour suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high energy neutrinos, namely the $^8 B$ flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundance from other experiments will be most important.

C. R. Das; Joao Pulido; Marco Picariello

2009-02-09T23:59:59.000Z

114

IDR Neutrino Factory Front End and Variations  

Science Conference Proceedings (OSTI)

The International Design Report (IDR) neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of {mu}'s produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. Optimization and variations are discussed. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport.

Neuffer, D.; /Fermilab; Alekou, A.; /Imperial Coll., London; Rogers, C.; /Rutherford; Snopok, P.; /IIT, Chicago; Yoshikawa, C.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

115

Observation of Tau Decays with Two Neutral Kaons  

E-Print Network (OSTI)

We report on the observation of the decay \\Gamma ! K 0 K 0 \\Gamma in 3.11 fb \\Gamma1 of data taken with the CLEO II detector at the Cornell Electron Storage Ring. Both K 0 mesons are detected through their decays via K S ! + \\Gamma . Preliminary results on the branching fraction and on the resonant substructure are presented. In particular, we find B( \\Gamma ! K 0 K 0 \\Gamma ) = 0:083 \\Sigma 0:017 \\Sigma 0:017 %. We also comment on the sensitivity of the KK invariant mass spectrum to a non-zero tau-neutrino mass. Permanent address: University of Hawaii at Manoa y Permanent address: INP, Novosibirsk, Russia 2 I. INTRODUCTION Tau lepton decays of the type \\Gamma ! [KK] \\Gamma have been known to exist [1] for nearly a decade. However, due to the small decay width and difficulties associated with identifying kaons, little information is presently available for these decays. In this paper, we report on the observation of KK decays where both...

Balest Cho Ford; Ichep Ref; Gsl Cleo Conf; K. Cho; K. Lingel; M. Lohner; P. Rankin

1994-01-01T23:59:59.000Z

116

A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam  

SciTech Connect

In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to {approx}3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the world best sensitivity for the {nu}{sub {mu}} disappearance at 0.5 < {Delta}m{sup 2} < 30 (eV{sup 2}). We found no significant oscillation signal, and set one of the world strongest limits for the sterile neutrino models.

Nakajima, Yasuhiro; /Kyoto U.

2011-01-01T23:59:59.000Z

117

A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam  

SciTech Connect

In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to {approx}3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the world best sensitivity for the {nu}{sub {mu}} disappearance at 0.5 < {Delta}m{sup 2} < 30 (eV{sup 2}). We found no significant oscillation signal, and set one of the world strongest limits for the sterile neutrino models.

Nakajima, Yasuhiro; /Kyoto U.

2011-01-01T23:59:59.000Z

118

STANDARD SOLAR NEUTRINOS  

E-Print Network (OSTI)

The predictions of an improved standard solar model are compared with the observations of the four solar neutrino experiments. The improved model includes premain sequence evolution, element diffusion, partial ionization effects, and all the possible nuclear reactions between the main elements. It uses updated values for the initial solar element abundances, the solar age, the solar luminosity, the nuclear reaction rates and the radiative opacities. Neither nuclear equilibrium, nor complete ionization are assumed. The calculated 8 B solar neutrino flux is consistent, within the theoretical and experimental uncertainties, with the solar neutrino flux measured by Kamiokande. The results from the 37 Cl and 71 Ga radiochemical experiments seem to suggest that the terrestrial 7 Be solar neutrino flux is much smaller than that predicted. However, the present terrestrial “defecit ” of 7 Be solar neutrinos may be due to the use of inaccurate theoretical neutrino absorption cross sections near threshold for extracting solar neutrino fluxes from production rates. Conclusive evidence for a real deficit of 7 Be solar neutrinos will require experiments such as BOREXINO or HELLAZ. A real defecit of 7 Be solar neutrinos can be due to either astrophysical reasons or neutrino properties beyond the standard electroweak model. Only future neutrino experiments, such as SNO, Superkamiokande, BOREXINO and HELLAZ, will be able to provide conclusive evidence that the solar neutrino problem is a consequence of neutrino properties beyond the standard electroweak model. Earlier indications may be provided by long baseline neutrino oscillation experiments. 1

Arnon Dar

2008-01-01T23:59:59.000Z

119

Electric dipole moments, from e to tau  

E-Print Network (OSTI)

We derive an upper limit on the electric dipole moment (EDM) of the tau-lepton, which follows from the precision measurements of the electron EDM.

Grozin, A G; Rudenko, A S

2008-01-01T23:59:59.000Z

120

B to tau Leptonic and Semileptonic Decays  

Science Conference Proceedings (OSTI)

Decays of B mesons to states involving {tau} leptons can be used as a tool to search for the effects of new physics, such as those involving a charged Higgs boson. The experimental status of the decays B {yields} {tau}{nu} and B {yields} D{sup (*)}{tau}{nu} is discussed, together with limits on new physics effects from current results. Leptonic and semileptonic decays of B mesons into states involving {tau} leptons remain experimentally challenging, but can prove a useful tool for constraining Standard Model parameters, and also offer to constrain the effects of any new physics that may exist including the presence of a charged Higgs boson.

Barrett, M.; /Brunel U.

2011-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Spin flip of neutrinos with magnetic moment in core-collapse supernova  

Science Conference Proceedings (OSTI)

Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to {mu}{sub {nu}Dirac} = 10{sup -13{mu}}{sub B} in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if {mu}{sub {nu}Majorana} {>=} 10{sup -12{mu}}{sub B}. This may lead to various consequences for supernova physics.

Lychkovskiy, O. V., E-mail: lychkovskiy@itep.ru; Blinnikov, S. I. [Institute for Theoretical and Experimental Physics (Russian Federation)

2010-04-15T23:59:59.000Z

122

K+ -> pi+ mu+ mu- in E865 at BNL  

E-Print Network (OSTI)

Preliminary values for the K+ -> pi+ mu+ mu- branching ratio and form factor are reported, based on 400 events, a factor of 2 more in total events and 100 times the present world sample of fully reconstructed events. The results are consistent with previous results on the pi+ e+ e- mode. However, the relatively large slope of the form factor in q^2, lambda = 0.182+/-0.01+/-0.007, required to fit the pi+ e+ e- data and to give consistency between the pi+ e+ e- and pi+ mu+ mu- branching ratios, is larger than expected in simple models of the decays. The K+ -> pi+ mu+ mu- branching ratio we find, (9.23 +/- 0.6 stat +/- 0.58 syst)x10^-8, is the most precise measurement of this mode and is approximately 3.2 sigma larger than the previous measurement. These pi+ l+ l- results are inconsistent with O(p^4) Chiral Perturbation Theory but compatible with O(p^6). Systematic studies for both modes are still in progress.

Julia A. Thompson

1999-04-25T23:59:59.000Z

123

Neutrino mass, a status report  

SciTech Connect

Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

Robertson, R.G.H.

1993-08-01T23:59:59.000Z

124

Experimental Neutrino Physics: Final Report  

Science Conference Proceedings (OSTI)

Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

Lane, Charles E.; Maricic, Jelena

2012-09-05T23:59:59.000Z

125

Neutrino Propagation in a Strongly Magnetized Medium  

E-Print Network (OSTI)

We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit ($M_{W}\\gg \\sqrt{B}\\gg m_{e},T,\\mu ,| \\mathbf{p}| $) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong $B\\gg T^{2}$ and weakly-strong $B \\gtrsim T^{2}$ fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.

E. Elizalde; E. J. Ferrer; V. de la Incera

2004-04-26T23:59:59.000Z

126

Neutrino Nucleosynthesis in Supernovae  

Science Conference Proceedings (OSTI)

Neutrino nucleosynthesis is an important synthesis process for light elements in supernovae. One important physics input of neutrino nucleosynthesis is cross sections of neutrino-nucleus reactions. The cross sections of neutrino-{sup 12}C and {sup 4}He reactions are derived using new shell model Hamiltonians. With the new cross sections, light element synthesis of a supernova is investigated. The appropriate range of the neutrino temperature for supernovae is constrained to be between 4.3 MeV and 6.5 MeV from the {sup 11}B abundance in Galactic chemical evolution. Effects by neutrino oscillations are also discussed.

Yoshida, Takashi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Suzuki, Toshio [Department of Physics, College of Humanities and Sciences, Nihon University (Japan); Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Kajino, Toshitaka [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo (Japan); Yokomakura, Hidekazu; Kimura, Keiichi [Department of Physics, Graduate School of Science, Nagoya University (Japan); Takamura, Akira [Department of Mathematics, Toyota National College of Technology (Japan); Hartmann, Dieter H. [Department of Physics and Astronomy, Clemson University (United States)

2009-05-04T23:59:59.000Z

127

First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section  

SciTech Connect

Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

Katori, Teppei; /MIT, LNS

2009-09-01T23:59:59.000Z

128

Measurement of the nu(mu)-CCQE cross-section in the SciBooNE experiment  

SciTech Connect

SciBooNE is a neutrino and anti-neutrino cross-section experiment at Fermilab, USA. The SciBooNE experiment is summarized and two independent CCQE analyses are described. For one of the analyses, an absolute {nu}{sub {mu}}-CCQE cross section in the neutrino energy region (0.6-1.6) GeV is shown and the technique developed for such a purpose is also explained. The total cross section measured over this energy range agrees well with expectations, based on the NEUT event generator and using a value of 1.21 GeV for the CCQE axial mass.

Alcaraz-Aunion, Jose Luis; /Barcelona, IFAE; Walding, Joseph; /Imperial Coll., London

2009-09-01T23:59:59.000Z

129

Selected Topics in Tau Physics from BaBar  

SciTech Connect

Selected results from {tau} analyses performed using the BABAR detector at the SLAC National Accelerator Laboratory are presented. A precise measurement of the {tau} mass and the {tau}{sup +}{tau}{sup -} mass difference is undertaken using the hadronic decay mode {tau}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}{nu}{sub {tau}}. In addition an investigation into the strange decay modes {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{pi}{sup 0}{nu}{sub {tau}} and {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{nu}{sub {tau}} is also presented, including a fit to the {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{nu}{sub {tau}} invariant mass spectrum. Precise values for M(K*(892)) and {Lambda}(K*(892)) are obtained.

Paramesvaran, S.; /Royal Holloway, U. of London

2012-04-06T23:59:59.000Z

130

Neutrino oscillations, global analysis and theta(13)  

E-Print Network (OSTI)

At the previous Venice meeting NO-VE 2008, we discussed possible hints in favor of a nonzero value for the unknown neutrino mixing angle theta(13), emerging from the combination of solar and long-baseline reactor data, as well as from the combination of atmospheric, CHOOZ and long-baseline accelerator nu_mu->nu_mu data. Recent MINOS 2009 results in the nu_mu->nu_e appearance channel also seem to support such hints. A combination of all current oscillation data provides, as preferred range, sin^2 theta(13) = 0.02 +- 0.01 (1\\sigma). We review several issues raised by such hints in the last year, and comment on their possible near-future improvements and tests.

G. L. Fogli; E. Lisi; A. Marrone; A. Palazzo; A. M. Rotunno

2009-05-21T23:59:59.000Z

131

BNL | Neutrino Research History  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Neutrino Research Brookhaven Neutrino Research image of neutrinos Tens of billions of neutrinos are passing through every square centimeter of the Earth's surface right now. A Ghost-Particle Retrospective Neutrinos, ghostlike particles that flooded the universe just moments after the Big Bang, are born in the hearts of stars and other nuclear reactions. Untouched by electromagnetism and nearly as fast as light, neutrinos pass practically unhindered through everything from planets to people, only rarely responding to the weak nuclear force and the even weaker gravity. In fact, at any given moment, tens of billions of neutrinos are passing through every square centimeter of the Earth's surface. Neutrino Research News photomultiplier tubes New Results from Daya Bay: Tracking the Disappearance of Ghostlike

132

Outlook on Neutrino Physics  

E-Print Network (OSTI)

Some of the hot topics in neutrino physics are discussed, with particular emphasis on neutrino oscillations. After proposing credibility criteria for assessing various claimed effects, particular stress is laid on the solar neutrino deficit, which seems unlikely to have an astrophysical explanation. Comments are also made on the possibility of atmospheric neutrino oscillations and on the LSND experiment, as well as cosmological aspects of neutrinos and neutralinos. Several of the central issues in neutrino physics may be resolved by the new generation of experiments now underway, such as CHORUS, NOMAD and Superkamiokande, and in preparation, such as SNO and a new round of accelerator- and reactor-based neutrino-oscillation experiments. At the end, there is a brief review of ways in which present and future CERN experiments may be able to contribute to answering outstanding questions in neutrino physics.

John Ellis

1996-11-29T23:59:59.000Z

133

Neutrino Oscillation Physics  

Science Conference Proceedings (OSTI)

To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

Kayser, Boris

2012-06-01T23:59:59.000Z

134

Introduction to Neutrino Physics  

SciTech Connect

I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

Linares, Edgar Casimiro [Division de Ciencias e Ingenierias Campus Leon, Loma del Bosque 103 Col. Lomas del Campestre, C.P. 37150 Leon (Mexico) and Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Av. Complutense, 22, C.P. 28040, Madrid (Spain)

2009-04-30T23:59:59.000Z

135

Fundamental neutrino experiments  

E-Print Network (OSTI)

We review fundamental open problems in neutrino physics and propose two basic experiments for their possible resolution.

Ruggero Maria Santilli

2006-11-06T23:59:59.000Z

136

Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts  

E-Print Network (OSTI)

In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

Reetanjali Moharana; Nayantara Gupta

2011-07-22T23:59:59.000Z

137

Solar neutrino oscillations  

Science Conference Proceedings (OSTI)

The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena.

Haxton, W.C.

1993-12-31T23:59:59.000Z

138

Nucleosynthesis and Neutrinos  

SciTech Connect

Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

Kajino, Toshitaka [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-05-06T23:59:59.000Z

139

PANCHROMATIC OBSERVATIONS AND MODELING OF THE HV TAU C EDGE-ON DISK  

SciTech Connect

We present new high spatial resolution ({approx}<0.''1) 1-5 {mu}m adaptive optics images, interferometric 1.3 mm continuum and {sup 12}CO 2-1 maps, and 350 {mu}m, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images unambiguously demonstrate that HV Tau AB-C is a common proper motion pair. They further reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 {mu}m, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of two years. We further detect a radial velocity gradient in the disk in our {sup 12}CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around a 0.5-1 M{sub sun} central star, suggesting that it could be the most massive component in the triple system. To obtain a global representation of the HV Tau C disk, we search for a model that self-consistently reproduces observations of the disk from the visible regime up to millimeter wavelengths. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. While both grain growth and stratification have already been suggested in many disks, only a panchromatic analysis, such as presented here, can provide a complete picture of the structure of a disk, a necessary step toward quantitatively testing the predictions of numerical models of disk evolution.

Duchene, G.; Maness, H. L. [Astronomy Department, University of California, Berkeley, CA 94720-3411 (United States); McCabe, C. [IPAC, MS 220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Pinte, C.; Menard, F.; Duvert, G. [Universite Joseph Fourier - Grenoble 1/CNRS, Laboratoire d'Astrophysique de Grenoble (LAOG) UMR 5571, BP 53, 38041 Grenoble Cedex 09 (France); Stapelfeldt, K. R. [JPL, MS 183-900, California Institute of Technology, Pasadena, CA 91109-8099 (United States); Ghez, A. M. [Division of Astronomy and Astrophysics, UCLA, Box 951547, Los Angeles, CA 90095-1562 (United States); Bouy, H. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 - La Laguna, Tenerife (Spain); Barrado y Navascues, D.; Morales-Calderon, M. [Laboratorio de Astrofisica Estelar y Exoplanetas (LAEX-CAB, INTA-CSIC), P.O. Box 78, 28691 Villanueva de la Canada (Madrid) (Spain); Wolf, S. [Christian-Albrechts-Universitaet zu Kiel, Institut fuer Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel (Germany); Padgett, D. L.; Brooke, T. Y.; Noriega-Crespo, A., E-mail: gduchene@astro.berkeley.ed [SSC, MS 220-6, California Institute of Technology, Pasadena, CA 91125 (United States)

2010-03-20T23:59:59.000Z

140

Scalar neutrinos at the LHC  

Science Conference Proceedings (OSTI)

We study a softly broken supersymmetric model whose gauge symmetry is that of the standard model gauge group times an extra Abelian symmetry U(1){sup '}. We call this gauge-extended model the U(1){sup '} model, and we study a U(1){sup '} model with a secluded sector such that neutrinos acquire Dirac masses via higher-dimensional terms allowed by the U(1){sup '} invariance. In this model the {mu} term of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly cancellation, and extra singlet bosons for achieving correct Z{sup '}/Z mass hierarchy. The neutrinos are charged under U(1){sup '}, and thus, their production and decay channels differ from those in the MSSM in strength and topology. We implement the model into standard packages and perform a detailed analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios, concentrating on three types of signals: (1) 0l+MET, (2) 2l+MET, and (3) 4l+MET. We compare the results with those of the MSSM whenever possible, and analyze the standard model background for each signal. The sneutrino production and decays provide clear signatures enabling distinction of the U(1){sup '} model from the MSSM at the LHC.

Demir, Durmus A. [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir, Turkey, (Turkey); Frank, Mariana [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, Canada H4B 1R6, (Canada); Selbuz, Levent [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir, Turkey, (Turkey); Department of Engineering Physics, Ankara University, TR06100 Ankara (Turkey); Turan, Ismail [Ottawa-Carleton Institute of Physics, Carleton University, 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada)

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Recent Results on Muon Capture for a Neutrino Factory and Muon Collider  

SciTech Connect

Scenarios for capture, bunching and phase-energy rotation of {mu}'s from a proton source have been developed. The goal is capture of a maximal number of muons in a string of rf bunches with applications in neutrino factories and {mu}{sup +}-{mu}{sup -} colliders. In this note we begin with the bunching, phase rotation and cooling scenario used in neutrino factory study 2B and adapted by R. Palmer as the initial stage of a {mu}{sup +}-{mu}{sup -} collider scenario. However the scenario produces a relatively large number of bunches that must be recombined for maximal collider luminosity. In this paper we modify the scenario to obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both n-factory and collider scenarios. We describe these examples and consider some variations toward an optimal {nu}-factory + collider scenario.

Neuffer, David; /Fermilab

2008-01-01T23:59:59.000Z

142

Neutrino Propagation in a Strongly Magnetized Medium  

E-Print Network (OSTI)

We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit ($M_{W}\\gg \\sqrt{B}\\gg m_{e},T,\\mu ,| \\mathbf{p}| $) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong $B\\gg T^{2}$ and weakly-strong $B \\gtrsim T^{2}$ fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a magnetic-field neutrino-induced-magnetic-moment interaction term, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For str...

Elizalde, E; De la Incera, V

2004-01-01T23:59:59.000Z

143

New Results from MiniBooNE Charged-Current Quasi-Elastic Anti-Neutrino Data  

SciTech Connect

MiniBooNE anti-neutrino charged-current quasi-elastic (CCQE) data is compared to model predictions. The main background of neutrino-induced events is examined first, where three independent techniques are employed. Results indicate the neutrino flux is consistent with a uniform reduction of {approx}20% relative to the largely uncertain prediction. After background subtraction, the Q{sup 2} shape of {bar v}{sub {mu}} CCQE events is consistent with the model parameter MA = 1.35 GeV determined from MiniBooNE v{sub {mu}} CCQE data, while the normalization is {approx} 20% high compared to the same prediction.

Grange, Joseph

2011-07-01T23:59:59.000Z

144

Evidence for an excess of B to D(*) Tau Nu decays  

SciTech Connect

Based on the full BABAR data sample, we report improved measurements of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)} {tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)} {ell}{sup -}{bar {nu}}{sub {ell}}), where {ell} is either e or {mu}. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, which exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, our results disagree with these expectations at the 3.4{sigma} level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay {bar B} {yields} D{tau}{sup -} {bar {nu}}{sub {tau}}, with a significance of 6.8{sigma}.

Lees, J.P.; Poireau, V.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Palano, A.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, B.; /Bergen U.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; So, R.Y.; /British Columbia U.; Khan, A.; /Brunel U.; Blinov, V.E.; /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U.; /more authors..

2012-10-09T23:59:59.000Z

145

Electronic branching ratio of the. tau. lepton  

Science Conference Proceedings (OSTI)

Using data accumulated by the CLEO I detector operating at the Cornell Electron Storage Ring, we have measured the ratio {ital R}={Gamma}({tau}{r arrow}{ital e}{bar {nu}}{sub {ital e}}{nu}{sub {tau}})/{Gamma}{sub 1}, where {Gamma}{sub 1} is the {tau} decay rate to final states with one charged particle. We find {ital R}=0.2231{plus minus}0.0044{plus minus}0.0073 where the first error is statistical and the second is systematic. Together with the measured topological one-charged-particle branching fraction, this yields the branching fraction of the {tau} lepton to electrons, {ital B}{sub {ital e}}=0.192{plus minus}0.004{plus minus}0.006.

Ammar, R.; Baringer, P.; Coppage, D.; Davis, R.; Kelly, M.; Kwak, N.; Lam, H.; Ro, S.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Perticone, D.; Poling, R.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; Romero, V.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Sung, M.K.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Skubic, P.; Snow, J.; Wang, P.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miller, D.H.; Modesitt, M.; Shibata, E.I.; Schaffner, S.F.; Shipsey, I.P.J.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.; Stroynowski, R.; Artuso, M.; Goldberg, M.; Haupt, T.; Horwitz, N.; Kennett, R.; Moneti, G.C.; Playfer, S.; Rozen, Y.; Rubin, P.; Skwarnicki, T.; Stone, S.; Thulasidas, M.; Yao, W.; Zhu, G.; Barnes, A.V.; Bartelt, J.; Csorna, S.E.; Jain, V.; Letson, T.; Mestayer, M.D.; Akerib, D.S.; Barish, B.; Chadha, M.; (CLEO Collaboration)

1992-06-01T23:59:59.000Z

146

Search for Electron Neutrino Appearance in MINOS  

Science Conference Proceedings (OSTI)

The MINOS Collaboration continues its search for {nu}{sub e} appearance in the NuMI (Neutrinos at the Main Injector) beam at Fermilab. Neutrinos in the beam interact in the Near Detector, located 1 km from the beam source, allowing us to characterize the backgrounds present in our analysis. In particular, we can estimate the number of {nu}{sub e} candidate events we expect to see in the Far Detector (735 km away, in the Soudan mine in northern Minnesota) in the presence or absence of {nu}{sub {mu}} {yields} {nu}{sub e} oscillation. Recent efforts to improve the sensitivity of the analysis, including upgrades to the event identification algorithm and fitting procedure, are discussed, and the latest results from the search are presented.

Orchanian, Mhair; /Caltech

2011-09-01T23:59:59.000Z

147

Search for global f-modes and p-modes in the 8B neutrino flux  

E-Print Network (OSTI)

The impact of global acoustic modes on the 8B neutrino flux time series is computed for the first time. It is shown that the time fluctuations of the 8B neutrino flux depend on the amplitude of acoustic eigenfunctions in the region where the 8B neutrino flux is produced: modes with low n (or order) that have eigenfunctions with a relatively large amplitude in the Sun's core, strongly affect the neutrino flux; conversely, modes with high n that have eigenfunctions with a minimal amplitude in the Sun's core have a very small impact on the neutrino flux. It was found that the global modes with a larger impact on the 8B neutrino flux have a frequency of oscillation in the interval 250 \\mu Hz to 500 \\mu Hz (or a period in the interval 30 minutes to 70 minutes), such as the f-modes (n=0) for the low degrees, radial modes of order n smaller or equal to 3, and the dipole mode of order n=1. Their corresponding neutrino eigenfunctions are very sensitive to the solar inner core and are unaffected by the variability of the external layers of the solar surface. If time variability of neutrinos is observed for these modes, it will lead to new ways of improving the sound speed profile inversion in the central region of the Sun.

Ilidio Lopes

2013-10-13T23:59:59.000Z

148

Martin Perl and the Tau Lepton  

Office of Scientific and Technical Information (OSTI)

Martin Perl and the Tau Lepton Martin Perl and the Tau Lepton Resources with Additional Information 'Martin L. Perl, a professor at the Stanford Linear Accelerator Center (SLAC), [was] awarded the 1995 Nobel Prize in physics ... for his 1975 discovery of a new elementary particle known as the tau lepton. ... The tau lepton is a superheavy cousin of the electron, the carrier of electrical current in household appliances. The two particles are identical in all respects except that the tau is more than 3,500 times heavier than the electron and survives less than a trillionth of a second, whereas the electron is stable. Martin Perl Courtesy AIP Emilio Segrè Visual Archives, W.F. Meggers Gallery of Nobel Laureates In the mid-1970s, working at the Stanford Positron-Electron Asymmetric Ring (SPEAR) in collaboration with 30 other physicists from SLAC and Lawrence Berkeley National Laboratory, Perl began to find events recorded by the detector that could not be explained by any of the known subatomic particles. After more than a year of analysis, Perl was able to convince the rest of his research team that they were in fact observing a new and different type of elementary particle, which he named the 'tau'.

149

Solar neutrino detection  

SciTech Connect

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Miramonti, Lino [Physics department of Milano University and INFN (Italy)

2009-04-30T23:59:59.000Z

150

Solar neutrino detection  

E-Print Network (OSTI)

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Lino Miramonti

2009-01-22T23:59:59.000Z

151

Spectroscopy of Solar Neutrinos  

E-Print Network (OSTI)

In the last years, liquid-scintillator detectors have opened a new window for the observation of low-energetic astrophysical neutrino sources. In 2007, the solar neutrino experiment Borexino began its data-taking in the Gran Sasso underground laboratory. High energy resolution and excellent radioactive background conditions in the detector allow the first-time spectroscopic measurement of solar neutrinos in the sub-MeV energy regime. The experimental results of the Beryllium-7 neutrino flux measurements as well as the prospects for the detection of solar Boron-8, pep and CNO neutrinos are presented in the context of the currently discussed ambiguities in solar metallicity. In addition, the potential of the future SNO+ and LENA experiments for high-precision solar neutrino spectroscopy will be outlined.

Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Tobias Lachenmaier; Timo Lewke; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Christoph Traunsteiner; Juergen Winter

2010-04-06T23:59:59.000Z

152

Tau longitudinal polarization in B{yields}D{tau}{nu} and its role in the search for the charged Higgs boson  

Science Conference Proceedings (OSTI)

We study the longitudinal polarization of the tau lepton in B{yields}D{tau}{nu} decay. After discussing possible sensitivities of {tau} decay modes to the {tau} polarization, we examine the effect of charged Higgs boson on the {tau} polarization in B{yields}D{tau}{nu}. We find a relation between the decay rate and the {tau} polarization, and clarify the role of the {tau} polarization measurement in the search for the charged Higgs boson.

Tanaka, Minoru; Watanabe, Ryoutaro [Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

2010-08-01T23:59:59.000Z

153

Neutrinos from Gamma Ray Bursts  

E-Print Network (OSTI)

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07T23:59:59.000Z

154

First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section  

SciTech Connect

A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

2010-02-01T23:59:59.000Z

155

NEUTRINOS, OLD AND NEW  

SciTech Connect

Results are reported from a series of experiments that led to the conclusion that neutrinos exist in 4 states. (C.H.)

Reines, F.

1963-08-30T23:59:59.000Z

156

Neutrino Factory Feasibility Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Witherell's Letter (Postscript) Final Version of the Neutrino Source Study Report (PDF) Organization Chart (Postscript) Two Day Meeting at Fermilab on February 15-16, 2000...

157

Neutrino-nucleus interactions  

SciTech Connect

The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

2011-01-01T23:59:59.000Z

158

Phenomenology of neutrino oscillations  

Science Conference Proceedings (OSTI)

see that the statistical uncertainty is the least for the super-Kamioka (SK) water Cerenkov detector, which is thus presaging the era of precision neutrino physics.

159

Solar neutrino Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the neutrino detector. The pioneering experiments conducted in the Homestake Mine, Lead, South Dakota, led to the awarding of the 2002 Nobel Prize in Physics to Raymond Davis,...

160

Proposal to search for mu- N -> e- N with a single event sensitivity below 10 -16  

SciTech Connect

We propose a new experiment, Mu2e, to search for charged lepton flavor violation with unprecedented sensitivity. We will measure the ratio of the coherent neutrinoless conversion in the field of a nucleus of a negatively charged muon into an electron to the muon capture process: R{sub {mu}e} = {mu}{sup -} + A(Z,N) {yields} e{sup -} + A(Z,N)/{mu}{sup -} + A(Z,N) {yields} {nu}{sub {mu}} + A(Z-1, N), with a sensitivity R{sub {mu}e} {le} 6 x 10{sup -17} at 90% CL. This is almost a four order-of-magnitude improvement over the existing limit. The observation of such a process would be unambiguous evidence of physics beyond the Standard Model. Since the discovery of the muon in 1936, physicists have attempted to answer I.I. Rabi's famous question: 'Who ordered that?' Why is there a muon? What role does it play in the larger questions of why there are three families and flavors of quarks, leptons, and neutrinos? We know quarks mix through a mechanism described by the Cabbibo-Kobayashi-Maskawa matrix, which has been studied for forty years. Neutrino mixing has been observed in the last decade, but mixing among the family of charged leptons has never been seen. The current limits are of order 10{sup -11} - 10{sup -13} so the process is rare indeed. Why is such an experiment important and timely? A major motivation for experiments at the Large Hadron Collider (LHC) is the possible observation of supersymmetric particles in the TeV mass range. Many of these supersymmetric models predict a {mu}-e conversion signal at R{sub {mu}e} {approx} 10{sup -15}. We propose to search for {mu}-e conversion at a sensitivity that exceeds this by more than an order of magnitude. The LHC may not be able to conclusively distinguish among supersymmetric models, so Mu2e will provide invaluable information should the LHC observe a signal. In the case where the LHC finds no evidence of supersymmetry, or other beyond-the-standard-model physics, Mu2e will probe for new physics at mass scales up to 10{sup 4} TeV, far beyond the reach of any planned accelerator.

Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; /Boston U.; Marciano, W.J.; Semertzidis, Y.; Yamin, P.; /Brookhaven; Kolomensky, Yu.G.; /UC, Berkeley; Molzon, W.; /UC, Irvine; Popp, J.L.; /City Coll., N.Y.; Ankenbrandt, C.M.; /Fermilab /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Northwestern U.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proposal to search for mu- N -> e- N with a single event sensitivity below 10 -16  

SciTech Connect

We propose a new experiment, Mu2e, to search for charged lepton flavor violation with unprecedented sensitivity. We will measure the ratio of the coherent neutrinoless conversion in the field of a nucleus of a negatively charged muon into an electron to the muon capture process: R{sub {mu}e} = {mu}{sup -} + A(Z,N) {yields} e{sup -} + A(Z,N)/{mu}{sup -} + A(Z,N) {yields} {nu}{sub {mu}} + A(Z-1, N), with a sensitivity R{sub {mu}e} {le} 6 x 10{sup -17} at 90% CL. This is almost a four order-of-magnitude improvement over the existing limit. The observation of such a process would be unambiguous evidence of physics beyond the Standard Model. Since the discovery of the muon in 1936, physicists have attempted to answer I.I. Rabi's famous question: 'Who ordered that?' Why is there a muon? What role does it play in the larger questions of why there are three families and flavors of quarks, leptons, and neutrinos? We know quarks mix through a mechanism described by the Cabbibo-Kobayashi-Maskawa matrix, which has been studied for forty years. Neutrino mixing has been observed in the last decade, but mixing among the family of charged leptons has never been seen. The current limits are of order 10{sup -11} - 10{sup -13} so the process is rare indeed. Why is such an experiment important and timely? A major motivation for experiments at the Large Hadron Collider (LHC) is the possible observation of supersymmetric particles in the TeV mass range. Many of these supersymmetric models predict a {mu}-e conversion signal at R{sub {mu}e} {approx} 10{sup -15}. We propose to search for {mu}-e conversion at a sensitivity that exceeds this by more than an order of magnitude. The LHC may not be able to conclusively distinguish among supersymmetric models, so Mu2e will provide invaluable information should the LHC observe a signal. In the case where the LHC finds no evidence of supersymmetry, or other beyond-the-standard-model physics, Mu2e will probe for new physics at mass scales up to 10{sup 4} TeV, far beyond the reach of any planned accelerator.

Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; /Boston U.; Marciano, W.J.; Semertzidis, Y.; Yamin, P.; /Brookhaven; Kolomensky, Yu.G.; /UC, Berkeley; Molzon, W.; /UC, Irvine; Popp, J.L.; /City Coll., N.Y.; Ankenbrandt, C.M.; /Fermilab /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Northwestern U.

2008-10-01T23:59:59.000Z

162

Relativistic Green's function approach to charged-current neutrino-nucleus quasielastic scattering  

E-Print Network (OSTI)

A relativistic Green's function approach to inclusive quasielastic charged-current neutrino-nucleus scattering is developed. The components of the hadron tensor are written in terms of the single-particle Green's function, which is expanded on the eigenfunctions of the nuclear optical potential, so that final state interactions are accounted for by means of a complex optical potential but without a loss of flux. Results for the (neutrino_mu, mu-) reaction on 16O and 12C target nuclei are presented and discussed. A reasonable agreement of the flux-averaged cross section on 12C with experimental data is achieved.

Andrea Meucci; Carlotta Giusti; Franco Davide Pacati

2003-11-21T23:59:59.000Z

163

Cryogenics for the MuCool Test Area (MTA)  

DOE Green Energy (OSTI)

MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.

Darve, Christine; Norris, Barry; Pei, Liu-Jin; /Fermilab

2005-09-01T23:59:59.000Z

164

Monte Carlo Neutrino Oscillations  

E-Print Network (OSTI)

We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wavefunction. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques.

James P. Kneller; Gail C. McLaughlin

2005-09-29T23:59:59.000Z

165

Neutrino Counter Nuclear Weapon  

E-Print Network (OSTI)

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Alfred Tang

2008-05-26T23:59:59.000Z

166

Solar Neutrino Physics  

SciTech Connect

With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

1999-07-15T23:59:59.000Z

167

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Cao, Jun

2011-01-01T23:59:59.000Z

168

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2011-01-12T23:59:59.000Z

169

Mass Hierarchy via Mossbauer and Reactor Neutrinos  

E-Print Network (OSTI)

We show how one could determine the neutrino mass hierarchy with Mossbauer neutrinos and also revisit the question of whether the hierarchy can be determined with reactor neutrinos.

Stephen Parke; Hisakazu Minakata; Hiroshi Nunokawa; Renata Zukanovich Funchal

2008-12-10T23:59:59.000Z

170

Isospin-Violating Dark Matter and Neutrinos From the Sun  

E-Print Network (OSTI)

We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of theories where the dark matter-nucleon spin-independent interactions break the isospin symmetry. We point out that, while the direct detection bounds with heavy targets like Xenon are weakened and reconciled with the positive signals in DAMA and CoGeNT experiments, the indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the annihilation is dominated by heavy quark or $\\tau$-lepton final states. As a consequence, the qualified isospin violating dark matter candidate has to preferably annihilate into light flavors.

Shao-Long Chen; Yue Zhang

2011-06-20T23:59:59.000Z

171

A Search for B+ ---> tau+ neutrino(tau) recoiling against B- ---> D0 l- anti-nu(l) X  

SciTech Connect

The fundamental pursuit of physics has always been a deeper understanding of nature's workings. In the last fifty years this pursuit has culminated in a view of the universe as a complex tapestry woven from only a few fundamental particles and interactions. This description of the universe, the Standard Model of Particle Physics, has been highly successful at predicting the behavior of these particles and interactions. However, the model leaves many questions unanswered and the hope is that many precise tests of its predictions will yield inconsistencies, windows into new physical principles. The search for processes that are allowed by the Standard Model but inherently rare provides fruitful ground for such a test. The large sample of B mesons available from the PEP-II/BABAR B-factory furnishes an opportunity to test Standard Model predictions via rare B meson decay modes.

Sekula, Stephen Jacob; /Wisconsin U., Madison /SLAC

2005-05-06T23:59:59.000Z

172

Solar neutrinos: Probing the sun or neutrinos  

SciTech Connect

The decade of the 1990's should prove to be a landmark period for the study of solar neutrino physics. Current observations show 2-3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

Wilkerson, J.F.

1991-01-01T23:59:59.000Z

173

Comment on ''Cerenkov radiation by neutrinos in a supernova core"  

E-Print Network (OSTI)

The helicity changing Cerenkov radiation in a supernova core was used earlier to put a restrictive bound on the neutrino magnetic moment. Subsequently it was pointed out, that this result was based on a numerical error in the calculationn of the refractive index of the SN core and using the correct numbers it was shown that the photons in a SN core do not have a space-like dispersion relation, so the Cerenkov process would not occur. Here we show that the earlier estimate of refractive index was based on the thermodynamic formula for susceptibility which is inapplicable for real photons or plasmons. However in an ultrarelativistic plasma the plasmon has a space-like branch in the dispersion relation hence the Cerenkov radiation of a plasmon is kinematically allowed. We show that the observations of neutrino flux from SN1987A put a constraint on the neutrino magnetic moment $\\mu_{\

Subhendra Mohanty; Sarira Sahu

1997-10-07T23:59:59.000Z

174

A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment  

SciTech Connect

We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

Ochoa Ricoux, Juan Pedro; /Caltech

2009-10-01T23:59:59.000Z

175

The NuMI neutrino beam at Fermilab  

Science Conference Proceedings (OSTI)

The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense {nu}{sub {mu}} beam of variable energy (2-20 GeV) directed into the Earth at 58 mrad for short ({approx}1km) and long ({approx}700-900 km) baseline experiments. Several aspects of the design and results from early commissioning runs are reviewed.

Kopp, Sacha E.; /Texas U.

2005-05-01T23:59:59.000Z

176

Studies of Nu-mu to Nu-e Oscillation Appearance in the MINOS Experiment  

SciTech Connect

The MINOS experiment uses a long baseline neutrino beam, measured 1 km downstream from its origin in the Near Detector at Fermilab, and 734 km later in the large underground Far Detector in the Soudan mine. By comparing these two measurements, MINOS can probe the atmospheric domain of the neutrino oscillation phenomenology with unprecedented precision. Besides the ability to perform a world leading determination of the {Delta}m{sub 23}{sup 2} and {theta}{sub 23} parameters, via {nu}{sub {mu}} flux disappearance, MINOS has the potential to make a leading measurement of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations in the atmospheric sector by looking for {nu}{sub e} appearance at the Far Detector. The observation of {nu}{sub e} appearance, tantamount to establishing a non-zero value of the {theta}{sub 13} mixing angle, opens the way to studies of CP violation in the leptonic sector, the neutrino spectral mass pattern ordering and neutrino oscillations in matter, the driving motivations of the next generation of neutrino experiments. In this thesis, we study the MINOS potential for measuring {theta}{sub 13} in the context of the MINOS Mock Data Challenge using a multivariate discriminant analysis method. We show the method's validity in the application to {nu}{sub e} event classification and background identification, as well as in its ability to identify a {nu}{sub e} signal in a Mock Data sample generated with undisclosed parameters. An independent shower reconstruction method based on three-dimensional hit matching and clustering was developed, providing several useful discriminator variables used in the multivariate analysis method. We also demonstrate that within 2 years of running, MINOS has the potential to improve the current best limit on {theta}{sub 13}, from the CHOOZ experiment, by a factor of 2.

Pereira e Sousa, Alexandre Bruno; /Tufts U.

2005-12-01T23:59:59.000Z

177

Search for Second-Class Currents in tau- -> omega.pi-.nu_tau  

SciTech Connect

We report an analysis of {tau}{sup -} decaying into {omega}{pi}{sup -} {nu}{sub {tau}} with {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} using a data sample containing nearly 320 million {tau} pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode.

Aubert, B.

2009-04-22T23:59:59.000Z

178

INTENSE NEUTRINO BEAMS AND LEPTONIC CP VIOLATION.  

SciTech Connect

Effects of the Leptonic CP violating phase, {delta}, on 3 generation neutrino oscillation rates and asymmetries are discussed. A figure of merit argument is used to show that our ability to measure the phase 6 is rather insensitive to the value of {theta}{sub 13} (for sin{sup 2} 2{theta}{sub 13} {approx}> 0.01) as well as the detector distance (for very long oscillation baselines). Using a study of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations for BNL-Homestake (2540 km) we show that a conventional horn focused wide band neutrino beam generated by an intense 1-2 MW proton source combined with a very large water Cherenkov detector (250-500 kton) should be able to determine {delta} to about {+-}15{sup o} in 5 x 10{sup 7} sec. of running. In addition, such an effort would also measure the other oscillation parameters ({theta}{sub ij}, {Delta}m{sub ij}{sup 2}) with high precision. Similar findings apply to a Fermilab-Homestake (1280 km) baseline. We also briefly discuss features of Superbeams, Neutrino Factories and Beta-Beams.

MARCIANO, W.; PARSA, Z.

2006-06-13T23:59:59.000Z

179

The strong coupling from tau decays without prejudice  

E-Print Network (OSTI)

We review our recent determination of the strong coupling \\alpha_s from the OPAL data for non-strange hadronic tau decays. We find that \\alpha_s(m^2_\\tau) =0.325+-0.018 using fixed-order perturbation theory, and \\alpha_s(m^2_\\tau)=0.347+-0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.

Boito, Diogo; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago

2012-01-01T23:59:59.000Z

180

Review of Recent Neutrino Physics Research  

E-Print Network (OSTI)

We review recent research in neutrino physics, including neutrino oscillations to test time reversal and CP symmetry violations, the measurement of parameters in the U matrix, sterile neutrino emission causing pulsar kicks, and neutrino energies in the neutrinosphere.

Leonard S. Kisslinger

2013-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reactor Neutrino Experiments  

E-Print Network (OSTI)

Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measurement are also briefed.

Jun Cao

2007-12-06T23:59:59.000Z

182

Solar Neutrino Measurements  

E-Print Network (OSTI)

A review of solar neutrino experiments is provided, including experimental measurements to date and proposed future measurements. Experiments to date have provided a clear determination that solar neutrinos are undergoing flavor transformation and that the dominant mechanism for this transformation is oscillation. The mixing parameters are well defined and limits are placed on sub-dominant modes. The measurements also provide strong confirmation of solar model calculations. New experiments under development will study neutrino oscillation parameters and sub-dominant modes with greater precision and will investigate solar fluxes further, concentrating primarily on the low energy pp, $^7$Be, pep and CNO reactions.

A. B. McDonald

2004-06-10T23:59:59.000Z

183

Low Energy Neutrino Measurements  

E-Print Network (OSTI)

Low Energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors such as those emitted by the Earth crust and mantle. First measurements of geo-neutrinos have occurred and can bring fundamental contribution in understanding the geophysics of the planet.

Davide D'Angelo

2012-11-22T23:59:59.000Z

184

Leptogenesis with Dirac Neutrinos  

E-Print Network (OSTI)

We describe a "neutrinogenesis" mechanism whereby, in the presence of right-handed neutrinos with sufficiently small pure Dirac masses, (B+L)-violating sphaleron processes create the baryon asymmetry of the Universe, even when B=L=0 initially. It is shown that the resulting neutrino mass constraints are easily fulfilled by the neutrino masses suggested by current experiments. We present a simple toy model which uses this mechanism to produce the observed baryon asymmetry of the Universe. (PostScript Errors corrected in latest Version).

Karin Dick; Manfred Lindner; Michael Ratz; David Wright

1999-07-30T23:59:59.000Z

185

Tau tau Fusion to SUSY Higgs Bosons at a Photon Collider: Measuring tan(beta)  

E-Print Network (OSTI)

Tau tau fusion to light h and heavy H,A Higgs bosons is investigated in the Minimal Supersymmetric Standard Model (MSSM) at a photon collider as a promising channel for measuring large values of tan(beta). For standard design parameters of a photon collider an error close to unity, uniform for tan(beta) above 10, may be expected, improving on complementary measurements at LHC and e+e- linear colliders.

S. Y. Choi; J. Kalinowski; J. S. Lee; M. M. Muehlleitner; M. Spira; P. M. Zerwas

2004-07-05T23:59:59.000Z

186

Solar Neutrino Measurements  

E-Print Network (OSTI)

Abstract. A review of solar neutrino experiments is provided, including experimental measurements to date and proposed future measurements. Experiments to date have provided a clear determination that solar neutrinos are undergoing flavor transformation and that the dominant mechanism for this transformation is oscillation. The mixing parameters are well defined and limits are placed on subdominant modes. The measurements also provide strong confirmation of solar model calculations. New experiments under development will study neutrino oscillation parameters and sub-dominant modes with greater precision and will investigate solar fluxes further, concentrating primarily on the low energy pp, 7Be, pep and CNO reactions. PACS numbers: 26.65+t, 95.55.Vj, 95.85.Ry, 96.60.Vg, 14.60.PqSolar Neutrino Measurements 2 1.

A. B. Mcdonald

2004-01-01T23:59:59.000Z

187

Fast Light, Fast Neutrinos?  

E-Print Network (OSTI)

Light has been observed with group velocities both faster and slower than the speed of light. The recent report from OPERA of superluminal 17 GeV neutrinos may describe a similar phenomenon.

Cahill, Kevin

2011-01-01T23:59:59.000Z

188

Antiproton low-energy collisions with Ps-atoms and true muonium atoms ($\\mu^+\\mu^-$)  

E-Print Network (OSTI)

Three-charge-particle collisions with participation of ultra-slow antiprotons ($\\bar{\\rm{p}}$) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: $\\bar{\\rm p}+(e^+e^-) \\rightarrow \\bar{\\rm{H}} + e^-$ and $\\bar{\\rm p}+(\\mu^+\\mu^-) \\rightarrow \\bar{\\rm{H}}_{\\mu} + \\mu^-$, where $e^-(\\mu^-)$ is an electron (muon) and $e^+(\\mu^+)$ is a positron (antimuon) respectively, $\\bar{\\rm{H}}=(\\bar{\\rm p}e^+)$ is an antihydrogen atom and $\\bar{\\rm{H}}_{\\mu}=(\\bar{\\rm p}\\mu^+)$ is a muonic antihydrogen atom, i.e. a bound state of $\\bar{\\rm{p}}$ and $\\mu^+$. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.

Sultanov, Renat A

2013-01-01T23:59:59.000Z

189

Radiochemical solar neutrino experiments  

E-Print Network (OSTI)

Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88 +/- 0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

V. N. Gavrin; B. T. Cleveland

2007-03-06T23:59:59.000Z

190

Tuning and Analysis Utilities (TAU) | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Storage & File Systems Data Storage & File Systems Compiling & Linking Queueing & Running Jobs Data Transfer Debugging & Profiling Performance Tools & APIs Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Tuning and Analysis Utilities (TAU) References TAU Project Site TAU Instrumentation Methods TAU Compilation Options TAU Fortran Instrumentation FAQ TAU Leap to Petascale 2009 Presentation

191

Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements  

E-Print Network (OSTI)

This paper reviews short-baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1?eV range. Appearance and ...

Conrad, J. M.

2013-01-01T23:59:59.000Z

192

Multiple Muons From Neutrino-Initiated Multi-W(Z) Production  

E-Print Network (OSTI)

Current underground detectors can search for multiple muons from multi-W(Z) production initiated by ultrahigh energy neutrinos from active galactic nuclei. O($\\mu$b) cross sections give rise to downward going muon bundles whose features differ from those of atmospheric muon bundles.

D. A. Morris; A. Ringwald

1993-08-29T23:59:59.000Z

193

Neutrino oscillations in nuclear media  

E-Print Network (OSTI)

On basis of effective interactions of charged lepton and hadron currents, we obtain an effective interacting Hamiltonian of neutrinos in nuclear media up to the leading order. Using this effective Hamiltonian, we study neutrino mixing and oscillations in nuclear media and strong magnetic fields. We compute neutrino mixing angle and mass squared difference, and find the pattern of vacuum neutrino oscillations is modified in magnetized nuclear media. Comparing with the vacuum neutrino oscillation, we find that for high-energy neutrinos, neutrino oscillations are suppressed in the presence of nuclear media. In the general case of neutral nuclear media with the presence of electrons, we calculate the mixing angle and mass squared difference, and discuss the resonance and level-crossing in neutrino oscillations.

Iman Motie; She-Sheng Xue

2011-04-14T23:59:59.000Z

194

Neutrino Physics at the Turn of the Millenium  

E-Print Network (OSTI)

Recent solar & atmospheric nu-data strongly indicate need for physics beyond the Standard Model. I review the ways of reconciling them in terms of 3-nu oscillations. Though not implied by data, bi-maximal nu-mixing models emerge as a possibility. SUSY with broken R-parity provides an attractive way to incorporate it, opening the possibility of testing nu-anomalies at high- energy colliders such as the LHC or at the upcoming long-baseline or nu- factory experiments. Reconciling, in addition, the LSND hint requires a fourth, light sterile neutrino, nus. The simplest are the most symmetric scenarios, in which 2 of the 4 neutrinos are maximally-mixed and lie at the LSND scale, while the others are at the solar scale. The lightness of nus, the nearly maximal atmospheric mixing, and the solar/atmospheric splittings all follow naturally from the assumed lepton-number symmetry and its breaking. These basic schemes can be distinguished at neutral-current-sensitive solar & atmospheric neutrino experiments such as SNO. However underground experiments have not yet proven neutrino masses, as there are many alternatives. For example flavour changing interactions can play an important role in the explanation of solar and contained atmospheric data and could be tested e.g through \\mu \\to e + \\gamma, \\mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay. Conversely, a short-lived numu might play a role in the explanation of the atmospheric data. Finally, in the presence of a nus, a long-lived heavy nutau could delay the time at which the matter and radiation contributions to the energy density of the Universe become equal, reducing density fluctuations on smaller scales, thus saving the standard CDM scenario, while the light nue, numu and nus would explain the solar & atmospheric data.

J. W. F. Valle

1999-11-03T23:59:59.000Z

195

Determining the neutrino mass hierarchy  

Science Conference Proceedings (OSTI)

In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

Parke, Stephen J.; /Fermilab

2006-07-01T23:59:59.000Z

196

Neutrinos: Windows to New Physics  

E-Print Network (OSTI)

After briefly reviewing how the symmetries of the Standard Model (SM) are affected by neutrino masses and mixings, I discuss how these parameters may arise from GUTs and how patterns in the neutrino sector may reflect some underlying family symmetry. Leptogenesis provides a nice example of how different physical phenomena may be connected to the same neutrino window of physics beyond the SM. I end with some comments on the LSND signal and briefly discuss the idea that neutrinos have environment dependent masses.

R. D. Peccei

2006-09-20T23:59:59.000Z

197

Solar Neutrino Matter Effects Redux  

E-Print Network (OSTI)

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-09-24T23:59:59.000Z

198

Light Sterile Neutrino from extra dimensions and Four-Neutrino Solutions to Neutrino Anomalies  

E-Print Network (OSTI)

We propose a four-neutrino model which can reconcile the existing data coming from underground experiments in terms of neutrino oscillations, together with the hint from the LSND experiment and a possible neutrino contribution to the hot dark matter of the Universe. It applies the idea that extra compact dimensions, probed only by gravity and possibly gauge-singlet fields, can lower the fundamental scales such as the Planck, string or unification scales. Our fourth light neutrino $\

A. Ioannisian; J. W. F. Valle

1999-11-14T23:59:59.000Z

199

Precision Neutrino Oscillation Measurements using Simultaneous High-Power, Low-Energy Project-X Beams  

E-Print Network (OSTI)

The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use Project X to produce high-intensity, low-energy neutrino beams. Simultaneous, high-power operation of 8- and 60-GeV beams with a 200-kt water Cerenkov detector would provide sensitivity to nu_mu to nu_e oscillations at the second oscillation maximum. We find that with ten years of data, it would be possible to measure sin2(2theta_13) with precision comparable to that expected from reactor antineutrino disappearance and to measure the value of the CP phase, delta_CP, with an uncertainty of (5-10) degrees. This document is submitted for inclusion in Snowmass 2013.

M. Bishai; M. Diwan; S. Kettell; J. Stewart; R. Tschirhart; B. Viren; L. Whitehead; E. Worcester

2013-07-02T23:59:59.000Z

200

The CDF-II tau physics program triggers, tau ID and preliminary results  

SciTech Connect

The study of processes containing {tau} leptons in the final state will play an important role at Tevatron Run II. Such final states will be relevant both for electroweak studies and measurements as well as in searches for physics beyond the Standard Model. The present paper discusses the physics opportunities and challenges related to the implementation of new set of triggers able to select events containing tau candidates in the final state. They illustrate, in particular, the physics capabilities for a variety of new physics scenarios such as supersymmetry (SUSY), SUSY with Rp-parity violation, with Bilinear parity violation or models with the violation of lepton flavor. Finally, they present the first Run II results obtained using some of the described tau triggers.

C. Pagliarone et al.

2003-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Entanglement in neutrino oscillations  

E-Print Network (OSTI)

Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks.

Massimo Blasone; Fabio Dell'Anno; Silvio De Siena; Fabrizio Illuminati

2007-07-30T23:59:59.000Z

202

Cosmic coincidences and relic neutrinos  

E-Print Network (OSTI)

A simple phenomenological description for the energy transfer between a variable cosmological constant (CC) and a gas of relic neutrinos in an expanding universe can account for a near coincidence between the neutrino and dark-energy densities to hold over a significant portion of the history of the universe. Although such a cosmological setup may promote neutrinos to mass-varying particles, both with slow and quick neutrino mass changing with the expansion of the universe naturally implemented in the model, it also works equally well for static neutrino masses. We also stress what sort of models for variable CC can potentially underpin the above scenario.

R. Horvat

2006-12-04T23:59:59.000Z

203

Frederick Reines and the Neutrino  

Office of Scientific and Technical Information (OSTI)

Frederick Reines and the Detection of the Neutrino Frederick Reines and the Detection of the Neutrino Resources with Additional Information '[Frederick] Reines - known among scientists as the "father of neutrino physics" - won the Nobel Prize for physics in 1995 ["for the detection of the neutrino"], nearly 40 years after his neutrino experiments changed the world of physics and set in motion a new way of looking at the universe. ... Frederick Reines Courtesy University of California Irvine Until Reines's discovery, physicists had only theorized the existence of the neutrino - and physicists believed the tiny particles would never be detected. Reines's research laid the groundwork for new avenues of physics inquiry and hundreds of physics experiments that have tested central theories about the structure of our cosmos. The neutrino is one of the tiny spinning particles that are the building blocks of nature. ...

204

New Results on Solar Neutrinos  

E-Print Network (OSTI)

This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, Borexino and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two and three active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Today, solar neutrino measurements focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies. This article also summarizes near future prospects in the field of solar neutrino physics.

Alain Bellerive

2010-12-11T23:59:59.000Z

205

New Results on Solar Neutrinos  

E-Print Network (OSTI)

This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, Borexino and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two and three active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Today, solar neutrino measurements focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies. This article also summarizes near future prospects in the field of solar neutrino physics.

Bellerive, Alain

2010-01-01T23:59:59.000Z

206

A Search for Neutrinoless Tau Decays to Three Leptons  

SciTech Connect

Using approximately 350 million {tau}{sup +}{tau}{sup -} pair events recorded with the BaBar detector at the Stanford Linear Accelerator Center between 1999 and 2006, a search has been made for neutrinoless, lepton-flavor violating tau decays to three lighter leptons. All six decay modes consistent with conservation of electric charge and energy have been considered. With signal selection efficiencies of 5-12%, we obtain 90% confidence level upper limits on the branching fraction {Beta}({tau} {yields} {ell}{ell}{ell}) in the range (4-8) x 10{sup -8}.

Kolb, Jeffrey A.; /Oregon U. /SLAC

2008-09-24T23:59:59.000Z

207

Signals, backgrounds and calibrations in the Sudbury Neutrino Observatory  

Science Conference Proceedings (OSTI)

The Sudbury Neutrino Observatory is a large underground neutrino detector which is presently under construction

Bhaskar Sur; The SNO Collaboration

1995-01-01T23:59:59.000Z

208

An update for the MuCool test area  

DOE Green Energy (OSTI)

Construction of a new facility known as the MuCool Test Area (MTA) has been completed at Fermi National Accelerator Laboratory. This facility supports research in new accelerator technologies for future endeavors such as a Neutrino Factory or Muon Collider. During the summer of 2004, an initial set of tests was completed for the filling of a convection-style liquid hydrogen absorber designed by KEK. The absorber contained 6.2 liquid liters of hydrogen and was tested for a range of heating conditions to quantify the absorber's heat exchanger performance. Future work at Fermilab includes the design, construction, and installation of a forced-flow absorber to be used with other components built to investigate the properties of a muon ionization cooling channel. A Tevatron-style refrigerator/compressor building is to be operational by spring of 2006 in support of the absorber tests and also to provide 5-K helium and liquid nitrogen to a 5-T solenoid magnet, an active element of the future test apparatus. The refrigerator will be configured in such a manner as to meet the 5 K and 14-20-K helium needs of the MTA. This paper reviews the challenges and successes of the past KEK absorber tests as well as looks into the future cryogenic capabilities and intentions of the site.

Bross, A.; Cummings, M.A.; Darve, C.; Ishimoto, S.; Klebaner, A.; Martinez, A.; Norris, B.; Pei, L.; /Fermilab /KEK, Tsukuba /Northern Illinois U.

2006-01-01T23:59:59.000Z

209

New Neutrinos Algal Biofuels  

E-Print Network (OSTI)

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE biofuels to run our cars, but if it costs $10 per gallon and requires petroleum products for production seven billion people, the nation seeks a competitive alternative to crude oil. Biofuel is a popular

210

A Measurement of the Neutrino Neutral Current Pi0 Cross Section at MiniBooNE  

SciTech Connect

The MiniBooNE neutrino beam and detector at Fermilab are used to study the production of neutral current {pi}{sup 0} events. The cross sections for neutrino interactions with mineral oil (CH{sub 2}) are reported for resonantly produced and coherently produced single {pi}{sup 0} events. We measure a resonant single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} N {pi}{sup 0}) = (0.0129 {+-} 0.0011(stat.) {+-} 0.0043(syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at a mean neutrino energy of 1.26 GeV. We measure a coherent single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} A {yields} {nu}{sub {mu}} A {pi}{sup 0}) = (0.00077 {+-} 0.00016 (stat.) {+-} 0.00036 (syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at mean neutrino energy 1.12 GeV.

Raaf, Jennifer Lynne; /Cincinnati U.

2005-05-01T23:59:59.000Z

211

Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems  

Office of Scientific and Technical Information (OSTI)

Raymond Davis, Jr., Solar Neutrinos, Raymond Davis, Jr., Solar Neutrinos, and the Solar Neutrino Problem Resources with Additional Information Raymond Davis, Jr. Photo Courtesy of Brookhaven National Laboratory (BNL) Raymond Davis, Jr., who conducted research in the Chemistry Department at Brookhaven National Laboratory (BNL) from 1948 through 1984, was awarded the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." Dr. Davis is also a recipient of the 2003 Fermi Award. He was the first scientist to detect solar neutrinos, ghostlike particles produced in the nuclear reactions that power the sun. "Neutrinos are fascinating particles, so tiny and fast that they can pass straight through everything, even the earth itself, without even slowing down," said Davis. "When I began my work, I was intrigued by the idea of learning something new. The interesting thing about doing new experiments is that you never know what the answer is going to be!"

212

Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory  

Science Conference Proceedings (OSTI)

The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

Oblath, Noah [Center for Experimental Nuclear Physics and Astrophysics University of Washington, Seattle, WA (United States)

2007-10-26T23:59:59.000Z

213

Minimal Neutrino Texture with Neutrino Mass Ratio and Cabibbo Angle  

E-Print Network (OSTI)

We present neutrino mass matrix textures in a minimal framework of the type-I seesaw mechanism where two right-handed Majorana neutrinos are introduced in order to reproduce experimental results of neutrino oscillations. The textures can lead to experimentally favored leptonic mixing angles described by the tri-bimaximal mixing with one additional rotation. We present minimal and next to minimal textures for the normal mass hierarchy case in a context of the texture zero. A minimal texture in the inverted hierarchy case is also constructed, which does not have any vanishing entries in a Dirac neutrino mass matrix. We also discuss some cases that model parameters in the textures are supposed to be a neutrino mass ratio and/or the Cabibbo angle. Predicted regions of mixing angles, a leptonic CP-violation parameter, and an effective mass for the neutrino-less double beta decay are presented in all textures.

Yusuke Shimizu; Ryo Takahashi; Morimitsu Tanimoto

2012-12-24T23:59:59.000Z

214

On the Detection of the Free Neutrino  

DOE R&D Accomplishments (OSTI)

The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

Reines, F.; Cowan, C. L., Jr.

1953-08-06T23:59:59.000Z

215

On the model discriminating power of mu to e conversion in nuclei  

SciTech Connect

Lepton Flavor Violating (LFV) charged lepton decays provide a highly sensitive probe of physics beyond the Standard Model (SM), due to the un-observably small branching fractions ({approx}10{sup -50}) predicted for these modes in the SM (minimally extended to include massive neutrinos). Searches for SM forbidden muon processes, such as {mu} {yields} e{gamma}, {mu} {yields} e{bar e}e, and {mu} {yields} e conversion in nuclei, have provided so far the strongest constraints on LFV new physics. This statement can be characterized in a model-independent way as a lower bound on the scale associated to a set of dimension six effective operators parameterizing new physics beyond the SM. It is a well known fact that while the decay {mu} {yields} e{gamma} is only sensitive to a transition magnetic dipole operator, both {mu} {yields} e{bar e}e and {mu} {yields} e conversion in nuclei are sensitive to transition charge radii operators as well as purely contact four-fermion interactions induced by physics beyond the SM. In other words, different LFV decays have different sensitivities to underlying LFV mechanisms (effective operators). This leads naturally to ask the question whether one could infer the relative strength of these different operators in a completely phenomenological and model-independent way. This would allow one to discriminate among different underlying models of LFV and thus would provide valuable input for model building. In Ref. [1] it was pointed out that in principle, by combining the rates of {mu} {yields} e{gamma} and {mu} {yields} e conversion on different target nuclei, one could discriminate underlying models. In this work we go back to this issue with the aim to: quantify the theoretical uncertainty induced by the hadronization process; and quantify the experimental precision required to realistically infer useful information on the underlying LFV mechanisms. We organize our discussion as follows: in Section 2 we review the derivation of the {mu} {yields} e conversion rate starting from a general effective theory description of the LFV physics. In Section 3 we explore the phenomenological consequence of the simplest possible models, in which only one effective LFV operator dominates. We extend this analysis in Section 4 to the class of models in which two operators dominate. In Section 5 we specialize our discussion to the SUSY see-saw model and summarize the conclusions of our analysis in Section 6.

Cirigliano, Vincenzo [Los Alamos National Laboratory; Kitano, Ryuichiro [JAPAN; Okada, Yashuiro [JAPAN; Tuzon, Paulo [ITALY

2009-01-01T23:59:59.000Z

216

Electron Neutrino Appearance in the MINOS Experiment  

SciTech Connect

The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin{sup 2} 2{theta}{sub 13} for the first time. Detector granularity, however, makes it very hard to distinguish any {nu}{sub e} appearance signal events characteristic of a non-zero value of {theta}{sub 13} from background neutral current (NC) and short-track {nu}{sub {mu}} charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from {nu}{sub {mu}}-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 {sigma} {nu}{sub e}-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 10{sup 20} protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin{sup 2} 2{theta}{sub 13}. Using the MRCC method, MINOS sets a limit of sin{sup 2} 2{theta}{sub 13} < 0.265 at the 90% confidence limit for a CP-violating phase {delta} = 0.

Holin, Anna Maria; /University Coll. London

2010-06-01T23:59:59.000Z

217

Solar Neutrino Observations at the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

The Sudbury Neutrino Observatory (SNO) is a 1000-tonne heavy water Cherenkov detector. Its usage of \\dto as target allows the simultaneous measurements of the $\

Poon, A W P

2002-01-01T23:59:59.000Z

218

Solar Neutrino Observations at the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

The Sudbury Neutrino Observatory (SNO) is a 1000-tonne heavy water Cherenkov detector. Its usage of \\dto as target allows the simultaneous measurements of the $\

A. W. P. Poon

2002-11-06T23:59:59.000Z

219

Relating B_S Mixing and B_S to mu+mu- with New Physics  

Science Conference Proceedings (OSTI)

We perform a study of the standard model fit to the mixing quantities {Delta}M{sub B{sub s}}, and {Delta}{Lambda}{sub B{sub s}}/{Delta}M{sub B{sub s}} in order to bound contributions of new physics (NP) to B{sub s} mixing. We then use this to explore the branching fraction of B{sub s} {yields} {mu}{sup +}{mu}{sup -} in certain models of NP. In most cases, this constrains NP amplitudes for B{sub s} {yields} {mu}{sup +}{mu}{sup -} to lie below the standard model component.

Golowich, Eugene; /Massachusetts U., Amherst; Hewett, JoAnne; /SLAC; Pakvasa, Sandip; /Hawaii U.; Petrov, Alexey A; /Wayne State U. /Michigan U., MCTP; Yeghiyan, Gagik K; /Wayne State U.

2012-06-11T23:59:59.000Z

220

Search for B+ --> mu+ nu_mu With Inclusive Reconstruction at BaBar  

SciTech Connect

We search for the purely leptonic decay B{sup {+-}} {yields} {mu}{sup {+-}}{nu}{sub {mu}} in the full BABAR dataset, having an integrated luminosity of approximately 426 fb{sup -1}. We adopt a fully inclusive approach, where the signal candidate is identified by the highest momentum lepton in the event and the companion B is inclusively reconstructed without trying to identify its decay products. We set a preliminary upper limit on the branching fraction of {Beta}(B{sup {+-}} {yields} {mu}{sup {+-}}{nu}{sub {mu}}) < 1.3 x 10{sup -6} at the 90% confidence level, using a Bayesian approach.

Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, Antimo; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, Bjarne; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar neutrino experiments: An update  

Science Conference Proceedings (OSTI)

The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

Hahn, R.L.

1993-12-31T23:59:59.000Z

222

Low-energy solar anti-neutrinos  

E-Print Network (OSTI)

If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

V. B. Semikoz; S. Pastor; J. W. F. Valle

1998-08-13T23:59:59.000Z

223

Light Sterile Neutrinos: A White Paper  

E-Print Network (OSTI)

This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.

K. N. Abazajian; M. A. Acero; S. K. Agarwalla; A. A. Aguilar-Arevalo; C. H. Albright; S. Antusch; C. A. Arguelles; A. B. Balantekin; G. Barenboim; V. Barger; P. Bernardini; F. Bezrukov; O. E. Bjaelde; S. A. Bogacz; N. S. Bowden; A. Boyarsky; A. Bravar; D. Bravo Berguno; S. J. Brice; A. D. Bross; B. Caccianiga; F. Cavanna; E. J. Chun; B. T. Cleveland; A. P. Collin; P. Coloma; J. M. Conrad; M. Cribier; A. S. Cucoanes; J. C. D'Olivo; S. Das; A. de Gouvea; A. V. Derbin; R. Dharmapalan; J. S. Diaz; X. J. Ding; Z. Djurcic; A. Donini; D. Duchesneau; H. Ejiri; S. R. Elliott; D. J. Ernst; A. Esmaili; J. J. Evans; E. Fernandez-Martinez; E. Figueroa-Feliciano; B. T. Fleming; J. A. Formaggio; D. Franco; J. Gaffiot; R. Gandhi; Y. Gao; G. T. Garvey; V. N. Gavrin; P. Ghoshal; D. Gibin; C. Giunti; S. N. Gninenko; V. V. Gorbachev; D. S. Gorbunov; R. Guenette; A. Guglielmi; F. Halzen; J. Hamann; S. Hannestad; W. Haxton; K. M. Heeger; R. Henning; P. Hernandez; P. Huber; W. Huelsnitz; A. Ianni; T. V. Ibragimova; Y. Karadzhov; G. Karagiorgi; G. Keefer; Y. D. Kim; J. Kopp; V. N. Kornoukhov; A. Kusenko; P. Kyberd; P. Langacker; Th. Lasserre; M. Laveder; A. Letourneau; D. Lhuillier; Y. F. Li; M. Lindner; J. M. Link; B. L. Littlejohn; P. Lombardi; K. Long; J. Lopez-Pavon; W. C. Louis; L. Ludhova; J. D. Lykken; P. A. N. Machado; M. Maltoni; W. A. Mann; D. Marfatia; C. Mariani; V. A. Matveev; N. E. Mavromatos; A. Melchiorri; D. Meloni; O. Mena; G. Mention; A. Merle; E. Meroni; M. Mezzetto; G. B. Mills; D. Minic; L. Miramonti; D. Mohapatra; R. N. Mohapatra; C. Montanari; Y. Mori; Th. A. Mueller; H. P. Mumm; V. Muratova; A. E. Nelson; J. S. Nico; E. Noah; J. Nowak; O. Yu. Smirnov; M. Obolensky; S. Pakvasa; O. Palamara; M. Pallavicini; S. Pascoli; L. Patrizii; Z. Pavlovic; O. L. G. Peres; H. Pessard; F. Pietropaolo; M. L. Pitt; M. Popovic; J. Pradler; G. Ranucci; H. Ray; S. Razzaque; B. Rebel; R. G. H. Robertson; W. Rodejohann; S. D. Rountree; C. Rubbia; O. Ruchayskiy; P. R. Sala; K. Scholberg; T. Schwetz; M. H. Shaevitz; M. Shaposhnikov; R. Shrock; S. Simone; M. Skorokhvatov; M. Sorel; A. Sousa; D. N. Spergel; J. Spitz; L. Stanco; I. Stancu; A. Suzuki; T. Takeuchi; I. Tamborra; J. Tang; G. Testera; X. C. Tian; A. Tonazzo; C. D. Tunnell; R. G. Van de Water; L. Verde; E. P. Veretenkin; C. Vignoli; M. Vivier; R. B. Vogelaar; M. O. Wascko; J. F. Wilkerson; W. Winter; Y. Y. Y. Wong; T. T. Yanagida; O. Yasuda; M. Yeh; F. Yermia; Z. W. Yokley; G. P. Zeller; L. Zhan; H. Zhang

2012-04-18T23:59:59.000Z

224

Commissioning of the calorimetry in the ATLAS tau trigger system  

E-Print Network (OSTI)

Calorimeters are fundamental in the three levels of the ATLAS tau trigger system. The first level trigger (L1) uses the electromagnetic (e.m.) and hadronic (had) calorimeters to make its decision. In the High Level Triggers (HLT), these systems are also crucial: both the second level trigger (L2) and the third level trigger (Event Filter -EF) heavily exploit the calorimeter based information to identify tau leptons decaying hadronically. Whilst the granularity of the first level is coarse, the second and third level triggers have the final full detector read-out. This contribution focuses on the commissioning of the calorimetry in the three levels of the tau trigger in real data. Efficiency measurements with respect to tau candidates reconstructed by the offline algorithms, and distributions of calorimeter based tau information reconstructed at trigger level, are compared to prediction of the Monte Carlo and the trigger performance in first data assessed.

Sfyrla, Anna; The ATLAS collaboration

2010-01-01T23:59:59.000Z

225

Commissioning of the calorimetry in the ATLAS tau trigger system  

E-Print Network (OSTI)

Calorimeters are fundamental in the three levels of the ATLAS tau trigger system. The first level trigger (L1) uses the electromagnetic (EM) and hadronic (HAD) calorimeters to make its decision. In the High Level Triggers (HLT), these systems are also crucial: both the second level trigger (L2) and the third level trigger (Event Filter -EF) heavily exploit the calorimeter based information to identify tau leptons decaying hadronically. Whilst the granularity of the first level is coarse, the second and third level triggers have the final full detector read-out. This contribution focuses on the commissioning of the calorimetry in the three levels of the tau trigger in real data. Efficiency measurements with respect to tau candidates reconstructed by the offline algorithms, and distributions of calorimeter based tau information reconstructed at trigger level, are compared to prediction of the Monte Carlo and the trigger performance in first data assessed.

Sfyrla, Anna; The ATLAS collaboration

2010-01-01T23:59:59.000Z

226

Neutrino Opacities in Nuclear Matter  

E-Print Network (OSTI)

Neutrino-matter cross sections and interaction rates are central to the core-collapse supernova phenomenon and, very likely, to the viability of the explosion mechanism itself. In this paper, we describe the major neutrino scattering, absorption, and production processes that together influence the outcome of core collapse and the cooling of protoneutron stars. One focus is on energy redistribution and many-body physics, but our major goal is to provide a useful resource for those interested in supernova neutrino microphysics.

Adam Burrows; Sanjay Reddy; Todd A. Thompson

2004-04-21T23:59:59.000Z

227

Limits on Neutrino-Neutrino Scattering in the Early Universe  

E-Print Network (OSTI)

In the standard model neutrinos are assumed to have streamed across the Universe since they last scattered at the weak decoupling epoch when the temperature of the standard-model plasma was ~MeV. The shear stress of free-streaming neutrinos imprints itself gravitationally on the Cosmic Microwave Background (CMB) and makes the CMB a sensitive probe of neutrino scattering. Yet, the presence of nonstandard physics in the neutrino sector may alter this standard chronology and delay neutrino free-streaming until a much later epoch. We use observations of the CMB to constrain the strength of neutrino self-interactions G_eff and put limits on new physics in the neutrino sector from the early Universe. Recent measurements of the CMB at large multipoles made by the Planck satellite and high-l experiments are critical for probing this physics. Within the context of conventional LambdaCDM parameters cosmological data are compatible with G_eff cooled to as low as ~25 eV. Intriguingly, we also find an alternative cosmology compatible with cosmological data in which neutrinos scatter off each other until z~10^4 with a preferred interaction strength in a narrow region around G_eff = 1/(10 MeV)^2. This distinct self-interacting neutrino cosmology is characterized by somewhat lower values of both the scalar spectral index and the amplitude of primordial fluctuations. While we phrase our discussion here in terms of a specific scenario in which a late onset of neutrino free-streaming could occur, our constraints on the neutrino visibility function are very general.

Francis-Yan Cyr-Racine; Kris Sigurdson

2013-06-06T23:59:59.000Z

228

Neutrino Factory Feasibility Study  

NLE Websites -- All DOE Office Websites (Extended Search)

6-1 - 6-1 - April 15 th , 2000 6. Cooling 6.1 Introduction The goal of this six-month study is an integrated design for a neutrino source, subject to realistic engineering constraints. As will become evident, the coupling between the cooling-channel design and the design of the upstream components is critical to achieving the best performance. Nevertheless, to make sufficiently rapid progress it has been necessary to design the various components semi-independently, then optimize and iterate to converge towards an integrated design. While we have not yet arrived at a fully optimized design, we have studied sufficiently the cooling channels described below to determine that their performance is limited primarily by the performance of the current phase-rotation and buncher designs. While the designs presented here suffice for an entry-level neutrino factory (10

229

ATCA/muTCA for Physics  

Science Conference Proceedings (OSTI)

ATCA/{mu}TCA platforms are attractive because of the modern serial link architecture, high availability features and many packaging options. Less-demanding availability applications can be met economically by scaling back speed and redundancy. The ATCA specification was originally targeted for the Telecom industry but has gained recently a much wider user audience. The purpose of this paper is to report on present hardware and software R and D efforts where ATCA and {mu}TCA are planned, already being used or in development using selected examples for accelerator and detectors in the Physics community. It will present also the status of a proposal for physics extensions to ATCA/{mu}TCA specifications to promote inter-operability of laboratory and industry designs for physics.

Jezynski, Tomasz; /DESY; Larsen, Raymond; /SLAC; Le Du, Patrick; /Lyon, IPN

2012-06-14T23:59:59.000Z

230

The M.U.5 Computer System  

E-Print Network (OSTI)

Describes the design of the MU5 research computer, the aim of which has been to produce a high performance machine whose structure is well suited to the needs of modern high level languages. It is hoped that a computing speed improvement of about 20 over the 2-3 mu S instruction rate of ATLAS will be obtained. In the ten years which have elapsed between the ATLAS and MU5 projects, the speed of logic gates and main storage has increased by a factor of 8:1, and this will result in a commensurate increase in system performance. In order to approach the 20:1 performance target, however, it will be necessary to adopt extensive parallel processing techniques, and to incorporate data buffering systems to compensate for the disparity between processor and storage speeds. (11 refs).

Sumner, F H

1974-01-01T23:59:59.000Z

231

Higgs boson coupling sensitivity at the LHC using H->tau tau decays  

E-Print Network (OSTI)

We investigate the potential for measuring the relative couplings of a low-mass Higgs boson at the Large Hadron Collider using WH, ZH, and ttbarH production, where the Higgs boson decays to tau-lepton pairs. With 100/fb of sqrt(s) = 14 TeV pp collision data we find that these modes can improve sensitivity to coupling-ratio measurements of a Higgs boson with a mass of about 125 GeV/c^2.

Boddy, Christopher; Hays, Christopher

2012-01-01T23:59:59.000Z

232

Tuning and Analysis Utilities (TAU) on BG/P Systems | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Utilities (TAU) on BG/P Systems and Analysis Utilities (TAU) on BG/P Systems References TAU Project Site TAU Instrumentation Methods TAU Compilation Options TAU Fortran Instrumentation FAQ TAU Leap to Petascale 2009 Presentation TAU Workshop 2009 Introduction The TAU (Tuning and Analysis Utilities) Performance System is a portable profiling and tracing toolkit for performance analysis of parallel programs written in Fortran, C, C++, Java, Python. TAU gathers performance information while a program executes through instrumentation of functions, methods, basic blocks, and statements. The instrumentation consists of calls to TAU library routines which can be incorporated into a program in several ways: automatic instrumentation of the code at the source level using the Program Database Toolkit (PDT)

233

Higgs boson decay to mu mubar gamma  

E-Print Network (OSTI)

The Higgs boson decay, H -> mu mubar gamma, is studied in the Standard Model at the tree and one-loop levels. It is shown that for Higgs boson masses above 110 GeV, the contribution to the radiative width from the one-loop level exceeds the contribution from the tree level, and for Higgs boson masses above 140 GeV, it even exceeds the contribution from the tree level decay H -> mu mubar. We also show that the contributions to the radiative decay width from the interference terms between the tree and one-loop diagrams are negligible.

Ali Abbasabadi; Wayne W. Repko

2000-04-17T23:59:59.000Z

234

A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment  

SciTech Connect

The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for {nu}{sub {mu}} {yields} {nu}{sub e} appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions ({nu}{sub {mu}} + n {yields} {mu} + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is {sigma} = (1.058 {+-} 0.003 (stat) {+-} 0.111 (syst)) x 10{sup -38} cm{sup 2} at the MiniBooNE muon neutrino beam energy (700-800 MeV). {nu}{sub e} appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

Katori, Teppei; /Indiana U.

2008-12-01T23:59:59.000Z

235

Measurement of the tau- to eta pi-pi+pi-nu tau Branching Fraction and a Search for a Second-Class Current in the tau- to eta'(958)pi-nu tau Decay  

SciTech Connect

The {tau}{sup -} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} decay with the {eta} {yields} {gamma}{gamma} mode is studied using 384 fb{sup -1} of data collected by the BABAR detector. The branching fraction is measured to be (1.60 {+-} 0.05 {+-} 0.11) x 10{sup -4}. It is found that {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -} {nu}{sub {tau}} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} is the dominant decay mode with a branching fraction of (1.11 {+-} 0.06 {+-} 0.05) x 10{sup -4}. The first error on the branching fractions is statistical and the second systematic. In addition, a 90% confidence level upper limit on the branching fraction of the {tau}{sup -} {yields} {eta}{prime}(958){pi}{sup -}{nu}{sub {tau}} decay is measured to be 7.2 x 10{sup -6}. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.

Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; Pappagallo, M.; /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, David Nathan; Button-Shafer, J.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

2008-03-24T23:59:59.000Z

236

Geomagnetic Effects on Atmospheric Neutrinos  

E-Print Network (OSTI)

Geomagnetic effects distort the zenith angle distribution of sub--GeV and few--GeV atmospheric neutrinos, breaking the up--down symmetry that would be present in the absence of neutrino oscillations and without a geomagnetic field. The geomagnetic effects also produce a characteristic azimuthal dependence of the $\

Paolo Lipari; T. K. Gaisser; Todor Stanev

1998-03-09T23:59:59.000Z

237

Solar Hydrogen Burning and Neutrinos  

E-Print Network (OSTI)

We summarize the current status of laboratory measurements of nuclear cross sections of the pp chain and CN cycle. We discuss the connections between such measurements, predictions of solar neutrino fluxes, and the conclusion that solar neutrinos oscillate before reaching earth.

W. C. Haxton; P. D. Parker; C. E. Rolfs

2005-01-10T23:59:59.000Z

238

Off-shell OPERA neutrinos  

E-Print Network (OSTI)

In the OPERA experiment, superluminal propagation of neutrinos can occur if one of the neutrino masses is extremely small. However the effect only has appreciable amplitude at energies of order this mass and thus has negligible overlap with the multi-GeV scale of the experiment.

Tim R. Morris

2011-10-14T23:59:59.000Z

239

Observation of Geo-Neutrinos  

E-Print Network (OSTI)

Geo-neutrinos, electron anti-neutrinos produced in beta decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. We report the first observation at more than 3$\\sigma$ C.L. of geo-neutrinos, performed with the Borexino detector at Laboratori Nazionali del Gran Sasso. Anti-neutrinos are detected through the neutron inverse beta decay reaction. With a 252.6 ton-yr fiducial exposure after all selection cuts, we detected 9.9^{+4.1}_{-3.4}(^{+14.6}_{-8.2}) geo-neutrino events, with errors corresponding to a 68.3%(99.73%) C.L. From the $\\ln{\\cal{L}}$ profile, the statistical significance of the Borexino geo-neutrino observation corresponds to a 99.997% C.L. Our measurement of the geo-neutrinos rate is 3.9^{+1.6}_{-1.3}(^{+5.8}_{-3.2}) events/(100ton-yr). This measurement rejects the hypothesis of an active geo-reactor in the Earth's core with a power above 3 TW at 95% C.L. The observed prompt positron spectrum above 2.6 MeV is compatible with that expected from european nuclear reactors (mean base line of approximately 1000 km). Our measurement of reactor anti-neutrinos excludes the non-oscillation hypothesis at 99.60% C.L.

Borexino Collaboration

2010-03-01T23:59:59.000Z

240

A Typhoon Observed with the MU Radar  

Science Conference Proceedings (OSTI)

During the passage of Typhoon 8719 a 60-h continuous observation was made of the troposphere and the lower stratosphere with the MU (middle and upper atmosphere) radar. Height profiles of the wind velocity vector were measured every 2.5 min with ...

Toru Sato; Naoki Ao; Mamoru Yamamoto; Shoichiro Fukao; Toshitaka Tsuda; Susumu Kato

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Particle-physics constraints from the globular cluster M5: Neutrino Dipole Moments  

E-Print Network (OSTI)

Stellar evolution is modified if energy is lost in a "dark channel" similar to neutrino emission. Comparing modified stellar evolution sequences with observations provides some of the most restrictive limits on axions and other hypothetical low-mass particles and on non-standard neutrino properties. In particular, a putative neutrino magnetic dipole moment mu_nu enhances the plasmon decay process, postpones helium ignition in low-mass stars, and therefore extends the red-giant branch (RGB) in globular clusters (GCs). The brightness of the tip of the RGB (TRGB) remains the most sensitive probe for mu_nu and we revisit this argument from a modern perspective. Based on a large set of archival observations, we provide high-precision photometry for the Galactic GC M5 (NGC5904) and carefully determine its TRGB position. On the theoretical side, we add the extra plasmon decay rate brought about by mu_nu to the Princeton-Goddard-PUC stellar evolution code. Different sources of uncertainty are critically examined. The main source of systematic uncertainty is the bolometric correction and the main statistical uncertainty derives from the distance modulus based on main-sequence fitting. (Other measures of distance, e.g., the brightness of RR Lyrae stars, are influenced by the energy loss that we wish to constrain.) The statistical uncertainty of the TRGB position relative to the brightest RGB star is less important because the RGB is well populated. We infer an absolute I-band brightness of M_I=-4.17+/-0.13 mag for the TRGB compared with the theoretical prediction of -3.99+/-0.07 mag, in reasonable agreement with each other. A significant brightness increase caused by neutrino dipole moments is constrained such that mu_nu<2.6x10^-12mu_B(68% CL), where mu_B is the Bohr magneton, and mu_nu<4.5x10^-12 mu_B(95% CL). In these results, statistical and systematic errors have been combined in quadrature.

Nicolás Viaux; Márcio Catelan; Peter B. Stetson; Georg Raffelt; Javier Redondo; Aldo A. R. Valcarce; Achim Weiss

2013-08-21T23:59:59.000Z

242

Review of Solar Neutrino Experiments  

E-Print Network (OSTI)

This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies.

Alain Bellerive

2003-12-16T23:59:59.000Z

243

The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron...  

Office of Science (SC) Website

Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP...

244

neutrino_mixing_s805.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUTRINO NEUTRINO PHYSICS AS EXPLORED BY FLAVOR CHANGE Written May 2002 by B. Kayser (Fermilab). I. The physics of flavor change: The rather convincing evidence that atmospheric neutrinos change from one flavor to another has now been joined by new, very strong evidence that the solar neutrinos do this as well. Neutrino flavor change implies that neutrinos have nonzero masses. That is, there is a spectrum of three or more neutrino mass eigenstates, ν 1 , ν 2 , ν 3 , . . ., that are the analogues of the charged-lepton mass eigenstates, e, µ, and τ . Neutrino flavor change also implies leptonic mixing. That is, the weak interaction coupling the W boson to a charged lepton and a neutrino can couple any charged-lepton mass eigenstate α to any neutrino mass eigenstate ν i . Here, α = e, µ, or τ , and e is the electron, etc. Leptonic W + decay can yield a particular + α in association with any ν i . The amplitude

245

NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.  

Science Conference Proceedings (OSTI)

Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

PARSA,Z.

2001-06-18T23:59:59.000Z

246

Search for CP Violation in the Decay tau- \\to pi- K^0_S (>= 0 pi0) nu_tau  

SciTech Connect

We report a search for CP violation in the decay {tau}{sup -} {yields} {pi}{sup -}K{sub S}{sup 0}({>=} 0{pi}{sup 0}){nu}{sub {tau}} using a dataset of 437 million {tau} lepton pairs, corresponding to an integrated luminosity of 476 fb{sup -1}, collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings. The CP-violating decay-rate asymmetry is determined to be (-0.45 {+-} 0.24 {+-} 0.11)%, approximately three standard deviations from the Standard Model prediction of (0.33 {+-} 0.01)%.

Lees, J.P.; Poireau, V.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Bari /Bari U.; Milanes, D.A.; /INFN, Bari; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2012-02-16T23:59:59.000Z

247

Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies  

E-Print Network (OSTI)

We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains only one eV-scale sterile neutrino but with an effective non-unitary mixing matrix between the light sterile and active neutrinos. We find that though this may explain the anomalies, if the non-unitarity originates from a heavy sterile neutrino with a large (fine-tuned) mixing angle, this scenario is highly constrained by cosmological and laboratory observations.

JiJi Fan; Paul Langacker

2012-01-31T23:59:59.000Z

248

Almost Degenerate Neutrinos with Maximal Mixing  

E-Print Network (OSTI)

If the upper limit on the effective (Majorana) neutrino mass from neutrinoless double beta decay experiments is confirmed to be much less than an electron-volt, then one way to reconcile it with the degenerate neutrino mass pattern suggested recently to explain the observed deficit of solar and atmospheric neutrinos as well as neutrinos as HDM is to postulate that there be maximal mixing among the three light (or two) neutrinos. This suggestion is advanced in this paper and is analysed.

R. N. Mohapatra; S. Nussinov

1994-11-11T23:59:59.000Z

249

Study of High-multiplicity 3-prong and 5-prong Tau Decays at BaBar  

SciTech Connect

We present measurements of the branching fractions of 3-prong and 5-prong {tau} decay modes using a sample of 430 million {tau} lepton pairs, corresponding to an integrated luminosity of 468 fb{sup -1}, collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings. The {tau}{sup -} {yields} (3{pi}){sup -} {eta}{nu}{sub {tau}}, {tau}{sup -} {yields} (3{pi}){sup -} {yields} {omega}{nu}{sub {tau}} and {tau}{sup -} {yields} {pi}{sup -} f{sub 1}(1285){nu}{sub {tau}} branching fractions are presented as well as a new limit on the branching fraction of the isospin-forbidden, second-class current {tau}{sup -} {yields} {pi}{sup -} {eta}{prime}(958){nu}{sub {tau}} decay. We find no evidence for charged kaons in these decay modes and place the first upper limits on their branching fractions.

Lees, J.P

2012-06-01T23:59:59.000Z

250

Measurement of \\mathcal{B}(\\tau^{-}\\-->\\bar{K^{0}}\\pi^{-}\  

SciTech Connect

A preliminary measurement of the branching fraction {Beta}({tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -}{nu}{sub {tau}}) is made using 384.6 fb{sup -1} of e{sup +}e{sup -} collision data provided by the PEP-II collider, operating primarily at {radical}s = 10.58 GeV, and recorded using the BABAR detector. From this they measure: {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) = (0.840 {+-} 0.004(stat) {+-} 0.023(syst))%. This result is the most precise measurement to date and is consistent with the world average.

Wren, A

2008-08-13T23:59:59.000Z

251

A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper  

E-Print Network (OSTI)

Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 $\\sigma$ significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 $\\sigma$ if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.

E. Baussan; M. Blennow; M. Bogomilov; E. Bouquerel; J. Cederkall; P. Christiansen; P. Coloma; P. Cupial; H. Danared; C. Densham; M. Dracos; T. Ekelof; M. Eshraqi; E. Fernandez Martinez; G. Gaudiot; R. Hall-Wilton; J. -P. Koutchouk; M. Lindroos; R. Matev; D. McGinnis; M. Mezzetto; R. Miyamoto; L. Mosca; T. Ohlsson; H. Ohman; F. Osswald; S. Peggs; P. Poussot; R. Ruber; J. Y. Tang; R. Tsenov; G. Vankova-Kirilova; N. Vassilopoulos; E. Wildner; J. Wurtz

2013-09-26T23:59:59.000Z

252

Solar Neutrinos: Status and Prospects  

E-Print Network (OSTI)

We describe the current status of solar neutrino measurements and of the theory -- both neutrino physics and solar astrophysics -- employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the neutrino-electron elastic scattering rate for 8B neutrinos to 3%; the latest SNO global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle theta12; Borexino results for both the 7Be and pep neutrino fluxes, the first direct measurements constraining the rate of ppI and ppII burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on theta13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the soun...

Robertson, W C Haxton R G Hamish

2012-01-01T23:59:59.000Z

253

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

Sinegovsky, S I; Sinegovskaya, T S

2010-01-01T23:59:59.000Z

254

Particle Data Group - 2011 Summary Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauge and Higgs Bosons (gamma, g, W, Z, ...) Leptons (e, mu, tau, ... neutrinos ...) Quarks (u, d, s, c, b, t, b', t', Free) Mesons contents Baryons contents Searches (Monopoles,...

255

Particle Data Group - 2010 Summary Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauge and Higgs Bosons (gamma, g, W, Z, ...) Leptons (e, mu, tau, ... neutrinos ...) Quarks (u, d, s, c, b, t, b', t', Free) Mesons errata contents Baryons errata contents...

256

Particle Data Group - 2009 Summary Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauge and Higgs Bosons (gamma, g, W, Z, ...) Leptons (e, mu, tau, ... neutrinos ...) Quarks (u, d, s, c, b, t, b', t', Free) Mesons contents Baryons contents Searches (Monopoles,...

257

Particle Data Group - 2008 Summary Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauge and Higgs Bosons (gamma, g, W, Z, ...) Leptons (e, mu, tau, ... neutrinos ...) Quarks (u, d, s, c, b, t, b', t', Free) Mesons contents Baryons contents Searches (Monopoles,...

258

R Symmetry and the Mu Problem  

E-Print Network (OSTI)

A natural origin for the mu and B parameters of weak scale supersymmetric theories is proposed, applicable to any supersymmetry breaking messenger scale between the weak and Planck scales. Although quite general, it requires supersymmetric interactions to respect an R symmetry with definite quantum numbers, and it requires some new scale of symmetry breaking. The required R symmetry distinguishes the Higgs boson from the sneutrino, preserves baryon number in operators of dimension four and five, and contains R parity so that the lightest superpartner is stable. This origin for mu works for a variety of mediation mechanisms, including gauge mediation, gaugino mediation, and boundary condition breaking of supersymmetry. In any of these mediation schemes, our mechanism leads to a real B parameter, and the supersymmetric CP problem is solved. This R symmetry may naturally arise from supersymmetric theories in higher dimensions.

Lawrence J. Hall; Yasunori Nomura; Aaron Pierce

2002-04-04T23:59:59.000Z

259

A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam  

SciTech Connect

This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0.953 (68% confidence level). The models of neutrino decoherence and decay are disfavored at the 5.0{sigma} and 3.2{sigma} levels respectively, while the no oscillation model is excluded at the 9.4{sigma} level.

Marshall, John Stuart; /Cambridge U.

2008-06-01T23:59:59.000Z

260

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam  

SciTech Connect

Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67 x 10{sup -2} at mean neutrino energy 1.1 GeV and 1.36 x 10{sup -2} at mean neutrino energy 2.2 GeV. We reveal that the Rein-Sehgal model widely used in neutrino oscillation experiments breaks down at the neutrino energy region of a few GeV. This creates active controversies on the model of coherent pion production, and the understanding of coherent pion production is being progressed. In addition, future prospects of measurements of charged current single charged pion production in SciBooNE are discussed.

Hiraide, Katsuki; /Kyoto U.

2009-01-01T23:59:59.000Z

262

Neutrinos in Cosmology and Astrophysics  

E-Print Network (OSTI)

We briefly review the recent developments in neutrino physics and astrophysics which have import for frontline research in nuclear physics. These developments, we argue, tie nuclear physics to exciting developments in observational cosmology and astrophysics in new ways. Moreover, the behavior of neutrinos in dense matter is itself a fundamental problem in many-body quantum mechanics, in some ways akin to well-known issues in nuclear matter and nuclei, and in some ways radically different, especially because of nonlinearity and quantum de-coherence. The self-interacting neutrino gas is the only many body system driven by the weak interactions.

A. B. Balantekin; G. M. Fuller

2013-03-15T23:59:59.000Z

263

Evidence for neutrino oscillations in the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

ux in the Standard Solar Model of the Sun. The long-standingwithin the solar core (inner ?20% of the Sun’s radius). Thesolar neutrino ?ux probe the nuclear fusion reactions fueling the Sun.

Marino, Alysia Diane

2004-01-01T23:59:59.000Z

264

The neutrino process and neutrino r-process  

SciTech Connect

Almost all of the 3 {center dot} 10{sup 53} ergs released in a core-collapse supernova is carried off by the neutrinos emitted from the cooling neutron star. These neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions, leading to the spallation of nucleonsa and {alpha}-particles and the production of new daughter nuclei, I will describe rather detailed network calculations that suggest this neutrino process'' is an important nucleosynthesis mechanisms that may be responsible for the galactic abundances of {sup 7}Li, {sup 11}B, {sup 19}F, {sup 138}La, {sup 180}Ta, and a number of other nuclei. I also discuss the possibility of an r-process in the He zone of a low-Z progenitor that could be driven, in part, by neutrinos.

Haxton, W.C.

1991-01-01T23:59:59.000Z

265

The neutrino process and neutrino r-process  

SciTech Connect

Almost all of the 3 {center_dot} 10{sup 53} ergs released in a core-collapse supernova is carried off by the neutrinos emitted from the cooling neutron star. These neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions, leading to the spallation of nucleonsa and {alpha}-particles and the production of new daughter nuclei, I will describe rather detailed network calculations that suggest this ``neutrino process`` is an important nucleosynthesis mechanisms that may be responsible for the galactic abundances of {sup 7}Li, {sup 11}B, {sup 19}F, {sup 138}La, {sup 180}Ta, and a number of other nuclei. I also discuss the possibility of an r-process in the He zone of a low-Z progenitor that could be driven, in part, by neutrinos.

Haxton, W.C.

1991-12-31T23:59:59.000Z

266

Constraining neutrino magnetic moment with solar and reactor neutrino data  

E-Print Network (OSTI)

We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MUNU in our analysis, improving significantly the current constraints on TMs. A comparison with previous works shows that our bounds are the strongest and most general results presented up to now. Finally, we perform a simulation of the future Borexino experiment and show that it will improve the bounds from today's data by order of magnitude.

M. A. Tortola

2004-01-19T23:59:59.000Z

267

Evidence for neutrino oscillations in the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

the neutrinos from a nuclear reactor by the Cl 37 (¯ , e ? )the Savannah River nuclear reactor in 1956 [9]. Here Reinessources include nuclear reactors and the decays of cosmic-

Marino, Alysia Diane

2004-01-01T23:59:59.000Z

268

Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections  

Science Conference Proceedings (OSTI)

Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillation - a channel that may yield insight into the vanishingly small mixing parameter {theta}{sub 13}, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single {pi}{sup 0} (NC 1{pi}{sup 0}) production. Unfortunately, the available data concerning NC 1{pi}{sup 0} production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1{pi}{sup 0} production yield substantially differing predictions in the critical E{sub {nu}} {approx} 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data ({approx} 10{sup 6} neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1{pi}{sup 0} production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1{pi}{sup 0} cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the flux-averaged, total cross sections for NC 1{pi}{sup 0} production on CH{sub 2} to be (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 808 MeV for neutrino induced production and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 664 MeV for antineutrino induced production.

Anderson, Colin; /Yale U.

2010-12-01T23:59:59.000Z

269

Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections  

SciTech Connect

Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillation - a channel that may yield insight into the vanishingly small mixing parameter {theta}{sub 13}, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single {pi}{sup 0} (NC 1{pi}{sup 0}) production. Unfortunately, the available data concerning NC 1{pi}{sup 0} production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1{pi}{sup 0} production yield substantially differing predictions in the critical E{sub {nu}} {approx} 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data ({approx} 10{sup 6} neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1{pi}{sup 0} production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1{pi}{sup 0} cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the flux-averaged, total cross sections for NC 1{pi}{sup 0} production on CH{sub 2} to be (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 808 MeV for neutrino induced production and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at = 664 MeV for antineutrino induced production.

Anderson, Colin; /Yale U.

2010-12-01T23:59:59.000Z

270

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice  

E-Print Network (OSTI)

We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

Olga Mena; Irina Mocioiu; Soebur Razzaque

2008-03-20T23:59:59.000Z

271

A search for sterile neutrinos at the MINOS experiment  

SciTech Connect

MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The {nu}{sub {mu}} beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without {nu}{sub e} appearance. The oscillation parameters measured by this model are {Delta}m{sub 32}{sup 2} = (2.39{sub -0.15}{sup +0.23}) x 10{sup -3} eV{sup 2} and {theta}{sub 23} = 0.727{sub -0.11}{sup +0.22} for the no {nu}{sub e} appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of {nu}{sub e} appearance and no {nu}{sub e} appearance. The results of this analysis are {Delta}m{sub 31}{sup 2} = 2.44{sub -0.14}{sup +0.23} x 10{sup -3} eV{sup 2}, {theta}{sub 23} = 0.755{sub -0.12}{sup +0.19} and {theta}{sub 34} = 0.00{sup +0.35} for no {nu}{sub e} appearance and {Delta}m{sub 31}{sup 2} = (2.46{sub -0.14}{sup +0.21}) x 10{sup -3} eV{sup 2}, {theta}{sub 23} = 0.849{sub -0.19}{sup +0.12} and {theta}{sub 34} = 0.00{sup +0.60} for {nu}{sub e} appearance. This is consistent with no oscillations between active and sterile neutrinos.

Pittam, Robert Neil; /Oxford U.

2010-08-01T23:59:59.000Z

272

neutrino-properties-web.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

THE THE NEUTRINO PROPERTIES LISTINGS Revised August 2013 by P. Vogel (Caltech) and A. Piepke (University of Alabama). The following Listings concern measurements of various properties of neutrinos. Nearly all of the measurements, all of which so far are limits, actually concern superpositions of the mass eigenstates ν i , which are in turn related to the weak eigenstates ν ℓ , via the neutrino mixing matrix |ν ℓ = i U ℓi |ν i . In the analogous case of quark mixing via the CKM matrix, the smallness of the off-diagonal terms (small mixing angles) permits a "dominant eigenstate" approximation. However, the results of neutrino oscillation searches show that the mixing matrix contains two large mixing angles and a third angle that is not exceedingly small. We cannot, therefore, associate any particular state |ν i with any particular lepton label e, µ or τ . Nevertheless,

273

Neutrino Mass and Grand Unification  

E-Print Network (OSTI)

Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup $SU(2)_L\\times SU(2)_R\\times SU(4)_c$.

R. N. Mohapatra

2004-12-03T23:59:59.000Z

274

Neutrinos interacting with Polarizable Media  

E-Print Network (OSTI)

We study Cherenkov and transition radiation of neutral spin 1/2 particles which carry magnetic moments or electric dipole moments. In particular, we estimate the radiation caused by the solar neutrino flux in dielectric media.

W. Grimus; H. Neufeld

1994-10-20T23:59:59.000Z

275

Neutrino capital of the world  

E-Print Network (OSTI)

Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

Johnson, Carolyn Y., 1980-

2004-01-01T23:59:59.000Z

276

The Fermilab neutrino beam program  

Science Conference Proceedings (OSTI)

This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

Rameika, Regina A.; /Fermilab

2007-01-01T23:59:59.000Z

277

nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee  

SciTech Connect

The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

2012-06-01T23:59:59.000Z

278

Probing Radiative Solar Neutrinos Decays  

E-Print Network (OSTI)

Motivated by a pilot experiment conducted by F.Vannucci et al. during a solar eclipse, we work out the geometry governing the radiative decays of solar neutrinos. Surprisingly, although a smaller proportion of the photons can be detected, the case of strongly non-degenerate neutrinos brings better limits in terms of the fundamental couplings. We advocate satellite-based experiments to improve the sensitivity.

Frère, J M

1998-01-01T23:59:59.000Z

279

Solar Neutrinos: Status and Prospects  

E-Print Network (OSTI)

We describe the current status of solar neutrino measurements and of the theory -- both neutrino physics and solar astrophysics -- employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the neutrino-electron elastic scattering rate for 8B neutrinos to 3%; the latest SNO global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle theta12; Borexino results for both the 7Be and pep neutrino fluxes, the first direct measurements constraining the rate of ppI and ppII burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on theta13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

W. C. Haxton; R. G. Hamish Robertson; Aldo M. Serenelli

2012-08-28T23:59:59.000Z

280

Solar mass-varying neutrino oscillations  

E-Print Network (OSTI)

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

V. Barger; Patrick Huber; Danny Marfatia

2005-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Masatoshi Koshiba and Cosmic Neutrinos  

Office of Scientific and Technical Information (OSTI)

Masatoshi Koshiba and Cosmic Neutrinos Masatoshi Koshiba and Cosmic Neutrinos Resources with Additional Information Masatoshi Koshiba Courtesy of Sebastian Brandt 'The 2002 Nobel Prize in Physics has been awarded to ... Masatoshi Koshiba of the International Center for Elementary Particle Physics at the University of Tokyo in Japan, ... "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." ... Neutrinos are important in astrophysics since they might have played a considerable role in shaping early galaxies; they are the form of energy coming directly from the solar core; and they account for the largest share of energy released during supernova explosions....'1 ...Koshiba, professor emeritus at the University of Tokyo, received his doctorate from the University of Rochester in [1955]. This year [2000], he is the co-recipient of the Wolf Prize in Physics, considered second only to the Nobel Prize in prestige, for his discovery that neutrinos have mass. Neutrinos are tiny particles smaller than atoms, and Koshiba's discovery is being hailed for its ramifications in the study of astronomical objects and the fundamental properties of matter, helping scientists to understand the birth of the universe. Koshiba started his career as a research associate at the University of Rochester, then went on to teach at the University of Tokyo." 2

282

Neutrino factories: realization and physics potential  

SciTech Connect

Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

2006-12-01T23:59:59.000Z

283

Measurement of Cabibbo suppressed decays of the $\\tau$ lepton  

E-Print Network (OSTI)

Branching ratios for the dominant Cabibbo-suppressed decays of the \\tau lepton have been measured by CLEO~II in e^+ e^- annihilation at CESR (\\sqrt{s} \\sim 10.6~GeV) using kaons with momenta below 0.7\\ \\rm GeV/c. The inclusive branching ratio into one charged kaon is (1.60 \\pm 0.12 \\pm 0.19)\\%. For the exclusive decays, B(\\tau \\to K^-) = (0.66 \\pm 0.07 \\pm 0.09)\\%, B(\\tau \\to K^- \\pi^0) = (0.51 \\pm 0.10 \\pm 0.07)\\%, and, based on three events, B(\\tau \\to K^- \\pi^0 \\pi^0) < 0.3\\% at the 90\\% confidence level. These represent significant improvements over previous results. B(\\tau\\to K^- \\pi^0) is measured for the first time with exclusive \\pi^0 reconstruction. hardcopies with figures can be obtained by writing to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

Battle, M; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H; Dominick, J; Lambrecht, M; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P; Artuso, M; Goldberg, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Edwards, K W; Ogg, M; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Akerib, D S; Barish, B C; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G E; Paar, H P; Sivertz, M; Gronberg, J B; Kutschke, R; Menary, S R; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, David G; Cho, H A; Coffman, D M; Drell, P S; Ehrlich, R; Gaidarev, P B; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A P; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N K; Davis, R; Hancock, N; Kelly, M; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Nelson, J K; Patton, S; Perticone, D; Poling, R A; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R L; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G R; Ross, W R; Skubic, P L; Snow, J; Wang, P L; Wood, M; Brown, D N; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang Pei Ning

1994-01-01T23:59:59.000Z

284

Solar Neutrino Oscillation Parameters in Experiments with Reactor Anti-Neutrinos  

E-Print Network (OSTI)

We review the current status of the solar neutrino oscillation parameters. We discuss the conditions under which measurements from future solar neutrino experiments would determine the oscillation parameters precisely. Finally we expound the potential of long baseline reactor anti-neutrino experiments in measuring the solar neutrino oscillation parameters.

Sandhya Choubey

2004-02-27T23:59:59.000Z

285

Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino  

DOE R&D Accomplishments (OSTI)

This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

Cooper, N. G. [ed.

1997-00-00T23:59:59.000Z

286

Measurement of theta13 with reactor neutrinos  

E-Print Network (OSTI)

? detectors ~1 km nuclear reactor Figure 2. Concept of a 2-Measurement of ? 13 with Reactor Neutrinos K.M. Heeger a ,power plant, a future reactor neutrino experiment has the

Heeger, Karsten M.; Freedman, Stuart J.; Kadel, Richard W.; Luk, Kam-Biu

2004-01-01T23:59:59.000Z

287

Solar Neutrinos: Models, Observations, and New Opportunities  

E-Print Network (OSTI)

I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

W. C. Haxton

2007-10-11T23:59:59.000Z

288

Neutrino mixing, flavor states and dark energy  

E-Print Network (OSTI)

We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

2007-11-06T23:59:59.000Z

289

Measurement of the branching fraction for $\\tau\\to\\eta K\  

SciTech Connect

The authors report on analyses of tau lepton decays {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} and {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, with {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, using 470 fb{sup -1} of data from the BABAR experiment at PEP-II, collected at center-of-mass energies at and near the {Upsilon}(4S) resonance. They measure the branching fraction for the {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} decay mode, {Beta}({tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}}) = (1.42 {+-} 0.11(stat) {+-} 0.07(syst)) x 10{sup -4}, and report a 95% confidence level upper limit for the second-class current process {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, {Beta}({tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}) < 9.9 x 10{sup -5}.

del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2011-08-12T23:59:59.000Z

290

Solar neutrinos with three flavor mixings  

SciTech Connect

The recent{sup 71}Ga solar neutrino observation is combined with the {sup 37}Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.

Harley, D.; Pantaleone, J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory; Kuo, T.K. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

1992-12-31T23:59:59.000Z

291

Solar neutrinos with three flavor mixings  

SciTech Connect

The recent[sup 71]Ga solar neutrino observation is combined with the [sup 37]Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.

Harley, D.; Pantaleone, J. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory); Kuo, T.K. (Purdue Univ., Lafayette, IN (United States). Dept. of Physics)

1992-01-01T23:59:59.000Z

292

Atmospheric neutrino flux at INO site  

Science Conference Proceedings (OSTI)

To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

2011-11-23T23:59:59.000Z

293

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

294

On Ultrahigh-energy Neutrino Scattering  

E-Print Network (OSTI)

We predict the neutrino-nucleon cross section at ultrahigh energies relevant in connection with the search for high-energy cosmic neutrinos. Our investigation, employing the color-dipole picture, among other things allows us to quantitatively determine which fraction of the ultrahigh-energy neutrino-nucleon cross section stems from the saturation versus the color transparency region. We disagree with various results in the literature that predict a strong suppression of the neutrino-nucleon cross section at ultrahigh energies.

Kuroda, Masaaki

2013-01-01T23:59:59.000Z

295

Dark energy induced by neutrino mixing  

E-Print Network (OSTI)

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

2006-12-05T23:59:59.000Z

296

The Lake Baikal neutrino experiment: selected results  

E-Print Network (OSTI)

We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.

BAIKAL Collaboration; V. Balkanov

2000-01-10T23:59:59.000Z

297

Neutrino Masses and Oscillations: Triumphs and Challenges  

E-Print Network (OSTI)

The recent progress in establishing the existence of finite neutrino masses and mixing between generations of neutrinos has been remarkable, if not astounding. The combined results from studies of atmospheric neutrinos, solar neutrinos, and reactor antineutrinos paint an intriguing picture for theorists and provide clear motivation for future experimental studies. In this review, we summarize the status of experimental and theoretical work in this field and explore the future opportunities that emerge in light of recent discoveries.

R. D. McKeown; P. Vogel

2004-02-03T23:59:59.000Z

298

Solar Neutrinos with Super-Kamiokande  

E-Print Network (OSTI)

The discrepancy of the measured solar neutrino flux compared to the predictions of the standard solar model may be explained by the neutrino flavor oscillation hypothesis. A more direct and less model-dependent test of this hypothesis is a measurement of the distortion of the shape of the solar neutrino energy spectrum. Super-Kamiokande studies the energy spectrum of recoil electrons from solar neutrino scattering in water above 5.5 MeV.

Smy, M B

1999-01-01T23:59:59.000Z

299

Studies of the Strange Hadronic Tau Decay Tau- to K0(S) Pi- Nu-Tau Using the BaBar Detector  

SciTech Connect

A study of the decay {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} (K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) using the BABAR detector is presented. Using 124.4 fb{sup -1} of data we measure {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) = (0.830 {+-} 0.005(stat) {+-} 0.042(syst))%, which is the world's most precise measurement to date of this branching ratio, and is consistent with the current world average. This preliminary result, unlike most of the {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) measurements already published, is systematics dominated and so the biggest future improvement to this number should come from reducing the systematic uncertainties in the analysis. A study of the K{pi} mass spectrum, from which the strange (K{pi}) spectral function can be measured, reveals excess contributions above the K*(892) tail at higher K{pi} mass. While in the past this has been thought to be due to K*(892) - K*(1410) interference, we find that the K*(1410), whose branching ratio to K{pi} is approximately 7%, seems insufficient to explain the excess mass observed in the data. Instead, we perform a fit using a K*(892) - K*(1680) interference model and find better agreement. The discrepancy that remains could be due to an s-wave contribution to the interference that is not parameterized in the model used, and/or detector smearing that is not accounted for in our fit. We also attempt to find an s-wave contribution to the K{pi} mass spectrum by searching for an sp-interference effect. While we find a hint that such an effect exists, we have neither the confidence in the statistics nor systematics in the higher K{pi} mass region to announce an observation. We conclude that it would be a worthwhile study to pursue.

Lyon, Andrew J.; /Manchester U. /SLAC

2006-01-27T23:59:59.000Z

300

Branching ratio for a light Higgs boson to decay into. mu. /sup +/. mu. /sup -/ pairs  

SciTech Connect

We evaluate the effects of final-state interactions on the decay of a light Higgs boson to two pions. Although the formalism is completely general and can be applied to any strong-interaction decay mode of the Higgs boson, we are particularly interested in the regime where the Higgs-boson mass m/sub h/ satisfies the constraint 2m/sub ..pi../mu../sup +/..mu../sup -/ and two pions. Final-state interactions tend to enhance the two-pion mode and thus suppress the branching ratio to two muons. Since the two-muon mode is the cleanest signature for identifying the Higgs boson, it is important to obtain a good determination of this branching ratio. We find B(h..--> mu../sup +/..mu../sup -/) approx. =0/sup -2/--10/sup -1/.

Raby, S.; West, G.B.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Neutrino properties from reactor and accelerator experiments  

E-Print Network (OSTI)

In this talk, I discuss the general theory of neutrino oscillation experiments, putting special emphasis on the momentum distribution of the incoming neutrino beam. Then I discuss recent neutrino oscillation experiments, viz., LSND, KARMEN and CHOOZ. Experiments foreseeable in the near future have also been discussed at the end.

Pal, P B

1998-01-01T23:59:59.000Z

302

Neutrinos and Non-proliferation in Europe  

E-Print Network (OSTI)

Triggered by the demand of the IAEA, neutrino physicists in Europe involved with the Double Chooz experiment are studying the potential of neutrino detection to monitor nuclear reactors. In particular a new set of experiments at the ILL is planned to improve the knowledge of the neutrino spectrum emitted in the fission of 235U and 239Pu.

Cribier, Michel

2006-01-01T23:59:59.000Z

303

SOLAR NEUTRINOS: WHERE WE ARE JOHN BAHCALL  

E-Print Network (OSTI)

SOLAR NEUTRINOS: WHERE WE ARE JOHN BAHCALL Institute for Advanced Study, Princeton, NJ 08540 This talk compares standard model predictions for solar neutrino experiments with the results of actual a standard solar model. I emphasize the importance of recent analyses in which the neutrino fluxes

Bahcall, John

304

Neutrino oscillations present status and outlook  

E-Print Network (OSTI)

I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

Schwetz, Thomas

2008-01-01T23:59:59.000Z

305

Neutrino oscillations: present status and outlook  

E-Print Network (OSTI)

I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

Thomas Schwetz

2007-10-26T23:59:59.000Z

306

Neutrino oscillations: present status and outlook  

Science Conference Proceedings (OSTI)

I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

Schwetz, Thomas [Physics Department, Theory Division, CERN, CH-1211 Geneva 23 (Switzerland)

2008-02-21T23:59:59.000Z

307

Reactor-based Neutrino Oscillation Experiments  

E-Print Network (OSTI)

The status of neutrino oscillation searches employing nuclear reactors as sources is reviewed. This technique, a direct continuation of the experiments that proved the existence of neutrinos, is today an essential tool in investigating the indications of oscillations found in studying neutrinos produced in the sun and in the earth's atmosphere. The low-energy of the reactor \

Carlo Bemporad; Giorgio Gratta; Petr Vogel

2001-07-26T23:59:59.000Z

308

Neutrinos from Gamma Ray Bursts  

E-Print Network (OSTI)

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2000-10-18T23:59:59.000Z

309

Computational studies of tau protein : implications for the pathogenesis and treatment of neurodegenerative diseases  

E-Print Network (OSTI)

Tau protein is the primary constituent of protein aggregates known as neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Previous studies suggest that tau protein may play a contributing role in ...

Huang, Austin V., 1980-

2009-01-01T23:59:59.000Z

310

MU(& Ge-+v,  

Office of Legacy Management (LM)

fil fil MU(& Ge-+v, . !d R&arch & Development b This document consists of 6 Contract Ho. pages and - . --------------_____---. figures No.--~--of.--~~-_-copies, Series,&,, This subcontract entered into this 20 day 0fSepte~ber , 1943, by and between the University of Cliicago, a corporation not for pecuniary profit organized under the ICVS of the Stnto of Illinois, of Chicago, Illinois (hereinafter called "the Contractor") and Yiolverine Tube Divisionof Caluzet 2 Eecla Consolidated Co;-,er co, . a cor?orntion organized under the laws cf the State of l~lch~;an - of Detroit, I:ichigan --- (hersinnftcr called "the Subcontractoi"). WIEHEAS, tho Contractor has heretofore onterod into a contract v;ith the United States of America (rcprcse;!tcd by its dtlly designated

311

Do hep neutrinos affect the solar neutrino energy spectrum?  

E-Print Network (OSTI)

If the low energy cross section for 3He + p goes to 4He + e + nu_e, the `hep' reaction, is > 20 times larger than the best (but uncertain) theoretical estimates, then this reaction could significantly influence the electron energy spectrum produced by solar neutrino interactions and measured in the SuperKamiokande, SNO, and ICARUS experiments. We compare predicted energy spectra for different assumed hep fluxes and different neutrino oscillation scenarios with the observed SuperKamiokande spectrum. The spectra with enhanced hep contributions provide better fits to the SuperKamiokande data.

John Bahcall; Plamen Krastev

1998-07-29T23:59:59.000Z

312

Supernova neutrinos and nucleosynthesis  

E-Print Network (OSTI)

Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Zproduction of these elements. We explore this possibility by performing nucleosynthesis calculations based on long term Boltzmann neutrino transport simulations. They are based on an Equation of State that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron-rich with Ye ~ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z=42) and no heavy r-process elements are produced in our calculations.

G. Martínez-Pinedo; T. Fischer; L. Huther

2013-09-21T23:59:59.000Z

313

Neutrino oscillations in noisy media  

SciTech Connect

The authors develop the Redfield equation for delta-correlated gaussian noise and apply it to the case of two neutrino flavor or spin precession in the presence of a noisy matter density or magnetic field, respectively. The criteria under which physical fluctuations can be well approximated by the delta-correlated gaussian noise for the above cases are examined. Current limits on the possible neutrino magnetic moment and solar magnetic field suggest that a reasonably noisy solar magnetic field would not appreciably affect the solar electron neutrino flux. However, if the solar electron density has fluctuations of a few percent of the local density and a small enough correlation length, the MSW effect is suppressed for a range of parameters.

Loreti, F.N.; Balantekin, A.B.

1994-05-27T23:59:59.000Z

314

On solar neutrino fluxes in radiochemical experiments  

E-Print Network (OSTI)

We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

2005-12-08T23:59:59.000Z

315

Measuring Neutrinos with the ANTARES Telescope  

Science Conference Proceedings (OSTI)

The ANTARES underwater neutrino telescope has been taking data since construction began in 2006. The telescope, completed in May of 2008, detects the Cerenkov radiation of charged leptons produced by high energy neutrinos interacting in or around the detector. The lepton trajectory is reconstructed with high precision, revealing the direction of the incoming neutrino. The performance of the detector will be discussed and recent data showing muons, electromagnetic showers and atmospheric neutrinos will be presented. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies will be presented, and the sensitivity of the telescope will be discussed.

Reed, Corey [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands)

2009-12-17T23:59:59.000Z

316

Pair Production of Tau Sneutrinos at Linear Colliders  

E-Print Network (OSTI)

The pair production of tau sneutrinos in $e^{+}e^{-}$ collisions and their subsequent decays are studied in a framework of the supersymmetric extension of the standard model. We present an analysis for the parameter space (BR vs. mass) which could be explored at the future high energy $e^{+}e^{-}$ colliders.

Ari, V

2010-01-01T23:59:59.000Z

317

Validating Quicksand: Schema Versioning in \\tauXSchema  

Science Conference Proceedings (OSTI)

The W3C XML Schema recommendation defines the structure and data types for XML documents, but lacks explicit support for time-varying XML documents or for a time-varying schema. In previous work we introduced \\tauXSchema which is an infrastructure and ...

Curtis Dyreson; Richard T. Snodgrass; Faiz Currim; Sabah Currim; Shailesh Joshi

2006-04-01T23:59:59.000Z

318

Hadronic decays of the tau lepton: Theoretical outlook  

E-Print Network (OSTI)

The structure of the form factors stemmed from the hadronization of QCD currents in the energy region of the resonances can be explored through the analyses of exclusive hadronic decays of the tau lepton. I give a short review on the later theoretical progress achieved in the description of experimental data.

J. Portoles

2007-02-13T23:59:59.000Z

319

Solar neutrinos and the sun  

E-Print Network (OSTI)

We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

Aldo Serenelli

2011-09-12T23:59:59.000Z

320

Stimulated Neutrino Transformation Through Turbulence  

E-Print Network (OSTI)

We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues and, unexpectedly, we also find a dependence upon the long wavelength modes when the ratio of their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function $J_0$.

Kelly M. Patton; James P. Kneller; Gail C. McLaughlin

2013-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar neutrinos and the sun  

E-Print Network (OSTI)

We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

Serenelli, Aldo

2011-01-01T23:59:59.000Z

322

Progress in the physics of massive neutrinos  

E-Print Network (OSTI)

The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

V. Barger; D. Marfatia; K. Whisnant

2003-08-12T23:59:59.000Z

323

The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea  

E-Print Network (OSTI)

We study the earth matter effects in the Tokai-to-Kamioka-and-Korea experiment (T2KK), which is a proposed extension of the T2K (Tokai-to-Kamioka) neutrino oscillation experiment between J-PARC at Tokai and Super-Kamiokande (SK) in Kamioka, where an additional detector is placed in Korea along the same neutrino beam line.By using recent geophysical measurements, we examine the earth matter effects on the oscillation probabilities at Kamioka and Korea. The average matter density along the Tokai-to-Kamioka baseline is found to be 2.6 g/cm^3, and that for the Tokai-to-Korea baseline is 2.85, 2.98, and 3.05 g/cm^3 for the baseline length of L = 1000, 1100, and 1200 km, respectively. The uncertainty of the average density is about 6%, which is determined by the uncertainty in the correlation between the accurately measured sound velocity and the matter density. The effect of the matter density distribution along the baseline is studied by using the step function approximation and the Fourier analysis. We find that the nu_mu -> nu_e oscillation probability is dictated mainly by the average matter density, with small but non-negligible contribution from the real part of the first Fourier mode. We also find that the sensitivity of the T2KK experiment on the neutrino mass hierarchy does not improve significantly by reducing the matter density error from 6% to 3%, since the measurement is limited by statistics for the minimum scenario of T2KK with SK at Kamioka anda 100 kt detector in Korea considered in this report. The sensitivity of the T2KK experiment on the neutrino mass hierarchy improves significantly by splitting the total beam time into neutrino and anti-neutrino runs, because the matter effect term contributes to the oscillation amplitudes with the opposite sign.

Kaoru Hagiwara; Naotoshi Okamura; Ken-ichi Senda

2011-07-29T23:59:59.000Z

324

Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies  

E-Print Network (OSTI)

We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains o...

Fan, JiJi

2012-01-01T23:59:59.000Z

325

The Neutrino Eye: A Megaton Low Energy Neutrino  

E-Print Network (OSTI)

, despite the evident truth of that statement, the history of the water Cherenkov detectors demonstrates requirements. After all, there are million ton oil tankers, and there are oil platforms of much larger.4.4 Supernovae Out to 2Mpc The entire history of extra­solar neutrino astronomy consists of the the few second

Learned, John

326

Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall  

E-Print Network (OSTI)

Chapter 10 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Institute for Advanced study solar neutrinos? What does the combined standard model (solar plus electroweak) predict for solar neutrinos? Why are the calculations of neutrino fluxes robust? What are the three solar neutrino problems

Bahcall, John

327

WHY DO SOLAR NEUTRINO EXPERIMENTS BELOW J. N. BAHCALL  

E-Print Network (OSTI)

V. The rare 8 B neutrino ux is the only solar neutrino source for which measurements of the energy have been quantities for low energy solar neutrinos is impor- tant and can be used to constrain models of the neutrino that can do everything. I think we should be happy if a low energy solar neutrino experiment can measure

Bahcall, John

328

WHY DO SOLAR NEUTRINO EXPERIMENTS BELOW J. N. BAHCALL  

E-Print Network (OSTI)

V. The rare 8 B neutrino flux is the only solar neutrino source for which measurements of the energy have been quantities for low energy solar neutrinos is impor- tant and can be used to constrain models of the neutrino that can do everything. I think we should be happy if a low energy solar neutrino experiment can measure

Bahcall, John

329

CP violating phases in mu-e conversion  

E-Print Network (OSTI)

Experiments are planned to improve the sensitivity of mu-e conversion from the current ~ 10^{-12} to 10^{-16} - 10^{-18}. If the muon (bound to the nucleus) could be polarised, a spin asymmetry of the final state electron is sensitive to CP violating phases on lepton flavour violating operators. This is similar to extracting phases from asymmetries in the final state spin and phase space distributions of mu to 3e and mu to e gamma.

S Davidson

2008-09-01T23:59:59.000Z

330

SPITZER 24 {mu}m IMAGES OF PLANETARY NEBULAE  

SciTech Connect

Spitzer MIPS 24 {mu}m images were obtained for 36 Galactic planetary nebulae (PNe) whose central stars are hot white dwarfs (WDs) or pre-WDs with effective temperatures of {approx}100,000 K or higher. Diffuse 24 {mu}m emission is detected in 28 of these PNe. The eight nondetections are angularly large PNe with very low H{alpha} surface brightnesses. We find three types of correspondence between the 24 {mu}m emission and H{alpha} line emission of these PNe: six show 24 {mu}m emission more extended than H{alpha} emission, nine have a similar extent at 24 {mu}m and H{alpha}, and 13 show diffuse 24 {mu}m emission near the center of the H{alpha} shell. The sizes and surface brightnesses of these three groups of PNe and the nondetections suggest an evolutionary sequence, with the youngest ones being brightest and the most evolved ones undetected. The 24 {mu}m band emission from these PNe is attributed to [O IV] 25.9 {mu}m and [Ne V] 24.3 {mu}m line emission and dust continuum emission, but the relative contributions of these three components depend on the temperature of the central star and the distribution of gas and dust in the nebula.

Chu, Y.-H.; Gruendl, Robert A.; Bilikova, Jana; Caulet, Adeline [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Guerrero, Martin A. [Instituto de Astrofisica de Andalucia, CSIC. c/ Camino Bajo de Huetor 50, E-18008 Granada (Spain); Su, Kate Y. L. [Stewart Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cohen, Martin [Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Parker, Quentin A. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Volk, Kevin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chen, W.-P. [Institute of Astronomy, National Central University, Chung-Li, Taiwan (China); Hora, Joseph L. [Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138 (United States); Rauch, Thomas [Institut fuer Astronomie und Astrophysik Tuebingen (IAAT), Abteilung Astronomie, Sand 1, D-72076 Tuebingen (Germany)], E-mail: chu@astro.uiuc.edu

2009-08-15T23:59:59.000Z

331

Luminescent Bolometer and Neutrino Physics  

E-Print Network (OSTI)

The luminescent bolometer, proposed in 1988, is now seriously considered for several applications in nuclear and particle physics: dark matter searches, double beta decays, low energy neutrino physics, heavy ion physics... It is also a very promising device for basic condensed-matter physics and chemistry experiments, and may lead to astrophysical applications. The luminescent bolometer is based on the simultaneous detection of light and phonons, allowing for particle identification and for a detailed study of the detector response. Digitized analysis of the signals produced in several sensors installed on the same crystal is then a very powerful tool. Superconducting sensors allow to detect the scintillation light pulse followed by the delayed front of phonons, and can be extremely sensitive leading to single photon counting in the visible range. They also provide information on the position of the event inside the absorber, and can be fast enough for all proposed applications. The luminescent bolometer, with superconducting sensors, appears extremely promising for real time $solar$ neutrino experiments based on new indium single crystal scintillators. We focus on this particular application, discussing the status of the art as well as open problems and presenting an updated description of a full scale real time solar neutrino experiment sensitive to the low energy sector. Other applications of the luminescent bolometer (e.g. spectroscopy or neutrino detection at reactors), involving indium compounds and other single crystal scintillators, are equally considered and discussed in detail.

Luis Gonzalez-Mestres

1997-11-25T23:59:59.000Z

332

Measurement of {nu}{sub {mu}-}induced charged-current neutral pion production cross sections on mineral oil at E{sub {nu}} is an element of 0.5-2.0 GeV  

SciTech Connect

Using a custom 3-Cerenkov ring fitter, we report cross sections for {nu}{sub {mu}-}induced charged-current single {pi}{sup 0} production on mineral oil (CH{sub 2}) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5-2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q{sup 2}, {mu}{sup -} kinematics, and {pi}{sup 0} kinematics. The sample yields a flux-averaged total cross section of (9.2{+-}0.3{sub stat}{+-}1.5{sub syst})x10{sup -39} cm{sup 2}/CH{sub 2} at mean neutrino energy of 0.965 GeV.

Aguilar-Arevalo, A. A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, D.F. 04510 (Mexico); Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J. [Yale University, New Haven, Connecticut 06520 (United States); Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A. [Princeton University, Princeton, New Jersey 08544 (United States); Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kasper, P.; Kobilarcik, T. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

2011-03-01T23:59:59.000Z

333

Probing the Absolute Mass Scale of Neutrinos  

SciTech Connect

The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

Prof. Joseph A. Formaggio

2011-10-12T23:59:59.000Z

334

Neutrino-2008: Where are we? Where are we going?  

E-Print Network (OSTI)

Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

Alexei Yu. Smirnov

2008-10-15T23:59:59.000Z

335

Neutrino-2008: Where are we? Where are we going?  

E-Print Network (OSTI)

Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

Smirnov, Alexei Yu

2008-01-01T23:59:59.000Z

336

Report of the Solar and Atmospheric Neutrino Working Group  

E-Print Network (OSTI)

Solar Neutrino Experiments 3.1 Testing the Model of the Sun . . . . . . . . . . . . . . . . . . . . .propagate from solar center to surface, the Sun’s changingsolar neutrino project—using neutrinos to understand the Sun.

2004-01-01T23:59:59.000Z

337

Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos  

E-Print Network (OSTI)

This paper presents experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. The detector shall be located at a baseline around 58 km from the reactor(s) to measure the energy spectrum of electron antineutrinos ($\\bar{\

Liang Zhan; Yifang Wang; Jun Cao; Liangjian Wen

2009-01-20T23:59:59.000Z

338

Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory  

E-Print Network (OSTI)

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth’s surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring ...

Formaggio, Joseph A.

339

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network (OSTI)

the University of California. Search for muon neutrinos fromSearch for muon neutrinos from Gamma-Ray Bursts with theWe present the results of searches for high-energy muon

Abbasi, R.

2010-01-01T23:59:59.000Z

340

Blazing Cerenkov Flashes at the Horizons by Cosmic Rays and Neutrinos Induced Air-Showers  

E-Print Network (OSTI)

High Energy Cosmic Rays (C.R.) versus Neutrino and Neutralino induced Air-Shower maybe tested at Horizons by their muons, gamma and Cerenkov blazing signals. Inclined and Horizontal C.R. Showers (70-90 zenith angle) produce secondary (gamma, e+, e-) mostly suppressed by high column atmosphere depth. Earliest shower Cherenkov photons are diluted by large distances and by air opacity, while secondary penetrating muons and their successive decay into electrons and gamma, may revive additional Cerenkov lights. GeVs gamma telescopes at the top of the mountains or in Space may detect at horizons PeVs up to EeV C.R. and their secondaries. Details on arrival angle and column depth, shower shape, timing signature of photon flash intensity, may inform us on the altitude interaction and primary UHECR composition. Below the horizons, at zenith angle among copious single albedo muons, rare up-going showers traced by muon bundles would give evidence of rare tau Earth-Skimming neutrinos, at EeVs energies. Their rate may be comparable with 6.3 PeVs anti-neutrino electron induced air-shower (mostly hadronic) originated above and also below horizons, in interposed atmosphere by W resonance at Glashow peak. Additional and complementary UHE SUSY neutralinos at tens PeVs-EeV energy may blaze, by its characteristic electromagnetic signature. Their secondary shower blazing Cerenkov lights and distances might be disentangled from UHECR by Stereoscopic Telescopes such as Magic ones or Hess array experiment. The horizontal detection sensitivity of Magic in the present set up (if totally devoted to the Horizons Shower search) maybe already be comparable to AMANDA underground neutrino detector at PeVs energies.

D. Fargion

2004-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Majorana neutrino mass matrices with three texture zeros and the sterile neutrino  

E-Print Network (OSTI)

As a consequence of the LSND anomaly and other hints of an eV scale sterile neutrino from particle physics and cosmology, the neutrino sector of the standard model of particle physics has to be extended and the smallest extension is the (3+1) model, i.e. three active neutrinos plus one sterile one. In this work we study the neutrino mass matrix $M_\

Yongchao Zhang

2013-01-30T23:59:59.000Z

342

Search for neutrinos from Gamma-Ray Bursts with the Baikal neutrino telescope NT200  

E-Print Network (OSTI)

We present an analysis of neutrinos detected with the Baikal neutrino telescope NT200 for correlations with gamma-ray bursts (GRB). No neutrino events correlated with GRB were observed. Assuming a Waxman-Bahcall spectrum, a neutrino flux upper limit of {\\bf $E^2 \\Phi Green's Function fluence limit for this search, which extends two orders of magnitude beyond the energy range of the Super-Kamiokande limit.

Avrorin, A

2009-01-01T23:59:59.000Z

343

If sterile neutrinos exist, how can one determine the total solar neutrino fluxes?  

E-Print Network (OSTI)

The 8B solar neutrino flux inferred from a global analysis of solar neutrino experiments is within 11% (1 sigma) of the predicted standard solar model value if only active neutrinos exist, but could be as large as 1.7 times the standard prediction if sterile neutrinos exist. We show that the total 8B neutrino flux (active plus sterile neutrinos) can be determined experimentally to about 10% (1 sigma) by combining charged current measurements made with the KamLAND reactor experiment and with the SNO CC solar neutrino experiment, provided the LMA neutrino oscillation solution is correct and the simulated performance of KamLAND is valid. Including also SNO NC data, the sterile component of the 8B neutrino flux can be measured by this method to an accuracy of about 12% (1 sigma) of the standard solar model flux. Combining Super-Kamiokande and KamLAND measurements and assuming the oscillations occur only among active neutrinos, the 8B neutrino flux can be measured to 6% (1 sigma); the total flux can be measured to an accuracy of about 9%. The total 7Be solar neutrino flux can be determined to an accuracy of about 28% (1 sigma) by combining measurements made with the KamLAND, SNO, and gallium neutrino experiments. One can determine the total 7Be neutrino flux to a one sigma accuracy of about 11% or better by comparing data from the KamLAND experiment and the BOREXINO solar neutrino experiment provided both detectors work as expected. The pp neutrino flux can be determined to about 15% using data from the gallium, KamLAND, BOREXINO, and SNO experiments.

John N. Bahcall; M. C. Gonzalez-Garcia; C. Pena-Garay

2002-04-16T23:59:59.000Z

344

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network (OSTI)

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

345

Neutrino and Antineutrino Cross sections at MiniBooNE  

SciTech Connect

The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

Dharmapalan, Ranjan; /Alabama U.

2011-10-01T23:59:59.000Z

346

MHD origin of density fluctuations deep within the Sun and their influence on neutrino oscillation parameters in LMA MSW scenario  

Science Conference Proceedings (OSTI)

We analyze helioseismic waves near the solar equator in the presence of magnetic fields deep within the solar radiative zone. We find that reasonable magnetic fields can significantly alter the shapes of the wave profiles for helioseismic g modes. They can do so because the existence of density gradients allows g modes to resonantly excite Alfven waves, causing mode energy to be funneled along magnetic field lines, away from the solar equatorial plane. The resulting waveforms show comparatively sharp spikes in the density profiles at radii where these resonances take place. Such matter density waves with known spatial structure are substituted as a matter density noise into the 2 x 2 Schroedinger equation for {nu}{sub e,{mu}} neutrinos oscillating within the Sun. Then we reexamine the sensitivity of solar neutrino oscillations to noise in the solar interior using the best current estimates of neutrino properties. Our results show that the measurement of neutrino properties at KamLAND provides new information about fluctuations in the solar environment on scales to which standard helioseismology constraints are largely insensitive. We also show how the determination of neutrino oscillation parameters from a combined fit of KamLAND and solar data depends strongly on the magnitude of solar density fluctuations.

Semikoz, V.B.; Dzhalilov, N.S. [Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow oblast, 142092 (Russian Federation); Burgess, C.P. [Physics Department, McGill University, Montreal, Quebec (Canada); Rashba, T.I.; Valle, J.W.F. [AHEP Group, Instituto de Fisica Corpuscular, C.S.I.C., Universidad de Valencia, Edificio Institutos de Paterna, Valencia (Spain)

2004-06-01T23:59:59.000Z

347

Determination of alpha_s from tau decays  

E-Print Network (OSTI)

Hadronic tau decays offer the possibility of determining the strong coupling alpha_s at relatively low energy. Precisely for this reason, however, good control over the perturbative QCD corrections, the non-perturbative condensate contributions in the framework of the operator product expansion (OPE), as well as the corrections going beyond the OPE, the duality violations (DVs), is required. On the perturbative QCD side, the contour-improved versus fixed-order resummation of the series is still an issue, and will be discussed. Regarding the analysis, self-consistent fits to the data including all theory parameters have to be performed, and this is also explained in some detail. The fit quantities are moment integrals of the tau spectral function data in a certain energy window and care should be taken to have acceptable perturbative behaviour of those moments as well as control over higher-dimensional operator corrections in the OPE.

Jamin, Matthias

2013-01-01T23:59:59.000Z

348

Daya Bay Reactor Neutrino Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Daya Bay Reactor Neutrino Daya Bay Reactor Neutrino Experiment Daya Bay Reactor Neutrino Experiment Daya Bay is an international neutrino-oscillation experiment designed to determine the last unknown neutrino mixing angle θ13 using anti-neutrinos produced by the Daya Bay and Ling Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are located. Data collection is now scheduled to start in in 2011. On the PDSF cluster at NERSC, Daya Bay performs simulations of the detectors, reactors, and surrounding mountains to help design and anticipate detector properties and behavior. Once real data are available, Daya Bay will be using NERSC to analyze data and NERSC HPSS will be the central U.S. repository for all raw

349

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

350

Large Extra Dimensions, Sterile Neutrinos and Solar Neutrino Data  

Science Conference Proceedings (OSTI)

Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, {nu}{sub B} , which can exist in the bulk of extra dimensions. Solar {nu}{sub e} , confined to the brane, can oscillate in the vacuum to the zero mode of {nu}{sub B} and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of {nu}{sub B} . This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.

Caldwell, D. O.; Mohapatra, R. N.; Yellin, S. J.

2001-07-23T23:59:59.000Z

351

The Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations  

E-Print Network (OSTI)

:1. Our range of sensitivity is tuned to test the š¯ $ še solution of the atmospheric neutrino anomaly. 11 The Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations 94305 e Palo Verde Nuclear Generating Station,Tonopah AZ 85354 Our collaboration has installed a long

Piepke, Andreas G.

352

Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments  

E-Print Network (OSTI)

In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

H. Nunokawa

2001-05-03T23:59:59.000Z

353

Status of the Daya Bay Reactor Neutrino Oscillation Experiment  

E-Print Network (OSTI)

Status of the Daya Bay Reactor Neutrino OscillationCheng-Ju Lin The Daya Bay reactor neutrino experiment [1] isneutrinos from the nuclear reactors at different baselines.

Lin, Cheng-Ju Stephen

2011-01-01T23:59:59.000Z

354

Status of the Daya Bay Reactor Neutrino Oscillation Experiment  

E-Print Network (OSTI)

neutrinos from the nuclear reactors at different baselines.will be commissioned Nuclear Reactor Anti-neutrino detectorthe nuclear power complex has two pairs of reactor cores (

Lin, Cheng-Ju Stephen

2011-01-01T23:59:59.000Z

355

Pion condensation in a dense neutrino gas  

E-Print Network (OSTI)

We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

2009-01-16T23:59:59.000Z

356

Nuclear correction factors from neutrino DIS  

E-Print Network (OSTI)

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

K. Kovarik

2011-07-15T23:59:59.000Z

357

Nuclear correction factors from neutrino DIS  

E-Print Network (OSTI)

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

Kovarik, K

2011-01-01T23:59:59.000Z

358

Neutrino Factory Designs and R&D  

E-Print Network (OSTI)

European, Japanese, and US Neutrino Factory designs are presented. The main R&D issues, and the associated R&D programs, are discussed.

S. Geer

2002-07-15T23:59:59.000Z

359

Search for Neutrinos from the Sun  

DOE R&D Accomplishments (OSTI)

A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

Davis, Raymond Jr.

1968-09-00T23:59:59.000Z

360

Boron abundance and solar neutrino spectrum distortion  

E-Print Network (OSTI)

The presence of neutrinos from Boron decay in the flux observed on Earth is attested by the observation of their energy spectrum. Possible distortions of the spectrum investigated in current detectors are often interpreted in terms of evidence in favour or against various schemes of neutrino oscillations. We stress here that a distortion of the spectrum at high energies could also result from an increase in the ratio of neutrinos originating from ($^3$He+p) and $^8$B reactions. While a $^8$B neutrino depletion would contribute to this effect, an increase in the Hep contribution seems also needed to reproduce the preliminary data.

R. Escribano; J. -M. Frere; A. Gevaert; D. Monderen

1998-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Review of Solar and Reactor Neutrinos  

E-Print Network (OSTI)

Over the last several years, experiments have conclusively demonstrated that neutrinos are massive and that they mix. There is now direct evidence for $\

A. W. P. Poon

2005-09-19T23:59:59.000Z

362

Gamma Ray Burst Neutrinos Probing Quantum Gravity  

E-Print Network (OSTI)

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

363

Majorana Neutrino Masses from Flavor Symmetries  

E-Print Network (OSTI)

In this talk we discuss the implications of the Minimal Supersymmetric Standard Model augmented by a single U(1) anomalous family symmetry for neutrino masses and mixing angles. The left-handed neutrino states are provided with Majorana masses through a dimension-five operator in the absence of right handed neutrino components. Assuming symmetric lepton mass matrices, the model predicts inverse hierarchical neutrino mass spectrum, theta_13=0 and large mixing while at the same time it provides acceptable mass matrices for the charged fermions.

A. Psallidas

2005-05-11T23:59:59.000Z

364

Neutrino Factory Physics Study: Two Day Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Day Meeting The Fermilab Directorate has requested a 6 month study to assess the physics capabilities of neutrino factories as a function of their energies, intensities,...

365

Neutrino Physics at a Muon Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics at a Muon Collider The intense muon beams needed for high luminosity muon colliders produce intense beams of neutrinos. Dedicated muon storage rings with long straight...

366

Collective Neutrino Flavor Transformation In Supernovae  

E-Print Network (OSTI)

We examine coherent active-active channel neutrino flavor evolution in environments where neutrino-neutrino forward scattering can engender large-scale collective flavor transformation. We point out a key quantity, the "total effective energy", which is conserved in several important regimes. Using this concept, we analyze collective neutrino and antineutrino flavor oscillation in the "synchronized" mode and what we term the "bi-polar" mode. We thereby are able to explain why large collective flavor mixing can develop on short timescales even when vacuum mixing angles are small in, e.g., a dense gas of initially pure $\

Huaiyu Duan; George M. Fuller; Yong-Zhong Qian

2005-11-09T23:59:59.000Z

367

3.8 The Missing Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

phenomenon was first suggested by observations at the oldest solar neutrino detector (in South Dakota), for which Raymond Davis of Brookhaven National Laboratory won the 2000 Wolf...

368

Measurement of the branching ratio for the decay K sub L sup 0 r arrow. mu. mu  

Science Conference Proceedings (OSTI)

Concurrent with our search for the decays {ital K}{sub {ital L}}{sup 0}{r arrow}{mu}e and {ital K}{sub {ital L}}{sup 0}{r arrow}ee, we have observed 87 {ital K}{sub {ital L}}{sup 0}{r arrow}{mu}{mu} events. Normalizing this sample to the simultaneous observation of the decay {ital K}{sub {ital L}}{sup 0}{r arrow}{pi}{sup +}{pi}{sup {minus}}, we obtain the branching ratio {ital B}({ital K}{sub {ital L}}{sup 0}{r arrow}{mu}{mu}) =(5.8{plus minus}0.6(stat){plus minus}0.4 (syst)) {times}10{sup {minus}9}.

Mathiazhagan, C.; Molzon, W.R. (University of California, Irvine, California 92717 (US)); Cousins, R.D.; Konigsberg, J.; Kubic, J.; Melese, P.; Rubin, P.; Slater, W.E.; Wagner, D. (University of California, Los Angeles, California 90024); Hart, G.W.; Kinnison, W.W.; Lee, D.M.; McKee, R.J.; Milner, E.C.; Sanders, G.H.; Ziock, H.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545); Arisaka, K.; Knibbe, P.; Urheim, J. (University of Pennsylvania, Philadelphia, Pennsylvania 19104); Axelrod, S.

1989-11-13T23:59:59.000Z

369

The ANTARES underwater neutrino telescope  

E-Print Network (OSTI)

ANTARES is the first undersea neutrino telescope. It is in its complete configuration since May 2008 at about 2.5 km below the sea surface close to Marseille. Data from 12 lines are being analyzed and are producing first results. Here we discuss first analysis results for 5 lines and 10 lines, and we also comment on the performance of the full detector. We show that the detector has capabilities for discriminating upgoing neutrino events from the much larger amount of downgoing atmospheric muons and that data and simulation are in good agreement. We then discuss the physics reach of the detector for what concerns point-like source and dark matter searches.

Teresa Montaruli; for the ANTARES Collaboration

2008-10-21T23:59:59.000Z

370

Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set  

SciTech Connect

This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

2007-02-01T23:59:59.000Z

371

Neutrino Mass and Flavour Models  

E-Print Network (OSTI)

We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

King, Stephen F

2009-01-01T23:59:59.000Z

372

Neutrino Mass and Flavour Models  

E-Print Network (OSTI)

We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

Stephen F King

2009-09-16T23:59:59.000Z

373

Graphene, neutrino mass and oscillation  

E-Print Network (OSTI)

A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.

Z. Y. Wang

2009-09-10T23:59:59.000Z

374

The Solar Neutrino Problem - An Update  

E-Print Network (OSTI)

The $^8$B solar neutrino flux as measured by Super-Kamiokande is consistent with the $^{37}$Ar production rate in $^{37}$Cl at Homestake. GALLEX and SAGE, continue to observe $^{71}$Ge production rates in $^{71}$Ga that are consistent with the minimal signal expected from the solar luminosity. The observed $^8$B solar neutrino flux is in good agreement with that predicted by the standard solar model of Dar and Shaviv with nuclear reaction rates that are supported by recent measurements of nuclear fusion cross sections at low energies. The measurements of Super-Kamiokande, SAGE and GALLEX suggest that the expected the pep, $^7$Be and NO solar neutrino fluxes are strongly suppressed. This can be explained by neutrino oscillations and the Mikheyev-Smirnov-Wolfenstein effect. Since neither a flavor change, nor a terrestrial variation, nor a spectral distortion of the $^8$B solar neutrino flux has been observed yet, the solar neutrino problem does not provide conclusive evidence for neutrino properties beyond the standard electroweak model. The deviations of the experimental results from those predicted by the standard solar models may reflect the approximate nature of of solar models and of our knowledge of nuclear reaction rates, radiation transport and particle diffusion in dense stellar plasmas. Only future observations of spectral distortions, or terrestrial modulation or flavor change of solar neutrinos in solar neutrino experiments, such as Super-Kamiokande, SNO, Borexino and HELLAZ will be able to establish that neutrino properties beyond the minimal standard electroweak model are responsible for the solar neutrino problem.

Arnon Dar; Giora Shaviv

1998-08-11T23:59:59.000Z

375

Long Baseline Neutrino Beams and Large Detectors  

SciTech Connect

It is amazing to acknowledge that in roughly 70 years from when the existence of the neutrino was postulated, we are now contemplating investigating the mysteries of this particle (or particles) requiring and utilizing detectors of 300 ktons , distances of 1,000-2,000 kilometers, beam intensities of megawatts and underground depth of 5,000 feet. This evolution has evolved slowly, from the experimental discovery of the neutrino in 1956, to the demonstration that there were two neutrinos in 1962 and three and only three by 1991. The great excitement occurred in the 2000's coming from the study of solar and atmospheric neutrinos in which neutrinos were observed to oscillate and therefore have mass. Although the absolute mass of any of the neutrinos has yet to be determined (the upper limit is less than I electron volt) the difference in this square of these masses has been measured, yielding a value of (2.3 {+-} .2) 10{sup -3} ev{sup 2} for atmospheric neutrinos and (7.6 {+-} .2) 10{sup -5} ev{sup 2} for solar neutrinos. In addition their mixing angles were found to be 45{sup o} for atmospheric neutrinos and 34{sup o} for solar neutrinos. This present state of knowledge on neutrinos is pictorially displayed in Fig. 1. Of course, mixing between flavors had already been observed in the quark sector as exemplified by the Cabbibo-Kobayashi-Meskawa Matrix. It was therefore natural to extend this formalism to the lepton sector involving unitary 3 x 3 matrices and one CP violating phase. This is shown in Fig. 2 for the two sectors, quark and leptons including the Jarlskog invariant (J).

Samios,N.P.

2008-10-27T23:59:59.000Z

376

Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments  

E-Print Network (OSTI)

A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks(BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and $^{8}$He/$^{9}$Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample.

Ye Xu; Yixiong Meng; Weiwei Xu

2008-08-02T23:59:59.000Z

377

Extremely High Energy Neutrinos, Neutrino Hot Dark Matter, and the Highest Energy Cosmic Rays  

E-Print Network (OSTI)

Extremely high energy (up to 10**(22) eV) cosmic neutrino beams initiate high energy particle cascades in the background of relic neutrinos from the Big Bang. We perform numerical calculations to show that such cascades could contribute more than 10% to the observed cosmic ray flux above 10**(19) eV if neutrinos have masses in the electron volt range. The required intensity of primary neutrinos could be consistent with astrophysical models for their production if the maximum neutrino energy reaches to 10**(22) eV and the massive neutrino dark matter is locally clustered. Future observations of ultra high energy cosmic rays will lead to an indirect but practical search for neutrino dark matter.

Shigeru Yoshida; Guenter Sigl; Sangjin Lee

1998-08-14T23:59:59.000Z

378

Performance of the ATLAS tau trigger with 7 TeV collision data at the LHC  

E-Print Network (OSTI)

Tau leptons are a fundamental ingredient in the discovery of new physics at the LHC. The reconstruction of hadronic tau decays at the trigger level, although a very challenging task in proton-proton collision environments, allows us to double the sample of tau decays collected, and provides additional discovery power to final states which include tau leptons. In this contribution we show the understanding of the tau trigger system using data collected with the ATLAS detector at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. We present the most relevant quantities used in the different stages of the trigger selection, and the trigger efficiencies as a function of ET using tau-like QCD events passing the offline reconstruction and identification selection.

Robinson, M; The ATLAS collaboration

2010-01-01T23:59:59.000Z

379

Jack Steinberger and the Muon-Neutrino  

Office of Scientific and Technical Information (OSTI)

Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles exist in families of particles ... . At the time, the elementary particles which were involved were the electrons and the neutrino. ... [W]e required the [BNL] accelerator, which was the effort of very many people, ... and this allowed [us] to make a beam of these neutrinos, and we were able to convince ourselves that these neutrinos were not the same kind of neutrinos as those which had been seen before. They were associated with not electrons, but with something called [muons]. So we were able to understand that there is a different neutrino associated with the [muon] than with the electron.

380

Why Are Neutrinos Light? -- An Alternative  

SciTech Connect

We review the recent proposal that neutrinos are light because their masses are proportional to a low scale, f, of lepton flavor symmetry breaking. This mechanism is testable because the resulting pseudo-Goldstone bosons, of mass m_G, couple strongly with the neutrinos, affecting the acoustic oscillations during the eV era of the early universe that generate the peaks in the CMB radiation. Characteristic signals result over a very wide range of (f, m_G) because of a change in the total relativistic energy density and because the neutrinos scatter rather than free-stream. Thermodynamics allows a precise calculation of the signal, so that observations would not only confirm the late-time neutrino mass mechanism, but could also determine whether the neutrino spectrum is degenerate, inverted or hierarchical and whether the neutrinos are Dirac or Majorana. The flavor symmetries could also give light sterile states. If the masses of the sterile neutrinos turn on after the MeV era, the LSND oscillations can be explained without upsetting big bang nucleosynthesis, and, since the sterile states decay to lighter neutrinos and pseudo-Goldstones, without giving too much hot dark matter.

Hall, Lawrence J.; Oliver, Steven J.

2004-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Consistency of 8B neutrino spectra  

E-Print Network (OSTI)

We identify and quantify systematic effects not accounted for in two previous measurements of the alpha-alpha relative-energy distribution in the beta decay of 8B, which can explain the apparent disagreement with respect to two newer measurements. This settles a current dispute concerning the shape of the 8B neutrino spectrum of importance to solar-neutrino studies.

Oliver S. Kirsebom; Hans O. U. Fynbo; Riccardo Raabe; Karsten Riisager; Thomas Roger

2012-11-15T23:59:59.000Z

382

Variations in the Solar Neutrino Flux  

DOE R&D Accomplishments (OSTI)

Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

1987-08-02T23:59:59.000Z

383

Big World of Small Neutrinos Hitoshi Murayama  

E-Print Network (OSTI)

· Finally discovered by Cowan and Reines using a nuclear reactor in 1958 · Massless Neutrinos, Phys. Rev. 48, 391 (1935) Bohr: At the present stage of atomic theory, however, we may say that we have Colloquium 11 Anti-Neutrinos are Right-handed · CPT theorem in quantum field theory ­ C: interchange

Murayama, Hitoshi

384

Neutrino Balls and Gamma-Ray Bursts  

E-Print Network (OSTI)

We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

B. Holdom; R. A. Malaney

1993-06-17T23:59:59.000Z

385

A measurement of the branching fraction B(tau$^{+}$ --> h$^{-}$ $\\pi$sup(0) $\  

E-Print Network (OSTI)

Using data from the CLEO II detector at CESR, we measure {\\cal B}(\\tau^\\pm\\rightarrow h^\\pm\\pi^0\

Artuso, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Xing, X; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Barish, B; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G; Paar, H P; Sivertz, M; Gronberg, J; Kutschke, R; Menary, S; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, D G; Cho, H A; Coffman, D M; Crowcroft, D S; Drell, P S; Ehrlich, R; Gaidarev, P; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Edwards, K W; Ogg, M; Spaan, B; Bellerive, A; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N; Davis, R; Hancock, N; Kelly, M; Kotov, S; Kravchenko, I; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Momayezi, M; Nelson, J K; Patton, S; Perticone, D; Poling, R; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G; Ross, W R; Skubic, P L; Wood, M; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang, P N; Battle, M; Ernst, J; Gibbons, L; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H; Dominick, J; Lambrecht, M; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P

1994-01-01T23:59:59.000Z

386

Fermilab Today | Experiment Profiles Archive | Mu2e  

NLE Websites -- All DOE Office Websites (Extended Search)

Mu2e experiment will observe 10,000 times more data. HOW DOES THIS FIT INTO FERMILABS STRATEGIC PLAN? It would require minor changes to the Fermilab accelerator complex and...

387

Resolving Standard and Nonstandard CP Violation Phases in Neutrino Oscillations  

SciTech Connect

Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi-Maskawa phase delta, if non-standard neutrino interactions are at play. We show that it is possible to disentangle the two CP violating effects by measuring muon neutrino appearance using a near-far two detector setting in a neutrino factory experiment.

Gago, A. M. [Seccion Fisica, Departamento de Ciencias, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru); Minakata, H.; Uchinami, S. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan); Nunokawa, H. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, C. P. 38071, 22452-970, Rio de Janeiro (Brazil); Zukanovich Funchal, R. [Instituto de Fisica, Universidade de Sao Paulo, C. P. 66.318, 05315-970 Sao Paulo (Brazil)

2010-03-30T23:59:59.000Z

388

Solar neutrino measurements in Super-Kamiokande-I  

E-Print Network (OSTI)

The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

Super-Kamiokande Collaboration

2005-08-27T23:59:59.000Z

389

Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)  

E-Print Network (OSTI)

In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

Yu Efremenko; W R Hix

2008-07-17T23:59:59.000Z

390

Overview of the LBNE Neutrino Beam  

Science Conference Proceedings (OSTI)

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW.

Moore, C.D.; He, Yun; Hurh, Patrick; Hylen, James; Lundberg, Byron; McGee, Mike; Misek, Joel; Mokhov, Nikolai V.; Papadimitriou, Vaia; Plunkett, Rob; Schultz, Ryan; /Fermilab

2011-03-22T23:59:59.000Z

391

Noncommutative Theory in Light of Neutrino Oscillation  

E-Print Network (OSTI)

Solar neutrino problem and atmospheric neutrino anomaly which are both long-standing issues studied intensively by physicists in the past several decades, are reckoned to be able to be solved simultaneously in the framework of the assumption of the neutrino oscillation. For the presence of the Lorentz invariance in the Standard Model, the massless neutrino can't have flavor mixing and oscillation. However, we exploit the q-deformed noncommutative theory to derive a general modified dispersion relation, which implies some violation of the Lorentz invariance. Then it is found that the application of the q-deformed dispersion relation to the neutrino oscillation can provide a sound explanation for the current data from the reactor and long baseline experiments.

Shao-Xia Chen; Zhao-Yu Yang

2003-12-07T23:59:59.000Z

392

Solar neutrinos and the solar composition problem  

E-Print Network (OSTI)

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Carlos Pena-Garay; Aldo Serenelli

2008-11-16T23:59:59.000Z

393

Unified Graphical Summary of Neutrino Mixing Parameters  

E-Print Network (OSTI)

The neutrino mixing parameters are presented in a number of different ways by the various experiments, e.g. SuperKamiokande, K2K, SNO, KamLAND and Chooz and also by the Particle Data Group. In this paper, we argue that presenting the data in terms of $\\sin^2 \\theta$, where $\\theta$ is the mixing angle appropriate for a given experiment has a direct physical interpretation. For current atmospheric, solar and reactor neutrino experiments, the $\\sin^2 \\theta$'s are effectively the probability of finding a given flavor in a particular neutrino mass eigenstate. The given flavor and particular mass eigenstate varies from experiment to experiment, however, the use of $\\sin^2 \\theta$ provides a unified picture of all the data. Using this unified picture we present a graphical way to represent these neutrino mixing parameters which includes the uncertainties. All of this is performed in the context of the present experimental status of three neutrino oscillations.

Olga Mena; Stephen Parke

2003-12-10T23:59:59.000Z

394

Solar neutrinos and the solar composition problem  

E-Print Network (OSTI)

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Pena-Garay, Carlos

2008-01-01T23:59:59.000Z

395

Neutrino astronomy with the MACRO detector  

E-Print Network (OSTI)

High energy gamma ray astronomy is now a well established field and several sources have been discovered in the region from a few GeV up to several TeV. If sources involving hadronic processes exist, the production of photons would be accompanied by neutrinos too. Other possible neutrino sources could be related to the annihilation of WIMPs at the center of galaxies with black holes. We present the results of a search for point-like sources using 1100 upward-going muons produced by neutrino interactions in the rock below and inside the MACRO detector in the underground Gran Sasso Laboratory. These data show no evidence for a possible neutrino point-like source or for possible correlations between gamma ray bursts and neutrinos. They have been used to set flux upper limits for candidate point-like sources which are in the range 10^-14-10^-15 cm-2 s-1.

M. Ambrosio

2000-02-26T23:59:59.000Z

396

RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM  

E-Print Network (OSTI)

Considerations for the Dtep Underwater Muon and NeutrinoPresented at the Deep Underwater Huon and Neutrino DetectionCOMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO

Leskovar, B.

2010-01-01T23:59:59.000Z

397

Search for doubly-charged Higgs Boson production in the decay H++ H-- ---> mu+ mu+ mu- mu - with the D0 detector at s**(1/2) = 1.96-TeV  

SciTech Connect

This work presents a search for the pair production of doubly-charged Higgs Bosons in the process p{bar p} {yields} H{sup ++}H{sup --} {yields} {mu}{sup +}{mu}{sup +}{mu}{sup -}{mu}{sup -} using inclusive dimuon events. These data correspond to an integrated luminosity of about 113 pb 1 and were recorded by the D0 experiment between August 2002 and June 2003. In the absence of a signal, 95% confidence level mass limits of M(H{sub L}{sup {+-}{+-}}) > 118.6 GeV/c{sup 2} and M(H{sub R}{sup {+-}{+-}}) > 98.1 GeV/c{sup 2} are set for left-handed and right-handed doubly-charged Higgs boson, assuming 100% branching into muons and hypercharge |Y| = 2 and Yukawa coupling h{sub {mu}{mu}} > 10{sup -7}. This is the first search for doubly-charged Higgs bosons at hadron colliders. It significantly extends the previous mass limit of 100.5 GeV/c{sup 2} for a left-handed doubly-charged Higgs boson measured in the muon final states by the OPAL collaboration.

Zdrazil, Marian; /SUNY, Stony Brook

2004-01-01T23:59:59.000Z

398

Asymmetry and cross-section in e sup + e sup minus yields. tau. sup +. tau. sup minus from radical s = 52 to 57 GeV  

SciTech Connect

The reaction e{sup {plus}}e{sup {minus}} {yields} {tau}{sup {plus}}{tau}- was studied at center-of-mass energies of 52, 55, 56, and 57 GeV in the AMY detector, located on the TRISTAN storage ring at KEK, Japan. Creation of {tau}-lepton pairs in e{sup {plus}}e{sup {minus}} collisions is an excellent test of the Standard Model. The forward-backward asymmetry is a particularly sensitive test, since the measurement depends not only on the number of events, but also on the distribution of these events. Measurements of the total production cross-section, {sigma}{sub {tau}{tau}}, and the differential cross-section, d{sigma}{sub {tau}}/d{Omega}, were made using data contained in a total integrated luminosity of 17.65 pb{sup {minus}1}. Total measured cross sections at each energy were in agreement with predictions from the Standard Model. The forward-backward asymmetry in the polar production angle, A{sub fb}, was obtained from the differential cross-section. At the average energy of {radical}s {equals} 55.16 GeV, it was determined that A{sub fb} {equals} {minus}0.33 {plus minus} 0.09. This is in good agreement with the Standard Model prediction of A{sub fb (Std. Mod.)} {equals} {minus}0.30 at this energy. Values of the weak coupling constants, g{sub V}{sup {tau}}g{sub V}{sup e} and g{sub A}{sup {tau}}g{sub A}{sup e}, were extracted from the measured asymmetry with the results g{sub V}{sup {tau}}g{sub V}{sup e} {equals} {minus}0.12 {plus minus} 0.08 and g{sub A}{sup {tau}}g{sub A}{sup e} {equals} 0.28 {plus minus} 0.08, in agreement with the Standard Model values of g{sub V}{sup {tau}}g{sub V}{sup e} (Std. Mod.) {equals} 0.0016 and g{sub A}{sup {tau}}g{sub A}{sup e} (Std. Mod.) 0.25. Lower limits on the QED cutoff parameters, {Lambda}{plus minus}, were obtained from the measured cross-section.

Malchow, R.L.

1989-01-01T23:59:59.000Z

399

Detection of the Neutrino Fluxes from Several Sources  

E-Print Network (OSTI)

It is considered the detection of neutrinos moving from the opposite directions. The states of the particle of the detector interacting with the neutrinos are connected with the P-transformation. Hence only a half of neutrinos gives contribution into the superposition of the neutrino states. Taking into account the effect of the opposite neutrino directions the total neutrino flux from several sources are in the range 0.5--1 of that without the effect. The neutrino flux from nuclear reactors measured in the KamLAND experiment is $0.611\\pm 0.085 {\\rm (stat)} \\pm 0.041 {\\rm (syst)} $ of the expected flux. Calculations for the conditions of the KamLAND experiment yield the neutrino flux taking into account the effect of the opposite neutrino directions, 0.555, of that without the effect that may account for the neutrino flux observed in the KamLAND experiment.

D. L. Khokhlov

2003-02-19T23:59:59.000Z

400

SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment  

DOE Data Explorer (OSTI)

SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

SAGE Collaboration

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics  

E-Print Network (OSTI)

We analyze all available solar and related reactor neutrino experiments, as well as simulated future 7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.02 +- 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the 7Be neutrino flux is 0.93^{+0.25}_{-0.63} the predicted flux; and the ^8B flux is 1.01 +- 0.04 the predicted flux. The neutrino oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6}\\times 10^{-5} eV^2 and tan^2 theta_{12} = 0.41 +- 0.04. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations at low energies. A future 7Be nu-e scattering experiment accurate to +- 10 % can reduce the uncertainty in the experimentally determined 7Be neutrino flux by a factor of four and the uncertainty in the p-p neutrino flux by a factor of 2.5 (to +- 0.8 %). A future p-p experiment must be accurate to better than +- 3 % to shrink the uncertainty in tan^2 theta_{12} by more than 15 %. The idea that the Sun shines because of nuclear fusion reactions can be tested accurately by comparing the observed photon luminosity of the Sun with the luminosity inferred from measurements of solar neutrino fluxes. Based upon quantitative analyses of present and simulated future experiments, we answer the question: Why perform low-energy solar neutrino experiments?

John N. Bahcall; Carlos Pena-Garay

2003-05-15T23:59:59.000Z

402

The Nuclear Emulsion Technology and the Analysis of the OPERA Experiment Data  

E-Print Network (OSTI)

OPERA is an experiment that aims at detecting the appearance of tau-neutrino in an almost pure mu-neutrino beam (the CNGS neutrino beam) through oscillation. OPERA is a hybrid detector that associates nuclear emulsions to electronic detectors. The nuclear emulsion provides the resolution necessary to detect tau-neutrino CC interactions. The first physics run started in July and ended in November 2008. In this presentation, the status of the emulsion technology and of the analysis of its data is reported.

Tsutomu Fukuda

2009-10-17T23:59:59.000Z

403

Discrete symmetries and neutrino masses  

SciTech Connect

We constructed a model of neutrino masses using Froggatt-Nielsen mechanism with U(1)xZ{sub 3}xZ{sub 2} flavor symmetry. The model predicts that (2/3)m{sub 2}/m{sub 3}{approx}{radical}(2)sin{theta}{sub 13} at lepton number violating scale M{sub 1}. It is shown that the small values for m{sub 2}/m{sub 3} and sin{theta}{sub 13} are consequences of breaking discrete symmetries.

Siyeon, Kim [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

2005-02-01T23:59:59.000Z

404

Search for Higgs bosons decaying to tau(+)tau(-) pairs in p(p)over-bar collisions at root s=1.96 TeV  

Science Conference Proceedings (OSTI)

We present a search for the production of neutral Higgs bosons decaying into {tau}{sup +}{tau}{sup -} pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb{sup -1}, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into {tau}{sup +}{tau}{sup -} pairs, and we interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.

Abazov, V.M.; Abazov, V. M.; Abbott, B.; Achary, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Arov, M.; Askew, A.; Asman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjea, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopia, S.; Haley, J.; Hang, L.; Harder, K.; Harein, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoangau, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Huske, N.; Hynek, V.; Lashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I. I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; et al.

2012-02-01T23:59:59.000Z

405

The SNO Solar Neutrino Data, Neutrinoless Double Beta-Decay and Neutrino Mass Spectrum  

E-Print Network (OSTI)

Assuming 3 neutrino mixing and massive Majorana neutrinos, we analyze the implications of the results of the solar neutrino experiments, including the latest SNO data, which favor the LMA MSW solution of the solar neutrino problem with \\tan^2 \\theta_sol | in neutrinoless double beta decay. For \\cos (2 \\theta_sol) \\geq 0.26, which follows from the analysis of the new solar neutrino data, we find significant lower limits on || in the cases of quasi-degenerate and inverted hierarchy neutrino mass spectrum, || \\geq 0.035 eV and || \\geq 8.5 10^-3 eV, respectively. If the spectrum is hierarchical the upper limit holds || \\leq 8.2 10^-3 eV. Correspondingly, not only a measured value of || \

S. Pascoli; S. T. Petcov

2002-05-02T23:59:59.000Z

406

Solving the Solar Neutrino Problem 2 km Underground -- the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

The Sudbury Neutrino Observatory (SNO) is capable of measuring simultaneously the flux of electron-type neutrinos and the total flux of all active flavours of neutrinos originating from the Sun. A model-independent test of neutrino flavour transformation was performed by comparing these two measurements. Assuming an undistorted neutrino energy spectrum, this transformation has been definitively demonstrated in the pure D2O phase of the SNO experiment. In the second phase with dissolved NaCl in the D2O, the total active solar neutrino flux was measured without any assumption on the energy dependence of flavour transformation. In this talk, results from these measurements, their physics implications and the current status of the SNO experiment are presented.

A. W. P. Poon; for the SNO Collaboration

2003-11-30T23:59:59.000Z

407

Solar neutrinos: beyond standard solar models  

E-Print Network (OSTI)

After a short survey of the physics of solar neutrinos, giving an overview of hydrogen burning reactions, predictions of standard solar models and results of solar neutrino experiments, we discuss the solar-model-independent indications in favour of non-standard neutrino properties. The experimental results look to be in contradiction with each other, even disregarding some experiment: unless electron neutrinos disappear in their trip from the sun to the earth, the fluxes of intermediate energy neutrinos (those from 7Be electron capture and from the CNO cycle) result to be unphysically negative, or anyway extremely reduced with respect to standard solar model predictions. Next we review extensively non-standard solar models built as attempts to solve the solar neutrino puzzle. The dependence of the central solar temperature on chemical composition, opacity, age and on the values of the astrophysical S-factors for hydrogen-burning reactions is carefully investigated. Also, possible modifications of the branching among the various pp-chains in view of nuclear physics uncertainties are examined. Assuming standard neutrinos, all solar models examined fail in reconciling theory with experiments, even when the physical and chemical inputs are radically changed with respect to present knowledge and even if some of the experimental results are discarded.

V. Castellani; S. Degl'Innocenti; G. Fiorentini; M. Lissia; B. Ricci

1996-06-30T23:59:59.000Z

408

The status of the solar neutrino problem  

Science Conference Proceedings (OSTI)

Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution. The next generation of solar experiments promise to finally resolve the source of the ``solar neutrino problem`` by the end of this decade.

Bowles, T.J.

1993-12-01T23:59:59.000Z

409

Improving the estimation of Kendall's tau when censoring affects only one of the variables  

Science Conference Proceedings (OSTI)

This paper considers the estimation of Kendall's tau for bivariate data (X,Y) when only Y is subject to right-censoring. Although @t is estimable under weak regularity conditions, the estimators proposed by Brown et al. [1974. Nonparametric tests of ... Keywords: Censoring, Conditional distribution, Copula, Covariate, Generalized Kaplan-Meier estimator, Kendall's tau, Lifetime data

David Beaudoin; Thierry Duchesne; Christian Genest

2007-08-01T23:59:59.000Z

410

Search for the Baryon and Lepton Number Violating Decays tau to Lambda h  

SciTech Connect

The authors have searched for the violation of baryon number B and lepton number L in the (B-L)-conserving modes {tau}{sup -} {yields} {bar {Lambda}}{sup 0}{pi}{sup -} and {tau}{sup -} {yields} {bar {Lambda}}{sup 0}K{sup -} as well as the (B-L)-violating modes {tau}{sup -} {yields} {Lambda}{sup 0}{pi}{sup -} and {tau}{sup -} {yields} {Lambda}{sup 0}K{sup -} using 237 fb{sup -1} of data collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} storage ring. They do not observe any signal and determine preliminary upper limits on the branching fractions {Beta}({tau}{sup -} {yields} {bar {Lambda}}{sup 0}{pi}{sup -}) < 5.9 x 10{sup -8}, {Beta}({tau}{sup -} {yields} {Lambda}{sup 0}{pi}{sup -}) < 5.8 x 10{sup -8}, {Beta}({tau}{sup -} {yields} {bar {Lambda}}{sup 0}K{sup -}) < 7.2 x 10{sup -8}, and {Beta}({tau}{sup -} {yields} {Lambda}{sup 0}K{sup -}) < 15 x 10{sup -8} at 90% confidence level.

Aubert, B.

2006-11-28T23:59:59.000Z

411

The Catalysis of Nuclear Reactions by mu Mesons  

DOE Green Energy (OSTI)

In the course of a recent experiment involving the stopping of negative K mesons in a 10-inch liquid hydrogen bubble chamber, an interesting new reaction was observed to take place. The chamber is traversed by many more negative {mu} mesons than K mesons, so that in the last 75,000 photographs, approximately 2500 {mu}{sup -} decays at rest have been observed. In the same pictures, several hundred {pi}{sup -} mesons have been observed to disappear at rest, presumably by one of the ''Panofsky reactions''. For tracks longer than 10 cm, it is possible to distinguish a stopping {mu} meson from a stopping {pi} meson by comparing its curved path (in a field of 11,000 gauss) with that of a calculated template. In addition to the normal {pi}{sup -} and {mu}{sup -} stoppings, we have observed 15 cases in which what appears (from curvature measurement) to be a {mu}{sup -} meson comes to rest in the hydrogen, and then gives rise to a secondary negative particle of 1.7 cm range, which in turn decays by emitting an electron. (A 4.1-Mev {mu} meson from {pi} - {mu} decay has a range of 1.0 cm.) The energy spectrum of the electrons from these 15 secondary particles looks remarkably like that of the {mu} meson. There are four electrons in the energy range 50 to 55 Mev, and none higher; the other electrons have energies varying from 50 Mev to 13 Mev. The most convincing proof that the primary particle actually comes to rest, and does not--for example--have a large resonant cross section for scattering at a residual range of 1.7 cm, is the following: In five of the 15 special events, there is a large gap between the last bubble of the primary track and the first bubble of the secondary track. This gap is a real effect, and not merely a statistical fluctuation in the spacing of the bubbles, since in some cases the tracks form a letter X, and in another case the secondary track is parallel to the primary, but displaced transversely by about 1 mm at the end of the primary. These real gaps appear also (although perhaps less frequently) between some otherwise normal-looking {mu}{sup -} endings and the subsequent decay electron; they are thought to be the distance traveled by the small neutral mesic atom.

Alvarez, L.W.; Bradner, H.; Crawford Jr, F.S.; Crawford, J.A.; Falk-Vairant, P.; Good, M.L.; Gow, J.D.; Hosenfeld, A.R.; Solmitz, F.; Stevenson, M.L.; Ticho, H.K.; Tripp, H.D.

1956-12-10T23:59:59.000Z

412

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment  

Science Conference Proceedings (OSTI)

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

Coleman, Stephen James; /William-Mary Coll.

2011-01-01T23:59:59.000Z

413

Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models  

E-Print Network (OSTI)

The MiniBooNE Neutral Current Elastic (NCEL) cross section results are used to extract limits in the $\\Delta m^{2}-\\sin^{2}\\vartheta_{\\mu s}$ plane for a 3+1 sterile neutrino model with a mass splitting $0.1 \\leq \\Delta m^{2} \\leq 10.0$ eV$^{2}$. GENIE is used with a cross section model close to the one employed by MiniBooNE to make event rate predictions using simulations on the MiniBooNE target material CH$_{2}$. The axial mass is a free parameter in all fits. Sterile modifications to the flux and changes to the cross section in the simulation relate the two and allow limits to be set on sterile neutrino mixing using cross section results. The large axial mass problem makes it necessary for experiments to perform their own axial mass fits, but a prior fit to the same dataset could mask a sterile oscillation signal. Results are given with and without a penalty term on the axial mass from a prior fit. We find that a simultaneous fit to the axial mass and the sterile neutrino parameters favours very high axial mass values. The general problems that the current uncertainty on charged-current quasi-elastic (CCQE) cross sections at MiniBooNE energies pose for sterile neutrino measurements are discussed.

Callum Wilkinson; Susan Cartwright; Lee Thompson

2013-09-04T23:59:59.000Z

414

Measuring Neutrino Oscillations with Nuclear Reactors  

SciTech Connect

Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

McKeown, R. D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States)

2007-10-26T23:59:59.000Z

415

Dirac Neutrino Masses from Generalized Supersymmetry Breaking  

SciTech Connect

We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the standard model with a generalized supersymmetry breaking sector. If the superpotential neutrino Yukawa terms are forbidden by the gauge symmetry [such as a U(1){sup '}], sub-eV scale effective Dirac mass terms can arise at tree level from hard supersymmetry breaking Yukawa couplings, or at one loop due to nonanalytic soft supersymmetry breaking trilinear scalar couplings. The radiative neutrino magnetic and electric dipole moments vanish at one-loop order.

Demir, Durmus A.; Everett, Lisa L.; Langacker, Paul [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir (Turkey); Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg (Germany); Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540 (United States)

2008-03-07T23:59:59.000Z

416

On the 17-keV neutrino  

SciTech Connect

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in [beta] decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

417

On the 17-keV neutrino  

SciTech Connect

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in {beta} decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

418

Neutrino Capture Reactions on $^{40}$Ar  

E-Print Network (OSTI)

Gamow-Teller (GT) strength in $^{40}$Ar is studied by shell-model calculations with monopole-based universal intearction, which has tensor components of $\\pi$\\rho$-meson exchanges. Calculated GT strength is found to be consistent with the experimental data obtained by recent ($p, n$) reactions. Neutrino capture cross sections on $^{40}$Ar for solar neutrinos from $^{8}$B are found to be enhanced compared with previous calculations. The reaction cross sections for multipoles other than $0^{+}$ and $1^{+}$ are obtained by random-phase approximation (RPA). Their contributions become important for neutrino energies larger than 50 MeV.

Toshio Suzuki; Michio Honma

2012-11-17T23:59:59.000Z

419

Neutrino-Accelerated Hot Hydrogen Burning  

E-Print Network (OSTI)

We examine the effects of significant electron anti-neutrino fluxes on hydrogen burning. Specifically, we find that the bottleneck weak nuclear reactions in the traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino capture, increasing the energy generation rate. We also discuss how anti-neutrino capture reactions can alter the conditions for break out into the rp-process. We speculate on the impact of these considerations for the evolution and dynamics of collapsing very- and super- massive compact objects.

Chad T. Kishimoto; George M. Fuller

2006-06-23T23:59:59.000Z

420

NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS  

Science Conference Proceedings (OSTI)

Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

Caballero, O. L.; McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Surman, R., E-mail: lcaballe@uw.edu, E-mail: olcaball@ncsu.edu, E-mail: gail_mclaughlin@ncsu.edu, E-mail: surmanr@union.edu [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States)

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mu tau neutrinos" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Neutrino Spectra from Accretion Disks: Neutrino General Relativistic Effects and the Consequences for Nucleosynthesis  

E-Print Network (OSTI)

Black hole accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the black hole influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from black hole accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome

O. L Caballero; G. C. McLaughlin; R. Surman

2011-05-31T23:59:59.000Z

422

Scalar meson mediated nuclear mu-e conversion  

E-Print Network (OSTI)

We study the nuclear mu-e conversion in the general framework of the effective Lagrangian approach without referring to any specific realization of the physics beyond the standard model (SM) responsible for lepton flavor violation (LFV). We analyze the role of scalar meson exchange between the lepton and nucleon currents and show its relevance for the coherent channel of mu-e conversion. We show that this mechanism introduces modifications in the predicted mu-e conversion rates in comparison with the conventional direct nucleon mechanism, based on the contact type interactions of the nucleon currents with the LFV leptonic current. We derive from the experimental data lower limits on the mass scales of the generic LFV lepton-quark contact terms and demonstrate that they are more stringent than the similar limits existing in the literature.

Amand Faessler; Th. Gutsche; Sergey Kovalenko; V. E. Lyubovitskij; Ivan Schmidt

2005-07-04T23:59:59.000Z

423

A Hydrodynamical Approach to CMB mu-distortions  

E-Print Network (OSTI)

Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the mu-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we calculate the transfer function for mu-distortions between the end of the mu-era and now.

Enrico Pajer; Matias Zaldarriaga

2012-06-20T23:59:59.000Z

424

Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_? ~ 3.5 GeV  

E-Print Network (OSTI)

We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and study the low energy particle content of the final state. Deviations are found between the measured d{\\sigma}/dQ^2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

The MINERvA collaboration; G. A. Fiorentini; D. W. Schmitz; P. A. Rodrigues; L. Aliaga; O. Altinok; B. Baldin; A. Baumbaugh; A. Bodek; D. Boehnlein; S. Boyd; R. Bradford; W. K. Brooks; H. Budd; A. Butkevich; D. A. Martinez Caicedo; C. M. Castromonte; M. E. Christy; H. Chung; J. Chvojka; M. Clark; H. da Motta; D. S. Damiani; I. Danko; M. Datta; M. Day; R. DeMaat; J. Devan; E. Draeger; S. A. Dytman; G. A. Díaz; B. Eberly; D. A. Edmondson; J. Felix; T. Fitzpatrick; L. Fields; A. M. Gago; H. Gallagher; C. A. George; J. A. Gielata; C. Gingu; B. Gobbi; R. Gran; N. Grossman; J. Hanson; D. A. Harris; J. Heaton; A. Higuera; I. J. Howley; K. Hurtado; M. Jerkins; T. Kafka; J. Kaisen; M. O. Kanter; C. E. Keppel; J. Kilmer; M. Kordosky; A. H. Krajeski; S. A. Kulagin; T. Le; H. Lee; A. G. Leister; G. Locke; G. Maggi; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; K. S. McFarland; C. L. McGivern; A. M. McGowan; A. Mislivec; J. G. Morf?; J. Mousseau; D. Naples; J. K. Nelson; G. Niculescu; I. Niculescu; N. Ochoa; C. D. O'Connor; J. Olsen; B. Osmanov; J. Osta; J. L. Palomino; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; C. Peña; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; C. Rude; K. E. Sassin; H. Schellman; R. M. Schneider; E. C. Schulte; C. Simon; F. D. Snider; M. C. Snyder; J. T. Sobczyk; C. J. Solano Salinas; N. Tagg; W. Tan; B. G. Tice; G. Tzanakos; J. P. Velásquez; J. Walding; T. Walton; J. Wolcott; B. A. Wolthuis; N. Woodward; G. Zavala; H. B. Zeng; D. Zhang; L. Y. Zhu; B. P. Ziemer

2013-05-10T23:59:59.000Z

425

First measurement of VuT & Ve events in an off-axis horn-focused neutrino beam  

SciTech Connect

We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beamline at Fermilab. The MiniBooNE detector is located 745 m distance from the NuMI production target, at 110 mrad angle (6.3{sup o}) with respect to the NuMI beam axis. Samples of charged current quasi-elastic {nu}{sub {mu}} and {nu}{sub e} interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates modeling of the NuMI off-axis beam.

Louis, William C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

426

Laser enhancement of resonance (dt. mu. ,d2e) and (dd. mu. ,d2e) (molecular) formation  

SciTech Connect

The enhancement of resonance molecular formation rates of (dt..mu..,d2e) and (dd..mu..,d2e) by strong laser irradiation have been studied. The formation rates decrease until the laser intensity reaches the order of 10/sup 8/ to 10/sup 9/ W/cm/sup 2/, and they increase substantially for the intensity range of 10/sup 10/ W/cm/sup 2/ to 10/sup 11/ W/cm/sup 2/. The (dt..mu..,d2e) formation rate using the angular frequency laser such as 11.4 x 10/sup 13/ rad/sec becomes 4 x 10/sup 10/ l/sec for the laser intensity of 3 x 10/sup 10/ W/cm/sup 2/. Further increase of laser intensity reduces the formation rate due to the mismatch of the resonance condition. The formation rate is very sensitive to the frequency of the laser and the formation rate of (dd..mu..,d2e) becomes comparable with one of (dt..mu..,d2e) for the cases of w = 22.8 x 10/sup 13/ rad/sec. For the case of dt initial molecule, there is the possibility of enhancing the formation rate by exciting the vibrational motion by laser field.

Takahashi, H.

1987-01-01T23:59:59.000Z

427

Longevity Problem of Sterile Neutrino Dark Matter  

E-Print Network (OSTI)

Sterile neutrino dark matter of mass O(1-10) keV decays into an active neutrino and an X-ray photon, and the non-observation of the corresponding X-ray line requires the sterile neutrino to be more long-lived than estimated based on the seesaw formula : the longevity problem. We show that, if one or more of the B-L Higgs fields are charged under a flavor symmetry (or discrete R symmetry), the split mass spectrum for the right-handed neutrinos as well as the required longevity is naturally realized. We provide several examples in which the predicted the X-ray flux is just below the current bound.

Hiroyuki Ishida; Kwang Sik Jeong; Fuminobu Takahashi

2013-09-12T23:59:59.000Z

428

Precision spectroscopy with reactor anti-neutrinos  

E-Print Network (OSTI)

In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

Huber, P; Huber, Patrick; Schwetz, Thomas

2004-01-01T23:59:59.000Z

429

QLC relation and neutrino mass hierarchy  

E-Print Network (OSTI)

neutrino mass matrix is generated at high energies, s 12 = cneutrino mass matrix is generated at low energy scales. Ontrino mass matrix is generated at some high energy scale. We

Ferrandis, Javier

2009-01-01T23:59:59.000Z

430

Experimental and phenomenological status of neutrino ... - Springer  

Science Conference Proceedings (OSTI)

1 kt water Cerenkov and a fine grained water tube with scintillation fibre 6 ton detector. This way the neutrino flux is accurately known. The final result of the.

431

Neutrino Oscillation Experiments at Nuclear Reactors  

E-Print Network (OSTI)

In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

Giorgio Gratta

1999-05-06T23:59:59.000Z

432

Neutrino nuclear response and photo nuclear reaction  

E-Print Network (OSTI)

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculation...

Ejiri, H; Boswell, M; Young, A

2013-01-01T23:59:59.000Z

433

Neutrino nuclear response and photo nuclear reaction  

E-Print Network (OSTI)

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and